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The density matrix renormalization group theory is reviewed as a numerical variational
method. The variational state, expressed as a product of local tensors, is improved
through locally tuning each tensor. The first section is a tutorial with simplified discus-
sions. Details are discussed in the subsequent sections. The review concludes with some
recent developments and future directions

1. Tutorial

Density matrix renormalization group (DMRG) introduced by White in 1992 is
a major progress in computational condensed-matter physics.! DMRG enables us
to calculate ground states of relatively large scale one-dimensional (1D) quantum
systems. DMRG has been applied to various topics in condensed matter physics,?3
such as Haldane systems,*® spin ladders,® highly correlated electron systems,” and
superconducting materials.® Two dimensional (2D) finite size systems have also
been investigated,” with the aid of the zig-zag — snake like — decomposition of 2D
clusters.10:11

Although the DMRG was originally developed for 1D quantum systems, it is
also applicable to 2D classical systems. This is because the path integral represen-
tation of 1D quantum systems correspond to 2D classical systems.'? For example,
in quantum Monte Carlo simulations, they map a 1D quantum system at a finite
temperature to a 2D classical system via the Trotter decomposition.™* The appli-
cations of DMRG to 2D classical systems began with a trial calculation of the Ising
model,'® where the infinite system algorithm (§7) was employed. The DMRG thus
applied to classical systems is often called the ‘transfer matric DMRG (TMRG),’

since the block-spin transformations are applied to transfer matrices. Recently, Car-

* e-mail: nishino@phys.sci.kobe-u.ac.jp
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lon et al. applied the finite system algorithm (§6) to the Potts models,'6171® where
their numerical results were precise enough to detect tiny corrections to the finite
size scaling behavior.'%:29 Their results prove the power of DMRG when the method
is applied to critical phenomena. More recently, the transfer matrix DMRG was
applied to 1D quantum systems at finite temperatures,?t?2:23:24 where RG trans-
formations are applied to the quantum transfer matrix.?°

The purpose of this review is to answer the questions: ‘What’s DMRG?’ and
‘Why is DMRG so accurate?’ Brief answers are, ‘DMRG is a numerical variational
method, whose trial state is a product of tensors,” and ‘It maximizes the free energy
efficiently using finite number of freedom.” The characteristic numerical proper-
ties of DMRG is (a) small in computational memory size, (b) quick in numerical
improvement for the variational state, and (c) accurate. We explain the details of
these points through a simple application to the Ising model. The principal aim
of DMRG is to obtain the largest eigenvalue of the transfer matrix 7,26 through a
numerical evaluation of the Rayleigh ratio

v T w (v|T|v)

A= Ty (o) M

where v is a variational state, and v is the conjugate (~ transpose) of v. What
we have to do is to find out the best variational state that maximizes X\, which is
the approximate partition function per row (= unit transfer). From the numerical
point of view, the variational state v should satisfy the following properties.

(a) The computations needed for both (v|T|v) = v T v and (vv) = vT v are

small sized in numerical sense — the calculation does not require huge memory.

(b) Tmprovements of v can be done locally. Since a local improvement involves
a small number of freedom, it can be done quickly. It is not hard to imagine
that a global change in v is much more time consuming.?® For this reason, v
must be local in a certain sense.

(¢) The variational state v is accurate enough to approximate the true eigenvector
of T. This requirement tends to contradict (a) and (b).

b C d e f

B\/C\/D\ /E\/F\ /G

a & wu v p o h
Fig. 1. Graphical representation of the variational state v in Eq. (2). We use the black marks for
the variables that are summed up in the corresponding equation.

The secret of DMRG, that enables (a), (b), and (c) at the same time, is to write
down the variational state v as a product of small-dimensional tensors. Let us see
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a simple example. Consider a transfer matrix of the square lattice Ising model,
whose width is N = 8. We choose such a small system for a tutorial purpose. (In
realistic applications, N is of the order of 100 ~ 1000, where no one can diagonalize
T exactly.) The variational state is expressed as

at most m

v(abede fgh) = Z B gC@Dd Esprfqu (2)
Euvpo=1
shown as Fig. 1,22 where Roman indices a-h shown by white circles are Ising spins,

and Greek indices &-0 by black squares are m-state auxiliary variables; we use a
black mark when the summation is taken over the corresponding variable. The
integer m is a small number compared with the dimension of the trial state 2V =
256. Such a variational state, which is written in the form of tensor product, has
been known for more than 30 years. For the readers who are interested in the
history of the tensor product formulation, we review the development in the next
section. (If not, please skip §2.)

090¢,

L X Y Z W R
Fig. 2. The way to calculate the norm of the matrix product state. L, R, and X, Y, Z, W are
m2-dimensional vectors and matrices, respectively.

The tensor product state in Eq. (2) satisfies the conditions (a)-(c) because of
the following reasons.

(i) First of all, the numerical calculation for the inner product v7v = v - v
= (v|v) is small in computational memory size, because we do not have to cre-
ate the 2V-dimensional vector v explicitly. What we have to do is multiplica-
tions of m2-dimensional matrices. For the case N = 8 shown in Figure 2, it is
easily understood that v” v is obtained by multiplying the m2—dimensional ma-

trices o)y = 2 C6uCér Y(w 2 = XaDDivs Zuunor)
E° ES, | and W , , successwely to the m2-dimensional
e vpTVp (pﬂ)(mf) f PU po

vector (L| = Lgery = Y ab BagBag,, and finally taking the inner product with the
m? dimensional vector |R) = Ry =2gn GY%,GY,,. As a result, we obtain (v|v)
as (L|XYZW|R). Thus the dimension of the matrix required to obtain (v|v) is
always equal to m?2, independent of the system size N. We can expect the same
smallness for the computatlon of vI'T v in Eq. (1). We will explain the detail in
83.

(ii) Secondly, local improvements of v can be completed very quickly, because
the variational state v is a product of local factors (= tensors); a local tuning
for v is completed just by modifying one of the tensors. Let us consider the case
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(a) (b)

Fig. 3. Graphical representation of (a) (v|T'|v) and (b)

Ty ar vy

N = 8 again, and try to maximize vT T v shown in Fig. 3(a). Suppose that we

are, right now, trying to optimize the tensor D¢  only. How can we determine the

112

best Dﬁy? Well, we can obtain it by diagonalizing the 2m?2-dimensional matrix
T(udv)(u’ @) shown in Fig. 3(b), where the eigenvector NMV that corresponds to

the maximum eigenvalue of T(“dy)(“, a) coincides with the best wa. In the same
way, we can improve each tensor just by repeating the same procedure. Note that
the local improvement for v is much quicker than the global improvement, because
the latter involves 2V degrees of freedom. What we have mentioned here is rather
oversimplified, but the idea is essentially correct. We explain the detail in §4.

(iii) Thirdly, the high numerical accuracy in the tensor product state is formally
explained by the singular value decomposition (SVD) of matrices.?” The SVD of an
N by M rectangular matrixz A is to express it as a product of three matrices. In the
case N > M the decomposition is written as

M
Ay = Qigwe Re; . ®3)
e=1

where () is an N by M matrix, and R is an N-dimensional orthogonal matrix. (If
N <M, Qis N by N and R is N by M.) The numbers we are called the ‘singular
values.” If A is real-symmetric, the SVD of A is equivalent to the diagonalization
of A. Normally, a small number of singular values are dominant for most matrices,
and the rest of them are very small. In such a case it is possible to approximate A
by discarding the tiny singular values

m
Ay~ Y Qiewe Rej (4)
=1

where m is the number of dominant singular values. Now let us see how we can
approximate an arbitrary vector v(abedefgh) by the tensor product. First of all,
we regard v(abedefgh) as a 4 by 64 matrix Viab)(cdefgn): @nd apply SVD as

4

Viaby(edesan) = D Bravye We Re(edesan) - ()
-1
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where B(ab)§ corresponds to the tensor ng in Eq. (2). We then regard the factor
WgRg(cdefgh,) as an 8 by 32 matrix V(Igc)(defgh,) and decompose it again

8
_ / _ ’ /
WeRe(caeran) = Vicoyerany = D Cleern Wi Riutedean) (6)
p=1

to obtain the second tensor Cgu' In this way, we successively obtain the tensors ng,
Céus Dﬁw By, Fga d
each SVD — restricting the freedom of Greek indices (&, u, v, p, o) down to m — we
obtain the tensor product approximation for v(abedefgh). If m is sufficiently large,
and the singular values decays sufficiently rapidly, the restricted tensor product in
Eq. (2) is accurate enough to approximate the original vector v(abedefgh). Thus
the distribution of the singular values for v (= the eigenvector of the transfer matrix
T) is essential to the validity of the tensor product approximation. We consider this
point in §5.

To summarize, DMRG is a numerical method that improves the tensor product

and GY, in Eq. (2). Keeping the dominant singular values in

state through optimizing each tensor individually. Such an iterative procedure is
called a ‘finite system algorithm.” For the case N = 8, we improve the tensors in
theorder A - B—-C—-D—-F—>F—->G—-F—-F—>D-—->C—->B—A-—
B — (' —, etc. To speak more precisely, pair of tensors are improved at a time, so
it is better to rewrite the above order as AB — BC — CD — DE — EF — FG
— EF — DE — CD — BC — AB — BC —, etc. We summarize the numerical
procedure of the finite system algorithm in §6.

In the thermodynamic limit N — oo, we expect that the tensor product state
is translationally invariant; the tensors lose the position dependence.?? If we are
only interested in the thermodynamic limit, to perform the finite system algorithm
for a large N is a waist of time and money. There is a simple modification of the
finite system algorithm, which is called ‘infinite system algorithm.” We explain this
numerical algorithm in §7.

Numerical algorithm and applications of DMRG are still in progress; many de-
velopments are being achieved day by day. Not only the numerical efficiency but
also the analytic structure of DMRG is one of the recent interests. There are so
many riddles in DMRG. We list up current problems including theoretical questions
in DMRG in the last section.

2. Tensor Product State before DMRG

The variational state written in a product of tensors had been known for long time.
Tt is worth looking at the history of the tensor product formulation, though White es-
tablished DMRG totally independent from the classical works. In 1941 Kramers and
Wannier investigated a variational problem for the square lattice Ising model,3!+32
assuming that the eigenvector of the transfer matrix 7' is well approximated by the
uniform matrix product

v(...abcefgh...) = .. Fbptepedplepef plopoh (7)
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where ...abcefgh ... denotes a row of Ising spins, and F is a 2 by 2 symmetric
matrix. Their approximation was superior to those approxoimations known in those
days — the molecular field approximation, the Bethe approximation,33 etc., — in
the respect that the calculated transition temperature 7, and the specific heat
are quite close to those obtained by Onsager’s exact solution.?* The Gutzwiller
approximation using the Gutzwiller’s variational wave function P|®),5 which is

].35,36,37
b

one of the standard approximations for the Hubbard mode can be regarded

as a modification of the Kramers-Wannier approximation.

a b d e

p O

Fig. 4. Baxter’s variational state in Eq. (8).

Around 1960-70 Baxter improved the Kramers-Wannier approximation by in-
troducing additional degrees of freedom to the variational state.® His variational
state is written as

v(...abedefgh..)= > L FEFEFUFREIRIIFS (8)
ECuvpoTd...

where greek indices denote the additional m-state auxiliary variables. (See Fig. 4.)
Since a tensor Fé‘cb contains 4m? adjustable parameters  though there are a num-
ber of constraints between the tensor elements the way of finding out the best
element that maximizes A\ = (v? T v)/(v? v) is quite non trivial. He performed
the maximization using a self-consistent equation for the corner transfer matrix
(CTM).38 Baxter’s idea is very close to the infinite system algorithm in DMRG;
one might be surprised to know that the concept of basis truncation with the help
of density matrix was already mentioned in his well-known textbook ‘ Ezactly Solved
Models in Statistical Mechanics.®®’

Applications of the tensor product formulation to quantum systems began with
the investigations of Haldane’s conjecture. In 1985 Nightingale and Blote used the
Kramers-Wannier matrix product in Eq. (7) as the initial vector of their projector
Monte Carlo simulation.*® It is interesting that they further commented on the
applicability of Baxter’s formulation to quantum spin chains; if they realized what
they commented, the infinite system DMRG would have been established earlier.
In 1987 Affleck, Lieb, Kennedy, and Tasaki (AKLT)*! showed that the ground-state
wave function of a bilinear-biquadratic S = 1 spin chain can be exactly written as

G(oabede.) = Y MEM), MMM (9)

EpvpoT...
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where a, b, c,d, e, etc., are three-state spin variables that takes —1, 0, or 1, and the
Greek indices represent 2-state auxiliary variables. If one introduces the notation

vy = My | 1)+ M,y |0) + M, | 1), (10)
the variational state ¢ is written in the product form

U(...abede...) = Z ey pr) ) padeT) L. (11)

LLEpvpoT...

which is often referred as matriz product state, because it is possible to regard |uv)
as the pv-element of a 2 by 2 matrix.

Fannes et al. generalized Baxter’s tensor product state by assigning m-degrees
of freedom to each auxiliary variable. Their variational state is known as ‘finitely
correlated state,” since the correlation length of such state is always finite.*>*3 Al-
though the construction of the ground state ¥ in Eq. (9) does not look like that
of v in Eq. (8), they are essentially the same. We can transform one to the other
by mapping M, in Eq. (9) into ng in Eq. (8) through a kind of duality transfor-
mation. Quite recently, the efficiency of the tensor product state is reported in the
field of particle diffusion,**45-46

Since the tensors are position independent in Egs. (8)-(9), it is not straight-
forward to apply the above formulations to finite size systems, impurity systems,
random systems, and any system that does not have the translational invariance.
Compared with the uniform tensor product, the variational state used in DMRG

at most m

v(abedefgh) = Y BheC¢,Di, B FlLGY

vp' po~ah (12)

§prpo=1

is more flexible, because it allows the position dependence of the tensors.

3. Advantage of Tensor Product State

When a variational state is written in the tensor product, we can quickly calculate
Ty and the expectation value (v|T|v) = vT T v with
a small numerical calculation. Actually the variational state used in DMRG is
normalized by definition, and thus we don’t have to calculate vTv. In order to
explain this point, we introduce several new notations.

Let us consider the square lattice Ising model on a cylinder of width N. (See
Fig. 5.) The system contains ¢ row of spins, where periodic boundary condition is

the inner product (v|v) = v

imposed in the vertical direction.*” We label the spins in a row as s;, 89, .- -, Sy 1 Sy
where s; = +1 is the Ising spin at j-th site. The main subject is to find out the
largest eigenvalue \; of the transfer matrix T(S,l___S,N)(S
definition of T" in Eq. (20).)

In the formulation of DMRG, the variational state v for the transfer matrix T
is expressed as a position dependent tensor product

v(sy..85) (13)

s ) (We will soon give the
1 N
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Fig. 5. Two-dimensional Ising model on a ¢ by N lattice, where periodic boundary condition is
imposed to the vertical direction. The shaded region shows a row-to-row transfer matrix.

1 M M+1 N

2 : N-1

Fig. 6. The variational state used in the finite system DMRG, which is defined in Eq. (13).
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Z A‘Q 14526q A 0 B SM41 B SN_9 B Sn_1 ’

(YRS VA SV LSV Rt SVRTT SRR Env—2fn_1 En_1Sn
1SRRIV

where &, - - - {5 _; denote the m-state auxiliary variables. (See Fig. 6.) Normally, m

is of the order of 10 ~ 1000, and is by far smaller than 2V. The tensors A N3 and

B£ 5 are dependent on their positions ¢ and j; we have distinguished the tensors
385+

by their spin indices. Each tensor satisfies the orthogonal relation

S
ZA”s e e = O

zl'L

Si S _
. Bl Bud = b (14)

558541

where we have written Agf s, and BﬁN,lssA;V ' as Azj ¢, and BiN,lsfjjv ~', respectively.

Comparing Eq. (13) with Eq. (2), we have inserted an additional matrix Q§M£M+1
at the M-th point, (2 < M < N — 2) which is an m-dimensional diagonal matrix

Wy
Wo
Q= ) . (15)
wm
We impose the normalization condition TrQ? = D wi = 1 and the decreasing
order |w,| > |wy| > -+ - |w,,| for convenience.
1 M M+1 N

NN

Fig. 7. Another standard form in Eq. (17) for the variational state.

The variational state in Eq. (13) is normalized by definition, because its inner
product is equal to Tr Q2. (Use Eq. (14) repeatedly and finally use the fact Tr Q? =
1.) Thus the variational relation in Eq. (1) can be simplified as

A= (u[T|v) = v" Tw. (16)

They often rewrite the variational state as

Z A 152 . SM 1 VSM 5M+1B SM+42 .B SN—1 7 (17)

é‘M €1 S8y Emaobarys En_1SN
&€y g
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(see Fig. 7,) where the new tensor V;M zM“ correspond to the product*®
M—1SM42
7SM SM41 Sar Sary1
‘/%M—léMﬁ»Q o Z Agl\l—IEM Q‘EM&M-H B£M+1£M+2 (18)
YISV

which satisfies the normalization

> o ) g (19)
£M—1£M+2 o
Ep—15mS 1842
The real advantage of expressing a variational state in the form of tensor product
is that the numerical calculation of v7 T v is very compact. This is because the

transfer matrix 7" is also written in the product of local Boltzmann weights. For the
Ising model, the transfer matrix  in order to save space we write T(g, ' )(s
1. 1

.SN ‘;N)
7 7
as 154 o is expressed as
N—1 N
’ ’ K
S1..SN /o /
Tsl sy = exp{2 E (Si5i+l+5isi+1)+K§ Sisi}
i=1 i=1
N-1
K s's
_ / ’ +1
= exp{;(sls1 + Shsy) H Ws/s s (20)
i=1

where K is the parameter —J/kgT, and the tensor W represents the local Boltz-
mann weight

IS K
W:?:: = exp {2 (8;8i41 + Si184q + Sip18; + sgsz)} . (21)
Since the boundary factor exp { £ (s}s; 4 s/ysy)} is not essential ~ at least for the
explanation of DMRG — we employ the simplified transfer matrix

N—1
TN = [ weisi = W W - Wiy (22)
i—1

in the following. Note that the transfer matrix is symmetric.2%

Do we have to create a 2V dimensional matrix Tssff;’: for the computation of
A = v" Tv? As we have discussed in §1, the answer is no. We can obtain \ just
by repeating matrix operations of a small dimension. What we have to perform are
the following procedures;
(a) First, consider the Boltzmann weights at the both end of the transfer matrix.
Rewrite them as

1 s
sisy 5755
Lgs: = Wils;
sh s s s
N-15N N-15N ( )
Rs, " s = Wi sy - 23
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(b) Increase the length of L and R by joining a local weight

S 52 3 _ S SQ 5251
L815253 - S 82 ‘/I/«SQS3
7
SN_oSN_15N SN_2SN_1 pSN_15N
RSN—2SN—18N = WN 25N -1 Ry SN—15N * (24)

(¢) Take contractions with A and B

&l st s’ sh s, s?
52%  — § 51525 A A2
§83 519283 “7s, €, TTs18,
5,855,
! !
SN—28N_1 _ 2 : SN—1 SN_1 pSN_2SN_1SN ( )
RSN—2€N—1 o BgN—ISN B No1SN RQN 25N —15N ° 25

7 7
SN—15N-15NSN

(d) As (b), increase the length of L and R as

Lféslssé — L§2 3 W5354
§2835, %354
’ 7 ’ ’ !
SN_3SN_28N_1 _ W“N 3SN_2 pSN_2éN_1 (26)
= s .
Sn_3Sn_28N_1 N-3SN-2 TTsy o8N

(e) As (c), take contractions with A and B

&ash 55555 453 A%
L€354 - Z L€25354 A§2‘53 Aféf.lz
5855353
53\1735;\1,2 o SN—2 s 5,1\1735;\1726\771
RSNfsngz o Z B£N 261 BEN—2£;\I—1 RSN—3SN—2EN—1 ' (27)

’ !
Sh_o5n 2 _1€n 1

(f) Repeat (d) and (e) till we get LgM’liM nd RSM“?””. The X in Eq. (16) is
M—1"M MA+15M+2
then obtained as

shy s 1S s s’ & s s
E V M Syl pSM-1SM oy MSM41 R M+18SM 42 V M SM41 (28)

Mo 1€A4+2 SVERT VIS Yas VAT Bkt JVIRT SV IR SVIEE S VR

where the sum is taken over for all spin indices in the right hand side. (See Fig. 8.)

L R

Fig. 8. Graphical representation of (v|T'|v). The shaded region represents the transfer matrix. We
calculate it from the left and the right end.

To summarize, we can obtain A\ = vT Tv without directly creating the 2V-
dimensional matrix 7. This is because both variational state v and the transfer



Density Matriz Renormalization Group 12

matrix T are given by products of local factors. The computer storage space for
the calculation of \ is linear in Nm?.

4. Rapid Local Improvement

The second advantage of the tensor product state is that its improvement can be
done very quickly. This is because we can improve the trial state locally, by just
modifying each tensor independently. To see this point, let us consider the local

improvement of a factor ‘7;‘” EM“ in the normalized variational state
M—15M+2
m
1)(‘3 S ) = Z A2 .. .AS’V’*1 VSM 8M+1B Smi2 .B Sn_1 (29)
S1...5N _E - 518, oSt v 18ngo Smaabuas €y 1Sy
2"SN-1

Do not ask for the improvements of Azi ¢ and B.£ Zj at this moment; we will
i—1Si FSi+1
discuss them later. The subject is to maximize A = vT T v just by tuning the 4m?
. - 2
numbers of elements in V;M zM“ under the constraint (VSM sM“) =1

M—1SM+2 M—1€M+2

(See Eq. (19).) The notations that we have defined in the last section are of use.
Equation (28) tells us that X is written as

’ ’ ’ ’ ’ ’
) = VSM Sut1 AEv— 1S Savy1€ge "‘/SM SM+1
= o 1€hrsn EnrSararnE b ibarra s (30)
M—1SM+2 M—-15MSM1SM42 M—1SM+2

all indices in the r.h.s

where the 4m?2-dimensional matrix 7' — the renormalized transfer matrix — is
deﬁned as ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
N&M—]SMSM+1£M+2 _ Lf}\l—lsM WSMSM+1 3M+1§M+2 (31)
£1»171“31\/151v1+1£lw+2 M—15Mm SmSm+1 SM+1£M+2 ’
o . . . . . 7 ‘7S S .
Now , it is obvious that A is maximized when V, ~ =V MUMAL s the
M—-1"M"M+15M+2 M—15M+2

. __&./ B s’ s gl
eigenvector of T} MM M+1£ M2
M—-1"M"M+1>M+2

From the numerical point of view, to find out the largest eigenvalue of 4m?-
dimensional matrix 7' by the Lanczos method®? is not time consuming at all, par-
tially because the matrix dimension is not so huge for a modest m ~ 100. (We
may also use the power method, or the look ahead Lanczos, that are simpler than
Lanczos method.) Another reason for the quickness in the Lanczos diagonalization
is that the matrix T is written in the product of three factors L, W, and R. (See
Eq. (31).) For example, when we multiply T to an arbitrary vector a, what we do
is the following procedures;

! !
§M-15M

o' (Er—18mSuSuibase) = Z L T(Epr—15mSn18042)

Enm—1

Ear—15Mm
7 ’
S S
‘TN(&M—183\451M+13M+1§M+2) = Z Wsﬁs]\]\ﬁ; ' (5?\4—133\45M5M+1£M+2) (32)
Sm

’ ’
(el 1o / Svy1ém i o
(S VERT VR VERTS VAR e E RSM:Igsz (Err—18mS18m418042) -

Spr1€arse
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(See Fig. 9.) We have to prepare 8m?2-dimensional vector as the work space for each
step.

X"

Fig. 9. A way to multiply the renormalized transfer matrix in Eq. (31) to a vector. (See Eq. (32).)

Improvements of local factors other than V., M+ — A and B, . for
Snre 1€M+2 &8s §~€j+1

arbitrary position are performed by rewriting the variational state v(s;..sy)
into the new form

Z A 152 EM 1€MVSM+1 M+QB§ s B SsNil‘ (33)

M €M+3 ]W+3£M+4 Sn_iSn
€y €N

The intention of the transformation Eq. (29) — Eq. (33) is to shift the place of
V' by one lattice spacing, and then improve v(s;...5y) around the sites s, ; and

L . . . Shr41 Sn42 .
Spryo; it is equivalent to improving A Enrbaris and B5M+2 s The transformation

from Eq. (29) to Eq. (33) is mediated by the extended local factor

rrSM SM41 SMy2 SM SMa SM42
UfM,1 $M+3 - Z VM ‘I£M+2 B£M+2£M+3
Earyn
. Sy (7SM+15M 42
= ;AsM,lﬁM Vew  €aya” (34)
M

where the new tensor AE . is obtained by the SVD of VSM zM“ as follows.
M-—1

M 15M+2
(a) Create a 2m-dimensional matrix

~ _ S Sapr TrSM Sag
P& i) Ep_asn) = Z VTEM 3vary ‘/§M71€}u+2 ’ (35)
Spr1€arse

that is normalized Tr p = 1. The normalization comes from the normalization of V
in Eq. (19).
(b) Diagonalize p

Sn 2 Sm
p(fM 150 Ear—15ar) ZAiM 1£Mw AfM,lfM’ (36)
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where we assume the decreasing order for the eigenvalues. Note that the new
variable &;, runs from 1 to 2m.
(c) Restrict the degree of freedom of &,, down to m.

(d) Create V;MglsM“ by way of a fusion process

(7SM+15SMy2 Sar S SM41 SM42
‘/gM gMJrs - Z A€M71€M V€M71 gM+2 B€1W+2€M+3 ’ (37)
VR IVIS e,

(See Fig. 10.) In such a way we can shift the place of V to any place as we like."®

M M+1 M+2

Al V B
[ ]
M M-1 M+2 M3

Fig. 10. Shift of V from the M-th point to M + 1. (See Eq. (37).)

Now , it is obvious that the local improvement for ‘N/;M“; M+2 is performed by
M M+3

the Lanczos diagonalization of the 4m?-dimensional matrix

’ ’ ’ ’ / / ’ ’ ’ ’
j‘waSM+1SM+2§M+3 _ L‘EM'SM+1 W5M+15M+2 SnMy28M4a (38)
SYLIVERT VLS Ve EnrSarqr  SM+15M42 TSy 080 ys
: S;W+2£§u+3 S;W+1£§u+2 :
where we have obtained R "™/ when we calculated R."™¢ in Eqs. (25)-
SM+2SM+3 SM+1SM+2
Evshgr - - . .
(27), and L M*' is immediately obtained as
’ VLIV
6/ s ‘EI s s s s
L M°M+1 — L M—-1°M IW+1A M A M 39
EardSara Z YRR IV ISR SYIEE SV i SV AL 3 ( )

! 7
SVERTIVERTIVESY:

together with
55»17153»4-9;\4+1 o L&;v[—lsgw SIJMSIJ\J+1 (40)

- S,,8 .
15 SMt1 ISV IV MSM+1

Thus the construction of T
EnSar15mt28ar4s

5/ S/ S/ 5/ . .
MOMAITMARAMES g very easy and quick.

5. Validity of the Approximation

One might be skeptical about the validity of the tensor product approximation.
The point is whether we can approximate the eigenvector v(s;...s,) of the transfer
matrix T precise enough or not by using the restricted tensor product. (People who
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believe in this point can skip this section.) This problem is deeply related to the
eigenvalue distribution of the density matrix®2

P88, (5178,,) — Z V(818804158 )V(S1... S0 S 415 ) - (41)

Spm41...5N

which is diagonalized as

21\/[
— 2
Pt sk oroa) = DAt )6y, D Al )y (42)
o

Here, we have assumed that T is symmetric, and that the density matrix is positive
semi-definite. We also assume that ng is in the decreasing order w; > wy >

‘- Wy - In addition to P(s, -5, ) (5,5 )0 by considering the density matrix for the
right side
P(shpprsh)Sarpnsn) Z U(Slu-5M5/1\4+15,N)U(31---SMSM+1'5N)
Sy S
2N—M
_ 2
B Z B£M(SIIVI+‘I'”S/N) w§M+1 B£M+1(SM+1”'SN) ’ (43)
€M+1

we reach the SVD for the eigenvector

v(sl"'8N> = Z A(Sl""9A1)5M96A4£A1+1B5M+1(SM+1”'SN) ’ (44)
§M§1W+1
where Q€M§M+1 is equal to 5§M€M+lw€M. (See Eq. (15).)
If |w€M | decreases rapidly with respect to &,,, we can well approximate v(s;...$y)
by restricting the range of §,, and &;,,, down to m

uisiosy) ~ D A (45)

£I\/I£M+1

-S

1S an)éar Q£M£M+1 B£M+1 (Sarg1Sn)

without loss of numerical accuracy. It is easy to imagine that by repeating SVD
and freedom restriction (2m — m) for both A(S s ) and B, (51 s )
1 M/SM M4+1\F 4 N

finally obtain the matrix product representation (or approximation) for v(s;. sy).

s we

Thus the essential problem is, whether |w5M | really decreases rapidly enough or not.

In order to answer this question, let us look at the SVD for v(s;...s, ) in Eq. (15)
again. We find that the factor 95M€M+1 is a joint between the left half of the system
{s1--- sy} and the right half {s,,, ,---sx}. If the system is off critical — if there
is finite excitation energy — only the spin fluctuations within the correlation length
pass through the joint QEM €arir” In that case We | shows quasi exponential dumping;
for the Ising model, exact formulation for we in the limit N — oo was obtained
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by Baxter,*® where w, actually decays nearly exponentially.®3%* Tt should be noted
that finite size systems are always off critical, and therefore we can approximate
v(s;...8p) precisely enough in the form of tensor product. On the other hand, the
tensor product approximation does not work for (infinitely large) critical systems.55
There is a way to check the efficiency of the tensor product approximation
without knowing the detail of the system. That is, to observe the quantity

2
Pm = waM (46)
3

during the numerical calculation, and check whether 1 — P _ is close enough to 0 or
not. If not, one has to increase m to keep the numerical precision of the variational
state.

6. Finite System Algorithm

The numerical algorithm of the finite system DMRG is summarized as follows:

(a) Prepare the initial tensors Azi for 2 <i < M and B, Zj for M+1<j<
i—154 iSi+1
N — 1, where the tensor elements can be chosen arbitrarily. (A more efficient

starting point is given by the infinite system algorithm; see §7.)

(b) Create LEM’IZM and RSM+15M+2 using Eqgs. (23)-(27) successively.
M—1"M

S}W+1£M+2

Y / / ’
— T&M—] SMSM+1€M+2

(¢) Diagonalize T in Eq. (31), using the Lanczos method

1551842

to obtain the eigenvector V,, = V.M M+,
Sni—18n2

(d) Shift the position of V,, to the right direction: V,, — ‘N/MH via Egs. (34)-

. At the same time, create ollowing Eqgs. - . (Increment M:

37). At th i TM+1fll ing B 38)-(40). (I M
M— M+1.)

(e) Repeat (c) and (d) until V,, reaches at the right end of the system.

(f) Shift the position of Vy, to the left direction: V,, — V;, ;. At the same time,
create Ty, ;. (Decrement M: M — M — 1.)

(2) Tmprove V,, by the diagonalization of T;, and repeat (f)-(g) until V,, reaches
at the left end of the system.

(h) Shuttle (or zip) VM from the left to right by repeating the steps (c)-(g), and
improve the all the parts of the variational state.

(i) Stop the iteration when A converges to its maximum value. It is recommended
to stop when M = N/2.
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The numerical algorithm in this table is referred as ‘zone burning process’ or ‘zipper
process.>8’

In the above sequence, the Lanczos diagonalizations in step (¢) and (g) always
come after the shift of V;, — V;,., in (d) and (f). White showed that Vj,,,
obtained by Egs. (34)-(37) is a good candidate for the eigenvector of TMil, and
therefore we can reduce the computation time of the Lanczos diagonalization for
TMﬂ_so,m

After we stop at the step (i), we obtain the maximized X\ and the corresponding
optimized variational state v(s;...s5). The approximate free energy per site is then

expressed as
1
f= —NkBT log A, (47)

and we can calculate thermodynamic quantities from f. Since we have the varia-
tional state explicitly, we can directly calculate the spin correlation functions. For
example, the spin polarization at the i-th site is obtained as

()= 3 wesm)sGia) = Y s (T ) ()

5i—1£i+2
S17SN §im15:5%i118i42

and the diagonal two-spin correlation function is expressed in the same way

(5;8;) = Z v(81...5n) 85 V(81..5N) - (49)

8,8y

(See Fig. 11.) Calculations for (s;) and (s;s;) can be worked out without creating
v(sy...sy) explicitly, as we have evaluated A\ without creating the 2™-dimensional
vectors. In the same way, off-diagonal correlations are calculated as

<Oi0j>: Z 7’(51---51‘713;5”1---*9]'715;'Sj+1---51v)Osis.Os',s,7)(31---3N)a (50)

K2 J 7
1 ol
LR NI

where O, is a matrix representation of an operator O; that contains spin flip
74
processes.

SRS

Fig. 11. Correlation function between s, and 555 that are shown by double circles.

One might not be happy about the construction of initial variational state in
the initial step (a). Roughly speaking, we may put arbitrary random numbers
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to the initial tensors; the tensors do not have to satisfy the orthogonal relations
in Eq. (14), because they are automatically orthogonalized during the first sweep
of VM. Actually, we can create the initial variational state more efficiently; the
numerical procedure is called the infinite system DMRG algorithm.

7. Infinite System Algorithm

When the system is off critical, the tensors in the variational state

ZAS . Q B, M+ ...B, Nl (51)

g £M 151\1 $M€M+1 €JW+1€M+2 €N71 N
2
lose position dependence, except for those near the both boundaries, under the
condition that the system size N is far larger than the correlation length £,.57 If
we are only interested in the bulk properties of the system, we don’t have to obtain
the entire tensor product state so accurately. What we need is only one pair of the
(representative) tensors, say AEM ¢ and B, ng *' | at the center of the system.

M-—-15M MA415M42
The infinite system algorithm is a numerical tool to obtain such a pair of tensors,
by using a kind of simplification of the finite system algorithm.

1 N

NN A

|

1 N+2

Fig. 12. The tensor product state for N + 2-site system can be obtained by simply inserting two
tensors at the center of the state for N-site system.

Let us compare the variational state v(s;..sy) and 1)(51___5N+2), where N is
much longer than the correlation length £,. (See Fig. 12.) It is obvious that we get
the latter by just inserting two matrices to the center. The correspondence between
N and N + 2 plays an important role in the infinite system algorithm. It might be
better to show the first several (numerical) steps in order to see the basic idea of
this algorithm. The calculation starts from the case N = 4. The transfer matrix is
constructed as S

shsgsish s sh 558
Ts s 525_1 - sisz WSQ Rs_s

172

(52)

where we use the site indices (1,2,2,1) instead of (1,2,3,4) in order to stress the
similarity between the left and the right. Diagonalizing the transfer matrix, we
obtain the largest eigenvalue A» and the corresponding eigenvector ’U(81828§8T).
Let us decompose it using SVD
S—
2
V(8158557 Z A% st we, Be & (53)

2 1
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where Azf ¢ is identical to Bg_?_ , if the transfer matrix is invariant under the space
21
reflection.

The trick of the infinite system DMRG is to use the tensors Az2£ and B, 25
152 CRER

as a part of variational state for N = 6. This is equivalent to use them as a RG
transformation for the transfer matrix for N = 6. The RG transformation is done
by increasing the length of transfer matrices

i

!
S1858 s sb sh st
15283 __ 192 1J7 5253
88,8, L332 8,84
9;9;9; 9392 sLsL
S_S_S_ S_S_ Ree_ (54)
32 1 32 21

and by performing the block spin transformation

17
s s sh st s
sz I § [S1%2%3 4 2 A2
253 519 33 8185 7816,
518,558,
7 ’ ’ 7 4
5?55 53 2 39351
‘Re_f_ = Z B ¢ L Rs 55— (55)
357 3 2
sls_sls_
2721 1

to obtained the renormalized transfer matrix for NV = 6

_epstslel
T£2 Sg sgé’_

S:;S

L52“3 Weye? B&_. (56)

These are the first iteration of the infinite system algorithm.
The next step is simply to increase the subscripts of each spin variables. Diag-

onalizing T?S 33 35 , we obtain the eigenvector
v(€s556y) = ) ALle, we, Be e (57)
&3

If &5 can exceed m, we restrict the its range up to m by keeping the important states
that correspond to the large singular values. Using the obtained tensors Az3€ and
253

II/I
E3515783

B§ 57 we create Tg 5,560 through the linear (or, RG) transformations

&35y _ 5555, 455 S3
L£354 o Z L£25354 A§253 A£2£3
€58, 555
545% . B, s 5;5,35
R = > & 5' Be & Rooe (58)
SESS£2£§
and so on. e
It is clear that the further iterations successively produces T, ZSSSS* 2 — (&8, 5265 )
e 3Ty i+157 57/ .
— T§3545;§; — U(£3S4SZ£§) JEENOURNIN Tfl 6428 1:% — ’U( i8i+15m€{-) up to an arbi-

trary size i.°? This is a kind of self consistent equation, and finally we get the fixed
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! ’ ’ ’
=800 Soo+15 770

point values T ¢ and v( oosoo+1500—+1€§)- By decomposing the latter

o oo-¢-1soo—+1 =
via SVD

oco+1 ©°C

Soo o1
U< °°8°°+18<>C—+1€§) = Z ASOO-H S w£oo+1 Bf—-‘—-H ’ (59)
S

oco+1

we finally get the position independent tensor in the thermodynamic limit N — oc.

There are two usages of the infinite system algorithm. One is to use it in order
to prepare the tensors that are necessary for the initial step (a) in §6 of the finite
system algorithm.! After repeating the above iteration for N/2 times, and renaming
the spin indices i — N-i+1, we obtain a good start point for the variational state
1)(51___SN/QSN/2+1___SN).

The other usage is, as we have intended, to use it purely in order to observe
expectation values of local operators (= thermodynamic quantities) in the thermo-
dynamic limit. For example, the spin polarization is obtained as

(s) = > w(&ssE) sv(€s5E), (60)

&ssE

where v(£s5€) is the vector v( oosoo+18007+1£§) defined in Eq. (59). In the same

way, the nearest neighbor spin correlation function is obtained as

(s8) = > w(€s5E) s50(Es5E) - (61)
£s5¢

We can also calculate spin correlation functions between distant sites, since the vari-
ational state is position independent, and we already have the tensors A:”"“ ¢
oo co+1
[
and B, < F" remember the correspondence between N and N + 2 in Fig. 12.

cot1 oo

Errors C

T/J

Fig. 13. Specific heat of the Ising model calculated by the infinite system algorithm.

Let us see how precise the infinite DMRG is. Figure 13 shows the specific heat
Cy(T) of the square lattice Ising model, which is obtained by taking the temperature
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derivative of the nearest neighbor correlation function E(T') = (s3) in Eq. (61). We
calculate E(T') for the system with N = 2048, which is sufficiently larger than the
correlation length for each plotted temperature. The m dependence for E(T) is
not conspicuous around m = 60. Since we know the exact solution of this model,?*
we can directly evaluate the numerical error in Cy (7). The difference between
calculated C,(T') and the exact one is indicated by several marks. The numerical
error is non-negligible near the critical temperature T, partially because E(T) is
singular at T¢, and because numerical derivative

E(T + AT/2) — E(T — AT/2)
AT

(62)

is sensitive to AT; typically, we set AT = 10~*. The other source of numerical
error is that the increase of the cut-off energy scale €, near T, that spoils the
numerical precision in the block spin transformation. The latter error source can
be suppressed by the scaling analysis with respect to m.5%®

For a tutorial purpose we have consider the Ising model throughout this review.
From the variational interpretation of DMRG, it is apparent that the method can be
applied to more general classical models, such as (a) the models that have discrete
spin symmetry and short range interactions, as the g-state Potts Model or n-vector

models, and (b) the interaction round a face (IRF) model whose Boltzmann weight
5;5;+1
SiSig1
be even negative or complex. The transfer matrix need not be symmetric.

is expressed by arbitrary square matrices, where the Boltzmann weight can
26

8. Discussion

The DMRG for 2D classical systems is formulated for the row-to-row transfer ma-
trix. The formulation is therefore anisotropic, since the distinction between hori-
zontal and vertical directions is formally introduced. More isotropic treatment of
2D lattice has been developed by Baxter, using the corner transfer matrix (CTM).?8
It is a small surprise that we encounter the principle of DMRG  the basis trunca-
tion assisted by density submatrix, variational relation for partition function, and
iterative use of block spin transformation — when we read Baxter’s textbook.33 Tt
is possible to introduce the infinite system algorithm to Baxter’s formulation, and
to obtain a more isotropic expression of DMRG for 2D classical systems: the corner
transfer matrix renormalization group (CTMRG).5? The advantage of CTMRG is
that the numerical calculation is faster than the infinite system DMRG algorithm.

Not only applications, but also the formalism in DMRG are still in progress.
We finally pick up several new topics in DMRG. Since in DMRG the ground state
is precisely obtained as a product of tensors, it is natural to consider the analytic
formulation of DMRG,%":%3 whose aim is to obtain the appropriate tensors purely
analytically, without any numerical calculation; this attempt is similar to the tensor
product Ansatz that had been known before DMRG.42:43:44:45:46 Quite recently ,

64 »

Sierra et al . proposed the ‘recurrent variational Ansatz,°*’ which quantitatively

agrees with numerical results by DMRG, and the Ansatz clarifies the physical inter-
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pretation of the matrix product state. The extension of the tensor product Ansatz
to 2D quantum (or 3D classical) systems is one of the hot subjects that would tell
us something about the DMRG for higher dimensional systems.%%:66:67 Finally | we
list up several unsolved problems.

e Periodic Boundary Condition: It is natural to imagine that the variational
state for the system with periodic boundary condition is a uniform (= position
independent) tensor product. However, the current finite system algorithm
does not produce such a uniform tensor product.8

e Long Range Interactions (LRI): It is rather hard to treat 1D quantum
systems with LRI. It is much harder to treat 2D classical systems with long
range interactions; consider how hard to define the transfer matrix is. It is
even non-trivial to apply DMRG to 1D classical systems with LRI.

e Continuous Variable: Since DMRG is defined for lattice models with dis-
crete site variables, we have to introduce discretization (= regularization) in
order to treat models with continuous spin symmetry or field models in contin-

uous space.? We don’t have any general principle for such a discretization.”™

e Random 2D Classical System: Formally speaking, it is possible to ap-
ply DMRG to random 2D classical systems. There are, however, two major
problems: (a) Since the transfer matrix and the density matrix are dependent
to the position of the spin row, we have to perform RG transformations in-
dependently for each row; the procedure is much more time consuming than
DMRG for uniform system. (b) Eigenvalues of the density submatrix are not
always positive. Therefore , the calculation is not wvariational any more.

e Free Fermion and Free Boson Systems: One might think that it is
easy to obtain an analytic (or exact) formulation of DMRG for free fermions
and bosons on 1D lattice. However, no one has actually diagonalized the
density submatrix of such systems in the thermodynamic limit. Similarly, in
2D classical systems, analytic formulation for the Gaussian model or the Ising

model at the massless point is not known.”!:72

e Solvability: For exactly solved models,® there should be ezxact analytic ex-
pression for DMRG, that is not known so far. What is the relation between
the R-matrix and the RG transformation matrices in DMRG?

e Density Matrix Formulation in higher dimensions: We know the expo-
nential damping of the eigenvalues of the density submatrix for 1D quantum
and 2D classical systems. The property enables the precise calculation in
DMRG. Can we expect the same damping trend in higher dimensions, includ-
ing the infinite dimension?™3

The DMRG is not only a powerful numerical method, but is also a new gate for
the analytical study of the statistical systems. We hope that these points will be
clarified near future.
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