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ON SMALL SAMPLE PROPERTIES OF PERMUTATION TESTS:
A SIGNIFICANCE TEST FOR REGRESSION MODEL S*

By HISASHI TANIZAKI

In this paper, we consider a nonparametric permutation test on the correlation coefficient, which is
applied to a significance test on regression coefficients. Because the permutation test is very computer-
intensive, there are few studies on small-sample properties, although we have numerous studies on
asymptotic properties with regard to various aspects. In this paper, we aim to compare the permutation
test with the t test through Monte Carlo experiments, where an independence test between two samples
and a significance test for regression models are taken. For both the independence and significance
tests, we obtain the results through Monte Carlo experiments that the nonparametric test performs
better than the t test when the underlying sample is not Gaussian and that the nonparametric test is as
good asthet test even under a Gaussian population.

1. Introduction

In the regression models, we assume that the disturbance terms are mutually independently
and identically distributed. In addition, in the case where we perform the significance test on
the regression coefficients, we assume that the error terms are normally distributed. Under
these assumptions, it is known that the ordinary least squares (OLS) estimator of the regression
coefficients follows the t distribution with n-k degrees of freedom, where n and k denote the
sample size and the number of regression coefficients.

As the sample size n increases, the t distribution approaches the standard normal distribution
N(0,1). From the central limit theorem, it is known that the OLS estimator of the regression
coefficient is normally distributed for a sufficiently large sample size if the variance of the
OLS estimator is finite. However, in the case where the error term is non-Gaussian and the
sample size is small, the OLS estimator does not have the t distribution and therefore we
cannot apply thet test. To improve these problems, in this paper we consider a significance test
of the regression coefficient that includes the case where the error term is non-Gaussian and the
sample sizeis small. A nonparametric test (or a distribution-free test) is discussed.

Generally we can regard the OLS estimator of the regression coefficient as the correlation
between two samples. The nonparametric tests based on Spearman’s rank correlation
coefficient and Kendall’s rank correlation coefficient are very famous. See, for example,
Hollander and Wolfe (1973), Randles and Wolfe (1979), Conover (1980), Sprent (1989),
Gibbons and Chakraborti (1992) and Hogg and Craig (1995) for the rank correlation tests. In
this paper, the permutation test proposed by Fisher (1966) is utilized, and we compute the
correlation coefficient for each of al the possible combinations. All the possible correlation

* This research was partially supported by Japan Society for the Promotion of Science, Grants-in-Aid for Scientific
Research (C) #18530158, 2006—2009.
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coefficients are compared with the correlation coefficient based on the original data. This
permutation test can be directly applied to the regression problem.

The outline of this paper is as follows. In Section 2, we introduce a honparametric test based
on the permutation test, where we consider testing whether X is correlated with Y for the
sample size n. Moreover, we show that we can directly apply the correlation test to the
regression problem without any modification. In Section 3, we compare the powers of the
nonparametric tests and the conventional t test when the underlying data are non-Gaussian. In
the case where k=2,3 is taken for the number of regression coefficients, we examine whether
the empirical sizes are correctly estimated when the significance level is a=0.10, 0.05, 0.01.

2. The Nonparametric Test on Regression Coefficients

2.1 0n Testing the Correlation Coefficient

Let (X1, Y1), (X5, Yo),+, (X, Y,y) be a random sample, where the sample size is n. Consider
testing if there is a correlation between X and Y, i.e., if the correlation coefficient p is zero or
not. The correlation coefficient p is defined as:

_ Cov(X,Y)
VVXV(Y) |

where Cov (X,Y), V (X) and V () represent the covariance between X and Y, the variance of X
and the variance of Y, respectively. Then, the sample correlation coefficient piswritten as:

Sxv
S
where Syy, S and S, denote the sample covariance between X and Y, the sample variance of X
and the sample variance of Y, which are given by:

'6:

1 _ _ 1 n _ 1 n _
Sy=— T (6-X)(Yi-V), S=— 2 (X-X)?% S=— X(i-Y)3
n i=1 n i=1 n i=1
X and Y represent the sample means of X and Y.
If X isindependent of Y, we have p = 0 and the joint density of X and Y is represented as a

product of the marginal densitiesof Xand 'Y, i.e.,

fiy (6Y) = £ fy (¥),

where f,, (x,y), f(X) and f, (y) denote the joint density of X and Y, the marginal density of X and
the marginal density of Y. The equation above implies that for al i and j we consider randomly
taking n pairs of X; and ;. Accordingly, for fixed X;, the possible combinations are given by
(X1, Y)), ] =1,2,--, n, where we have n combinations. Similarly, for fixed X,, the possible
combinations are (X, Y)), j =2,3,+, n, i.e., n-1 combinations.
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Moreover, we have n-2 combinations for X3, n-3 combinations for X, and so on. Therefore,
the total number of possible combinations between X and Y are given by n!. For each
combination, we can compute the correlation coefficient. Thus, n! correlation coefficients are
obtained. The n! correlation coefficients are compared with the correlation coefficient obtained
from the origina pairs of data. If the correlation coefficient obtained from the original datais
in the tail of the empirical distribution constructed from the n! correlation coefficients, the
hypothesis that X is correlated with Y is rejected. The testing procedure above is distribution-
free or nonparametric, and can be applied in amost all cases. The nonparametric test discussed
above is known as a permutation test, which has developed by Fisher (1966). For example, see
Stuart and Ord (1991).

The order of X;, i =1,2,---, n, is fixed and we permute Y;, j =1,2,-, n, randomly. Based on the
n! correlation coefficients, we can test if X is correlated with Y. Let the n! correlation
coefficients be p®, i =1,2,--, n!. Suppose that p@ is the correlation coefficient obtained from
the original data. The estimator of the correlation coefficient p, denoted by p, is distributed as:

Number of combinations less than p® out of p®,-.- p ™)

P(p <pW)= : T
Number of all possible combinations (i.e., n!)
L Number of combinations equal to @ out of p@,--,p ™)
P(p =pW)= : P
Number of all possible combinations (i.e., n!)
o Number of combinations greater than p@ out of p@,---,p ™)
P(p >pW) = .

Number of all possible combinations (i.e., n!)

Thus, the above three probabilities can be computed. The null hypothesis Hy: p = 0 is rejected
by the two-sided test if P(p < p@) or P(p> p®) is small enough.
Note as follows. Sy is rewritten as:

1 n _
So=— 2 X Y- XY.

n i=1
The sample means X and Y take the same values without depending on the order of X and Y.
Similarly, S; and S, are independent of the order of X and Y. Therefore, p depends on =i-; XY;.
That is, for the empirical distribution based on the n! correlation coefficients, p is a monotone
function of ={_; X;Y;, which implies that we have a one-to-one correspondence between p and
S, XY Therefore, for 2, X;Y;, we may compute the n! combinations by changing the order
of Y, i =1,2,--, n. Thus, by utilizing ==, X;Y; rather than p, the computational burden can be
reduced.

Asfor aspecia case, suppose that (X,Y;), i =1,2,-, n, are normally distributed, i.e.,
Xi N (( Hx) ( 0%( POxOy ))
’ 2

Yi Hy/ \ poxoy Oy '
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Under the null hypothesis Hy: p = 0, the sample correlation coefficient p is distributed as the
following t distribution:

Note that we cannot use at distribution in the case of testing the null hypothesis Hy: p = po.
For example, see Lehmann (1986), Stuart and Ord (1991, 1994) and Hogg and Craig (1995).
Generally, it is natural to consider that (X,Y) is non-Gaussian and that the distribution of (X,Y)
is not known. If the underlying distribution is not Gaussian but the t distribution is applied to
the null hypothesis Hy: p = 0, the appropriate testing results cannot be obtained. However, the
nonparametric permutation test can be applied even in the Non-Gaussian cases, because it is
distribution-free.

2.2.0n Testing the Regression Coefficient
Using exactly the same approach as the nonparametric test on the correlation coefficient,
discussed in Section 2.1, we consider a nonparametric significance test on the regression
coefficients.
The regression model is given by:
Yi: Xi [)’ +Ui, i:l,2,---, n,
where the OL S estimator of g, i.e., B isrepresented as:
N n
B= (XX)IXY=Z (XX)1X;Y. D
i=1

Note as follows:

Y1 X1 B1 /:31
Y= Y:Z, X = >§2, ﬁ:bjz , B:ﬁz ,
Y.n Xn Bn /}1

whereY; denotes the i-th element of an x 1 vector Y and X; indicates the i-th row vector of an
x K matrix X.

From the structure of equation (1), when X; in Section 2.1 is replaced by (X' X)1X;’, we can
find that the same discussion as in Section 2.1 holds with only one difference, i.e., X; isascalar
in Section 2.1 while (X' X)1X;" is a k x 1 vector in this section. We have n! regression
coefficients by changing the order of Y. Let_/S’('), i=1,2,--,n!, be the n! regression coefficients
and A be the j-th element of B”, i.e, B"=(37, B2, - B). Suppose that # represents the j-th
element of the regression coefficient vector obtained from the original data series. Under the
null hypothesis Hy: ;= 0, the empirical distribution of [ﬁ which is the j-th element of the OLS
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estimator of f3, isgiven by:

Number of combinations less than E(l) out of ﬁ(l),...,/%(n!)

P(B < B®) = . e —
Number of all possible combinations (i.e., n!)
. Number of combinations equal to O out of B, -, B
P(ﬁ:ﬁ(l)): .eq ﬁ . .ﬁ A
Number of all possible combinations (i.e., n!)
.. Number of combinations greater than 3@ out of D, M
PR > {W) = 9 A AN

Number of all possible combinations (i.e., n!)

For all j =1,2,--, k, we can implement the same computational procedure as above and compute
each probability. We can perform the significance test by examining where &(1) is located
among the n! regression coefficients. The null hypothesis Hy: =0 is rejected by the two-
sided test if P(5; < ™) or P(f;, > M) is small enough.

Generally, as for the testing procedure of the null hypothesis Hy: 8= 8", we may consider a
nonparametric permutation test between (X'X)-1 X! and Y;- X; 8, because 3- j3 is transformed
into:

B-B=(XX1X%Y-p
=X X)'1 X (Y- Xp)

Mo

(X X)X} (Yi - XiP).

i=1

Note as follows. As for the conventional parametric significance test, the error terms u;, i =
1,2, -+, n, are assumed to be mutually independently and normally distributed with mean zero
and variance o?. Under the null hypothesis Hy: =f3", the j-th element of the OLS estimator
(i.e., B) isdistributed as:

BB

ajj

where a; denotes the j-th diagonal element of (X' X). " and & represent " = (8%, 72, -, 1)’
and = (Y- XB) (Y- XB)I(n-K), respectively. Thus, only when u; is assumed to be normal,
we can use the t distribution. However, unless u; is normal, the conventional t test gives us the
incorrect inference in the small sample. As it is well known, in a large sample
vh (ﬁ - ;) is asymptotically normal when the variance of u; is finite. Thus, the case of alarge
sample is different from that of a small sample. In this paper, under the non-Gaussian
assumption, we examine the powers of the nonparametric tests on the correlation coefficient
through Monte Carlo experiments. Moreover, in the regression analysis we examine how
robust the conventional t test is when the underlying population is not Gaussian.

~t(n-K),
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TABLE 1. Empirical Sizes and Sample Powers(Hy: p=0andH;: p = 0)

n|lpl| a Nonparametric Permutation Test Parametric t Test

N X U L C N X Y] L C

0 || .1008 .0986 .1040 .1035 .1030 | .0981 .1019 .1019 .0987 .1180
0| .05 .0499 .0509 .0512 .0518 .0515 | .0474 .0646 .0507 .0483 .0748
.01 || .0112 .0096 .0113 .0101 .0098 | .0099 .0225 .0115 .0093 .0269

6 J0 || 1491 1830 .1479 1621 2605 | .1496 .2284 1488 1585 .3055
3 (.05 .0821 .1108 .0798 .0926 .1639 | .0795 .1638 .0794 .0914 .2375
.01 || .0189 .0323 .0191 .0205 .0475 | .0203 .0692 .0188 .0225 .1389

A0 || .2876 .3199 2605 .3014 .3834 | .2932 .3814 .2646 .3081 .4384
.6 |.05| .1776 .2145 1528 .1836 .2696 | .1787 .2917 .1568 .1939 .3633
.01 || .0460 .0755 .0386 .0501 .0983 | .0481 .1579 .0389 .0564 .2405

10 || 4674 4469 4365 4682 4802 | 4792 5144 4475 4810 5325
9 |.05]| .3117 .3206 .2786 .3240 .3636 | .3300 .4208 .2887 .3410 .4549
.01 || .0894 .1269 .0745 .1009 .1572 | .1060 .2501 .0843 .1240 .3096

10 || 1018 .0994 1040 .1014 .1007 | .1020 .0986 .1057 .1025 .1183
.0 | .05| .0523 .0489 .0523 .0549 .0494 | .0515 .0609 .0545 .0549 .0791
.01 || .0103 .0111 .0110 .0100 .0093 | .0100 .0225 .0126 .0113 .0345

8 J0 || 1869 .2025 1748 1971 3120 | .1866 .2514 1779 1978 3471
3 (.05 .1066 .1236 .0940 .1096 .2107 | .1083 .1821 .0998 .1147 .2780
.01 || .0257 .0385 .0211 .0251 .0749 | .0248 .0891 .0250 .0254 .1814

A0 || 3932 3997 .3605 4002 4527 | .3996 4592 .3657 4049 .4963
.6 | .05 .2602 .2833 .2212 .2611 .3455 | .2693 3695 .2359 2742 .4205
.01 || .0815 .1148 .0627 .0850 .1615 | .0865 .2149 .0714 .0959 .2920

J0 || .6197 5445 6256 .6209 5647 | .6289 .6023 .6309 .6313 .5979
9| .05 | 4653 4163 4511 4850 .4684 | 4806 5125 .4664 4980 .5315
.01 || 1966 .2034 .1562 .2119 .2646 | .2199 .3422 1795 .2395 .4096

J0 || L1046 .0987 .0999 .0984 .0992 | .1033 .0943 .1006 .0950 .1058
.0 | .05 .0524 .0486 .0520 .0489 .0477 | .0510 .0570 .0526 .0479 .0733
.01 || .0106 .0083 .0104 .0102 .0090 | .0097 .0220 .0114 .0098 .0348

10 A0 || 2162 2243 2046 2228 3468 | .2151 2765 .2065 .2231 .3764
3| .05 | 1277 1429 1179 1348 2513 | 1284 2046 .1218 .1348 .3133
.01 || .0338 .0484 .0285 .0351 .1022 | .0355 .1037 .0306 .0367 .2149

J0 || 4766 4501 4640 4920 5089 | 4775 5005 .4692 4954 5378
6| .05 .3387 .3335 .3118 .3579 4081 | .3416 4149 3198 .3599 .4670
01 || .1325 1522 1020 .1424 2281 | .1375 .2604 .1106 .1504 .3610

A0 || 7336 .6128 7539 7276 .6075 | .7358 .6663 .7558 .7348 .6343
9| .05| .6008 .4958 .6038 .6032 .5258 | .6116 .5806 .6106 .6129 5734
.01 || 3116 .2812 .2719 .3286 .3318 | .3295 4128 2925 .3482 .4553
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p (The sample power shown in Tables 1 and 2)
FIGURE 1. Standard Error of p

T 1

3. Monte Carlo Experiments

3.1 0n Testing the Correlation Coefficient

Each value in Table 1 represents the rejection rates of the null hypothesis Hy:p = 0 against
the alternative hypothesis H, :p = 0 (i.e., the two-sided test is chosen) by the significance level
a =0.01,0.05,0.10, where the experiment is repeated 10* times. That is, in Table 1 the number
which the correlation coefficient obtained from the original observed data is less than a/2 or
greater than 1 - a/2 is divided by 10%. In other words, we compute the probabilities P(p < gb)
and P(p > pM) and repeat the experiment 10* times. The probabilities correspond to the sample
powers, where 9% denotes the correlation coefficient computed from the original data. The
ratio of P(p < pW) < /2 or P(p > pW) = /2 is shown in Table 1. o = 0.10,0.05,0.01 is
examined. N, X, U, L and C indicate the distributions of (X, Y), which denote the standard
normal distribution N(0,1), the chi-squared distribution x2(1)-1, the uniform distribution U(-
1,1), the logistic distribution e*/(1+e1)2, and the Cauchy distribution ((1+x2))1, respectively.
The standard error of the empirical power, denoted by p, is obtained by /p (1 -p) /100, which
is displayed in Figure 1. For example, when p= 0.5 the standard error takes the maximum
value, which is 0.005.

In this paper, the random draws of (X;, Y;) are obtained as follows. Let y; and v; be the
random variables which are mutually independently distributed. Each of u; and v; is generated
asthe standard normal random variable N(0,1), the chi-squared random variable x%(1)-1, the
uniform random variable U(-1,1), the logistic distribution e*/ (1+e1)2, or the Cauchy
distribution (7(1+x2))-1. Denote the correlation coefficient between X and Y by p. Given the
random draws of (u;, v;) and p, (X;, Y;) istransformed into:

()=o)

In the case of the Cauchy distribution the correlation coefficient does not exist because the
Cauchy random variable has neither mean nor variance. Even in the case of the Cauchy
distribution, however, we can obtain the random draws of (X;, Y;) given (u;, v;) and p, utilizing
the above formula.
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Using the artificially generated data given the true correlation coefficient p = 0.0, 0.3, 0.6,
0.9, we test the null hypothesis Hy: p = 0 against the alternative hypothesis H; : p = 0. Taking
the significance level a = 0.10, 0.05, 0.01 and the two-sided test, the rejection rates out of 10*
experiments are shown in Table 1. In addition, taking the sample size n = 6,8,10, both the
nonparametric permutation test and the parametric t test are reported in the table.

As it is easily expected, for the normal sample (i.e., N), the t test performs better than the
nonparametric test, but for the other samples (i.e., X, U, L and C), the nonparametric test is
superior to the t test.

Each value in the case of p = 0 represents the empirical size, which should be theoretically
equal to the significance level a. The results are as follows. In the case of N and L, each value
is quite close to « for the t test. However, for al n=6,8,10, the t tests of X and C are over-
rejected especially in the case of « = 0.05, 0.01. Taking an example of n =6, X is0.0646 and C
is 0.0748 when « = 0.05, while X is 0.0225 and C is 0.0269 when o = 0.01. The t test of U is
aso dlightly over-rejected in the case of o = 0.05, 0.01. Thus, we often have the case where the
t test over-rejects the null hypothesis Hy: p = 0 depending on the underlying distribution.
However, the nonparametric test rejects the null hypothesis with probability « for all the
underlying distributions. Accordingly, through a comparison of the empirical size, we can
conclude that the nonparametric test is more robust than the t test.

Next, we examine the cases of p = 0.3,0.6,0.9 to compare the sample powers of the two tests
(note that each value of p =0.3,0.6,0.9 in Table 1 corresponds to the sample power). As for X
and C, it is not meaningful to compare the sample powers because the empirical sizes are
aready over-estimated. Regarding the sample powers of N, U and L, the nonparametric test is
closeto thet test. Especially, for N, it is expected that the t test is better than the nonparametric
test, but we can see that the nonparametric test is as good as the t test in the sense of the sample
power.

Thus, the permutation-based nonparametric test introduced in this paper is useful because it
gives us the correct empirical size and is powerful even though it does not need to assume the
distribution function.

3.2 0n Testing the Regression Coefficient

In Table 2, the testing procedure taken in Section 3.1 is applied to the regression analysis.
Let Xi= Xy, Xaj, =+ Xii), Where Xq ;=1 and X;; ~ N(0,1) for j =2,3 are set. X,; and X3; are
mutually independently generated. The error term u; is assumed to have the standard normal
distribution N(0,1), the chi-squared distribution x%(1) -1, the uniform distribution U(-1,1), the
logistic distribution e*/ (1+e1)2, or the Cauchy distribution (x(1+x2))-1. Under the null
hypothesis Hy : 8= 0, we obtain y; = u;. Therefore, we consider the correlation between (X' X)1
X; and y;.

The sample size is n = 6,8,10 and the number of the regression coefficient to be estimated is
k =2,3. The nonparametric test is compared with the t test in the criterion of the empirical size.
Each value in Table 2 represents the rejection rate out of 10* simulation runs. Therefore,
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theoretically each value in the table should be equivalent to the probability which rejects the
null hypothesis Hy : ;= 0 against the alternative hypothesis H, : ;= O for j =1,2,3, which
probability corresponds to the significance level c.

Asin Section 3.1, in the case of N, thet test should be better than the nonparametric test, i.e.,
the t test should be closer to the significance level « than the nonparametric test, because the
OLS estimator of g follows the t distribution with n - k degrees of freedom when the error
termsu;, i =1,2,---, n, are mutually independently and normally distributed with mean zero.

The superscripts * and ** in the table imply that the empirical size is statistically different
from o by the two-sided test of the significance levels 5% and 1%, respectively. That is, each
value without the superscript * and ** gives us the correct size. The superscripts* or ** are put
as follows. By the central limit theorem, we can approximate as (p- «)//P(1-p)/G ~ N(0,1)
when G is large enough, where p is a parameter and p denotes its estimate. G represents the
number of simulation runs. G =10* is taken in this paper. Under the null hypothesis Hy: p= a
against the alternative hypothesis H;: p = «, the test statistic (p - «)/Vp(1-@)/G is
asymptotically normally distributed. Thus, we can test whether p is different from c.

The results are as follows. For the t tests of X and U, the constant term (i.e., 1) gives usthe
over-estimated empirical sizesin both cases of k = 2,3. On the contrary, for thet tests of C, the
constant term (i.e., 5;) yields the under-estimated empirical sizes. However, for the
nonparametric tests, amost all the values in Table 2 are very close to the significance level c.
Therefore, we can conclude that the nonparametric test is superior to the t test in the sense of
the corrected empirical size.

Power Comparison: Next, we compare the sample powers in the case of k = 3. Figures 2-4
display differences of the sample powers between the two tests for 53=0.1,0.2,---, 0.9, where
B1=pB>,=0 and o = 0.1 are taken. Since the sample powers of the permutation test are
subtracted from those of the t test, the values above the horizontal line imply that the
permutation test is more powerful than thet test. Take the case n = 6 as an example, i.e., Figure
2. For al B of L and C, the differences are positive and accordingly we can conclude that for L
and C the permutation test is superior to the t test. Furthermore, the differences are positive for
B3 =0.1- 0.5 of N and X but negative for 3 greater than 0.6. Thus, we can observe through
Figures 2-4 that except for a few cases the permutation test is more powerful than thet test for
all n=6,8,10 at least when (33 is small. From the three figures, in addition, each difference
becomes small as n islarge. Therefore, the permutation test is close to the t test as the sample
sizeislarge.

CPU Time: As mentioned above, in the case where we perform the significance test of the
regression coefficient, we need to compute the n! regression coefficients (for example, n! is
equal to about 3.6 million when n =10). In Table 3, CPU time in one simulation run is shown
for n=11,12,13,14 and k = 2,3,4, where a Pentium Il 1GHz CPU personal computer and a
WATCOM Fortran 77/32 Compiler (Version 11.0) are utilized. The order of computation is
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TABLE 2. Significance Tests on Regression Coeffcients: Empirical Sizes

k=2 k=3
n| a Nonparametric t Test Nonparametric t Test
Test Test

JEi1 B2 B1 B2 JEi1 B2 B3 JEi B2 B3
J0 || .1008 .1008 | .1055  .0981 1076 .1075" .1046 |.1041 .1017 .1033
6 | .05| .0500 .0499 | .0534 .0474 0575  .0546™ .0543" | .0520 .0492 .0512
01| .0113 .0112 |.0104 .0099 .0105 .0110 .0111 | .0105 .0098  .0095
N 10 .0964 .0963 |.0989  .0967 1024 1016 .0991 [.0989 .1000 .0971
8 | .05 || .0443" 0443 | .0454" 0454 || .0516 .0503 .0505 |.0473 .0489  .0503
.01 | .0087 .0087 |.0093 .0080 || .0106 .0079 .0101 |.0098 .0088 .0112
10| .0988 .0985 |.0983 .0988 .0989 .0976 .1023 |.0997 .0979 .1029
10| .05 || .0503 .0502 | .0487 .0493 .0489 .0488 .0508 |.0490 .0510 .0524
01| .0115 .0114 |.0103 .0112 0112 .0102 .0105 |.0122™ .0098  .0122™
A0 || 11013 1013 | .2132 .0991 10617 1042 10737 | 19647 1011 .0999
6 | .05]| .0517 .0516 |.1569 .0479 0546 .0533  .0546" | .1318™ .0508  .0495
.01 .0109 .0109 |.0806  .0099 0125 0121 .0110 |.0506™ .0102 .0108
X 101 .1029  .1028 | .1967° .1034 0960 .1038 .1013 | .1867" .1036 .0996
8 | .05 .0521 .0521 |.1468™ .0520 .0469 .0530 .0504 | .1282 .0533 .0507
01| .0108 .0108 |.0794" .0116 .0092 .0101 .0101 |.0586 .0116 .0111
A0 .1029 1028 | .1787 .1027 1028 10597 .0998 | .17537 .1048 .1031
10| .05 || .0493  .0491 | .1321" .0492 .0502 .0530 .0490 | .1215 .0560™* .0482
.01 .0095 .0094 |.0729" .0092 0104 .0099 .0102 |.0611" .0097  .0109
0 || .1082"" .1082™" | .1125™ .1042 1003 .0992 1042 | .1038 .0996  .1039
6 | .05 | .0565™ .0564" | .0621"" .0541 0515 .0516  .0551" | .0554" .0521  .0527
01| .0112 .0112 | .0155" .0106 0118 .0113 .0116 |.0121"" .0111  .0087
U 10 .0981 .0981 |.0962  .0997 .0947 .0988 .0968 | .1067 .1026  .1008
8 | .05 .0490 .0490 |.0543" .0480 0477 0488  .0469 | .0550" .0523  .0490
01| .0108 .0108 |.0145™ .0100 .0088 .0088 .0093 |.0129™ .0102 .0105
100 .0953 .0953 |.0980 .0958 .0983 .0980 .1027 [.0988 .0994 .1015
10| .05 || .0493 .0493 | .0525 .0487 .0474 0493 .0499 | .0528 .0496 .0495
01| .0102 .0102 |.0131" .0094 .0082 .0098 .0098 |.0125™ .0091  .0099
10 || .10807 .1080 | .0997  .1054 1012 1004 1006 | .0985 .0989  .1010
6 | .05 || .0562"" .0562" | .0491 .0524 .0503 .0507 .0535 |.0476 .0516 .0517
01| .0118 .0118 |.0080" .0095 | .0125° .0119 .0124™ | .0081 .0111  .0094
L 10 || .0984 .0984 | .0906" .1005 .0964 1024 .0979 |.1018 .1052 .1007
8 | .05 .0505 .0505 |.0448™" .0508 .0487 .0504 .0475 | .0476 .0515 .0496
.01 .0111 .0111 |.0084  .0106 .0108 .0094 .0091 |.0096 .0101 .0111
10 [[ .09337 .0933" | .0946  .0934 || .0989  .1007 .1018 |.0991 .0993  .1011
10| .05 || .0492 .0492 | .0463 .0474 .0495 0506 .0517 |.0467 .0510 .0509
.01 .0110 .0110 |.0082 .0107 .0093 .0095 .0106 |.0088 .0095 .0101
10 || 1114 1114 | .0709™ .1035 0967 .1004 .1021 |.0847 .0984  .1028
6 | .05 | .0566™ .0566" | .0303" .0505 0510 .0520 .0505 |.0375™ .0501 .0517
01| .0116 .0116 | .0042* .0104 0122 0116 .0119 |.0066™ .0094  .0098
C .10 ([ .0983  .0983 | .0642 .1013 0998 1049 .0975 |.0802" .1087" .1029
8 | .05 .0486 .0486 |.0259" .0499 0500 .0514 .0475 |.0361"™ .0530 .0507
01| .0103 .0103 |.0054" .0116 0110 .0097 .0092 |.0065" .0106 .0102
10 .0958 .0957 | .0693 .0957 0976 1016 .1040 |.0803™ .1044 .1032
10 | .05| .0461 .0461 |.0261"" .0484 0488 0503 .0513 |.0327" .0512 .0516
.01 || .0097 .0097 | .0023 .0101 .0097 .0097 .0108 |.0051" .0095 .0097
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FIGURE 2. Difference of the Sample Powers between the Two Tests
(n=6,k=3,B,=p,=0and «=0.1)
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FIGURE 3. Difference of the Sample Powers between the Two Tests
(n=8,k=3,B,=p,=0and «=0.1)
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FIGURE 4. Difference of the Sample Powers between the Two Tests
(n=10,k=3,/3’1=[3’2=0anda=0.1)

TABLE 3. CPU Time (minutes)

n/ Kk 2 3 4
11 0.18 0.26 0.33
12 1.94 2.67 3.42

13 26.73 3721 4824
14 377.32 527.90 685.49

about n! x k. The case of sample size n is n times more computer-intensive than that of sample
size n- 1. For example, it might be expected that the case of n =15 and k =4 takes about one
week (i.e., 15 x 685.49 minutes) to obtain a result. This is not feasible in practice. Thus, the
permutation test discussed in this paper is very computer-intensive.

Therefore, we need to consider less computationally intensive procedure. In order to reduce
the computational burden when n! is large, it might be practical to choose some of the n!
combinations and perform the same testing procedure discussed in this paper. That is, taking N
combinations out of the n! combinations randomly, we compute the probabilities P(ﬁ < /3(1))
and P(3 > ). If either of them is smaler than « = 0.1, the null hypothesis Hy: =0 is
rejected. We examine whether empirical sizes depend on N. The results are in Table 4, where k
=2 and N =104, 10°, 106, 10! are taken. The case of N = 10! corresponds to the nonparametric
test of 3, in the case of & =0.1 and k=2 of Table 2, where the empirical sizes are computed
using all the possible combinations. All the cases of N =104, 105, 10° are very close to those of
N =10'. N =10 is sufficiently large in this case, but more than N =10* should be taken for
safety. Thus, we can choose some out of the n! combinations and compute the corresponding
probabilities. A less computationally intensive procedure might be possible when n is large,
i.e, when nislarger than 14 in my case.
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TABLE 4. Empirical Sizess n=10,k=2,3,=3,=0and ¢ =0.1

N | 10* 10° 10° 10!

0985 .1020 .0994 .0985
0962 .1010 .1031 .1028
0936 .0971 .0980 .0953
0937 .0982 .0967 .0933
0968 .1026 .0979 .0957

Orcxz

4. Summary

Only when the error term is normally distributed, we can utilize the t test for testing the
regression coefficient. Since the distribution of the error term is not known, we need to check
whether the normality assumption is plausible before testing the hypothesis. As a result of
testing, in the case where the normality assumption is rejected, we cannot test the hypothesis
on the regression coefficient using the t test. In order to improve this problem, in this paper we
have shown a significance test on the regression coefficient, which can be applied to any
distribution.

In Section 3.1, we tested whether the correlation coefficient between two samplesis zero and
examined the sample powers of the two tests. For each of the cases where the underlying
samples are normal, chi-squared, uniform, logistic and Cauchy, 104 simulation runs are
performed and the nonparametric permutation test is compared with the parametric t test with
respect to the empirical sizes and the sample powers. As it is easily expected, the t test is
sometimes a biased test under the non-Gaussian assumption. That is, we have the cases where
the empirical sizes are over-estimated. However, the nonparametric test gives us the correct
empirical sizes without depending on the underlying distribution. Specifically, even when the
sample is normal, the nonparametric test is very close to the t test (theoretically, the t test
should be better than any other test when the sample is normal).

In Section 3.2, we have performed Monte Carlo experiments on the significance test of the
regression coefficients. It might be concluded that the nonparametric test is closer to the true
size than the t test for almost al the cases. Moreover, the sample powers are compared for both
tests. As a result, we find that the permutation test is more powerful than the t test when the
null hypothesis is close to the aternative hypothesis, i.e., when 3 is small in Figures 2 - 4.
Thus, we find through the Monte Carlo experiments that the nonparametric test discussed in
this paper can be applied to any distribution of the underlying sample. However, the problem is
that the nonparametric test is too computer-intensive. We have shown that when n! istoo large
it is practical to choose some of the n! combinations and perform the testing procedure. Taking
an example of n=10 and k =2, we have obtained the result that we can perform the testing
procedure taking the 10* combinations out of all the possible combinations (10! in this case)
randomly. Thus, it has been shown in this paper that we can reduce the computational burden.
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