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POWER COMPARISON OF EMPIRICAL LIKELIHOOD RATIO

TESTS: SMALL SAMPLE PROPERTIES THROUGH MONTE

CARLO STUDIES*

By HISASHI TANIZAKI

There are various kinds of nonparametric tests.  In this paper, we consider testing population mean,
using the empirical likelihood ratio test.  The empirical likelihood ratio test is useful in a large sample,
but it has size distortion in a small sample.  For size correction, various corrections have been
considered.  Here, we utilize the Bartlett correction and the bootstrap method.  The purpose of this
paper is to compare the t test and the empirical likelihood ratio tests with respect to the sample power
as well as the empirical size through Monte Carlo experiments.

1. Introduction

In the case of testing population mean, we test the null hypothesis using the t test, assuming
that the population is normal.  However, conventionally it is not known whether a population is
normal.  In a small sample, when a population is not normal, we cannot obtain proper results if
we apply the t test.  In a large sample, when both mean and variance are finite, the distribution
of sample mean is approximated as a normal distribution from the central limit theorem, where
a population distribution is not assumed.

In this paper, we consider testing population mean without any assumption on the
underlying distribution.  There are numerous papers on the distribution-free test.  Here, we
introduce the empirical-likelihood-based test and compare it with the t test.  In the past
research, Thomas and Grunkemeier (1975) made an attempt to construct confidence intervals
using the empirical likelihood ratio.  Owen (1988) proposed various test statistics using the
empirical likelihood in univariate cases, which are based on Thomas and Grunkemeier (1975).
Moreover, Owen (1990) obtained the confidence intervals in multivariate cases and Owen
(1991) considered the testing procedure in linear regression models, using the empirical
likelihood.  As for the other studies, see Baggerly (1998), Chen and Qin (1993), DiCiccio, Hall
and Romano (1989), Hall (1990), Kitamura (1997, 2001), Lazar and Mykland (1998), Qin
(1993) and Qin and Lawless (1994).  Owen (2001) is one of the best references in this field.

In a lot of literature, e.g., Chen (1996), Chen and Hall (1993), DiCiccio, Hall and Romano
(1991), DiCiccio and Romano (1989) and Hall (1990), the empirical likelihood is Bartlett
correctable.  Also, see Jing and Wood (1996), where the empirical likelihood is not Bartlett
correctable in a special case.  In this paper, we show that in a small sample the Bartlett-
corrected empirical likelihood ratio test is improved to some extent but it still has size
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distortion.  As shown in Namba (2004), the bootstrap empirical likelihood ratio test is
preferred.  In this paper, the t test and the empirical-likelihood-based test are compared with
respect to the sample powers and the empirical size through Monte Carlo studies.  The
empirical-likelihood-based test is a large sample test and accordingly it has size distortion.  To
improve the size distortion, we also consider using the Bartlett correction and the bootstrap
method.

2. Empirical Likelihood ratio Test

In this section, we introduce the testing procedure on population mean, using the empirical
likelihood ratio test.  For example, see Owen (2001) for the empirical likelihood ratio test.

Let X1, X2, ....., Xn be mutually independently distributed random variables and x1, x2, ....., xn

be the observed values of X1, X2, ....., Xn.  For now, x1, x2, ....., xn are assumed to be the distinct
values in{X1, X2, ....., Xn}.  We consider the discrete approximation of the distribution function
of X, which is approximated as Prob(Xi=xi)=pi, where 0< pi< 1 and Σi=1

n pi=1 have to be
satisfied.  The joint distribution of X1, X2, ....., Xn, i.e., the likelihood function (especially,
called the nonparametric likelihood), is given by:

L(p)= Prob(Xi=xi)= pi,

where p=(p1,p2,.....,pn).  Let p̂i be the estimate of pi, which is given by p̂i =1/n because x1, x2,
....., xn are regarded as the realizations randomly generated from the same distribution.
Therefore, the empirical likelihood is represented as:

L(p̂)= p̂i = ,

where p̂=( p̂1,p̂2,.....,p̂n).  The empirical likelihood ratio R(p) is defined as a ratio of the
nonparametric likelihood and the empirical likelihood, which is given by:

R(p)= = npi. (1)

In this paper, we consider testing the population mean.  The expectation of X is given by:

E(X)= xiProb(Xi=xi)= xipi=µ,

which is rewritten as:

(xi-µ)pi= 0. (2)

Then, given (x1, x2, ....., xn) and µ, we want to obtain the p1, p2, ....., pn which maximize (1)
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with the two constraints, i.e., Σi=1
n pi=1 and (2).  Substituting the solutions of p1, p2, ....., pn into

(1), the maximum value of the empirical likelihood ratio is obtained as a function of µ.  That is,
we solve the Lagrangian:

G= log(npi)-nλ'( (xi-µ)pi)+γ( pi-1),

with respect to  p1, p2, ....., pn, λ and γ, where λ and γ are denoted by the Lagrangian
multipliers.  In the second term of the Lagrangian, n is multiplied for simplicity of calculation.
Since the logarithm of the empirical likelihood ratio, log R(p)= Σi=1

n log(n pi), is concave for all
0<pi<1, i=1,2,····, n, we have a global maximum of G.

However, we have the problem that all the solutions of p1, p2, ·····, pn, λ and γ are not
obtained in a closed form.  Solving the Lagrangian, pi is given by:

pi= , (3)

which depends on λ.  In order to obtain the solution of λ, multiplying (xi-µ) in both sides of (3)
and summing up with respect to i, we have the following expression:

=0. (4)

Since (4) is an implicit function of λ, we may solve (4) with respect to λ by the iterative
procedure such as the Newton-Raphson optimization method or a simple grid search.  Thus,
given µ, we can obtain the λ which satisfies (4).  As a computational remark, the condition 0<
pi< 1 is required.  This condition is equivalent to:

1+(xi-µ)'λ> , (5)

which comes from (3).  Moreover, (5) is rewritten as: 

- <λ<- , (6)

where xmin and xmax represent minimum and maximum values of x1, x2, ....., xn, respectively.
Therefore, we have to perform the above iterative procedure with the condition (6).
Substituting the solution of λ into (3), we can obtain (p1, p2, ....., pn), given (x1, x2, ....., xn,) and
µ.  In other words, substituting (3) into (1), the logarithm of the empirical likelihood ratio, log
R(p)= Σi=1

n log(n pi), with the constraints  Σi=1
n pi=1 and (2) is rewritten as follows:

- log(1+(xi-µ)'λ)=logR
~

(x;µ), (7)

where x = (x1, x2, ....., xn) and λ has to satisfy (4).  R
~

(x;µ) corresponds to the maximum value of
R(p) given x1, x2, ....., xn, µ.
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We have assumed that x1, x2, ....., xn are the distinct values in {X1, X2, ....., Xn}.  Therefore, pi

is interpreted as the probability where X takes xi.  Even when some of x1, x2, ....., xn take the
same value, the above discussion still holds without any modification.  However, the
interpretation of pi should be changed.  Suppose that xi takes the same value as xj for i≠j, i.e.,
xi=xj=x*, but it is different from the others.  Prob (X=x*) = Prob (X=xi) + Prob (X=xj) = pi+pj=p*

represents the probability where X takes xi=xj=x*, where pi should be equal to pj.  In this case,
we need to interpret pi as a specific weight, rather than the probability.

Now, we consider the null hypothesis H0: µ = µ0.  Replace the actual data xi in (7) by the
corresponding random variable Xi.  Then, as n goes to infinity, under the null hypothesis H0 we
have the following asymptotic property:

-2 logR
~

(X ;µ0)=2 log(1+(Xi-µ0)'λ)→χ2(k), (8)

which is shown in Owen (2001), where X=(X1, X2, ....., Xn).  Let χα
2 (k) be 100×α percent

point from the χ2 distribution with k degrees of freedom.  Remember that µ is a k×1 vector.
Thus, we reject the null hypothesis H0:µ=µ0,when -2logR

~
(x;µ0) =2Σi=1

n log(1+(xi-µ0)'µ)>χα
2(k).

Note as follows.  Under the null hypothesis H0: µ=µ0, we sometimes have the case where the
λ which satisfies (4), (5) and µ=µ0 does not exist.  The reason why we have this case is because
the null hypothesis H0: µ=µ0 does not hold.  Therefore, it is plausible to consider that the
empirical likelihood ratio -2 logR

~
(x;µ0) takes an extremely large value.

Bartlett-Corrected Empirical Likelihood Ratio Test: As mentioned above, the empirical
likelihood ratio test statistic -2 logR

~
(X ;µ0) is asymptotically distributed as a χ2 (k) random

variable.  However, in a small sample, it is not necessarily chi-squared and the approximation
might be quite poor.  Therefore, we consider applying size correction to (8).  In the past,
various size correction methods have been proposed.  In this paper, we adopt the Bartlett
correction, which is discussed in Chen (1996), Chen and Hall (1993), DiCiccio, Hall and
Romano (1991), DiCiccio and Romano (1989), Hall (1990), Jing and Wood (1996) and Owen
(2001).  By the Bartlett correction, asymptotically we have the following:

-2 logR
~

(X ;µ0)=2 log(1+(Xi-µ0)'λ)→(1+ )χ2(k),

or equivalently,

-(1+ )-1 2 logR
~

(X ;µ0)=(1+ )-1 2 log(1+(Xi-µ0)'λ)→χ2(k),

where λ has to satisfy (4), (5) and µ=µ0, and a is denoted by a= (m4/ m2
2)- (m3

2/ m2
3).  mj

denotes the jth moment of X about the mean Ε(X), i.e., mj=Ε((X-Ε(X))j).  Since mj is unknown,
replacing mj by its estimate m̂j =(1/n)Σi=1

n (xi-x̄)j, we perform the testing procedure as follows:
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-(1+ )-1 2 logR
~

(X ;µ0)=(1+ )-1 2 log(1+(Xi-µ0)'λ)→χ2(k), (9)

where λ has to satisfy (4), (5) and µ=µ0, and â indicates the estimate of a, which is shown as:

â= (m̂ 4/ m̂ 2
2)- (m̂3

2/ m̂2
3).  Thus, we reject the null hypothesis H0: µ=µ0, when -(1+â/n)-1

2logR
~

(x;µ0) =(1+â/n)-12Σi=1
n log(1+(xi-µ0)'λ)> χα

2 (k).

Bootstrap Empirical Likelihood Ratio Test: As another size correction method, we consider
deriving an empirical distribution of -2logR

~
(X;µ) by the bootstrap method.

Let x1
*, x2

*, ....., xn
* be the bootstrap sample from x1, x2, ....., xn.  That is, one of the original

data x1, x2, ....., xn is randomly chosen for xi
*.  We repeat this procedure for all i=1,2,.....,n with

replacement and we have the bootstrap sample x1
*, x2

*, ....., xn
*.  We solve (1) subject to the

constraints 0<pi<1, Σi=1
n pi=1 and Σi=1

n (xi
*-x̄) pi =0, where x̄ ≡(1/n)Σi=1

n xi.  As a result, in (2) -
(7), xi and µ are replaced by xi

* and x̄, respectively.  That is, instead of (7), we obtain the
following test statistic:

-2 logR
~

(x* ;x̄), (10)

where x*=(x1
*, x2

*, ....., xn
*).  Whenever the bootstrap sample {x1

*, x2
*, ....., xn

*} is resampled from
{x1, x2, ....., xn} with replacement, we have a different value  of (10).  Resampling the bootstrap
sample M times, we have M empirical log-likelihood ratios, where M =104 is taken in the
Monte Carlo studies in the next section.  This procedure is equivalent to deriving the empirical
distribution of -2 logR

~
(X;x̄), where the sample mean x̄ is given.  Sorting the M values by size,

we can obtain the percent points from the M empirical log-likelihood ratios.  The percent points
based on the M values are compared with the empirical log-likelihood ratio based on the
original data.  Thus, we can test the null hypothesis H0: µ=µ0.  See, for example, Hall (1987),
Namba (2004) and Owen (2001) for the bootstrap empirical likelihood ratio test.

Sometimes we have the case where xi
*> x̄ or xi

*< x̄ for all i=1,2,.....,n.  In this case, we
consider that (10) lies on the side of the distribution and accordingly takes an extremely large
value.

3. Monte Carlo Experiments

In Section 2, we have introduced the empirical likelihood ratio tests based on (8), (9) and
(10), which are applied to testing the population mean.  In this section, the t test, the
conventional empirical likelihood ratio test (8), the Bartlett-corrected empirical likelihood ratio
test (9) and the bootstrap empirical likelihood ratio test (10) are compared with respect to
empirical size and sample power through Monte Carlo studies.

The setup of the Monte Carlo experiments is as follows:
(i) For the underlying distribution of univariate random variable Xi, we take the following

1―3
1―2

n

Σ
i=1

â―n
â―n
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seven distributions.
Standard Normal Distribution (N):

f (x) = exp(- x2),   -∞ < x < ∞.

Uniform distribution (U):

f (x) = ,     -√3 < x < √3.

χ2(1) Distribution (X):

x = , where f (y)= y-1/2exp(- y),    0 < y < ∞.

t(3) Distribution (T):

x = , where f (y)= (1+y2/3)-2 ,    -∞ < y < ∞.

Double Exponential Distribution (D):

x = , where f (y)= exp(-|y |),    -∞ < y < ∞.

Logistic Distribution (L):

x = , where f (y)= , -∞ < y < ∞.

Gumbel Distribution (G):

x = , where f (y)=exp(-(y-α)-e-(y-α)) and α ≈ -0.5772, -∞ < y < ∞.

The mean and variance of Xi are normalized to be zero and one for i=1,2,.....,n.
(ii) The sample size is given by n = 20, 50, 100.
(iii) The null hypothesis H0: µ=µ0 and the alternative one H1: µ=µ1 are taken for µ0=.0 and

µ1=.0, .1, .2, .4.
(iv) The significance level α is given by α =.10, .05.
(v) For each significance level, perform 104 simulation runs and obtain the number of

rejections of the null hypothesis H0: µ=µ0.  Dividing the number of the rejections by 104,
the sample power is computed.

Under the setup above, we perform Monte Carlo experiments.  The obtained results are
expected as follows:

y
―π/√6

exp(y)
―――――
(1+exp(y))2

y
―π/√3

1―
2

y
―
√2

2―π√3
y
―
√3

1―
2

1―
√2π
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2√3
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● Since the normal distribution is assumed in (N), the t test indicates the same empirical size
as the significance level and it gives us the most powerful test.

● In the case of µ1=.0, the power corresponds to the size, i.e., the significance level α.
However, the empirical likelihood ratio test shown in (8) indicates a large sample test.
Therefore, in a small sample, it might be expected that the empirical likelihood ratio test
(8) has size distortion.  The Bartlett-corrected empirical likelihood ratio test (9) and the
bootstrap empirical likelihood ratio test (10) should be improved with respect to the
empirical size in a small sample.

● The conventional empirical likelihood ratio test, the Bartlett-corrected empirical likelihood
ratio test and the bootstrap empirical likelihood ratio test should be equivalent to the t test
as n is large, because the three test statistics have the same distribution, i.e., chi-square
distribution, in a large sample.

The results are obtained in Table 1, where the three kinds of empirical likelihood ratio tests
are shown with the t test.  (8) represents the conventional empirical likelihood ratio test which
simply utilizes the chi-square percent points with one degree of freedom.  (9) indicates the
Bartlett-corrected empirical likelihood ratio test, where the chi-square percent point with one
degree of freedom is regarded as the percent point for the test statistic.  (10) shows the
bootstrap empirical likelihood ratio test, where the distribution of the test statistic is
constructed by the bootstrap sample.  Let δ̂ be a value in the table.  The standard error of δ̂ is
given by , and accordingly it is at most =.005.  Note that 104 in the
square root indicates the number of simulation runs.

The results are summarized as follows.

Empirical Size: First, consider the case of µ1=.0 in Table 1, which represents the empirical
size.  Let δ and δ̂ be the true size and the empirical size, respectively.  Under the null
hypothesis H0: δ = α, asymptotically we have(δ̂ -α)/ ~N (0,1), which comes from
the central limit theorem.  In the case of µ1=.0 in Table 1, ** and * show that the null hypothesis
H0: δ = α is rejected at significance levels 1 % and 5 % by the both-sided test.  That is, in the
case of µ1=.0, the values without ** and *are preferred, because they show correct sizes.  As for
(N), the t test indicates the correct sizes for all α =.10, .05 and n = 20,  50, 100.  These results
are plausible, because the t test gives us the uniformly most powerful test under normality
assumption.  For (U), similarly the empirical size δ̂ in the t test is very close to the significance
level α.  For (T), (D) and (L), the t test is not an appropriate test especially for small n, because
the size is statistically different from the significance level.  That is, the t test gives us the
correct sizes and the powers for (N), but it yields the over-estimated sizes or the under-
estimated sizes for (U), (T), (D) and (L).

When n is small, for any distribution the conventional empirical likelihood ratio test (8) has
size distortion and it over-estimates empirical sizes.  For example, comparing the empirical
likelihood ratio test (8) and the t test in the case of (N), µ1=.0 and n =20, the empirical
likelihood ratio test (8) has larger empirical sizes than the t test for both α =.10 and .05 (we

√‾‾‾‾‾α(1−α)/104

√‾‾‾‾‾.5(1-.5)/104√‾‾‾‾δ̂(1-δ̂)/104
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have 0.1340 and 0.0808 for the empirical likelihood ratio test (8), and 0.0971 and 0.0503 for
the t test).  As n increases (for example, n =100), the empirical likelihood ratio test (8) as well
as the t test indicate the correct sizes.

In a small sample, we perform Bartlett correction to improve the size distortion in the
empirical likelihood ratio test.  See (8) in Table 1 for the Bartlett-corrected empirical likelihood
ratio test.  We can observe that the size distortion decreases but we still have the size distortion
to some extent.  For example, in the case of (N), n =20, µ1=.0 and α =.10, (8) is .1340 and (9)
is .1216, which indicates that (9) is closer to α =.10 than (8). (8) is .0808 for α =.05 and (9) is
.0735 for α =.05.  Therefore, (9) is better than (8), but it is not practical.

The bootstrap empirical likelihood ratio test (10) is also implemented to improve the size
distortion.  Both (8) and (9) are size-distorted in most of the cases, but (10) shows a correct
empirical size in a lot of cases.  Thus, the size distortion is improved when (10) is applied.  As
a result, we can conclude that (10) is better than (8) and (9) for the empirical size criterion and
that the empirical size in (10) is very close to the significance level.

When n is large, the empirical likelihood ratio tests (8) - (10) and t test show the size which
is equal to the significance level.  That is, in the case of µ1=.0 and n =100, there are a lot of
values without the superscript *.  Thus, all the tests perform better in a large sample.

Sample Power: Next, we consider the case of µ1≠ 0 in Table 1, which indicates the sample
power.  In the case of µ1 = 0.1, 0.2, 0.4 and the empirical likelihood ratio tests (8) - (10), ●,●●,
○and○○ indicate comparison with the t test.  Let δt be the value in t Test of Table 1.  We put the
superscript ● when ( δ̂ -δt)/ is greater than 1.9600, and the superscript ●● when it
is greater than 2.5758.  We put the superscript ○ if ( δ̂ -δt)/ is less than -1.9600,
and the superscript ○○ if it is less than -2.5758.  Note that in a large sample we have the
following: ( δ̂ -δt)/ ~N(0,1) under the null hypothesis H0: δ = δt and the
alternative one H1: δ ≠ δt.  Therefore, the values with the superscript ● indicate a more
powerful test than the t test.  In addition, the number of the superscript ● shows the degree of
the sample power.  Contrarily, the values with the superscript ○ represent a less powerful test
than the t test.  Taking an example of the case (N), n = 20 and µ1=.1, the sample power in (8) is
given by δ̂ = 0.1687 while that in t Test is δt = 0.1325.  We want to test H0: δ = δt against H1:
δ≠δt.  In this case, the test statistic is given by (0.1687-0.1325) /
=10.677, which is greater than 2.5758.  Therefore, H0: δ = δt is rejected at significance level α
=0.01.

In the case of (N), the t test is the most powerful test.  For small n, both (8) and (9) have size
distortion, and they over-estimate the sample powers.  Accordingly, it is not meaningful to
compare (8), (9) and the t test with respect to the sample powers.  The empirical likelihood
ratio test (10) is very close to the t test in all the cases of (N).  Thus, (10) performs better than
(8) and (9).

For (U), the empirical sizes in (8) and (9) are over-estimated, while those in (10) and the t
test are sometimes under-estimated but correctly estimated in many cases.  In addition, the
sample powers in (8) and (9) are larger than those in the t test.  (10) is slightly better than the t

√‾‾‾‾‾‾‾‾‾0.1325(1-0.1325)/104

√‾‾‾‾‾δt(1−δt)/104

√‾‾‾‾‾δt(1−δt)/104

√‾‾‾‾‾δt(1−δt)/104
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n
µ1\α

(8)
.10 .05

(9)
.10 .05

(10)
.10 .05

t Test

.10 .05

Empirical Likelihood Ratio Test

TABLE 1. Empirical Size and Sample Power 

● Normal Distribution(N)

.0 0.1340** 0.0808** 0.1216** 0.0735** 0.1021 0.0512 0.0971 0.0503
20 .1 0.1687●● 0.1055●● 0.1576●● 0.0976●● 0.1321 0.0700 0.1325 0.0673

.2 0.2648●● 0.1802●● 0.2480●● 0.1666●● 0.2142 0.1226○○ 0.2180 0.1337

.4 0.5805●● 0.4624●● 0.5624●● 0.4399●● 0.5041○○ 0.3381○○ 0.5306 0.3925

.0 0.1147** 0.0617** 0.1095** 0.0583** 0.1007 0.0510 0.0988 0.0473
50 .1 0.1963●● 0.1197●● 0.1891●● 0.1157●● 0.1754 0.0978 0.1791 0.1029

.2 0.4190●● 0.3015●● 0.4081● 0.2929●● 0.3841○○ 0.2551○○ 0.3968 0.2770

.4 0.8783● 0.8035●● 0.8745 0.7959● 0.8558○○ 0.7428○○ 0.8706 0.7872

.0 0.1070* 0.0571** 0.1043 0.0558** 0.0976 0.0497 0.0992 0.0503
100 .1 0.2707● 0.1788●● 0.2674 0.1750● 0.2553 0.1594○ 0.2597 0.1670

.2 0.6379 0.5167● 0.6325 0.5113 0.6159○○ 0.4792○○ 0.6290 0.5054

.4 0.9905 0.9778 0.9903 0.9766 0.9892 0.9685○○ 0.9903 0.9765

● Uniforn Distribution(U)

.0 0.1149** 0.0651** 0.1057 0.0600** 0.0932* 0.0493 0.0923* 0.0469
20 .1 0.1464●● 0.0885●● 0.1379●● 0.0815●● 0.1232 0.0662 0.1237 0.0677

.2 0.2456●● 0.1615●● 0.2338●● 0.1502●● 0.2151 0.1196○○ 0.2103 0.1284

.4 0.5805●● 0.4553●● 0.5656●● 0.4386●● 0.5360●● 0.3721 0.5184 0.3767

.0 0.1056 0.0550* 0.1028 0.0524 0.0974 0.0469 0.0962 0.0470
50 .1 0.1853●● 0.1101●● 0.1802● 0.1065●● 0.1728 0.0972 0.1713 0.0966

.2 0.4147●● 0.2952●● 0.4093●● 0.2893●● 0.3927 0.2690 0.3926 0.2708

.4 0.8933●● 0.8216●● 0.8910●● 0.8173●● 0.8840 0.7917 0.8781 0.7929

.0 0.0993 0.0527 0.0977 0.0518 0.0933* 0.0482 0.0943 0.0483
100 .1 0.2744● 0.1764●● 0.2717 0.1736● 0.2662 0.1612 0.2657 0.1644

.2 0.6517●● 0.5283●● 0.6490● 0.5252●● 0.6398 0.5054 0.6391 0.5117

.4 0.9935 0.9828● 0.9934 0.9822● 0.9930 0.9806 0.9924 0.9792

● χ2(1) Distribution(X)

.0 0.1777** 0.1211** 0.1653** 0.1096** 0.1094** 0.0691** 0.1540** 0.1076**

20 .1 0.1923●● 0.1190●● 0.1737●● 0.1063●● 0.0888○○ 0.0390○○ 0.1147 0.0628
.2 0.3165●● 0.2160●● 0.2916●● 0.1966●● 0.1526 0.0552○○ 0.1506 0.0643
.4 0.8184●● 0.7444●● 0.8012●● 0.7208●● 0.6336●● 0.3961●● 0.5771 0.3641
.0 0.1451** 0.0861** 0.1363** 0.0822** 0.0994 0.0594** 0.1273** 0.0829**

50 .1 0.2195●● 0.1361●● 0.2078●● 0.1268●● 0.1359 0.0393○○ 0.1415 0.0623
.2 0.5215●● 0.4044●● 0.5051●● 0.3865●● 0.4102●● 0.1925○○ 0.3672 0.2140
.4 0.9896●● 0.9785●● 0.9884●● 0.9756●● 0.9621○ 0.8211○○ 0.9659 0.9108
.0 0.1258** 0.0744** 0.1214** 0.0713** 0.0949 0.0474 0.1151** 0.0679**

100 .1 0.2978●● 0.2058●● 0.2892●● 0.1971●● 0.2388●● 0.0845○○ 0.2198 0.1144
.2 0.7585●● 0.6619●● 0.7498●● 0.6496●● 0.7154●● 0.4799○○ 0.6664 0.4993
.4 0.9998 0.9998● 0.9998 0.9998● 0.9953○○ 0.9122○○ 0.9998 0.9992
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n
µ1\α

(8)
.10 .05

(9)
.10 .05

(10)
.10 .05

t Test

.10 .05

Empirical Likelihood Ratio Test

TABLE 1. Empirical Size and Sample Power ― < Continued > ―

● t (3) Distribution(T)

.0 0.1590** 0.1015** 0.1443** 0.0894** 0.0998 0.0474 0.0952 0.0445*
20 .1 0.2140●● 0.1441●● 0.1926●● 0.1274●● 0.1420 0.0774 0.1419 0.0784

.2 0.3434●● 0.2584●● 0.3225●● 0.2367●● 0.2577○○ 0.1623○○ 0.2792 0.1803

.4 0.6732●● 0.5849●● 0.6551●● 0.5600●● 0.5770○○ 0.4384○○ 0.6355 0.5178

.0 0.1261** 0.0736** 0.1163** 0.0668** 0.0916** 0.0446* 0.0922** 0.0435**

50 .1 0.2399●● 0.1619●● 0.2279●● 0.1507●● 0.1946 0.1129 0.2020 0.1180
.2 0.4917●● 0.3878●● 0.4773 0.3686●● 0.4316○○ 0.3040○○ 0.4679 0.3458
.4 0.8838○○ 0.8214○○ 0.8737○○ 0.8117○○ 0.8317○○ 0.7354○○ 0.8947 0.8332
.0 0.1262** 0.0720** 0.1187** 0.0678** 0.0967 0.0477 0.0976 0.0475

100 .1 0.3181●● 0.2241●● 0.3074●● 0.2135●● 0.2746○○ 0.1726○○ 0.2950 0.1924
.2 0.6796 0.5779 0.6688○ 0.5674 0.6364○○ 0.5031○○ 0.6796 0.5764
.4 0.9715○○ 0.9562○○ 0.9685○○ 0.9553○○ 0.9512○○ 0.8880○○ 0.9814 0.9676

● Double Exponential Distribution (D)

.0 0.1503** 0.0937** 0.1367** 0.0831** 0.1001 0.0455* 0.0924* 0.0408**

20 .1 0.1919●● 0.1304●● 0.1769●● 0.1193●● 0.1333 0.0720 0.1336 0.0706
.2 0.2981●● 0.2169●● 0.2789●● 0.2022●● 0.2238○○ 0.1295○○ 0.2383 0.1469
.4 0.5971●● 0.5005●● 0.5767●● 0.4762●● 0.5014○○ 0.3483○○ 0.5575 0.4325
.0 0.1241** 0.0737** 0.1159** 0.0695** 0.1003 0.0501 0.0958 0.0461

50 .1 0.2027●● 0.1301●● 0.1919●● 0.1224●● 0.1718 0.0944○ 0.1751 0.1018
.2 0.4322●● 0.3170●● 0.4172 0.3048●● 0.3813○○ 0.2466○○ 0.4116 0.2905
.4 0.8653 0.7854 0.8568○○ 0.7757○○ 0.8226○○ 0.6775○○ 0.8685 0.7911
.0 0.1164** 0.0666** 0.1130** 0.0635** 0.1012 0.0502 0.0994 0.0481

100 .1 0.2821●● 0.1892●● 0.2761 0.1819●● 0.2530○○ 0.1519○○ 0.2705 0.1717
.2 0.6431 0.5239 0.6364 0.5159 0.6107○○ 0.4649○○ 0.6400 0.5185
.4 0.9875 0.9701 0.9866 0.9692○ 0.9794○○ 0.9321○○ 0.9884 0.9728

● Logistic Distribution (L)

.0 0.1348** 0.0805** 0.1235** 0.0720** 0.0963 0.0465 0.0930* 0.0437**

20 .1 0.1755●● 0.1158●● 0.1642●● 0.1060●● 0.1340 0.0714 0.1292 0.0680
.2 0.2735●● 0.1975●● 0.2590●● 0.1823●● 0.2196 0.1265○○ 0.2273 0.1387
.4 0.5886●● 0.4787●● 0.5686●● 0.4541●● 0.5023○○ 0.3487○○ 0.5424 0.4074
.0 0.1174** 0.0688** 0.1123** 0.0644** 0.1000 0.0508 0.0956 0.0471

50 .1 0.1952●● 0.1207●● 0.1868●● 0.1158●● 0.1690 0.0940 0.1728 0.0985
.2 0.4239●● 0.3101●● 0.4141● 0.3001●● 0.3847○○ 0.2543○○ 0.4042 0.2829
.4 0.8740 0.7971 0.8675 0.7871 0.8432○○ 0.7131○○ 0.8709 0.7904
.0 0.1101** 0.0598** 0.1075* 0.0568** 0.0974 0.0484 0.0988 0.0475

100 .1 0.2764● 0.1820●● 0.2723 0.1781 0.2554○ 0.1541○○ 0.2660 0.1711
.2 0.6434 0.5239● 0.6385 0.5156 0.6172○○ 0.4747○○ 0.6393 0.5136
.4 0.9887 0.9741 0.9882 0.9732 0.9847○○ 0.9563○○ 0.9900 0.9758
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test but (9) is not significantly different from the t test.  It might be concluded that (10) is
slightly more powerful than the t test in the case where the underlying distribution is given by
(U).

In the case of (X), (T), (D), (L) and (G), both (7) and (8) have size distortion, where all the
empirical sizes in (8) and (9) are over-estimated.  Therefore, it is useless for (X), (T), (D), (L)
and (G) to compare (8) and (9) with the t test.  (10) has no size distortion in a lot of cases,
while the empirical sizes in the t test are sometimes under-estimated.  In most cases, (10) is less
than the t test with respect to the sample powers.  Therefore, the t test is more powerful than
(10), especially in the case of (T), (D) and (L).

In the case of n =100, the sample powers take similar values for all µ1 =0.1, 0.2, 0.4.
Therefore, it is shown from Table 1 that all the tests give us the same sample power in a large
sample.

4. Summary

In this paper, we have compared three empirical likelihood ratio tests with the t test, where
we test the population mean.  In the case of testing the population mean, conventionally we
assume a normal distribution.  Under the normality assumption, the appropriate test statistic
has a t distribution.  Thus, we need the normality assumption for the t test.  However, the
underlying distribution is not known in general.  Therefore, the normality assumption is not
necessarily plausible.  In this paper, we consider testing the population mean without any
assumption on the underlying distribution.

In the case of a large sample, the sample mean is approximated to be normal when mean and

● Gumbel Distribution(G)

.0 0.1378** 0.0842** 0.1266** 0.0773** 0.1017 0.0535 0.1047 0.0562**

20 .1 0.1619●● 0.0935●● 0.1484●● 0.0853●● 0.1066 0.0410○ 0.1081 0.0464
.2 0.2641●● 0.1747●● 0.2453●● 0.1607●● 0.1789 0.0777○○ 0.1791 0.0950
.4 0.6466●● 0.5268●● 0.6253●● 0.5008●● 0.5335 0.3094○○ 0.5338 0.3663
.0 0.1171** 0.0672** 0.1115** 0.0640** 0.0955 0.0490 0.1004 0.0520

50 .1 0.1913●● 0.1146●● 0.1825●● 0.1078●● 0.1512 0.0648○○ 0.1480 0.0765
.2 0.4449●● 0.3273●● 0.4342●● 0.3166●● 0.3922● 0.2211○○ 0.3811 0.2461
.4 0.9338●● 0.8844●● 0.9297●● 0.8783●● 0.9195●● 0.8029○○ 0.9108 0.8341
.0 0.1107** 0.0588** 0.1078** 0.0565** 0.0943 0.0442** 0.0990 0.0510

100 .1 0.2791●● 0.1847●● 0.2742●● 0.1776●● 0.2507 0.1297○○ 0.2450 0.1446
.2 0.6810●● 0.5699●● 0.6760●● 0.5638●● 0.6600●● 0.5040 0.6434 0.5104
.4 0.9970 0.9943●● 0.9966 0.9939●● 0.9968 0.9816○○ 0.9965 0.9909

n
µ1\α

(8)
.10 .05

(9)
.10 .05

(10)
.10 .05

t Test

.10 .05

Empirical Likelihood Ratio Test

TABLE 1. Empirical Size and Sample Power ― < Continued > ―
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variance exist.  This result comes from the central limit theorem.  Therefore, using the normal
distribution, we can test the hypothesis on the population mean.  The asymptotic distribution of
the t distribution is given by the standard normal distribution.  Thus, when the sample size is
large we can apply the t test to any underlying distribution.

The empirical likelihood ratio test statistic is asymptotically distributed as a chi-square
random variable, which is also a large sample test, where the chi-square percent points are
compared with the empirical likelihood ratio test statistic.  The conventional empirical
likelihood ratio test with chi-square percent points yields the size distortion.  Therefore, we
have considered the empirical likelihood ratio tests based on the Bartlett correction and the
bootstrap method.

In this paper, the normal distribution, the uniform distribution, the t (3) distribution, the
double exponential distribution, or the logistic distribution  is assumed for the underlying
distribution.  Using the three empirical likelihood ratio tests shown in (8) - (10) and the t test,
we have obtained the empirical sizes and the sample powers for each distribution through
Monte Carlo experiments.  When the sample size n is large, we have obtained the result that all
the tests show the similar empirical sizes and sample powers.  However, when n is small, the
conventional empirical likelihood ratio test (8) indicates a large size distortion, and accordingly
it is not practically useful.  Therefore, we have performed the size correction by Bartlett
correction, but the empirical likelihood ratio test with Bartlett correction, shown in (9), still has
size distortion although it improves to some extent.  Next, using the bootstrap method, we have
obtained the empirical distribution of the the empirical likelihood ratio test statistic and derived
the critical region.  Based on the critical region, we have performed the empirical likelihood
ratio test (10).  The obtained empirical sizes and sample powers are plausible, using (10).
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