5.1 はじめに

平成7年1月17日未明に発生した兵庫県南部地震によって神戸を中心とするいわゆる近代都市が直下型 地震に極めて脆弱であることを露呈した。なかでも、我が国の最重要港の一つである神戸港は、その大半 の港湾施設が被災し、港湾機能はほとんど麻痺状態に陥った。神戸港の岸壁の90%を占めるケーソン式 重力式岸壁は滑動、前傾、沈下を伴う深刻な被害を受けて使用不能となったため、コンテナ貨物の輸送は 深刻な影響を受け、ひいては日本経済に大きなダメージを及ぼすこととなった。ウォータフロント部会で は表5.1に示したワーキンググループを組織し、岸壁・護岸線の被災状況、ウォーターフロント域に所在 する危険物取扱施設の被害状況、ならびに防波堤被害状況・海底地盤変状に関する調査を実施し、被災 のメカニズムの解明、復旧にあたっての方針に焦点を絞って本稿をまとめた。

ウォーターフロント地域に関る問題のうち、 液状化の問題は「液状化と地盤変状」部会が、護岸線に 近接した構造物との相互作用の問題は「構造物基礎」部会、 「建物と建築基礎」部会、 あるいは「施工 中の構造物」部会が、 ライフラインに関する問題は「ライフライン」部会が 取り扱うこととする。

主査委員	嘉門雅史 (京都大学防災研究所)	WG委員	内山 伸(清水建設)
主査委員	伊勢村邦郎(日建設計)	WG委員	勝井秀博(大成建設)
委員	澤 孝平 (明石工業高等専門学校)	WG委員	岸田隆夫(東亜建設工業)
委員	岡本 厚(京都大学工学部)	WG委員	北森一郎 (佐伯建設工業)
委員	関口秀雄(京都大学工学部)	WG委員	黒田修一(建設企画コンサルタント)
委員	山下隆男(京都大学防災研究所)	WG委員	小池 武 (川崎製鉄)
委員	建山和由(京都大学工学部)	WG委員	高橋嘉樹(不動建設)
委員	三村 衛 (京都大学防災研究所)	WG委員	田村保(五洋建設)
委員	北 勝利 (京都大学防災研究所)	WG委員	土岐晃生(浅沼組)
委員	勝見 武 (京都大学防災研究所)	WG委員	楠部義夫(大林組)
委員	小林俊一(京都大学工学部)	WG委員	東尾啓司(鹿島建設)
委員	橋本邦俊(三洋テクノマリン)	WG委員	松岡清一(銭高組)
委員	末岡 徹 (大成建設)	WG委員	三宅達夫(東洋建設)
WG委員	松田 博(山口大学工学部)	WG委員	森 伸一郎 (飛鳥建設)

表5.1 ウォータフロント部会委員・ワーキング委員

5.2 ウォータフロントにおける地盤の特徴

神戸市、阪神間の諸都市は、山麓扇状地と旧海岸線との間の狭隘な沖積低地に集中しており、地表面付 近には主として砂質土が分布している。神戸・阪神間のウォータフロントの埋立地の分布を図5.1に示す。 図中点線で旧海岸線を示している。埋立地部では旧海底からN値0~1の軟弱な沖積粘土層が厚く堆積し ており、ポートアイランド南端付近ではその層厚は15m以上に達している。この沖積粘土層はMal3層と 呼ばれるもので、Mal3層の下位には薄い砂層もしくは砂層と粘土層の互層が分布している。神戸地盤の 詳細については、関西地盤¹⁾を参照されたい。

神戸港は水深が深く、短期間の埋立にあたって必要となる多量の土砂の確保が問題となったが、六甲山 系の背山を土採り場として利用し、この跡地を有効に活用する、いわゆる臨海部と内陸部で同時に土地を 生み出す開発手法によって埋立が推進された。表5.2に1953年以降の神戸・阪神間の埋立事業の概要を示 す²⁾。第1期事業は1953年から1970年にかけて行われた。この時期に埋め立てられたのは、外浜、駒ヶ林 南、刈藻島といった神戸市西部の地域、および住吉浜、御影浜、魚崎浜、深江浜などである。

図5.1 神戸・阪神間の埋立地

	埋立地名	事業主体	期 間	埋立材料	埋立材料採取地
	外浜	神戸市	1957~1967	六甲花崗岩	神戸市須磨区
	駒ヶ林南	"	1957~1967	"	"
第	苅 藻 島	"	1963~1968	"	"
	遠 矢 浜	"	1960~1966		"
-	灘 浜 東	"	1953~1967	"	神戸市灘区
	御影浜	"	1960~1968	"	"
期	住吉浜	"	1960~1968	"	"
	魚崎浜	"	1961~1968	"	神戸市東灘区
	深江浜	"	1964~1970	"	神戸市須磨区
het.	ポートアイランド	4	1966~1980	六甲花崗岩	神戸市須磨区
第一	六甲アイランド	"	1972~1990	六甲花崗岩、神戸層群	神戸市須磨区、西区
一期	ポートアイランド (第2期)	"	1986~	神戸層群	神戸市西区
1.01	摩耶埠頭	運輸省	1959~1967	六甲花崗岩、海砂	神戸市灘区、神戸港
	芦屋浜	兵庫県	1969~1975	海砂、領家花崗岩	淡路島、岡山県
	南芦屋浜	"	1971~	領家花崗岩	淡 路 島
	西宮浜	"	1971~1992	"	"
	甲子園浜	"	1971~1994	"	"
	鳴尾 浜	私企業	1967~1975	"	"

表5.2 神戸・阪神間の埋立地造成の概要2)

ポートアイランド、六甲アイランドという大規模な埋立地は第2期に属しており、1966年から埋立事業 が開始され、現在はポートアイランド第2期工事が進行中である。第1期埋立が主として神戸港の港湾施 設の拡充、下水・ごみ焼却場の建設といったいわゆる高度経済成長に伴う基盤整備に主眼を置いたもので あったのに対し、第2期埋立は神戸港の拡充とともに情報・文化の交流拠点の建設という、より高度に成 熟した目的を持って進められた。県東部の芦屋、西宮市においても南芦屋浜、西宮浜、甲子園浜といった 埋立地が近年続けて造成され、阪神高速道路湾岸線がこれらを結ぶ動脈として大阪〜神戸間を結んでいる。 埋立材料の特徴は、地域性を反映して花崗岩、まさ土が中心となっているが、比較的古い埋立地が六甲花 崗岩で造成されているのに対し、新しい埋立地には六甲花崗岩だけでなく、大阪層群や神戸層群の土、淡 路島の領家花崗岩なども用いられている。このように、神戸周辺の埋立地は主として六甲山系に多く見ら れる風化花崗岩であるまさ土によって形成されている。従来、まさ土は液状化に対しては強い材料と言わ れてきた。ところが、今回の兵庫県南部地震によって、神戸・阪神間のまさ土による埋立地を含む広い範 囲で液状化現象が確認されている。また非常に細かい成分も噴砂痕から発見されている。

5.3 岸壁・護岸の被災状況

兵庫県南部地震によるウォーターフロントにおける被害は、岸壁、護岸、防波堤、連絡橋等といったケ ーソンやブロックを用いた重力式構造物において顕著である。特に設計震度の小さい構造物は軒並み被害 を受けたが、一方で耐震強化岸壁の被害はほとんどみられなかった。共通する被災形態として、ほとんど のケーソンが、激しい地震力に起因する慣性力によって側方移動し、傾斜、沈下、背後地盤の陥没を伴っ て港湾施設の機能を著しく阻害する結果となった。本節では、岸壁構造物の被害状況を地区別に紹介し、 その変状パターン、復旧断面等について議論する。

5.3.1 神戸港の被災状況

我が国の最重要港の一つである神戸港は、その大半の港湾施設が被災し、港湾機能はほとんど麻痺状態 に陥った。神戸港の岸壁の90%を占めるケーソン式重力式岸壁は滑動、前傾、沈下を伴う深刻な被害を 受けて使用不能となったため、コンテナ貨物の輸送は深刻な影響を受け、ひいては日本経済に大きなダメー ジを及ぼすこととなった。

神戸港の海底地盤は、粘土およびシルトからなる層厚10~20mの沖積粘土層が堆積しており、その下位 には砂と砂礫よりなる粗粒堆積物が存在し、さらに洪積層が存在する。この互層の上部は杭基礎の支持層 であり、沖積粘土層下面の排水層としても機能する。互層の下部には層厚が20~30mのMa12層と呼ばれ る洪積粘土層があり、その下は再び粘土/砂の互層になっている。水深は10~15mであるが、洪積層はポ ートアイランドと六甲アイランド間で著しい標高変化を生じており、また南北方向にも急激な深度変化を 生じている¹⁾。表5.2からもわかるように、埋立に用いられた土は、ポートアイランドでは主としてまさ土 であるのに対して、六甲アイランドでは、埋立て当初、北部でまさ土と神戸層群を併用して用い、その後 は島全体にわたって神戸層群が用いられた。埋立て土の粒度は一般に神戸層群は細粒分が多く液状化しに くいのに対して、まさ土は水中投入状態では十分な密度が得られない。そのため特にポートアイランドで は島内の広範囲で液状化が生じた。

摩耶埠頭第3突堤(図5.1のA点)の震災前の標準 断面を図5.2に示す。この岸壁は、旧第3、第4突堤 (セル構造の櫛型突堤)を連結させて埠頭用地を広げ たものであり、岸壁を前面に拡張するにあたり、旧突 提部分では海底面に捨石が既にあったために、サンド コンパクション(SCP、改良率70%)が地盤改良 として用いられた。これに対して突堤間では、従来通 り、床堀置換砂上の捨石マウンドにケーソンが設置さ れた構造となっていた。図 5.3 に被災断面と復旧断面 の一例を併せて示す。被災のパターンは、ケーソンが 前面に変位し、かつ沈下と傾斜が発生していることと、

ケーソンの変位に伴って背面の埋立地盤が大きく陥没しているという点で、今回見られた典型的な重力式 岸壁の崩壊パターンを踏襲したものとなっている。また被災の程度は、SCP施工部分の方がかなり軽微 であり、砂置換工法との違いが顕著であった。岸壁の復旧に際しては、変位したケーソンの前面に鋼管杭 で支持されたPC桁桟橋を前出しし、同時に背面埋立の一部を水砕スラグで置換することによって土圧軽 減を図っている。またケーソン前面には新たに捨石を投入し、受働抵抗を増大する措置がとられている。

六甲アイランドC1バース(図5.1のB点)の標準断面を図5.4に示す。ここでは、海底表層に堆積してい る軟弱な沖積粘土層が砂置換され、その上に作られた捨石上にケーソンが設置されるという典型的な神戸 港の岸壁構造となっている。背面埋立地はサンドドレーンおよびサンドコンパクションパイルによる地盤 改良が施工されている。摩耶埠頭同様、六甲アイランドC1バースも設計震度は0.15となっている。代表 的な被災断面を図5.5に示す。沈下を伴ったケーソンの前面側への滑動が生じており、これに伴って背面 埋立地に陥没が認められる。地盤変状の影響範囲は岸壁法線からおよそ60m後方に達している。

10.70

当該岸壁の復旧断面を図 5.6 に示す。被災前の岸 六甲アイランドC1バースにおける 図5.5 被災の一例 壁法線から28m前面に新規護岸法線を前出しし、同 規模の新設ケーソンを設置する方法が採用された。同時に新設ケーソン下部の沖積粘土層を置換率70% のサンドコンパクションパイル工法で強化し、新設ケーソン直下への摩擦増大マットの敷設、および2つ のケーソンの間に新たに間詰石を投入することにより、既存の構造体の水平抵抗力を増大させ、新設ケー

図5.6 六甲アイランドC1バースの復旧断面

ソンの水平土圧を低減している。

ポートアイランドII期の西南部護岸約2,400m区間(図5.1のC点)は、神戸港での標準的な型式である ケーソンを用いた重力式構造である。被災状況としては、ケーソンが海側に移動すると共に沈下しており、 背面地盤も沈下している。ケーソンの移動は、コーナー部で特に大きく、目地の開きを伴っている。ケー ソンの移動量は、特に移動量の大きいコーナー部で4.0m~6.5m程度で、目地の開きも最大1m程度である。 一般部では、西護岸で1.5m~3.5m程度、南護岸で2.5m~4.0m程度であり、西護岸に比べて南護岸の移動 量が大きく、「南北から30°程度反時計まわりに振った方向の地震動が卓越していた。」とされる地震 の動きとうまく整合している。一方、沈下量はコーナー部で1.0m~3.0m程度、一般部で1.0m~2.0m程度

であり、移動量とちがい西護岸と南護岸に明瞭な違いは認められない。また、背面地盤の沈下量は2~3m である。最も被害の大きかったコーナー部の被災断面を図5.7に示す。

図5.7 ポートアイランド第2期西南護岸の被災

当該地区における岸壁の復旧方法は、既設ケーソンを元位置に残置し、上部コンクリートを嵩上げ復旧 すると共に、必要に応じ捨石マウンドを設置し、岸壁全体の安定を図るものとなっている。捨石マウンド を設置するのは、南護岸全体とコーナー部および西護岸の両端部である。捨石マウンドを設置する断面の 代表としてコーナー部の復旧断面を図5.8に、捨石マウンドを設置しない断面の代表として西護岸標準部 の復旧断面を図5.9に示す。

図5.8 ポートアイランド第2期西南護岸の復旧断面

図5.9 ポートアイランド第2期西護岸の復旧断面(捨石マウンドなし)

5.3.2 尼崎·西宮·芦屋港

(1) 鳴尾浜埋立地内C1、B3岸壁の被害状況

鳴尾浜埋立地(図5.1のD点)の岸壁、護岸は図5.10の平面図 に示すように、C1、B3岸壁,東南の角にある鋼管杭による棧橋 式耐震岸壁および東南の角の石積み傾斜護岸を除いて、ほとんど がケーソンによる重力式岸壁もしくは直立護岸である。これらの ケーソン岸壁・護岸、耐震岸壁および石積み傾斜護岸の標準設計 断面については文献3)を参照されたい。本報告では鋼矢板式岸 壁であるC1岸壁および置きセル方式の鋼矢板セル重力式岸壁で あるB3岸壁の被害状況について述べる。C1岸壁の標準設計断面 図は図5.11に示すように、原地盤である沖積粘土性土層の下端ま で淡路産の山砂で置換し、その中へ長さL=16m、YSPU-15 型の 鋼矢板を打設して岸壁としている。この鋼矢板は20m陸側に打設

されたSTK-41型(直径 $\phi = \phi$.457.2mm、肉厚 t = 10mm、長さL = 13m)の鋼管杭と直径 $\phi = 45$ mmのハ イテンションタイロッドで結ばれている。置換砂層のN値はO.P.-18.5mまで10前後の一様な地盤である。 地震後の水平変位量を表5.3 に示す。変位の特徴として、岸壁前面から背面側20mまではタイロッドに連 結されて一体として変位しており、岸壁前面の水平変位量は岸壁背面の20m~35mまでの間に生じた水平 変位量の総和として表れている。また、C1岸壁法線中央附近の岸壁背面20mの位置では最大17mの段差を 生じているが、岸壁としての機能にはほとんど支障ない。

B3岸壁の標準設計断面は図5.12に示すように、置換砂地盤上に直径D=9.0mの鋼矢板セルを設計し、 セル前面に沿わせて、直径 φ = 405.4mm、肉厚 t=9.5mm、長さ L= 12.0mの諸元をもつ鋼管杭を4m程 度の根入れ長を持つように打設している。岸壁延長は200mである。B3岸壁の被害状況はC1、B3岸壁の 交点のB3岸壁の鋼管杭部が海側へ17cm、その交点からB3岸壁延長方向へ30mの地点で海側へ25mの水平 変位を起こしているが、この交点から50m離れた位置からは岸壁の水平変位は認められない。なお、鋼矢 板セルはほとんど変位していないが、鋼矢板セルの背面から45m間での陸側は10cm~15cm沈下しており、 多量の噴砂が認められた。この領域は3m~13.5m厚さの置換砂層状に位置しており、置換砂の液状化に よる沈下と考えられる。C1、B3両岸壁は震災復旧の基地として関係多方面に利用されている。

図5.11 鳴尾浜C1岸壁標準断面

図5.12 鳴尾浜B3岸壁標準断面

C1,B3岸壁の交点	岸壁前面	からの各	距離にお	ける水平	変位量(cm)	岸壁前面の
からの距離(m)	20. Om	23.4m	26. 8m	30. 2m	33. 6m	水平変位量(cm)
0	0.0	0.0	0.0	0.0	0.0	0.0
24	5.0	1.5	4.5	2.0	0.0	13.0
96	20.0	0.0	0.0	0.0	4.5	24.5
168	10.0	3.0	4.5	5.5	2.5	25. 5
340	17.0	5.5	0.0	0.0	0.0	22. 5

表5.3 鳴尾浜C1岸壁の水平変位

(2) 西宮浜岸壁

西宮浜南側の第215岸壁(図5.1のE点)の断面を図5.13に示す。同図において、実線で示した部分は地 震以前の断面を、破線で示した形状は被災断面を表している。この岸壁は元々いわゆる重力式岸壁で、今 回の地震で大きな被害を受けた神戸・阪神間の多くの重力式岸壁の場合と同様、ケーソンが大きな地震力 によって海側に側方移動し、先端部が捨石マウンドにめりこんで、いわゆる前のめり状態となっているこ とがわかる。これに伴って、背面の埋立部には護岸と平行にクラックや陥没が発生している。非常に強度 の小さい置換砂、背面の埋立地の液状化発生の有無、また発生していた場合、それが岸壁の変状にどのよ うに寄与したのか、また捨石マウンドへのケーソンのめりこみを誘発した、前面端趾圧の減少のメカニズ ム等については、解明されていない部分が多く、研究課題として残されている。復旧にあたっては、被災 したケーソンの前面に鋼矢板と鋼管杭によって支持された桟橋(13.3m)を新設し、耐震性を高めた構造 体とした。特に斜杭は地震力によって海側へ滑動しようとする構造体の動きを抑える効果を期待されている。また被災ケーソンと鋼管杭との間には捨石を投入して両者に一体性を持たせている。

図5.13 西宮浜第215岸壁の被災・復旧断面

5.3.3 その他の地区における港湾等

(1) 明石・加古川地区の港湾

(a) 概要

震源地に近い明石市(直線距離で約6km)より西には明石港、林崎漁港、江井ガ島港、魚住漁港が配置 され、さらに西には3つの埋立人工島よりなる東播磨港がある。各港湾共に岸壁、護岸、防波堤に被害を 受けているが、大部分は数cm~数10cm程度の海側へのはらみ出しと数10cmの天端沈下が生じ、エプロン 部や舗装の破壊、物揚場上部工の傾斜や破損を伴っている。また、岸壁後背地に液状化が発生している箇

所もある。桟橋形式の岸壁や杭基礎を有する護岸構造物には被害が見られなかった。

復旧工事は、10cm程度の沈下や水平移動については、差し筋による補強、クラックの充填、不陸修復 が行われた。岸壁としての重要度、前面海域の余裕、被害の程度に応じて、消波ブロック、方塊ブロック、 補強コンクリート、ケーソンなどで新たに護岸を設置して復旧された例も多い。

ここでは、この地区で最も被害の大きかった東播磨港の加古川地区のケーソン岸壁について述べる。

(b)加古川地区の岸壁の被害状況と復旧工事

図5.14は、加古川地区の埋立地を囲む岸壁の内、大きな被害を生じた東岸壁と南岸壁の平面図である。 東岸壁の内E1岸壁は鋼矢板控え版式岸壁であり、E2はケーソン控え杭式岸壁である。どちらも、控え版 または控え杭が効果的に働いたのか被害はほとんど見られなかった。E3~E5は重力式ケーソンであり、 一函の質量は中詰め土を含めて約4,500t、高さ約17mの巨大なものである。この内、E3、E4岸壁が延長 600mに渡って最大14.6m海側に水平移動し、エプロン敷が水没した。ケーソンの沈下はほとんど観測さ れていない。南岸壁は重力式ケーソン構造であり、一函当りの質量は450t、高さ約10mである。この内 S1、S2岸壁が地震により延長630mに渡って海側に最大約16.6m水平移動し、エプロン敷および防潮堤の 一部が水没した。地震の記録としては、これらの岸壁から水平距離で約1km離れた埋立地内で、水平加速 度249ガルが観測されている。これらのケーソンは海底地盤を浚渫した後硬質の洪積砂礫層上に設置され ている。この洪積層はN値が50以上であり、構造物の支持地盤として問題がない地盤である。被害を受 けたケーソンの移動が水平方向にのみ著しく、鉛直方向の沈下がほとんど生じなかったのは、このN値 50以上の洪積層のためである。ケーソンは地震の上下動に伴う鉛直方向の力により持ち上げられ、水平 方向の力により洪積砂礫層上を滑ったものと考えられる。また、被害を受けた岸壁後背地には液状化の痕 跡が認められている。

岸壁の設計水平震度は、E1~E4(1970年竣工)が0.12、E5(1980年竣工)が0.15、S1~S2(1970年 竣工) · S3 (1971年竣工) が0.10である。同一の断面形状であるにもかかわらず、E3、E4岸壁は被害を 受け、E5岸壁には被害が生じなかったのは、この設計水平震度の違いと考えられる。さらに、E5岸壁の 裏込め材料は高炉スラグであり、液状化が発生しなかったことも地震力に耐えられた原因である。一方、 南岸壁の内S3岸壁は後背地をスクラップヤードとして利用するために、設計上載荷重を他の岸壁の2倍 (6tf/m²)としていたところ、地震発生時には上載荷重が0であったため、この設計上載荷重が安全側に 働き、被害が生じなかったと考えられる。図5.15は東岸壁E3、E4の被害断面とその復旧方法を示したも のである。被災したケーソンは撤去した後、岸壁法線を被災前より約 20m海側へ出し、鋼管矢板、鋼管 杭、ならびにボックスビームにより桟橋形式の岸壁とされた。設計水平震度は0.20を採用している。南岸 壁S1、S2は、岸壁法線が元の位置とし、ボックスビームの代わりにタイケーブルとしている。民間工場

図5.15 加古川埋立地東岸壁、南岸壁の平面図 図5.14

(2) 塩屋漁港の被害について

塩屋漁港は神戸市須磨区塩屋町にある第1種漁港で、今回の地震の震央からおよそ8kmの地点に位置す る。平面図と典型的な断面図、および地盤条件を図5.16に示す。岸壁、防波堤の沈下量および側方変位量 (海側あるいは港外側を正とする)をまとめたものが図5.17である。沈下量については、A~E区間、お よびJK区間では、沖にいくにつれて捨石マウンド厚が増大するが、沈下量も同様の傾向で増加し、C地 点付近で最大1.5m程度の沈下が見られた。一方EF区間ではDE区間に比べて捨石マウンド厚が薄いた め、ほぼ同じ水深にもかかわらず、沈下量は最大0.2m程度である。このことから、地震時に捨石マウン ドが沈下した可能性がある。側方変位量については、背後が埋立地であるA~E区間、G~I区間で岸壁 のすべり出しがみられ、最大2.0m程度海側に変位している。また B~E区間では護岸前面に消波工があ るために側方変位が多少抑えられていること、地点Hでは幾何学的な拘束から側方変位がほとんどみられ ないことがわかる。さらに、側方土圧のかからないEF区間およびJK区間の一部では顕著な側方流動は みられず、護岸の側方変位は地震に起因する側方土圧によるところが大きいと考えられる。

護岸

50

100

南防波堤

図5.16 塩屋漁港の平面図、断面図および地盤柱状図

図5.17 塩屋漁港の岸壁と防波堤の変状計測結果 (3) 川崎製鉄甲南工場

「川崎製鉄甲南工場は、震度階7の分布区域に近接しており、被害はA岸壁(南北方向)、B岸壁(東西方 向)の両方でほぼ同程度に発生した。図5.18に工場の配置図を示す。岸壁は、ケーソン形式でその基礎に は置換砂を用いている。そして、置換砂以深は粘性土であり、背面埋め戻し土はまさ土となっている。図 5.19にA岸壁の代表的な被害状況を示す。A、B岸壁ではケーソンが前面にせり出し、傾斜、沈下し、岸壁 背面が陥没したが、潜水調査からケーソン間に若干の隙間が生じているものの、構造自体は健全であるこ とが確認された。水平変位量は、A岸壁が平均2.94m、B岸壁が平均3.5mであった。また沈下量は、A岸壁 が平均1.4m、B岸壁が平均1.19m、傾斜量としては、A岸壁が2.6°であり、B岸壁が平均5.1°となってい る。A、B岸壁ケーソンは、図5.19に示すように前のめりに傾斜しており、円弧すべりで想定されるケーソ

ンの傾斜とは異なる挙動を示している。また、震 災後に実施した潜水調査、深浅測量調査結果によ れば、ケーソン前面の海底地盤の盤ぶくれは見ら れず、基礎地盤の液状化によると見られる噴砂や 岸壁背面土砂の岸壁間隙からの流出が認められた。

N93仮設桟橋

ボーリング位置

Ν

ケーソンNO.

NI

イヨリわ

B岸壁

200

図5.18 川崎製鉄甲南工場岸壁平面図

A岸壁

図5.19 川崎製鉄甲南工場岸壁の被災状況

以上より、A、B岸壁ケーソンは、以下の動きをほぼ同時に発生したことにより、その被害を大きくしたも のと推定される。すなわち、水平方向の地震動によりケーソンが移動し、岸壁背面の地盤の液状化により ケーソンに作用する土圧が増大するとともに、ケーソンとマウンド間の摩擦抵抗が減少して岸壁の水平移 動を加速したものと考えられる。ケーソンの被害状況から、被災岸壁を今後も岸壁として運用することは 危険であると判断し、仮設桟橋を新たに設置し、従来の岸壁は護岸としての機能のみを分担する方針で復 旧・補強対策が執られた。したがって、係船柱は陸側に設置し防舷材は海側に設置して、旧岸壁に荷重を かけない構造が採用された。図 5.20にA岸壁の補強方法を示す。補強工事に当たっては、設計震度を従来

川崎製鉄甲南工場A岸壁の復旧断面 図5.20

の0.10から0.15に変更し、すべり安全率も地震前の設計値1.0から1.2へ向上させている。また、ケーソンの安定性を増し、低下した防潮堤高さを嵩上げするため、図5.21に示すように、円弧すべりを検討した結果、同図に示すように一部海底地盤の地盤改良が必要と判定された。

図5.21 川崎製鉄甲南工場A岸壁の安定解析

(4) 川崎製鉄西宮工場

川崎製鉄西宮工場は、震度階7の分布区域に近接しており、被害は東部岸壁(南北方向)で発生した。図 5.22に工場の配置図を示す。岸壁は、セルラーブロック形式でその基礎には置換砂を用いている。そして、 置換砂以深はシルト混じり砂、背面埋め戻し土は玉石混じり土となっている。図5.23に東部岸壁の代表的 な被害状況を示す。東部岸壁ではセルラーブロックが前面にせり出し、傾斜、沈下し、岸壁背面が陥没し たが、潜水調査からセルラーブロック間に若干の隙間が生じているものの、構造自体は健全であることが 確認された。水平変位量は2.02m、沈下量は1.05mそして傾斜量は5.7°であった。セルラーブロックは、

図5.23に示すように前のめりに傾斜しており、円弧すべりで想定されるセルラーブロックの傾斜とは異な る挙動を示している。また、震災後に実施した潜水調査、深浅測量調査結果によれば、セルラーブロック 前面の海底地盤の盤膨くれは見られず、基礎地盤の液状化によると見られる噴砂や岸壁背面土砂の岸壁間 隙からの流出が認められた。セルラーブロックは、以下の動きをほぼ同時に発生したことにより、その被 害を大きくしたものと推定される。すなわち、水平方向の地震動によりセルラーブロックが移動し、岸壁 背面の地盤の液状化によりセルラーブロックに作用する土圧が増大すると同時にセルラーブロックとマウ ンド間の摩擦抵抗が減少して岸壁の水平移動を加速した。

セルラーブロックの被害状況から、被災岸壁を今後も岸壁として運用することは危険であると判断し、 仮設桟橋を新たに設置し、従来の岸壁は護岸としての機能のみを分担する方針で復旧・補強対策が執られ

た。したがって、係船柱は陸側に設置し、防舷材は海側に設置して、旧岸壁に荷重をかけない構造が採用 された。図5.24は、東部岸壁の補強方法を示している。補強工事に当たっては、設計震度を0.15とし、す べり安全率を地震前の設計値1.0から1.2へと向上させている。東部岸壁のセルラーブロックは、土質調査 結果から基礎下部地盤の補強が不要と判明したため、セルラーブロックに作用する地震時水平力を抑制す るため、鋼矢板がセルラーブロック背面に打設された。

川崎製鉄西宮工場西宮東岸壁の復旧断面 図5.24

(5) 淡路島における被災状況

淡路島における港湾岸壁の被害調査位置を図5.25に示す。また、これらの港湾における主たる被害状況 を表5.4にまとめる。岸壁の構造形式としてはコンクリート方塊積上式が多く、他に消波ブロック積上式、 L字型擁壁式がある。これらは、海底面の床掘り後に捨石で置換した基礎上に建設されている。一般的な 被害状況としては、岸壁法線のはらみ出しとこれに伴うエプロン部の沈下・陥没、舗装部亀裂および地割 れが生じている。岸壁天端の最大はらみ出し量については、神戸港と比較して岸壁規模が小さいこともあ り、概ね1m以下であるが、震源に近い岩屋漁港では、岸壁を形成する積上方塊が転倒し、背面部が沈下・ 水没する被害を受けている。岸壁のはらみ出し形態については、天端での

生徳

はらみ出し量が岸壁根元でのはらみ出し量に対し卓越し、岸壁が前傾する 場合が多いものの、並進成分が傾斜成分より大きくなる場合も4割程度み 尾肩 影家 られた。前傾モードの岸壁被災例として、富島漁港-2.0m物揚場における 江井 方塊積上式岸壁の変状断面を図5.26(a)に示す。次に表5.4より岸壁規模・構 造形式や法線方向などを区別せずに各港における最大天端はらみ出し量の 鳥飼 平均値を算出すると、震源や野島断層に近い北部の港湾(大阪湾側では岩 屋、仮屋、瀬戸内海側では野島、富島、浅野、育波、室津の各港、平均値 0.56m~0.85m)では、南部港湾(前記以外、平均値0.25m~0.45m)と 比較して大きな値となっている。復旧方針としては、被災岸壁を埋殺した 上で直立消波ブロック積上による前出断面(図5.26(b)参照)が採用されて図5.25 淡路島港湾岸壁の 被災調査位置 いる他、桟橋式、鋼矢板式、原形復旧などの復旧方針が取られている。

図5.26 富島漁港-2.0m物揚場岸壁の被災状況と復旧断面

表5.4 淡路島の主な港湾岸壁の被害状況(その1)

大阪湾側

港名	施設	構造形式	最大はらみだし量	復旧工法	備考
岩屋 -2.0m物揚場(2号)		方塊積上	方塊倒壊	原形復旧	背面部沈下水没
	-1.5m物揚場	方塊積上	0.23m(前傾)	直立消波工前出	
	-2.0m物揚場(1号)	方塊積上	0.44m(前傾)	直立消波工前出	
	1号(外郭)護岸	直立消波ブロック	0.35m		角部止水壁施設
仮屋 (仮屋)	護岸	直立消波ブロック	0.55m(並進)	直立消波工前出	
	-3.0m岸壁	L字擁壁	0.28m(前傾)	直立消波工前出	
	-3.0m岸壁	方塊積上	0.5m(並進)	直立消波工前出	
-2.0m物揚場		方塊積上	0.36m(並進)	直立消波工前出	
	-2.0m物揚場	方塊積上	0.68m(前傾)	直立消波工前出	
	-2.0m物揚場		0.38m	直立消波工前出	
	-2.0m物揚場	方塊積上	1.0m(前傾)	直立消波工前出	
ц толого Денестратичного Приложится (1997)	-2.0m物揚場	方塊積上	0.65m(前傾)	直立消波工前出	
仮屋(森)	-2.0m物揚場	方塊積上	1.0m(並進)	直立消波工前出	
	-2.0m物揚場	直立消波ブロック	0.8m (並進沈下)	直立消波工前出	
88 Y.I.I.I.	-2.0m物揚場	方塊積上	0.9m(並進)	直立消波工前出	
釜口	物揚場	方塊積上	0.25m	直立消波工前出	
生穂	-2.0m物揚場	方塊積上	0.25m	原形復旧	

1.5

瀬戸内海側

賴戸内海俱	IJ			2 A A A A A A A A A A A A A A A A A A A	
港名	施設 構造形式 最大はらみだし量		復旧工法	備考	
野島	-1.5m物揚場	方塊積上	0.9m(前傾)	直立消波工前出	
富島	-2.0m物揚場	方塊積上	0.55m (並進)	直立消波工前出	
	-3.0m岸壁	L字擁壁	0.39m(並進)	直立消波工前出	1
	-2.0m物揚場	方塊積上	0.51m(前傾)	直立消波工前出	
	-3.0m岸壁	方塊積上	0.61m(前傾)	直立消波工前出	100 C
	-1.5m物揚場	方塊積上	0.4m(前傾)	直立消波工前出	24.0
	護岸	方塊積上	0.65m(前傾)	直立消波工前出	
	護岸E	方塊積上	0.82m(前傾)	直立消波工前出	
浅野	-2.0m物揚場(2号)	方塊積上	0.62m(前傾)	桟橋	
	-2.0m物揚場(1号)	方塊積上	0.8m(前傾)	直立消波工前出	
	-2.0m物揚場(3号)	L字擁壁	0.38m(前傾)	直立消波工前出	

表5.4 淡路島の主な港湾岸壁の被害状況(その2)

瀬戸内海側(続き)

漁港	施設	構造形式	最大はらみだし量	復旧工法	備考
育波	-3.0m岸壁 L字擁壁		0.6m (並進沈下)	直立消波工前出	
	-3.0m岸壁	L字擁壁	0.95m(並進)	直立消波工前出	and the Divers
	-3.0m岸壁	セルラー積上	0.55m(前傾)	桟橋	先端部のみ直立 消波工前出
	-2.5m物揚場	方塊積上	0.63m(並進)	直立消波工前出-	角部止水壁施設
	-2.0m物揚場	方塊積上	0.45m(並進)	直立消波工前出	
	-2.0m物揚場	方塊積上	0.7m(前傾)	直立消波工前出	
	-2.0m物揚場	方塊積上	0.6m(並進)	桟橋	
	-2.0m物揚場	方塊積上	0.5m(前傾)	桟橋・直立消波 工前出併用	
	-2.0m物揚場	方塊積上	0.62m(前傾)	直立消波工前出	
室津	-2.0m物揚場	方塊積上	1m以上(並進)	原形復旧	
	-2.0m物揚場	方塊積上	0.7m(前傾)	直立消波工前出	
尾崎	-2.0m物揚場	方塊積上	0.68m(前傾)	桟橋	
	-2.0m物揚場	方塊積上	0.36m(並進)	エプロン部修復	
	-2.0m物揚場	方塊積上	0.32m(前傾)	直立消波工前出	
郡家	-2.0m物揚場	直立消波プロック	0.2m	下部水中コンク ブロック据え直	リート埋殺し上部 し
	-3m, -4m物揚場	L字擁壁	0.37m(前傾)	鋼矢板前出	控え鋼矢板施設
江井	-2.0m物揚場	直立消波ブロック	0.2m(前傾)	原形復旧	
船瀬	-1.5m物揚場	方塊積上	0.45m(前傾)	直立消波工前出	
鳥飼	-2.0m物揚場	方塊積上	0.4m(前傾)	直立消波工前出	

(6) 大阪地区の被害状況

大阪地区における港湾設備の被害は、岸壁エプロン・道路などの舗装面の沈下やクラック、地盤の液状 化による噴砂、小規模護岸や桟橋等の移動や沈下といった比較的小規模なものが多い。図5.27 は大阪府 港湾局、ならびに大阪市港湾局管内において地震による被害が生じた主な箇所を示したものである。被害 区域は大阪湾沿いの広範囲にわたって分布しているが、北部ほど大きな被害が生じている傾向がある。そ れぞれの被害の概略について以下に記す。

(a) 大阪市港湾局管内(図5.27中の番号①~⑩)

大阪市の港湾施設の中では小規模なものまで含めると約170箇所の被害があったが、港湾機能 にはほとんど支障がなく、舗装面のクラックや堤防目地の開き等比較的軽微なものであった。 主な被害としては天保山公園外周の防波堤で目地の開きや段差が発生し、岸壁では南港内港地 区で背後ヤードの沈下、段差等の被害があった。これらの地点ではいずれも噴砂現象が確認されており、液状化も被災原因の一つと考えられる。また、はしけ桟橋の一部でケーソンの沈下、 傾斜等が生じ、鋼管防波堤の一部でも鋼管杭に座屈、ひずみが生じた。表5.5に被害状況に関する 一覧を示す。

(b) 大阪府港湾局管内(図5.27中の ⑪ー図)

大阪府港湾局が管轄する港湾設備は堺市から岬町にいたる全域に存在するが、このうち被害 は貝塚市にまで及んでいる。被害形態としては、岸壁エプロン、道路などの舗装面の沈下や隆 起、これにともなう地表面のクラック発生とズレ、ならびに岸壁背面の液状化や噴砂が多くみ られた。被害はいずれも舗装の打ち換えなどで復旧できるものが多く、比較的軽微な被害とい える。被害が発生した地域の地盤はいずれも昭和40年代に埋め立てにより造成された箇所で、 埋め立てには近隣の海底から浚渫した土砂が多く使われた。表5.5に被害状況の一覧を示す。

表5.5 大阪湾岸の港湾施設とその周辺の被害状況

No.	被害発生箇所	被 害 状 況			
1	北港ヨットハーバ南防波堤	防波堤中央の鋼管杭の一部に座屈と歪みが発生 (鋼管杭:径 914.4mm,長さ35.50m,本数 25本)			
2	安治川突堤西岸壁	ヤード舗装陥没(約 1,400m ²)と連接版のズレ(延長約 60m)			
3	第3号はしけ桟橋	桟橋ケーソンの沈下,傾斜,移動(約38m区間)			
4	B-4 及び D-1岸壁	エプロン舗装陥没(約 500m ²)及び 沈下による舗装面の段差(最大 40cm)			
5	C-9 岸壁	連接版のズレ(20m)及びヤード舗装のクラック(170m ²)			
6	天保山公園前面堤防	堤防目地止水板切れと目地の開き(5箇所)			
7	内貿幹線道路	道路沈下(液状化による噴砂が路面を覆う)			
8	港大橋臨港緑地	石垣,縁石欠損,芝生緑地の陥没			
9	C-1~5コンテナ埠頭	ヤード舗装のクラック(約3,800m ²)及び段差			
10	天保山公園	階段の陥没, 地表面のクラック, 境界石の破損, 噴砂			
1	堺泉北港(堺3区)	岸壁エプロンの沈下(約400m ²),液状化による噴砂			
12	堺泉北港(堺3区)	道路面の隆起と陥没(約285m ²),液状化による噴砂			
(13)	堺泉北港(泉北5区)	岸壁エプロンの沈下(約3,100m ²)			
14	堺泉北港(泉北6区)	荷捌地 液状化による舗装面のクラック(471m ²)と噴砂			
15	堺泉北港(泉北6区)	液状化による道路舗装面のクラック(916m ²)と噴砂			
16	堺泉北港(泉北6区)	液状化による道路の凹凸(3,105m ²)と噴砂			
17	堺泉北港(泉北6区)	荷捌地の沈下 (180m ²)			
(18)	阪南港(阪南3区)	道路舗装面のクラック(715m ²)と噴砂			
19	阪南港(木材地区)	道路の崩壊(延長500m, 幅15m)			
20	阪南港(阪南3区)	護岸水叩き破損(550m ²)と噴砂			

5.4 防波堤の被害と海底地盤変状

神戸港の防波堤は総延長14 kmに及び、その大部分が元々の軟弱粘土層を床掘り置換した砂地盤上に 建設された混成堤である。これらの防波堤は兵庫県南部地震により捨石マウンドの変形や堤体ケーソンの 沈下・傾斜などの被害を受けた。本項ではまず、神戸港の主たる防波堤の変状の全体像を報告する。次に 神戸港第六南防波堤、及び第七防波堤近傍で実施した、水中音響学的手法を用いた海底地盤調査結果につ いて説明するとともに、既往の構造物一飽和地盤系の振動台実験結果に言及しつつ捨石マウンドや基礎地 盤を含めた防波堤システムの地震時安定性について検討を加える。

5.4.1 防波堤変状の全体像

防波堤の場合、護岸構造物と異なり裏込め土がなく大きな偏土圧を受けないことから、地震による水平 変位は比較的小さいものと考えられる。また機能上の観点から、堤体天端の沈下量が被災の程度を示す指 標として重要となる。 神戸港の主な防波堤の平面位置を図5.28に示す。一方ケーソン天端沈下量および防波堤軸の水平方向不 整を表5.6にまとめる⁴)。各堤防の最大沈下量は1.4m~2.6mであり、堤軸法線の出入り(0.1m~1.0m) と比較して大きな値となっている。防波堤は局所的に不等沈下が生じているものの、概ね防波堤軸に沿っ て一様に沈下している。なお、図5.28中に運輸省神戸港工事事務所で計測された水平加速度ベクトルの軌 跡図⁹を示すが、地震動がほぼ南北方向に卓越しているにもかかわらず、防波堤法線方向と沈下量の関係 について明瞭な相関性は認められない。

表5.6	主な防波堤の被災	状沉

防波堤	堤長	天端標高	法線の出入り	沈下量
第一防波堤	1,220 m	L.W.L. + 4 m	1.0m	1.1 ~ 1.4 m
第一南防波堤	300 m	+ 4 m	0.2m	1.0 ~ 1.6 m
第四防波堤	617 m	+ 3 m	0.6m	$0.2 \sim 1.7 \text{ m}$
第五防波堤	1,276 m	+ 5 m	0.4m	1.3 ~ 2.1 m
第六防波堤	1,052 m	+ 5 m	0.1m	1.2 ~ 1.7 m
第六南防波堤	830 m	+ 5 m	0.4m	$1.2 \sim 2.1 \text{ m}$
第七防波堤	4,180 m	+ 5 m	0.6m	1.4 ~ 2.6 m
西宫防波堤*	4,430 m	+ 5 m	A 198	0.6 ~ 1.8 m

*尼崎西宮芦屋港

5.4.2 水中音響学的探査の概要

防波堤の変状形態を調査するために、神戸港第六南防波堤と第七防波堤の近傍において、水中音響学的 手法を用いた海底面調査を実施した。本調査では、マルチナロービームを用いた地形調査に加え、サイド スキャンソナーによる微地形および底質調査を行った。

(1) マルチナロービームによる海底地形調査

マルチナロービームによる海底面調査では、ソナーヘッドより超音波を発信してから海底面で反射後再 びソナーヘッドにて受信するまでの時間を計測する。一方で水中での音波速度を別途計測することにより、 ソナーヘッドから海底面までの距離を計算する。本調査で用いたマルチナロービームソナーシステムは SEABAT9001型である。1器あたり1.5度×1.5度の受信範囲をもつセンサが円周上に60個配置されてお り、一度の発信により90度範囲の地形プロフィールを計 測し得る。本調査ではソナーヘッドを観測船右舷に45度 傾けて配置することにより、図5.29に示すように、ソナー ヘッド直下から右水平方向間の地形プロフィールを計測 した。本調査で採用した音波周波数は455kHz、水中の 音波速度は1495m/secであった。ソナーヘッドの絶対位 置については、 ディフェレンシャルGPS法による観 測結果や神戸港の基準潮位を基に、観測船の揺動による 補正を加えることにより決定した。 ディフェレンシャ ルGPS法の基準局は第七防波堤上に設置した。また海底 地形プロフィールの観測結果には、観測船の左右前後の 傾斜や方位に関する補正が施されている。この結果、平 面位置の計測誤差は数m、鉛直位置の計測誤差は0.2m 程度である。

(2) サイドスキャンソナーによる海底微地形及び底質調査

サイドスキャンソナーによる計測では、観測船尾より'fish'と呼ばれる曳航体を曳航し、曳航体より発信した超音波の海底面における反射波(後方散乱波)強度(振幅)を、曳航体内に格納された受信器にて計測する⁶。反射波の強度は、海水と海底地盤の音響インピーダンス比や音波の入射角等に依存し、一般に底質が粗粒材やコンクリートブロックなどでは反射波振幅は強く、粘性土や泥質土では振幅は小さくなる。また音波の入射角が小さいほど、すなわち曳航体からみて上り傾斜であれば反射波振幅が強くなり、逆に下り傾斜であれば振幅が弱くなる。本調査で用いたサイドスキャンソナーシステムはEG&G Model260であり、音波周波数は105kHz、計測範囲は曳航体直下より右50m区間に設定した。

(3)調査位置

上記の水中音響学的手法により、神戸港第六南防波堤および第七防波堤周辺の捨石マウンドや海底地盤の変状を、防波堤軸に平行に防波堤より30mおよび60m離れた2測線に沿って調査した(図5.30)。地

震発生より調査日(1995年4月4日~5日)までに神戸港で観測された最大有義波高は1.3mであり⁷、波浪による地震後の防波堤や海底地盤の変状は無視しうるものと考えられる。

第六南防波堤はポートアイランドの東約1kmに位置し、堤長830mで北西から南東方向に延長してい る。防波堤近傍の海底地盤は北から南に緩やかに傾斜し、防波堤南端では北端に比べ水深が1m程度大 きくなっている。北端より430mの位置にて断面形が変化し、断面変化点より南側では防波堤のケーソン 東側に港内波の消波を目的とした鉛直スリット函を配置しているのに対し、北側ではスリット函を配置 していない。断面変化地点より南側における標準断面図を図5.31 (a)に示す⁸。粘性土層を床掘置換した 砂地盤上に、厚さ4mの捨石マウンドを形成し、防波堤ケーソンの基礎としている。ケーソンの滑動防 止のためにケーソン両側に根固め方塊が配置されている。本断面では、マウンド以外の比較的広い範囲 において置換砂層の自由表面が露出している。また置換砂表面は粘性土表面より1m低くなっている。

第七防波堤は六甲アイランドの南700mに位置し、総延長は4180mである。防波堤東端より西に約 3700m延長し、続いて南西方向へと湾曲している。本防波堤の標準断面図を図5.31(b)に示す⁹。第六南防 波堤の断面と異なり、マウンドおよび上下二段の台座部が置換砂表面を覆い、砂地盤表面のほぼ全域にケー ソンおよび捨石材料の自重による上載圧が作用している。

図5.31 防波堤標準断面図(a)第六南防波堤(b)第七防波堤

5.4.3 水中音響学的探查結果

(1) 第六南防波堤

マルチナロービームによる神戸港第六南防波堤近傍の海底地形調査結果を図5.32に示す。同図は、防波

堤断面の変化地点近傍における防波堤東側の海底面深度分布を表している。海底面深度の急激な変化はケー ソン直立壁を表しているが、断面変化点より左側(南側)では右側(北側)と比較してスリット函の付設 により防波堤底面幅が広くなっていることがわかる。淡色部は深度が浅い(標高が高い)部分を、濃色部 は大深度部を表している。各深度の等高線はケーソン壁とほぼ平行であり、捨石マウンドや海底地盤が防 波堤軸に沿ってほぼ一様に沈下・変形していることがわかる。またケーソン近傍での捨石マウンド上面の 標高が-11m~-12mであるのに対し、マウンド法肩付近(ケーソン直立壁より10m近辺)では標高が-11m より高くなっている。

図5.32 第六南防波堤近傍の海底面コンター

防波堤北端より450mの位置(図5.32中A線)における、防波堤西側および東側の海底表面形状の断面 図を図5.33に示す。図5.33中実線はマルチナロービームによる調査結果を、破線は標準断面に基づいた表 面形状を示している。ここでは、計測によるケーソン直立壁の水平位置と標準断面によるケーソン直立壁 の水平位置を一致させている。同図の実線より、防波堤東側の捨石マウンド上面が法肩からケーソンに向 かって傾斜していることがわかる。一方防波堤西側ではマウンド上面はほぼ水平に保たれている。また防 波堤東側と西側断面に共通して、置換砂表面と粘土層表面の間に明確な標高差が認められない。この原因 として、置換砂地盤上への泥質土の堆積が考えられる。

次にサイドスキャンソナーによる、第六南防波堤東側の標準断面変化点近傍における海底面の音響イメー

ジを図5.34に示す。同図において、濃色部は反射(散乱)波振幅が大きい部分、すなわち表面材料が捨石 や砂もしくは海底面がセンサ位置からみて上り勾配である部分を示している。一方淡色部は反射波振幅が 小さい部分、すなわち表面が粘土質や泥質もしくはセンサ位置からみて下り勾配である部分を表している。

図5.34中1で示される濃色部は防波堤ケーソン の直立壁を示している。また断面変化位置より左 側(南側)に現れる断続線の切れ目は、消波スリッ トを示している(図中2)。図中3で示される濃 色部は根固め方塊を表しているが、Xで示される 部分ではケーソン壁と根固め方塊の間に隙間が生 じていることがわかる。図の左側では根固め方塊 のイメージが消えており、根固め方塊上に泥質土 が堆積していることが予想される。図中Pおよび Qは共に捨石マウンド上面を示しているが、Qで 示された部分では捨石材表面での反射(散乱)に よりやや濃色で表現されているのに対し、Pで示 された部分では反射波振幅が小さくマウンド上に 泥質土の存在が認められる。図中5で示される濃 色部は捨石マウンド法面傾斜部を表している。

図中6は置換砂表面(オープンエリア)を表している。マウンド法先近辺において反射波強度が 弱くなっており(Y)、地表面がマウンドに向かっ て傾斜していることがわかる。この原因としては、

図5.34 サイドスキャンソナーによる第六南防波堤 海底面の音響イメージ(測線A近傍)

1. ケーソンー捨石マウンドシステムの沈下による地表面傾斜、2. 水流による底質移動、が考えられる。また置換砂表面には、噴砂跡と考えられる直径2m~3mの円形の凹みが認められる(図中Z)。すな

わち、捨石マウンドなどによる上載圧の作用していないオープンエリアにおいて、置換砂 地盤が液状化 した徴候がみられる。

(2) 第七防波堤

マルチナロービームによる、第七防波堤の西端より250mの位置(図5.30中B線)における海底表面の 断面形状を図5.35に示す。防波堤の南北両側において、捨石マウンド法肩部と比較してケーソン近傍で沈 下量が大きくなっている。またマウンド本体部と比較して台座部の沈下量は小さくなっている。上下台座 部間および下部台座部と海底地盤表面との間に明確な標高差は認められない。

第七防波堤東端より1000m~2000mの区間(図5.30中C線~H線)における海底表面の断面形状を図 5.36に示す。図中の実線はマルチナロービームによる調査結果を、また破線は標準断面による地表面形状 を表している。測線CからHの断面形状を比較すると、マウンドや台座部において互いに類似した沈下変

形性状を示している。マウンド法肩で沈下量が平 均約1.5mであるのに対し、ケーソンとマウンド 法肩の中間部では約2mと大きな沈下量となって いる。ケーソン近傍では、根固め方塊上に泥質 土が堆積することにより、表面が盛り上がって いると考えられる。本区間においても、マルチ ナロービームによる計測の結果から上下台座部 および海底地盤表面間に標高差は認められなかっ た。また海底地盤面については、計測標高が標 準断面と比較して約1m高くなる結果を得た。

3:マウンド天端 7:海底地盤
4:マウンド法面
図5.37 サイドスキャンソナーによる

第七防波堤海底面の音響イメ ージ(測線C近傍)

サイドスキャンソナーで計測した、防波堤北側の測線C近傍における海底面の音響イメージを図5.37に 示す。図5.37(a)は防波堤より60m離れた測線で計測した音響イメージを、また同図(b)は防波堤より 30m離れた測線で計測した音響イメージを表している。マルチナロービームによる地形計測では明瞭に現 れなかった上下台座部および海底地盤面間の境界が、サイドスキャンソナーによる計測では確認すること ができる。また第六南防波堤の場合とは対照的に、置換砂地盤上に位置する台座部表面に噴砂跡が認めら れない。この理由として、1.台座部自重に起因した置換砂地盤内の有効拘束圧の増加による液状化の抑 制、2.液状化したものの噴砂圧が小さく台座表部まだ砂が噴出していないことなどが考えられる。

5.4.4 防波堤の地震時安定性についての考察

サイドスキャンソナーを用いた海底地盤の調査結果によると、第六南防波堤では置換砂地盤のオープ ンエリアにて液状化の徴候が観測されたのに対し、第七防波堤では置換砂地盤表面が台座部に覆われ噴 砂跡などの液状化徴候が認められなかった。第七防波堤において液状化傾向が確認できなかった一原因 として、台座部の自重による置換砂地盤内の有効拘束圧の増大が挙げられる。

Yoshimi and Tokimatsu¹⁰は、剛な構造物の直下および近傍における飽和砂地盤の地震時応答に関する 振動台実験を行った。Yoshimi and Tokimatsu の実験における構造物と間隙圧計測点との相対位置を図 5.38(a)に示す。実験では構造物の重量を二種類に変化させて実験を行った。 実験で計測された最大過 剰間隙圧を図5.38(b)に示す。同図には、間隙圧計測位置における土かぶり圧に、構造物による作用を等

分布荷重と仮定して弾性論に基づいて算定した有効上 載圧増分を加えることにより計算した、初期鉛直有効 応力の水平方向分布をあわせて示している。図 5.38(b)によると、構造物直下(x=0)での最大過 剰間隙圧とオープンエリアにおける最大過剰間隙圧は 概ね等しい。構造物直下では初期鉛直有効応力が大き く、過剰間隙圧比にして0.5(構造物荷重 q_{ave}= 1.96kPa)および0.1(構造物荷重 q_{ave}=5.88kPa)と 液状化に至っていない。一方、オープンエリアでは初 期鉛直有効応力が小さく、過剰間隙圧比も両ケースと もほぼ1.0で液状化に至っているものと考えられる。 すなわち構造物による上載圧の効果により地盤内の有 効拘束圧が上昇すると共に初期応力状態が異方的とな り、液状化抵抗が増大したものと考えられる。

以上の振動台実験結果より置換砂地盤上の混成防波 堤の地震時安定について、上載圧の小さなオープンエ リアにおいては液状化の発生が認められても、ケーソ ンおよび捨石マウンド直下では有効上載圧の増大に伴 い液状化の発生が抑制されることから、防波堤の安定 はある程度保持されるものと考えられる。

5.4.5 まとめ

従来、神戸港防波堤のような大水深混成堤の設計においては、波力によるケーソンの滑動や転倒、捨

石マウンドおよび基礎地盤の支持力破壊に対する安全性が主たる技術的課題であるとして、防波堤シス テムの耐震性は省みられることが少なかった。しかるに地盤工学的側面から見ると、大水深混成堤の地 震時安定問題は、斜面上の剛基礎のロッキングを伴った繰返し載荷に対する支持力問題として捉えるこ

とができよう。これを厳密に追跡するた めには、海底地盤-捨石マウンド・ケー ソン構造物-海域流体間の動的相互作用 形態の解明が不可欠となる。具体的には 今後、ケーソン両側に存在する海水域に よる動水圧の影響、ケーソンと捨石間の 相対すべりによる免震効果、捨石マウン ド内の初期応力状態、初期せん断の影響 の下における海底地盤の液状化性状、捨 石マウンドと直下地盤間の細粒物質の移 動機構などを明らかにする必要がある

(図5.39)。

また今回の地震においても、上述したように、ケーソンなど上載荷重の作用により、直下地盤の液状化 傾向は抑制され、防波堤の支持力的な安定性は保持されたと考えられる。しかしながら、周辺地盤の液状 化による側方拘束の減少やケーソン直下地盤自体の間隙水圧上昇によるせん断剛性の低下に起因したせん 断変形、さらには揺込み変形によってケーソン-捨石マウンド系は大きく沈下し(1.4m~2.6m)、防波 堤としての機能障害が生じていると考えられる。ここで、揺込み変形とは、繰返しせん断に伴う非排水条 件下でのせん断によって生じる変形のことである。関口・北によれば、砂質材料を対象とした等方、及び 異方圧密状態における非排水繰返しねじりせん断において、非排水せん断に伴って軸ひずみが蓄積してい く現象が認められている。ここで述べた、非排水条件下における繰返しせん断による、いわゆる揺込み変 形が地震時における砂地盤上の重力式構造物の沈下の一因と捉えることができ、完全液状化に至らなくて も基礎地盤に変状が生じる可能性があるという点で興味深い。今後、防波堤の合理的な耐震設計に際し、 防波堤システムの地震時変状の正確な予測が肝要となるが、そのためにも非排水条件下における揺込み変 形など置換砂材料の繰返し載荷時のせん断変形特性を詳細に検討する必要がある。

5.5 タンク基礎の被害状況¹¹⁾

ウォータフロントには多種多様な生産・貯蔵施設が立地しており、その基礎形式も杭基礎、直接基礎、 地盤改良基礎と多様である。工作物・建築物に類する施設の被害形態は一般の建築物・構造物と類似であ るため、ここでは地盤との関わりが強い危険物施設で、通常の土木構造物とはやや趣を異とする石油タン ク類の被害の状況について述べる。

消防法に規定する危険物施設の被害状況は、表5.7に示すとおりであり(消防庁集計による)、その被 害施設数は神戸市域に集中しているが、幸いにも火災や大量の漏洩事故に至った施設はなかった。神戸市 内には消防法に規定する「屋外タンク貯蔵所」が表5.8に示すとおり合計687基設置されているが、その約

	施設の 区分	製造所	屋内 貯蔵所	屋外 タンク 貯蔵所	屋内 タンク 貯蔵所	地下 タンク 貯蔵所	簡易 タンク 貯蔵所	移動 タンク 貯蔵所	屋外 貯蔵所	給油 取扱所	第1種 販売 取扱所	第2種 販売 取扱所	移送 取扱所	一般 取扱所	施設 合計
	施設数	61	1.272	471	181	2,172	4	589	123	1,315	55	5		939	7,187
京都府	火災 漏洩 その他	1	1		1	Ŀ.				1					0 1 2 2
	被害計	1	1		Concession of					1		COLUMN TWO IS NOT	COLUMN STREET NAME	CONTRACTOR OF	3
	施設数	550	4, 579	3, 255	1.437	4,860	28	3.319	944	3,470	234	93	42	3, 322	26, 133
大阪府	火災 漏洩 その他	1	24	1	1	4				20			1	4	0 36 46
	被害計	1	24	12	1	15	THE REAL PROPERTY AND	-		20				0	14 100
	施設数	212	2,046	2, 525	524	2,571	13	1.404	765	1,776	81	35	25	2, 123	14, 100
兵庫圓	火災 漏洩	2	65	15	1	10		3	40	5 321	1		27	10 186	5 112 1,055
不	被宝斗	19	137	331	13	83	0	3	40	326	10	3	9	198	1.172
-	以 百川	.41	502	746	106	1 027	58	560	143	1.074	19	2	20	598	4,986
香川県	地設め、	41	552								2003	10 ja 1.	201	1	0 1 0 1
-	牧吉 訂	054	0 400	6 007	2 249	10 630	103	5 872	1 975	7 635	389	135	87	6. 982	52,406
合計	施設数火漏を他	3 18 21	90 90 72 162	16 16 16 327 2 343	1 2, 240 1 1 1 1 1 1	14 84 98		3	3 40 3 40) 342) 347	5 1 2 8 7 10		3 1 7 3 10	2 3 15 7 190 207	5 150 1,103 1,258
内	施設数	39	631	687	285	848		646	5 219	586	5 47	26	5 12	2 585	4,614
神戸市	火災漏洩その他	10	30) 12 9 249		L 6 7 29	5		3 3	1 136	3	1		2 8 7 81	5 64 589
	被害計	1	59	261	9	35	5		3 3	1 139	9 1	8	3	9 91	658

表5.7 危険物施設の被害状況(被害発生府県)

・危険物施設とは、建築物、工作物、建築設備、消火設備をいう。

・ 被災施設とは、震災により危険物施設の構造又は設備に亀裂、変形、離脱、落下、沈下等の異常を生じた施設をいう。
 ・ 火災の5施設は、市街地大規模火災により延焼し、全焼した施設である。

表5.8 神戸市内のタンク数と被害調査タンク数¹²⁾

	神戸市内	内総数	調査数	調査%
特定屋外タンク貯蔵所	新法	11	11	100.0
(容量 1,000k1以上)	旧法	132	69	52.3
特定以外の屋外タンク	544	156	28.7	
屋外タンク貯蔵所	計	687	236	34.4

1.0008未満	特定屋外タンク貯蔵所 以外の屋外タンク貯蔵所	位置・タンク構造・設備等 の規制を受ける。
1.000862 E	特定屋外タンク貯蔵所	上記のほか、
寺定屋外タンク	貯蔵所に関しては、1977年	基礎地盤の構造・使宜、 タンクの構造・溶接部検査
去改正(危険物) 車の細目を定め・	の規制に関する技術上の巻 る告示)により、	等の規制を受ける。
唐禮・地盤に開	する基準が強化されている。(特に液状化規定)
これ以前のもの	を「旧法タンク」、以降のもの	を「新法タンク」と通称する

80%は要領1000kl未満の小型タンクである。消防庁危険物規制課では、被害の大きいとみなせる6事業 所(神戸市内屋外タンク全数の約34%)について、2月3~5日の間立入調査を実施している。ここで は全面的に提供を受けたこの調査資料を取りまとめて被害の全貌を報告する。また、個別に資料提供を受 けたこのうちの1事業所について若干の考察を加える。

5.5.1 神戸市内のタンクの被害状況

調査タンクの立地点は神戸市西部埋立地他3事業所お よび東部埋立地3事業所である。詳細な土質データは得 られていないが、各地点の埋め立ての経緯から判断して、 埋立土はN値5~10程度のまさ土が主体と想像できる。 したがって、各地点とも敷地全体に液状化が発生してい たり、護岸の変位に伴う地盤の側方変位・沈下の影響を 受けているものが多い。表5.9の異常の内訳は、表中に 示す各項目について程度の大小を問わず何らかの異常を カウントしたもので(したがって同一タンクに対して重 複カウント有り)、圧倒的に地盤・基礎関連が多い。何 らかの形で地盤・基礎に異常が認められたタンク数は調 査タンクの93%に達するが、タンク本体にまで異常が認 められたものは約50%に止まっている(図5.40参照)。 また、地盤・基礎、タンク本体、設備の異常の組み合わ せをみると、新法タンクに関しては、地盤・基礎に異常 があっても、タンク本体に異常を認めたものが皆無であ ることが特徴的である(図5.41参照)。地盤・基礎を中 心とする被害の比率は、新法の特定タンクー旧法の特定 タンクー非特定タンクの順に高くなっているが、これは 地盤・基礎のグレード、タンクの形状比、に由来してい るものと考えられる。タンク本体の被害はほとんどが地 盤・基礎の沈下・傾斜に起因するものであったが、転倒 や大きな破損により大規模な漏洩や火災に至ったものは なかった。ただしh/D(地震時液高/タンク内径)が1.3 以上の小型タンクには座屈変形したものも認められた。

表5.9 タンクの被害の内訳

異常の内訳 調査タンク 合計		特定タン	特定タンク		8 B
		新法	旧法 69	以外 156	合計 236
		11			
基	沈下・傾斜		31	92	123
礎	犬走り異常	3	31	35	69
•	補強措置の異常	3	19	26	48
地	噴砂	4	50	136	190
盤	地割れ	7	55	123	185
-	漏洩			1	1
4	亀裂	2		. 1	1
2	側板の変形		2	10	12
ク	7=17部の変形		3	4	7
本	屋根の変形		3		3
体	屋根の破損		1		1
	アンカーボルト引抜等		10	33	43
	傾斜		20	83	103
	シール亀裂	1	27	38	66
設	シール剥離	2	16	31	49
	アースの伸び・破断	2	8	20	30
	配管接続部漏洩		1	6	7
備	消火設備の損傷		3	3	6
	その他の設備		5	48	53
	異常タンクの数				
A	基礎・地盤に異常	7	60	153	220
B	. タンク本体に異常		30	94	124
С	.諸設備に異常	3	40	104	147
	異常の組合せ				
A	& B & C		24	83	107
A & B			6	10	16
A & C		3	16	19	38
Aのみ		4	14	41	59
そ	の他			2	2
異	常タンクの計	7	60	155	222
異	常のないタンク	4	9	1	14
調	査タンク 合計	11	69	156	236
_		and the second se			

図5.40 異常を認めたタンクの比率 図5.41 被災タンクの異常の組合せ 通常、中規模以上のタンク本体は基礎に設置されているのであるが、小型タンクでH/D (タンク高さ/タ ンク内径)が大きな場合、転倒防止のアンカーボルトが設置されることが多い。今回の調査においても ボルトの引抜け・破損が多数見られたが、大きな地震動に対して、タンク本体の浮き上がりや滑動に対 する制御効果があったものと推定される。

5.5.2 タンクの形状と沈下・傾斜

調査タンクの形状比H/Dは図5.42に示すとおりであるが、小型タンクになるほどこの比が大きくなる傾 向にある。タンクの設置荷重の大部分は内容物の重量であるため、地震時の液高hとタンク内径Dの関係 をみると図5.43のように小型タンクほどh/Dが大きいという傾向がある。通常タンクの安全度は相対不同 沈下量δ(円周上測点の最大値と最小値の差)とタンクの内径Dの比δ/Dによって管理されている。そこで、

- ☆立地地盤そのものの液状化・沈下や護岸近傍の 地盤の側方流動の影響が大きいため、タンク基

図5.44 タンクの形状比と不同沈下の関係

礎としての地盤・基礎形状と被害の関連は今後の検討を待たねばならない。しかし、結果として、タ ンクの区分に応じた地盤・基礎のグレードをある程度反映した結果であると考えられる(大幅な地盤 沈下のため、水準点そのものが沈下している場合もあり、タンク基礎としての絶対沈下量は測定され ていない)。

5.5.3 タンクの形式と沈下

調査6事業所のうち1事業所については、さらに詳細なタンクの沈下データの提供を受けたのでこれに ついて若干の考察を加える。タンクの形状比H/D、h/D、沈下の傾向δ/D~h/Dは図5.45に示すとおりで前 出の図5.42、5.43の範囲にはいっており、さして特異なケースではない。各タンクの円周上測点の相対沈 下量を展開図で表現すると、図5.46のようになる。当該事業所のタンクの形式はほとんどが円錐屋根(コー ンルーフ)であり、図中No.10、11、13が浮屋根(フローティングルーフ)である。同図において、沈下 のモードは円錐屋根の場合、沈下量の大小に係わらずサインカーブとなっている、すなわちタンク自身は ほとんど変形せず、剛体的にロッキングを生じているのに対して、浮屋根の場合は明らかにカーブが乱れ

図5.45 タンクの形状比、不同沈下

図5.46 タンクの沈下モード

ており、タンクそのものに変形が生じていることを表している。図5.47に示すように、円錐屋根の場合は 円筒の頂部が屋根で拘束されているため、この程度の規模のタンクでは全体としての剛性が保持されるの に対し、浮屋根の場合は円筒の頂部が不拘束であるため、タンク全体の剛性が小さくなる。この剛性の違 いがタンクの変状モードに反映されている。

なお、当該ヤードにおいて地震後に実施された土質調査結果に基づき、消防法に規定する方法によって 液状化判定を行った結果、図5.48に示すように、10m以浅では安全率が1をきって液状化の危険性が高い とする結果が得られている。

回転と同時にタンクも変形

図5.47 タンクの形式と変形モード

図5.48 タンク基礎地盤に対するFL値による簡易液状化判定結果

5.6 岸壁の被災のメカニズムに関する検討

兵庫県南部地震でのウォーターフロントでの被害は、防波堤、護岸、クレーン、物揚げ場、連絡橋等、 その大半がケーソンあるいはブロックを用いた重力式構造物において生じた。特に設計震度の小さい大半 の構造物が被害を受けたが、一方で耐震強化岸壁の被害はほとんどみられなかった。岸壁被害の典型的な 例として、ポートアイランド・コンテナバース (PC11)の被災断面を図5.49に示す。兵庫県南部地震で は大半の重力式岸壁において同図に示すように、横ずれ(海側へ最大約5m、平均3m)、傾斜、沈下、背 後地盤の陥没(最大約3m)を生じている。

神戸港での設計震度は0.1~0.18であっ たが、想定地震動を上回る地震動によりケ ーソンは急激に海側へ水平移動したものと 考えられる。ポートアイランドで観測され た加速度記録の一例を図5.50に示す。この 結果によると、同地点における地震の水平 動は南北方向に卓越していることがわかる。 図5.51に示した、稲垣ら¹⁴⁾によるGPS 測量 に基づくポートアイランドの岸壁および護 岸の法線変位量(水平変位量)計測結果に

よると、図5.50で示した地震の水平動の卓越方向に法線が直行する岸壁の移動量が大きいことがわかる。 これはケーソンの水平移動の主要原因が地震動による過大な慣性力と土圧によって生じたとことを裏付 けている。さらに、ケーソン背後の埋立て地盤およびケーソン直下の置換土層の過剰間隙水圧が上昇し、 これらのせん断抵抗力の低下によって岸壁の側方移動が増大したと考えられる。しかしながら、一方で、 置換砂層はケーソンから加わる静的せん断応力の影響によって過剰間隙水圧比が100%に達するという意 味での液状化には到らなかったとする指摘もあり、置換砂の液状化ないしは有効応力低下に伴うせん断 抵抗の減少が岸壁の崩壊に及ぼす影響については、今後さらに検討する必要がある。また、ケーソン背

後20~30mの範囲の地盤では液状化の痕跡はほとんどみられなかった。これは大きな地震動および置換土 砂のせん断抵抗の低下によってケーソンの海側への移動が大きく、ケーソン背後の地盤が水平方向に伸 張した結果である。現行の液状化判定法では、この部分の地盤も液状化すると判定され、背後地盤がケ ーソンの移動に追随できないような状況に達した後においては、現行の液状化判定法は安全側の結果を 与えることが指摘されている¹³⁾。なお、巷間取りざたされている地震の上下動については現時点では明 確ではなく、さらに検討する必要があるが、現段階では岸壁の被災原因としての影響は小さいと推定さ れる。

図5.50 ポートアイランドにおける加速度軌跡 図5.51 ポートアイランド岸壁の地震後水平変位¹⁴⁾ (GPS測量結果による)

5.7 被災港湾施設の復旧

5.7.1 神戸港復興の基本的な考え方4)

神戸港の復旧、復興は、同港がアジアの拠点港としての機能を果たすことを念頭に置き、まず、港湾機 能の麻痺の影響を軽減させるために、わずかな補修によって利用が可能となる施設については早期に暫定 供用を開始し、本格復旧する施設についても段階的に供用を開始するなどの対応が図られた。また高波・ 高潮から港湾施設の安全を確保するため、防波堤の早期の機能回復を目指している。次に被災した港湾施 設については、施設の重要度に応じて耐震性を高め、岸壁の復興にあたっては、重要度に応じて設計震度 の引き上げを図るとともに、地震応答の異なる構造形式を組み合わせる等、構造様式の多様性に配慮して いる。また、今回なみの地震力に対しても十分耐えられるような耐震強化岸壁をコンテナ埠頭、フェリー 埠頭、在来埠頭の一部に分散配置することとされた。

5.7.2 岸壁の復旧工法について13)

神戸港の岸壁の復旧、復興にあたり、一般の岸壁の設計震度は下記のように重要度係数の増加(1.0→ 1.2)を考慮して0.15あるいは0.18から0.20へ増加させている。

設計震度(0.20)=地域別震度(0.15)×地盤種別係数(1.2)×重要度係数(1.2)

耐震強化岸壁の設計では、今回の地震に対する摩耶埠頭の耐震強化岸壁の実績を考慮して、設計震度 0.25(重要度係数:1.50)を採用している。また、震度法で決定した断面について想定地震に対する岸壁 の変形性状についても照査を行っている。ただし、すべての耐震強化岸壁が被災を受けることのないよう、 地震応答特性の異なる多種多様の構造形式により耐震性の強化が図られている。岸壁の背後地盤について は、すべての耐震強化岸壁に対し、締固め等による液状化対策を講ずるとともに、その他の(-7.5m)以 上の大型岸壁については、背後地盤に液状化が予測される場合には適切な液状化対策を施すものとしてい 30

被害を受けた岸壁の復旧のための具体的な設計に当たっては、被災状況および施設の位置的な制約を考 慮して以下のような3種類の基本パターンが導入された(図5.52参照)。

①被災岸壁前面に新規に施設を設置する方法

この方法は、被災の程度が大きく、既存施設の利用・撤去が困難で、かつ前面の水域利用に支障がない 場合に採用された。前面に設置する施設としては、桟橋、ケーソン、ブロック、ジャケット構造等が考

えられる。図5.52においてこの案の一例として前面に新設のケーソンを据え付ける場合を示した。 ②コンクリートケーソンを一旦浮かして撤去し、岸壁本体を築造し直す方法

この方法は、被災の程度が大きく、そのままの状態では背後土圧を低減しても設計外力に対して抵抗で きない場合で、かつ前面の水域に余裕がない場合に採用された。ケーソンを据え直す際には、滑動抵抗 を増大させるためアスファルトマット等を敷設する。

③被災岸壁の背後に作用する土圧を低減させる方法

この方法は、被災の程度が比較的小さく、背後の土圧を低減させるだけで設計外力に対して抵抗できる 場合に採用された。背後土圧を低減させる方法としては、事前混合処理工法、深層混合処理工法等によ り土に粘着力を付加する工法と、水砕スラグや軽量地盤材料による置換工法がある。前者は液状化対策 としても有効である。この他に、背後土圧を低減する方法として岸壁背後に鋼管杭で棚を作り、既存ケー ソンとの間を掘削後、間詰め石を充填する工法も採用されている。

防波堤に関しては、今回の被災で沈下量そのものは比較的大きかったものの、法線のはらみ出しはほと んどなく、フーチングの破損も確認されなかった。このため、防波堤の復旧においては、上部工を計画天 端高さまで嵩上げするとともに、捨石を投入して地震時および高波時の安定性を保つようにした。

具体的な復旧事例については、本稿5.3、5.4を参照されたい。

■1案(新設ケーソン前置き)

■3条(月夜上江西森)

図5.52 重力式岸壁の復旧断面の基本パターン13)

5.8 おわりに

兵庫県南部地震によるウォータフロントにおける被害状況について、岸壁、護岸線、防波堤等の被災 に焦点を当てて調査を行った。あわせてウォータフロント域の危険物取扱施設の被災記録を示すとともに、 これら港湾諸施設の被災のメカニズムと復旧方策についても言及した。今回の地震によってウォータフロ ント域の地盤は広範囲に液状化を生じたが、港湾諸施設の被災の主たる要因として、想定地震力を少なく 見積もっていたことを挙げることができる。特に、神戸港では、軟弱粘土地盤の床堀置換砂上への重力式 のケーソン式岸壁・護岸が中心であったことから大規模な被災を被ったものであり、今後この地震を教訓 にして設計震度を0.20に、一部の耐震強化岸壁では0.25に向上させて動的安定性を高めている。

最後に、調査活動から本稿の執筆にわたって、運輸省第三港湾建設局、運輸省港湾技術研究所、農林水 産省水産庁水産工学研究所、消防庁、兵庫県土木部・企業庁、大阪府港湾局、神戸市開発局・港湾局・ 消防局、神戸港埠頭公社、大阪市港湾局の各機関から貴重なデータの提供、御助言および御協力を頂い た。ここに深甚の謝意を表する次第である。

参考文献

- 1)社団法人土質工学会関西支部(1992):関西地盤.
- 2) Hamada, M., Isoyama, R. and Wakamatsu K. (1995) : The 1995 Hyogoken-Nanbu Earthquake-Liquefaction, Ground Displacement and Soil Condition in Hanshin Area-, Association for Development of Earthquake Prediction.
- 3) Akamoto, H. and Miyake, T (1996) : Status of Damage to Naruohama Reclaimed Ground in Nishonomiya City, A Special Issue of Soils and Foundations on Geotechnical Aspects of the January 17 1995 Hyogoken -Nambu Earthquake, to be published.
- 4)及川 研・輪湖建雄(1995):阪神・淡路大震災による神戸港の被害と復興事業、第12回港湾技術報告会資料、運輸省港湾局.
- 5) 井合 進(1995) : ケーソン式岸壁の被害の特徴、土木学会誌、第80巻7号、pp.46-49.
- 6) Johnson, H. P. and Helferty, M. (1995) : The Geological Interpretation of Side-Scan Sonar, Reviews of Geophysics, Vol.28, No.4, pp.357 - 380.
- 7) 永井紀彦: 私信、1995.
- 8) 高橋 誠・南兼一郎(1977): 神戸港第六南防波堤直立消波構造(スリット式ケーソン)について、 土木技術、第32巻8号、pp.24-31.
- 9) 森尾茂夫(1992):防波堤の基礎工、基礎工、第20巻5号、pp.19-21.
- 10) Yoshimi, Y. and Tokimatsu, K. (1977) : Settlement of Buildings on Saturated Sand During Earthquakes, Soils and Foundations, Vol. 17, No.1, pp.23 - 38.
- 11) 消防庁(1995): 阪神淡路大震災に係る屋外タンク貯蔵所の被害状況現地調査結果報告書.
- 12) 神戸市消防局(1995):阪神・淡路大震災による危険物施設の被災状況.
- 13)運輸省港湾局技術課、運輸省港湾技術研究所、運輸省第三港湾建設局(1995):阪神・淡路大震災 による港湾施設等被害状況調査報告書(第2集).
- 1 4) Inagaki, H., Iai, S., Sugano, T., Yamazaki, H. and Inatomi, T. (1996) : Performance of Caisson Type

Quay Walls at Kobe Port, A Special Issue of Soils and Foundations on Geotechnical Aspects of the January 17 1995 Hyogoken-Nambu Earthquake, to be published.