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ON SMALL SAMPLE PROPERTIES OF PERMUTATION TESTS:

A SIGNIFICANCE TEST FOR REGRESSION MODELS*

By HISASHI TANIZAKI

In this paper, we consider a nonparametric permutation test on the correlation coefficient, which is
applied to a significance test on regression coefficients. Because the permutation test is very computer-
intensive, there are few studies on small-sample properties, although we have numerous studies on
asymptotic properties with regard to various aspects. In this paper, we aim to compare the permutation
test with the t test through Monte Carlo experiments, where an independence test between two samples
and a significance test for regression models are taken. For both the independence and significance
tests, we obtain the results through Monte Carlo experiments that the nonparametric test performs
better than the t test when the underlying sample is not Gaussian and that the nonparametric test is as
good as the t test even under a Gaussian population.

1. Introduction

In the regression models, we assume that the disturbance terms are mutually independently
and identically distributed. In addition, in the case where we perform the significance test on
the regression coefficients, we assume that the error terms are normally distributed. Under
these assumptions, it is known that the ordinary least squares (OLS) estimator of the regression
coefficients follows the t distribution with n-k degrees of freedom, where n and k denote the
sample size and the number of regression coefficients.

As the sample size n increases, the t distribution approaches the standard normal distribution
N(0,1). From the central limit theorem, it is known that the OLS estimator of the regression
coefficient is normally distributed for a sufficiently large sample size if the variance of the
OLS estimator is finite. However, in the case where the error term is non-Gaussian and the
sample size is small, the OLS estimator does not have the t distribution and therefore we
cannot apply the t test. To improve these problems, in this paper we consider a significance test
of the regression coefficient that includes the case where the error term is non-Gaussian and the
sample size is small. A nonparametric test (or a distribution-free test) is discussed.

Generally we can regard the OLS estimator of the regression coefficient as the correlation
between two samples. The nonparametric tests based on Spearman’s rank correlation
coefficient and Kendall’s rank correlation coefficient are very famous. See, for example,
Hollander and Wolfe (1973), Randles and Wolfe (1979), Conover (1980), Sprent (1989),
Gibbons and Chakraborti (1992) and Hogg and Craig (1995) for the rank correlation tests. In
this paper, the permutation test proposed by Fisher (1966) is utilized, and we compute the
correlation coefficient for each of all the possible combinations. All the possible correlation
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coefficients are compared with the correlation coefficient based on the original data. This
permutation test can be directly applied to the regression problem.

The outline of this paper is as follows. In Section 2, we introduce a nonparametric test based
on the permutation test, where we consider testing whether X is correlated with Y for the
sample size n. Moreover, we show that we can directly apply the correlation test to the
regression problem without any modification. In Section 3, we compare the powers of the
nonparametric tests and the conventional t test when the underlying data are non-Gaussian. In
the case where k=2,3 is taken for the number of regression coefficients, we examine whether
the empirical sizes are correctly estimated when the significance level is α=0.10, 0.05, 0.01.

2. The Nonparametric Test on Regression Coefficients

2.1 On Testing the Correlation Coefficient
Let (X1, Y1), (X2, Y2),···, (Xn, Yn) be a random sample, where the sample size is n. Consider

testing if there is a correlation between X and Y, i.e., if the correlation coefficient ρ is zero or
not. The correlation coefficient ρ is defined as:

ρ =                      ,

where Cov (X,Y), V (X) and V (Y) represent the covariance between X and Y, the variance of X
and the variance of Y, respectively. Then, the sample correlation coefficient ρ̂ is written as:

ρ̂=            ,

where SXY, SX and SY denote the sample covariance between X and Y, the sample variance of X
and the sample variance of Y, which are given by:

SXY =

X
−

and Y
−

represent the sample means of X and Y.
If X is independent of Y, we have ρ = 0 and the joint density of X and Y is represented as a

product of the marginal densities of X and Y, i.e.,

fxy (x,y) = fx(x) fy (y),

where fxy (x,y), fx(x) and fy (y) denote the joint density of X and Y, the marginal density of X and
the marginal density of Y. The equation above implies that for all i and j we consider randomly
taking n pairs of Xi and Yj. Accordingly, for fixed X1, the possible combinations are given by
(X1, Yj), j =1,2,···, n, where we have n combinations. Similarly, for fixed X2, the possible
combinations are (X2, Yj), j =2,3,···, n, i.e., n-1 combinations.
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Moreover, we have n-2 combinations for X3, n-3 combinations for X4 and so on. Therefore,
the total number of possible combinations between X and Y are given by n!. For each
combination, we can compute the correlation coefficient. Thus, n! correlation coefficients are
obtained. The n! correlation coefficients are compared with the correlation coefficient obtained
from the original pairs of data. If the correlation coefficient obtained from the original data is
in the tail of the empirical distribution constructed from the n! correlation coefficients, the
hypothesis that X is correlated with Y is rejected. The testing procedure above is distribution-
free or nonparametric, and can be applied in almost all cases. The nonparametric test discussed
above is known as a permutation test, which has developed by Fisher (1966). For example, see
Stuart and Ord (1991).

The order of Xi, i =1,2,···, n, is fixed and we permute Yj, j =1,2,···, n, randomly. Based on the
n! correlation coefficients, we can test if X is correlated with Y. Let the n! correlation
coefficients be ρ̂ (i), i =1,2,···, n!. Suppose that ρ̂ (1) is the correlation coefficient obtained from
the original data. The estimator of the correlation coefficient ρ, denoted by ρ̂ , is distributed as:

P(ρ̂ < ρ̂ (1)) =                                                                                            ,

P(ρ̂ = ρ̂ (1)) =                                                                                            ,

P(ρ̂ > ρ̂ (1)) =                                                                                                .

Thus, the above three probabilities can be computed. The null hypothesis H0 : ρ = 0 is rejected
by the two-sided test if P(ρ̂ < ρ̂ (1)) or P(ρ̂> ρ̂ (1)) is small enough.

Note as follows. SXY is rewritten as:

SXY =

The sample means X
−

and Y
−

take the same values without depending on the order of X and Y.
Similarly, SX and SY are independent of the order of X and Y. Therefore, ρ̂ depends on Σn

i=1 XiYi.
That is, for the empirical distribution based on the n! correlation coefficients, ρ̂ is a monotone
function of Σn

i=1 XiYi, which implies that we have a one-to-one correspondence between ρ̂ and
Σn

i=1 XiYi. Therefore, for Σn
i=1 XiYi, we may compute the n! combinations by changing the order

of Yi, i = 1,2,···, n. Thus, by utilizing Σn
i=1 XiYi rather than ρ̂, the computational burden can be

reduced.
As for a special case, suppose that (Xi,Yi), i = 1,2,···, n, are normally distributed, i.e.,

Number of combinations less than ρ̂ (1) out of ρ̂ (1),···,ρ̂ (n!)

Number of all possible combinations (i.e., n!)

Number of combinations equal to ρ̂ (1) out of ρ̂ (1),···,ρ̂ (n!)

Number of all possible combinations (i.e., n!)

Number of combinations greater than ρ̂ (1) out of ρ̂ (1),···,ρ̂ (n!)

Number of all possible combinations (i.e., n!)
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Under the null hypothesis H0 : ρ = 0, the sample correlation coefficient ρ̂ is distributed as the
following t distribution:

Note that we cannot use a t distribution in the case of testing the null hypothesis H0 : ρ = ρ0.
For example, see Lehmann (1986), Stuart and Ord (1991, 1994) and Hogg and Craig (1995).
Generally, it is natural to consider that (X,Y) is non-Gaussian and that the distribution of (X,Y)
is not known. If the underlying distribution is not Gaussian but the t distribution is applied to
the null hypothesis H0 : ρ = 0, the appropriate testing results cannot be obtained. However, the
nonparametric permutation test can be applied even in the Non-Gaussian cases, because it is
distribution-free.

2.2. On Testing the Regression Coefficient
Using exactly the same approach as the nonparametric test on the correlation coefficient,

discussed in Section 2.1, we consider a nonparametric significance test on the regression
coefficients.

The regression model is given by:

Yi= Xi β +ui, i=1,2,···, n,

where the OLS estimator of β, i.e., β̂, is represented as:

β̂= (X’X)-1 X’Y = (1)

Note as follows:

Y =        ,    X =        ,    β =        ,    β̂ =        ,

where Yi denotes the i-th element of a n × 1 vector Y and Xi indicates the i-th row vector of a n
× k matrix X.

From the structure of equation (1), when Xi in Section 2.1 is replaced by (X’X)-1Xi’, we can
find that the same discussion as in Section 2.1 holds with only one difference, i.e., Xi is a scalar
in Section 2.1 while (X’X)-1Xi’ is a k × 1 vector in this section. We have n! regression
coefficients by changing the order of Y. Let β̂

(i)
, i =1,2,···,n!, be the n! regression coefficients

and β̂
(i)
j be the j-th element of β̂

(i)
, i.e, β̂

(i)
=(β̂

(i)
1 , β̂

(i)
2, ···, β̂

(i)
K). Suppose that β̂

(1)
j represents the j-th

element of the regression coefficient vector obtained from the original data series. Under the
null hypothesis H0 : βj = 0, the empirical distribution of β̂j, which is the j-th element of the OLS

∼ t (n - 2),

n

Σ
i=1

(X’X)-1 X’iYi.

( )Y1
Y2

···
Yn

( )X1
X2

···
Xn

( )β1
β2

···
βn

( )
β̂1

β̂2
···

β̂n

√ρ̂
ρ̂
n-2

√1- 2



estimator of β, is given by:

P(β̂j < β̂j
(1)) =                                                                                            ,

P(β̂j = β̂j
(1)) =                                                                                            ,

P(β̂j > β̂j
(1)) =                                                                                                  .

For all j =1,2,···, k, we can implement the same computational procedure as above and compute
each probability. We can perform the significance test by examining where β̂j

(1) is located
among the n! regression coefficients. The null hypothesis H0 : βj = 0 is rejected by the two-
sided test if P(βj < β̂j

(1)) or P(βj > β̂j
(1)) is small enough.

Generally, as for the testing procedure of the null hypothesis H0 : β = β*, we may consider a
nonparametric permutation test between (X’X)-1 Xi’ and Yi - Xi β*, because β̂ - β is transformed
into:

β̂ - β = (X’X)-1 Xi Y - β
= (X’X)-1 X’ (Y - Xβ)

=

Note as follows. As for the conventional parametric significance test, the error terms ui, i =
1,2, ···, n, are assumed to be mutually independently and normally distributed with mean zero
and variance σ2. Under the null hypothesis H0 : βj =βj

*, the j-th element of the OLS estimator
(i.e., β̂j) is distributed as:

where ajj denotes the j-th diagonal element of (X’X)-1. β* and S2 represent β* = (β*
1, β*

2, ···, β*
k)’

and S2 = (Y - X β̂ )’ (Y - X β̂ )/(n - k), respectively. Thus, only when ui is assumed to be normal,
we can use the t distribution. However, unless ui is normal, the conventional t test gives us the
incorrect inference in the small sample. As it is well known, in a large sample 
n (β̂j - βj) is asymptotically normal when the variance of ui is finite. Thus, the case of a large

sample is different from that of a small sample. In this paper, under the non-Gaussian
assumption, we examine the powers of the nonparametric tests on the correlation coefficient
through Monte Carlo experiments. Moreover, in the regression analysis we examine how
robust the conventional t test is when the underlying population is not Gaussian.

ON SMALL SAMPLE PROPERTIES OF PERMUTATION TESTS: A SIGNIFICANCE TEST FOR REGRESSION MODELS 31

Number of combinations less than β̂j
(1) out of β̂j

(1),···,β̂j
(n!)

Number of all possible combinations (i.e., n!)

Number of combinations equal to β̂j
(1) out of β̂j

(1),···,β̂j
(n!)

Number of all possible combinations (i.e., n!)

Number of combinations greater than β̂j
(1) out of β̂j

(1),···,β̂j
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Number of all possible combinations (i.e., n!)
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n ρ α Nonparametric Permutation Test Parametric t Test

N X U L C N X U L C

.10 .1008 .0986 .1040 .1035 .1030 .0981 .1019 .1019 .0987 .1180

.0 .05 .0499 .0509 .0512 .0518 .0515 .0474 .0646 .0507 .0483 .0748

.01 .0112 .0096 .0113 .0101 .0098 .0099 .0225 .0115 .0093 .0269

6 .10 .1491 .1830 .1479 .1621 .2605 .1496 .2284 .1488 .1585 .3055

.3 .05 .0821 .1108 .0798 .0926 .1639 .0795 .1638 .0794 .0914 .2375

.01 .0189 .0323 .0191 .0205 .0475 .0203 .0692 .0188 .0225 .1389

.10 .2876 .3199 .2605 .3014 .3834 .2932 .3814 .2646 .3081 .4384

.6 .05 .1776 .2145 .1528 .1836 .2696 .1787 .2917 .1568 .1939 .3633

.01 .0460 .0755 .0386 .0501 .0983 .0481 .1579 .0389 .0564 .2405

.10 .4674 .4469 .4365 .4682 .4802 .4792 .5144 .4475 .4810 .5325

.9 .05 .3117 .3206 .2786 .3240 .3636 .3300 .4208 .2887 .3410 .4549

.01 .0894 .1269 .0745 .1009 .1572 .1060 .2501 .0843 .1240 .3096

.10 .1018 .0994 .1040 .1014 .1007 .1020 .0986 .1057 .1025 .1183

.0 .05 .0523 .0489 .0523 .0549 .0494 .0515 .0609 .0545 .0549 .0791

.01 .0103 .0111 .0110 .0100 .0093 .0100 .0225 .0126 .0113 .0345

8 .10 .1869 .2025 .1748 .1971 .3120 .1866 .2514 .1779 .1978 .3471

.3 .05 .1066 .1236 .0940 .1096 .2107 .1083 .1821 .0998 .1147 .2780

.01 .0257 .0385 .0211 .0251 .0749 .0248 .0891 .0250 .0254 .1814

.10 .3932 .3997 .3605 .4002 .4527 .3996 .4592 .3657 .4049 .4963

.6 .05 .2602 .2833 .2212 .2611 .3455 .2693 .3695 .2359 .2742 .4205

.01 .0815 .1148 .0627 .0850 .1615 .0865 .2149 .0714 .0959 .2920

.10 .6197 .5445 .6256 .6209 .5647 .6289 .6023 .6309 .6313 .5979

.9 .05 .4653 .4163 .4511 .4850 .4684 .4806 .5125 .4664 .4980 .5315

.01 .1966 .2034 .1562 .2119 .2646 .2199 .3422 .1795 .2395 .4096

.10 .1046 .0987 .0999 .0984 .0992 .1033 .0943 .1006 .0950 .1058

.0 .05 .0524 .0486 .0520 .0489 .0477 .0510 .0570 .0526 .0479 .0733

.01 .0106 .0083 .0104 .0102 .0090 .0097 .0220 .0114 .0098 .0348

10 .10 .2162 .2243 .2046 .2228 .3468 .2151 .2765 .2065 .2231 .3764

.3 .05 .1277 .1429 .1179 .1348 .2513 .1284 .2046 .1218 .1348 .3133

.01 .0338 .0484 .0285 .0351 .1022 .0355 .1037 .0306 .0367 .2149

.10 .4766 .4501 .4640 .4920 .5089 .4775 .5005 .4692 .4954 .5378

.6 .05 .3387 .3335 .3118 .3579 .4081 .3416 .4149 .3198 .3599 .4670

.01 .1325 .1522 .1020 .1424 .2281 .1375 .2604 .1106 .1504 .3610

.10 .7336 .6128 .7539 .7276 .6075 .7358 .6663 .7558 .7348 .6343

.9 .05 .6008 .4958 .6038 .6032 .5258 .6116 .5806 .6106 .6129 .5734

.01 .3116 .2812 .2719 .3286 .3318 .3295 .4128 .2925 .3482 .4553

TABLE 1. Empirical Sizes and Sample Powers (H0 : ρ = 0 and H1 : ρ ≠ 0)
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3. Monte Carlo Experiments

3.1 On Testing the Correlation Coefficient
Each value in Table 1 represents the rejection rates of the null hypothesis H0 :ρ = 0 against

the alternative hypothesis H1 :ρ ≠ 0 (i.e., the two-sided test is chosen) by the significance level
α = 0.01,0.05,0.10, where the experiment is repeated 104 times. That is, in Table 1 the number
which the correlation coefficient obtained from the original observed data is less than α/2 or
greater than 1 - α/2 is divided by 104. In other words, we compute the probabilities P(ρ̂ < ρ̂(1))
and P(ρ̂ > ρ̂(1)) and repeat the experiment 104 times. The probabilities correspond to the sample
powers, where ρ̂(1) denotes the correlation coefficient computed from the original data. The
ratio of P(ρ̂ < ρ̂(1)) ≤ α/2 or P(ρ̂ > ρ̂(1)) ≤ α/2 is shown in Table 1. α = 0.10,0.05,0.01 is
examined. N, X, U, L and C indicate the distributions of (X, Y), which denote the standard
normal distribution N(0,1), the chi-squared distribution χ2(1)-1, the uniform distribution U(-
1,1), the logistic distribution e-x/(1+e-1)2, and the Cauchy distribution (π(1+x2))-1, respectively.
The standard error of the empirical power, denoted by p̂, is obtained by /100, which
is displayed in Figure 1. For example, when p̂ = 0.5 the standard error takes the maximum
value, which is 0.005.

In this paper, the random draws of (Xi, Yi) are obtained as follows. Let ui and vi be the
random variables which are mutually independently distributed. Each of ui and vi is generated
as the standard normal random variable N(0,1), the chi-squared random variable χ2(1)-1, the
uniform random variable U(-1,1), the logistic distribution e-x/ (1+e-1)2, or the Cauchy
distribution (π(1+x2))-1. Denote the correlation coefficient between X and Y by ρ. Given the
random draws of (ui, vi) and ρ, (Xi, Yi) is transformed into:

.

In the case of the Cauchy distribution the correlation coefficient does not exist because the
Cauchy random variable has neither mean nor variance. Even in the case of the Cauchy
distribution, however, we can obtain the random draws of (Xi, Yi) given (ui, vi) and ρ, utilizing
the above formula.

√ ˆ ˆp (1 - p)

0

0.001

0.002

0.003

0.004

0.005

√
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p̂

ˆ ˆp (1 - p)

(The sample power shown in Tables 1 and 2)

FIGURE 1.  Standard Error of p̂

Xi

Yi

1
0( () ui

vi
( ))= √1−

ρ
ρ2
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Using the artificially generated data given the true correlation coefficient ρ = 0.0, 0.3, 0.6,
0.9, we test the null hypothesis H0 : ρ = 0 against the alternative hypothesis H1 : ρ ≠ 0. Taking
the significance level α = 0.10, 0.05, 0.01 and the two-sided test, the rejection rates out of 104

experiments are shown in Table 1. In addition, taking the sample size n = 6,8,10, both the
nonparametric permutation test and the parametric t test are reported in the table.

As it is easily expected, for the normal sample (i.e., N), the t test performs better than the
nonparametric test, but for the other samples (i.e., X, U, L and C), the nonparametric test is
superior to the t test.

Each value in the case of ρ = 0 represents the empirical size, which should be theoretically
equal to the significance level α. The results are as follows. In the case of N and L, each value
is quite close to α for the t test. However, for all n = 6,8,10, the t tests of X and C are over-
rejected especially in the case of α = 0.05, 0.01. Taking an example of n = 6, X is 0.0646 and C
is 0.0748 when α = 0.05, while X is 0.0225 and C is 0.0269 when α = 0.01. The t test of U is
also slightly over-rejected in the case of α = 0.05, 0.01. Thus, we often have the case where the
t test over-rejects the null hypothesis H0 : ρ = 0 depending on the underlying distribution.
However, the nonparametric test rejects the null hypothesis with probability α for all the
underlying distributions. Accordingly, through a comparison of the empirical size, we can
conclude that the nonparametric test is more robust than the t test.

Next, we examine the cases of ρ = 0.3,0.6,0.9 to compare the sample powers of the two tests
(note that each value of ρ = 0.3,0.6,0.9 in Table 1 corresponds to the sample power). As for X
and C, it is not meaningful to compare the sample powers because the empirical sizes are
already over-estimated. Regarding the sample powers of N, U and L, the nonparametric test is
close to the t test. Especially, for N, it is expected that the t test is better than the nonparametric
test, but we can see that the nonparametric test is as good as the t test in the sense of the sample
power.

Thus, the permutation-based nonparametric test introduced in this paper is useful because it
gives us the correct empirical size and is powerful even though it does not need to assume the
distribution function.

3.2 On Testing the Regression Coefficient
In Table 2, the testing procedure taken in Section 3.1 is applied to the regression analysis.

Let Xi = (X1,i, X2,i, ···, Xk,i), where X1,i = 1 and Xj,i ~ N(0,1) for j =2,3 are set. X2,i and X3,i are
mutually independently generated. The error term ui is assumed to have the standard normal
distribution N(0,1), the chi-squared distribution χ2(1) -1, the uniform distribution U(-1,1), the
logistic distribution e-x/ (1+e-1)2, or the Cauchy distribution (π(1+x2))-1. Under the null
hypothesis H0 : β = 0, we obtain yi = ui. Therefore, we consider the correlation between (X’X)-1

Xi and yi.
The sample size is n = 6,8,10 and the number of the regression coefficient to be estimated is

k = 2,3. The nonparametric test is compared with the t test in the criterion of the empirical size.
Each value in Table 2 represents the rejection rate out of 104 simulation runs. Therefore,
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theoretically each value in the table should be equivalent to the probability which rejects the
null hypothesis H0 : βj = 0 against the alternative hypothesis H1 : βj ≠ 0 for j =1,2,3, which
probability corresponds to the significance level α.

As in Section 3.1, in the case of N, the t test should be better than the nonparametric test, i.e.,
the t test should be closer to the significance level α than the nonparametric test, because the
OLS estimator of βj follows the t distribution with n - k degrees of freedom when the error
terms ui, i =1,2,···, n, are mutually independently and normally distributed with mean zero.

The superscripts * and ** in the table imply that the empirical size is statistically different
from α by the two-sided test of the significance levels 5% and 1%, respectively. That is, each
value without the superscript * and ** gives us the correct size. The superscripts * or ** are put
as follows. By the central limit theorem, we can approximate as (p̂ - α)/ ~ N(0,1)
when G is large enough, where p is a parameter and p̂ denotes its estimate. G represents the
number of simulation runs. G =104 is taken in this paper. Under the null hypothesis H0 : p = α
against the alternative hypothesis H1 : p ≠ α, the test statistic ( p̂ - α)/ is
asymptotically normally distributed. Thus, we can test whether p is different from α.

The results are as follows. For the t tests of X and U, the constant term (i.e., β1) gives us the
over-estimated empirical sizes in both cases of k = 2,3. On the contrary, for the t tests of C, the
constant term (i.e., β1) yields the under-estimated empirical sizes. However, for the
nonparametric tests, almost all the values in Table 2 are very close to the significance level α.
Therefore, we can conclude that the nonparametric test is superior to the t test in the sense of
the corrected empirical size. 

Power Comparison: Next, we compare the sample powers in the case of k = 3. Figures 2-4
display differences of the sample powers between the two tests for β3 = 0.1,0.2,···, 0.9, where
β1 = β2 =0 and α = 0.1 are taken. Since the sample powers of the permutation test are
subtracted from those of the t test, the values above the horizontal line imply that the
permutation test is more powerful than the t test. Take the case n = 6 as an example, i.e., Figure
2. For all β3 of L and C, the differences are positive and accordingly we can conclude that for L
and C the permutation test is superior to the t test. Furthermore, the differences are positive for
β3 =0.1 - 0.5 of N and X but negative for β3 greater than 0.6. Thus, we can observe through
Figures 2-4 that except for a few cases the permutation test is more powerful than the t test for
all n = 6,8,10 at least when β3 is small. From the three figures, in addition, each difference
becomes small as n is large. Therefore, the permutation test is close to the t test as the sample
size is large.

CPU Time: As mentioned above, in the case where we perform the significance test of the
regression coefficient, we need to compute the n! regression coefficients (for example, n! is
equal to about 3.6 million when n = 10). In Table 3, CPU time in one simulation run is shown
for n = 11,12,13,14 and k = 2,3,4, where a Pentium III 1GHz CPU personal computer and a
WATCOM Fortran 77/32 Compiler (Version 11.0) are utilized. The order of computation is

√p(1-   )/Gα

√p(1-p)/G
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k = 2 k = 3
n α Nonparametric t Test Nonparametric t Test

Test Test
β β β β β β β β β β1 2 1 2 1 2 3 1 2 3

.10 .1008 .1008 .1055 .0981 .1076 .1075 .1046 .1041 .1017 .1033
6 .05 .0500 .0499 .0534 .0474 .0575 .0546 .0543 .0520 .0492 .0512

.01 .0113 .0112 .0104 .0099 .0105 .0110 .0111 .0105 .0098 .0095
N .10 .0964 .0963 .0989 .0967 .1024 .1016 .0991 .0989 .1000 .0971

8 .05 .0443**

**

**

**

**

** **

** **

**

** **

** **

**

** **

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**
.0443 .0454 .0454 .0516 .0503 .0505 .0473 .0489 .0503

.01 .0087 .0087 .0093 .0080 .0106 .0079 .0101 .0098 .0088 .0112

.10 .0988 .0985 .0983 .0988 .0989 .0976 .1023 .0997 .0979 .1029
10 .05 .0503 .0502 .0487 .0493 .0489 .0488 .0508 .0490 .0510 .0524

.01 .0115 .0114 .0103 .0112 .0112 .0102 .0105 .0122 .0098 .0122

.10 .1013 .1013 .2132 .0991 .1061 .1042 .1073 .1964 .1011 .0999
6 .05 .0517 .0516 .1569 .0479 .0546 .0533 .0546 .1318 .0508 .0495

.01 .0109 .0109 .0806 .0099 .0125 .0121 .0110 .0506 .0102 .0108
X .10 .1029 .1028 .1967 .1034 .0960 .1038 .1013 .1867 .1036 .0996

8 .05 .0521 .0521 .1468 .0520 .0469 .0530 .0504 .1282 .0533 .0507
.01 .0108 .0108 .0794 .0116 .0092 .0101 .0101 .0586 .0116 .0111
.10 .1029 .1028 .1787 .1027 .1028 .1059 .0998 .1753 .1048 .1031

10 .05 .0493 .0491 .1321 .0492 .0502 .0530 .0490 .1215 .0560 .0482
.01 .0095 .0094 .0729 .0092 .0104 .0099 .0102 .0611 .0097 .0109
.10 .1082 .1082 .1125 .1042 .1003 .0992 .1042 .1038 .0996 .1039

6 .05 .0565 .0564 .0621 .0541 .0515 .0516 .0551 .0554 .0521 .0527
.01 .0112 .0112 .0155 .0106 .0118 .0113 .0116 .0121 .0111 .0087

U .10 .0981 .0981 .0962 .0997 .0947 .0988 .0968 .1067 .1026 .1008
8 .05 .0490 .0490 .0543 .0480 .0477 .0488 .0469 .0550 .0523 .0490

.01 .0108 .0108 .0145 .0100 .0088 .0088 .0093 .0129 .0102 .0105

.10 .0953 .0953 .0980 .0958 .0983 .0980 .1027 .0988 .0994 .1015
10 .05 .0493 .0493 .0525 .0487 .0474 .0493 .0499 .0528 .0496 .0495

.01 .0102 .0102 .0131 .0094 .0082 .0098 .0098 .0125 .0091 .0099

.10 .1080 .1080 .0997 .1054 .1012 .1004 .1006 .0985 .0989 .1010
6 .05 .0562 .0562 .0491 .0524 .0503 .0507 .0535 .0476 .0516 .0517

.01 .0118 .0118 .0080 .0095 .0125 .0119 .0124 .0081 .0111 .0094
L .10 .0984 .0984 .0906 .1005 .0964 .1024 .0979 .1018 .1052 .1007

8 .05 .0505 .0505 .0448 .0508 .0487 .0504 .0475 .0476 .0515 .0496
.01 .0111 .0111 .0084 .0106 .0108 .0094 .0091 .0096 .0101 .0111
.10 .0933 .0933 .0946 .0934 .0989 .1007 .1018 .0991 .0993 .1011

10 .05 .0492 .0492 .0463 .0474 .0495 .0506 .0517 .0467 .0510 .0509
.01 .0110 .0110 .0082 .0107 .0093 .0095 .0106 .0088 .0095 .0101
.10 .1114 .1114 .0709 .1035 .0967 .1004 .1021 .0847 .0984 .1028

6 .05 .0566 .0566 .0303 .0505 .0510 .0520 .0505 .0375 .0501 .0517
.01 .0116 .0116 .0042 .0104 .0122 .0116 .0119 .0066 .0094 .0098

C .10 .0983 .0983 .0642 .1013 .0998 .1049 .0975 .0802 .1087 .1029
8 .05 .0486 .0486 .0259 .0499 .0500 .0514 .0475 .0361 .0530 .0507

.01 .0103 .0103 .0054 .0116 .0110 .0097 .0092 .0065 .0106 .0102

.10 .0958 .0957 .0693 .0957 .0976 .1016 .1040 .0803 .1044 .1032
10 .05 .0461 .0461 .0261 .0484 .0488 .0503 .0513 .0327 .0512 .0516

.01 .0097 .0097 .0023 .0101 .0097 .0097 .0108 .0051 .0095 .0097

** **

** **

** **

**

**

**

** **

** **

****

**

**

**

**

**

** **

**

**

**

**

**

**

**

**

**

**

** **

**

**

**

**

**

** **

**

**

TABLE 2. Significance Tests on Regression Coeffcients: Empirical Sizes



ON SMALL SAMPLE PROPERTIES OF PERMUTATION TESTS: A SIGNIFICANCE TEST FOR REGRESSION MODELS 37

β 3

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.2 0.4 0.8

N
X
U
L
C

0.6

FIGURE 2. Difference of the Sample Powers between the Two Tests
(n = 6, k = 3, β1 = β2 = 0 and α = 0.1)
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FIGURE 3. Difference of the Sample Powers between the Two Tests
(n = 8, k = 3, β1 = β2 = 0 and α = 0.1)
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about n! × k. The case of sample size n is n times more computer-intensive than that of sample
size n - 1. For example, it might be expected that the case of n = 15 and k =4 takes about one
week (i.e., 15 × 685.49 minutes) to obtain a result. This is not feasible in practice. Thus, the
permutation test discussed in this paper is very computer-intensive.

Therefore, we need to consider less computationally intensive procedure. In order to reduce
the computational burden when n! is large, it might be practical to choose some of the n!
combinations and perform the same testing procedure discussed in this paper. That is, taking N
combinations out of the n! combinations randomly, we compute the probabilities P(β̂j < β̂j

(1))
and P(β̂j > β̂j

(1)). If either of them is smaller than α = 0.1, the null hypothesis H0 : βj = 0 is
rejected. We examine whether empirical sizes depend on N. The results are in Table 4, where k
= 2 and N =104, 105, 106, 10! are taken. The case of N = 10! corresponds to the nonparametric
test of β2 in the case of α =0.1 and k = 2 of Table 2, where the empirical sizes are computed
using all the possible combinations. All the cases of N =104, 105, 106 are very close to those of
N =10!. N =104 is sufficiently large in this case, but more than N =104 should be taken for
safety. Thus, we can choose some out of the n! combinations and compute the corresponding
probabilities. A less computationally intensive procedure might be possible when n is large,
i.e., when n is larger than 14 in my case.

3
0.2 0.4 0.6 0.8

N
X
U
L
C

-0.03

-0.02

-0.01

0.00 β

FIGURE 4. Difference of the Sample Powers between the Two Tests
(n = 10, k = 3, β1 = β2 = 0 and α = 0.1)

TABLE 3.  CPU Time (minutes)

n / k 2 3 4
11 0.18 0.26 0.33
12 1.94 2.67 3.42
13 26.73 37.21 48.24
14 377.32 527.90 685.49
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4. Summary

Only when the error term is normally distributed, we can utilize the t test for testing the
regression coefficient. Since the distribution of the error term is not known, we need to check
whether the normality assumption is plausible before testing the hypothesis. As a result of
testing, in the case where the normality assumption is rejected, we cannot test the hypothesis
on the regression coefficient using the t test. In order to improve this problem, in this paper we
have shown a significance test on the regression coefficient, which can be applied to any
distribution.

In Section 3.1, we tested whether the correlation coefficient between two samples is zero and
examined the sample powers of the two tests. For each of the cases where the underlying
samples are normal, chi-squared, uniform, logistic and Cauchy, 104 simulation runs are
performed and the nonparametric permutation test is compared with the parametric t test with
respect to the empirical sizes and the sample powers. As it is easily expected, the t test is
sometimes a biased test under the non-Gaussian assumption. That is, we have the cases where
the empirical sizes are over-estimated. However, the nonparametric test gives us the correct
empirical sizes without depending on the underlying distribution. Specifically, even when the
sample is normal, the nonparametric test is very close to the t test (theoretically, the t test
should be better than any other test when the sample is normal).

In Section 3.2, we have performed Monte Carlo experiments on the significance test of the
regression coefficients. It might be concluded that the nonparametric test is closer to the true
size than the t test for almost all the cases. Moreover, the sample powers are compared for both
tests. As a result, we find that the permutation test is more powerful than the t test when the
null hypothesis is close to the alternative hypothesis, i.e., when β3 is small in Figures 2 - 4.
Thus, we find through the Monte Carlo experiments that the nonparametric test discussed in
this paper can be applied to any distribution of the underlying sample. However, the problem is
that the nonparametric test is too computer-intensive. We have shown that when n! is too large
it is practical to choose some of the n! combinations and perform the testing procedure. Taking
an example of n =10 and k = 2, we have obtained the result that we can perform the testing
procedure taking the 104 combinations out of all the possible combinations (10! in this case)
randomly. Thus, it has been shown in this paper that we can reduce the computational burden.

TABLE 4.  Empirical Sizes: n = 10, k = 2, β1 = β2 = 0 and α = 0.1

N 104 105 106 10!
N .0985 .1020 .0994 .0985
X .0962 .1010 .1031 .1028
U .0936 .0971 .0980 .0953
L .0937 .0982 .0967 .0933
C .0968 .1026 .0979 .0957
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