
Kobe University Repository : Kernel

PDF issue: 2024-06-05

I/O Performance of the SX-Aurora TSUBASA

(Citation)
2020 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW):27-35

(Issue Date)
2020

(Resource Type)
conference proceedings

(Version)
Accepted Manuscript

(Rights)
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or…
reuse of any copyrighted component of this work in other works.(URL)
https://hdl.handle.net/20.500.14094/0100476376

Yokokawa, Mitsuo ; Nakai, Ayano ; Komatsu, Kazuhiko ; Watanabe, Yuta ;
Masaoka, Yasuhisa ; Isobe, Yoko ; Kobayashi, Hiroaki

I/O Performance of the SX-Aurora TSUBASA

Mitsuo Yokokawa

Graduate School of System Informatics
Kobe University

Kobe, Japan
yokokawa@port.kobe-u.ac.jp

Ayano Nakai

Graduate School of System Informatics
Kobe University

Kobe, Japan
1695093t@stu.kobe-u.ac.jp

Kazuhiko Komatsu

Cyberscience Center
Tohoku University

Sendai, Japan
komatsu@tohoku.ac.jp

Yuta Watanabe, Yasuhisa Masaoka, Yoko Isobe

AI platform Division
NEC Corporation

Minato-ku, Tokyo, Japan
{yuta-watanabe-jt,ymsk-bx,y-isobe-pi}@nec.com

Hiroaki Kobayashi

Graduate School of Information Sciences
Tohoku University

Sendai, Japan
koba@tohoku.ac.jp

Abstract—File outputs or checkpoints for intermediate re-
sults frequently appear at appropriate time intervals in large-
scale time-advancement numerical simulations where they are
utilized for simulation post-processing and/or for restarting
consecutive simulations. However, file input/output (I/O) for
large-scale data often takes excessive time due to bandwidth
limitations between processors and/or secondary storage sys-
tems like hard disk drives (HDDs) and solid state drives (SSDs).
Accordingly, efforts are ongoing to reduce the time required for
file I/O operations in order to speed up such simulations, which
means it is necessary to acquire advanced I/O performance
knowledge related to high-performance computing systems
used.

In this study, I/O performance with respect to the connection
bandwidth between the vector host (VH) server and the vector
engines (VEs) for three configurations of the SX-Aurora TSUB-
ASA supercomputer system, specifically the A300-2, A300-4,
and A300-8 configurations, were measured and evaluated. The
accelerated I/O function, which is a distinctive feature of the
SX-Aurora TSUBASA I/O system, was demonstrated to have
excellent performance compared to its normal I/O function.

Keywords-I/O performance; Accelerated I/O function; SX-
Aurora TSUBASA; Vector supercomputer; DMA engine

I. INTRODUCTION

Computer simulations, which are powerful tools for solv-

ing various problems, are now commonly used in a wide

variety of science and engineering research fields, including

weather/climate predictions and artificial structure designs.

Such simulations usually require extremely long elapsed real

times (wall-clock times) before meaningful and useful re-

sults can be obtained, even if cutting-edge high-performance

supercomputer systems are used and also parallel computa-

tion on them can be applied to simulations.

In such situations, intermediate calculated results obtained

by the simulations are often written to permanent files on

electronic storage devices such as hard disk drives (HDDs)

and/or magnetic tape libraries. Those results can be used to

confirm that the simulations are proceeding as expected, and

to prepare for consecutive batch jobs that will be chained to

the final simulated time point.

However, since recent computer simulations treat com-

plicated and large-size problems, and resulting in a lot of

program variables, i.e. large memory capacity to be assigned,

the intermediate file volume, which is output by such simula-

tions, are often huge. In addition, since parallel computations

on supercomputers generate the same number of logical

files as the degree of parallelism of the simulation, they

produce large numbers of files and vast total file volumes.

This is true even if a parallel file system is used, and it is

expected that such conditions will only be exacerbated in

future advancements.

Because of the above, input/output (I/O) performance

from/to sequential unformatted files is a topic of significant

concern, and efforts are ongoing to decrease the related time

requirements so that total simulation wall-clock times are as

short as possible. Several intensive studies on parallel I/O

systems and its benchmarking tools have been carried out

so far, for example E. C. Inacio et al. [1], [2]. However, I/O

performance evaluation for new architecture systems should

be done.

Recently, the SX-Aurora TSUBASA vector-type super-

computer was introduced to the public [3], [4]. Although the

ratio of vector-type supercomputers to the overall number

of supercomputers in the TOP500 raking list is low, vector-

type supercomputers have exceptionally large memory band-

width, which allows them to achieve higher sustained perfor-

mance for a variety of applications such as fluid dynamics.

Furthermore, although the performance of the SX-Aurora

TSUBASA was previously evaluated by Komatsu et al. [5],

to the best of our knowledge, no sufficient evaluations that

focus on its I/O performance have been performed.

Accordingly, in this paper, we report on I/O performance

measurements of sequential unformatted files for three con-

figurations of the SX-Aurora TSUBASA. In addition to the

27

2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-7281-7445-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPSW50202.2020.00014

normal I/O function, scalability issues on the accelerated
I/O function that has been implemented in the new archi-

tecture of the SX-Aurora TSUBASA are discussed.

The rest of this paper is organized as follows. Section

II provides an overview of the SX-Aurora TSUBASA and

its two I/O function types. Experiment environments such

as system configurations and the pseudo-codes used in the

measurements are described in Section III. The measurement

results, including I/O performance comparisons of the three

configurations are discussed in Section IV. The concluding

remarks are given in Section V.

II. I/O FUNCSIONS ON SX-AURORA TSUBASA

A. Overview of SX-Aurora TSUBASA

The SX-Aurora TSUBASA is a vector-type supercom-

puter that has a distinguished system architecture compared

to previous SX-series supercomputers [6], [7]. The system

consists primarily of a vector host (VH) and one or more

vector engines (VEs). The VH is a standard server with

one or two x86 architecture processors on which a standard

Linux operating system (OS) is operated. A VE is im-

plemented as a Peripheral Component Inteconnect Express

(PCIe) card, on which a vector processor is mounted with

six high-bandwidth memory (HBM2) modules. The vector

processor consists of eight vector cores, a 16 MB last-

level-cache (LLC), and a VE direct memory access (DMA)

engine. The LLC is connected to each core through a two-

dimensional (2D) intra-network with a total cache bandwidth

of 3.0 TB/s.

Design concepts related to how operations are managed

on the SX-Aurora TSUBASA are worth mentioning. For

example, OS functions have been realized on the VH to the

greatest extent possible so that the VEs are able to effectively

utilize their computational power by concentrating program

executions with vector instructions.

Therefore, in the VH, a minimum required function,

which only manages the jobs running on the VEs, is newly

introduced on top of the Linux OS in its software stack. A

VEOS is a light software module that consists of a ve exec
command and VEOS services. The ve exec command loads

a VE program from memory in the VH, puts it into the

memory of the VE, creates a VE process on the VE as well

as a corresponding pseudo-process on the VH, and then kick-

starts the program. The VEOS services provide tasks that

bridge the system calls invoked in the programs running on

the VE to the OS on the VH. It also handles interrupts and

instruction exceptions that occur during program execution

on the VE.

Since the GNU C library (glibc) is ported onto the

VEs, applications can call the glibc functions such as I/O

functions normally. Hence, applications do not need to

change the way their programs operate; they must only be

recompiled to generate execution binary codes using the

VE instruction sets. Of course, program vectorization should

also be applied to achieve higher computation performance.

To execute a VE program on the SX-Aurora TSUBASA,

regardless of whether it is a multi-thread and/or a multi-

process program, it is necessary to issue a execution com-

mand on the VH.

B. Implementation of I/O functions on SX-Aurora TSUBASA

The SX-Aurora TSUBASA has two I/O function types,

normal and accelerated I/O functions as described in Figure

1. In the normal I/O, when a user process on the VE

needs to use an I/O system call, the VEOS pins down a

4 KB temporary buffer on the memory of the corresponding

pseudo-process running on the VH (hereafter referred to as

VH buffer). At the same time, a buffer on the memory of

the VE (hereafter referred to as VE buffer) is assigned by

the glibc running on the VE. This task requires an address

translation between virtual and physical addresses on the

VH. Next, the VE DMA engine moves data from/to the

VE buffer to/from the VH buffer. After the I/O process is

finished, the VEOS releases the VH buffer.

Figure 1. Normal I/O and Accelerated I/O

When a VE program invokes an I/O system call, memory

allocation and de-allocation operations are required on the

VH. These operations (memory pinning-down and releasing)

are essential to prevent paging out a Linux memory page and

to retain the page so that it can be accessed by the VE DMA

engine while the system call is processed.

Since there is a latency to start/finish the system call in

those operations, they take numerous clock cycles compared

to those that operate only on the VH. In addition, since these

operations for pinning down and releasing the VH buffer are

executed at every I/O system call in the normal I/O function,

they might lead to unacceptable overhead if system calls are

processed multiple times in user application programs.

Therefore, the memory area accessed by the VE DMA

engine should be fixed during program execution in order

28

to obtain better I/O performance. To realize a fixed memory

area, an accelerated I/O function was developed to pin down

the memory area used for data transfer. The VEOS is not

involved in transferring the data to be read/written when

the accelerated I/O function is used. Instead, the following

process is used.

First, once the use of the accelerated I/O function is

declared at the beginning of a job, a dedicated VE buffer

of 8 MB per thread and a dedicated VH buffer of 64

MB per pseudo-process are assigned on the memory ar-

eas. When a user process needs a system call for I/O,

the VE DMA engine moves data from/to the dedicated

VE buffer to/from the dedicated VH buffer directly. In

this case, it is not necessary to pin down and/or release

the VH buffer for every I/O operation. Therefore, the

accelerated I/O is expected to be faster than the normal

I/O. The accelerated I/O function can be used simply by

setting an environmental variable VE_LD_PRELOAD as

VE_LD_PRELOAD=libveaccio.so.1 prior to execu-

tion of the programs which contains I/O statements.

III. MEASUREMENT ENVIRONMENTS

A. Configurations of A300-2, A300-4, and A300-8

In this study, three configurations of the SX-Aurora

TSUBASA, A300-2, A300-4, and A300-8 (shown in Figure

2), were used for measurements.

Figure 2. Three configurations of SX-Aurora TSUBASA A300 series

The A300-2 configuration, which is shown in Figure 2(a),

consists of a VH with an Intel Xeon Gold 6126 (Skylake

architecture) central processing unit (CPU) and two VEs (VE
#0 and #1). Each VE is connected to one of the PCIe (16

lanes) ports of the CPU. A secondary storage SSD is also

connected to the CPU.

Both of the VHs of the A300-4 and A300-8 configura-

tions, which are shown in Figures 2(b) and (c), have two

Xeon CPUs that are connected by three ultra-path connect

Pseudo-code 1 Measurement code written in Fortran
program
use mpi
real(kind=8) :: var(N) ← N is determined
according to file size.

— Initialization —
call file_read(myrank, var)
call file_write(myrank, var)

— Finalization —
end program

subroutine file_read(myrank, var)
open(ur, file= foo.myrank ,format= unformatted)

← MPI_Barrier() &
Timer starts
read(ur) var

← MPI_Barrier() &
Timer ends
end subroutine

subroutine file_write(myrank, var)
open(uw, file= boo.myrank ,format= unformatted)

← MPI_Barrier() &
Timer starts
write(uw) var
flush(uw)

← MPI_Barrier() &
Timer ends
end subroutine

Pseudo-code 2 Measurement code written in C
void file_read_(int *myrank, double *var){
FILE *fd;
fd=fopen(foo.myrank , rb);

← MPI_Barrier() &
Timer starts
fread(var, sizeof(double), N, fd);

← MPI_Barrier() &
Timer ends
}

void file_write_(int *myrank, double *var){
FILE *fd;
fd=fopen(foo.myrank , wb);

← MPI_Barrier() &
Timer starts
fwrite(var, sizeof(double), N, fd);
fflush(fd);

← MPI_Barrier() &
Timer ends
}

links to each other. The A300-4 configuration consists of

a VH and four VEs (VE #0 to #3), and each VE is

connected to one port of the four PCIe ports of the two

CPUs as shown in Figure 2(b). The A300-8 configuration

consists of a VH, eight VEs (VE #0 to #7), and two PCIe

switches (PCIe SWs) as depicted in Figure 2(c). Each PCIe

SW is connected to one of the two PCIe ports of a CPU.

The secondary storage consisting of solid state drives (SSDs)

29

Figure 3. Read performance of A300-2 configuration in Fortran code Figure 4. Read performance of A300-2 configuration in C code

connected to the VH is used for a file system.

Every CPU on the VH has a maximum of 48 PCIe lanes,

of which 16 lanes are bundled for a VE connection whose

theoretical and sustained bandwidth levels are approximately

15.75 GB/s and 10.0 to 12.0 GB/s, respectively. The A300-

4 configuration has four PCIe connections between the VH

and the VEs, which is the highest of all three configurations.

The sustained bandwidth between the VH and VEs of the

A300-4 is expected to achieve approximately 40.0 GB/s.

B. Measurement programs

Two Message Passing Interface (MPI) programs were

implemented for the measurement as described in Pseudo-
codes 1 and 2. The main program (written in Fortran) creates

a number of MPI processes according to the command

line parameter that indicates the number of MPI processes

to be invoked at a job start. The MPI ranks were bound

to the cores and VEs as the ascending order of the core

and VE number. Each MPI process calls the same sub-

program, which accesses a sequential unformatted file (i.e. a

binary file) when it is necessary to read and write. Pseudo-
codes 1 and 2 for the sub-programs are written in Fortran

and C, respectively. These codes were compiled by using

the compilers nfort v2.4.1 and ncc v2.4.1 with an

optimization flag -O3.

Several file sizes from 8 KB to 1GB and three I/O buffer

sizes of 8 KB, 64 KB, and 128 KB assigned by glibc were

used for the measurements. Though the performance values

for the files whose sizes were less than 1MB were low, those

sizes are not necessary for discussions on performance of the

bandwidth between the VH and VEs. And differences with

respect to the buffer sizes were not observed. Thus, the file

sizes of 1 MB, 8 MB, 32 MB, 128 MB, 256 MB, and 1 GB

and two I/0 buffer sizes of 8 and 512 KB were taken in our

performance analyses, Finally, the number of measurements

was set at 12 cases for each code.

Here, it should be noted that since each VE socket has

eight cores and each core can be assigned an MPI process,

up to 16, 32, and 64 MPI processes can be created on the

A300-2, A300-4, and A300-8 configurations, respectively.

The number of measured I/O time values was the same

number of MPI processes, and a total 10 measurements were

carried out. Therefore, we obtained the measured values of

10 multiplied by the number of MPI processes for each case.

For example, 16 measured I/O time values were obtained

via a measurement of 16-MPI-process execution, and 10

measurements were carried out. Consequently, a total of

160 measured values were obtained for the 16-MPI-process

execution. All the measured values for each case were then

averaged to obtain the final value as an I/O performance

value for each case.

It is noted that, in the experiments, we focus on the time

when data move between the VH buffer and VE memory,

not the time for reading from and writing to the disk drives.

IV. MEASUREMENT RESULTS

A. Comparison of normal I/O performance between Fortran
and C codes on A300-2 configuration

Figures 3 and 4 show the read performance values using

the normal I/O function for Pseudo-codes 1 and 2, respec-

tively. For the Fortran code, approximately 4.6 GB/s read

performance was achieved for cases with 16 or more MPI

processes and 32 KB data. No significant differences were

observed between cases with 8 and 256 KB buffer sizes. For

the C code, more than 5 GB/s performance was obtained for

cases with 16 or more MPI processes and 32 KB data. The

values for the VH buffer size of 8 KB are slightly smaller

than those of the 256 KB buffer size for all C code cases.

In case of 1 MB data, lower read performance of around

2 MB/s was observed. In addition, we found that the

performance decreased as the number of MPI processes

increased. It appears that the latency for processing a system

30

Figure 5. Write performance of A300-2 configuration in Fortran code Figure 6. Write performance of A300-2 configuration in C code

Figure 7. Read performance of A300-2 configuration in C code with
accelerated I/O

Figure 8. Write performance of A300-2 configuration in C code with
accelerated I/O

Figure 9. Read performance of
A300-2 configuration for 1 GB
file and 512 KB buffer by using
the normal and accelerated I/O

Figure 10. Write performance
of A300-2 configuration for 1 GB
file and 512 KB buffer by using
the normal and accelerated I/O

call to move data between the VH and VEs was observed

and resulted in the lower performance.

Figures 5 and 6 show the write performance values using

the normal I/O set up for Pseudo-codes 1 and 2, respectively.

Here, it can be seen that almost 5 GB/s write performance

was achieved for cases with 16 or more MPI processes and

32 KB data using the Fortran code, and that a greater than

5 GB/s write performance was obtained using the C code

for cases with 16 or more MPI processes and 32 KB data.

For all cases, performance levels by eight MPI processes

were not scalable when compared to the levels achieved

by four MPI processes. This is because 8 MPI read/write

operations are the most that can be applied to the eight cores

of a VE socket, and it appears that processing of system

calls from eight cores creates contentions on some parts in

a socket.

We observed consistently that the read/write performance

values measured by the C codes were superior to those

measured by the Fortran code on the A300-2, A300-4,

and A300-8 configurations, because the C code can call

glibc directly. On the other hand, an interface code bridging

from the Fortran language to glibc is called when executing

I/O Fortran statements such as READ and WRITE, and an

additional time is required for the execution. Therefore, we

31

Figure 11. Read performance of A300-4 configuration in C code
with normal I/O

Figure 12. Read performance of A300-4 configuration in C code
with accelerated I/O

Figure 13. Write performance of A300-4 configuration in C code
with normal I/O

Figure 14. Write performance of A300-4 configuration in C code
with accelerated I/O

will discuss results for the C code in the rest of the paper.

B. Comparison of normal and accelerated I/O performance
levels

1) Results for A300-2 configuration: Figures 7 and 8

show the read and write performance values when using

the accelerated I/O for the C code on A300-2 configuration,

respectively. Here, it can be seen that the performance level

increased as the file size increased. Approximately 20 GB/s

performance was obtained for the case of a 1 GB file

size and 512 KB buffer size with 16 MPI processes. Since

two PCIe ports are used for data transfer, this performance

measurement is close to the maximum sustained value of the

two PCIe connections among VH and two VEs. There were

no differences with respect to the buffer size differences.

Read/write performance values using the normal and

accelerated I/O types for 1 GB file size and 512 KB buffer

size are compared as shown in Figures 9 and 10. Here, it can

be seen that, in the case of 16 MPI processes, the accelerated

I/O had performance levels approximately four times those

of the normal I/O.

2) Results for A300-4 configuration: Figures 11 and 12

show the read performances achieved by the C code for the

normal and accelerated I/O types, respectively, on the A300-

4 configuration. It is noted that the same vertical scale is

taken in the both figures.

Here, it can be seen that a read performance of approxi-

mately 8 GB/s was obtained for the normal I/O in cases with

more than 32 MB files and 32 MPI processes. In contrast,

read performance in using the accelerated I/O increased

gradually as the file size increased, and 32.3 GB/s read

performance was obtained with 32 MPI processes for the

case of 1 GB file and 512 KB buffer. However, a scalable

performance increase for 32 MPI processes compared to 16

MPI processes was not observed.

Figures 13 and 14 show the write performance by the C

code for both the normal and accelerated I/O types, respec-

tively. These figures show almost 8 GB/s write performance

was obtained for files larger than 512 MB by the normal

I/O. They also show that performance using the accelerated

32

Figure 15. Read performance of A300-8 configuration in C code
with normal I/O

Figure 16. Read performance of A300-8 configuration in C code
with accelerated I/O

I/O was gradually increased as the file size increased, and

that 27.4 GB/s write performance was obtained with 32

MPI processes for case of a 1 GB file and 512 KB buffer.

However, no significant differences were found between

buffer sizes for each file size.

Since, as stated in Section III-A, there are four PCIe

connections between the VH and four VEs, we expected

that approximately 40.0 GB/s read/write performance should

be achieved, which is the total sustained performance for

four PCIe connections. However, the actual measured per-

formance level was less than the expected value, apparently

because the bandwidth produced by the three ultra-path

connection links between two CPUs or the I/O performance

of the SSDs is affected somehow. Further studies will be

needed to clarify this point.

3) Results for A300-8 configuration: Figures 15 and 16

show the read performance values by the C code for the

normal and accelerated I/O types, respectively, on the A300-

8 configuration. Here, we can see that approximately 9 GB/s

read performance was obtained for cases involving over 32

MB files with 64 MPI processes when the normal I/O was

used. We can also see that the maximum performance of

approximately 20 GB/s was achieved for the case of 1 GB

file and 512 KB buffer with 64 MPI processes, because all

the VEs are connected to the VH via two PCIe SWs, and

the sustained bandwidth between the VH and PCIe SWs is

almost 20 GB/s, that is close to the upper bandwidth limit

for the A300-8 configuration.

It is found that the performance values for the cases

of the 16 and 32 MPI processes were almost the same.

Additionally, approximately a 12.5 GB/s bandwidth was

obtained for the cases of 1 GB file and 512 KB buffer. Since

MPI processes mapping to the VEs conducted in the order

of the smallest to largest VE ID (VE #0 to #3) in these

experiments, one PCIe SW provides the only measurement

path to the VH. This resulted in a maximum obtained

Figure 17. Comparison of read performance levels using different MPI
mapping to VEs

bandwidth value for a 10 GB/s sustained PCIe connection.

To clarify whether the PCI SW creates a bottleneck that

prevents us from obtaining scalable performance from 16 to

32 MPI processes, we carried out an additional experiment

in which the MPI processes were divided into two equal

groups and each group was assigned to VEs in a way that

ensured the route from the VEs to the VH can pass both the

two PCIe SWs.

The results are shown in Figure 17. Here, we can see

that (as depicted in the first gray bar from the left), approx-

imately 20 GB/s was obtained for 16 MPI processes. In this

experiment, a group of eight MPI processes was mapped to

VE #3, which is connected to the left PCIe SW in Figure

2(c), whereas the other group was mapped to VE #4, which

is connected to the right PCIe SW. Therefore, both PCIe SW

paths were used.

On the other hand, approximately a 10 GB/s read per-

formance value was obtained for the cases in which all 16

MPI processes are mapped to the VEs that connect either

the right or the left PCIe SW (as depicted by the second

yellow and the third blue bars from the left), since only one

of PCIe connections between the PCIe SWs and the VH was

33

Figure 18. Write performance of A300-8 configuration in C code with
normal I/O

Figure 19. Write performance of A300-8 configuration in C code with
accelerated I/O

Figure 20. Read performance of
A300-8 configuration for 1GB file
and 512KB buffer by using the
normal and accelerated I/O

Figure 21. Write performance of
A300-8 configuration for 1GB file
and 512KB buffer by using the
normal and accelerated I/O

used for all cases.

Figures 18 and 19 show the write performance achieved

by the C code for the normal and accelerated I/O, respec-

tively, on the A300-8 configuration. Here, we can see that

the write performance was almost the same as the read

performance.

Figures 20 and 21 show comparisons between the normal

I/O and accelerated I/O types in the case of 1 GB file size

and 512 KB buffer. Here, we can see that the accelerated

I/O achieved significantly higher read and write performance

levels than the normal I/O. In fact, approximately 20 GB/s

performance was obtained for the accelerated I/O in the case

of 64 MPI processes. This sustained value is close to the

limit of two PCI-e interfaces of A300-8 configuration and

shows that good scalability was obtained as the number of

MPI processes increased.

C. Comparison of three configurations

Read and write performance levels for the three configu-

rations using the normal I/O and accelerated I/O types for

1 GB file size and a 512 KB buffer size in the C code

are shown all together in Figures 22 and 23, respectively.

Here, we can see that the performance obtained using the

accelerated I/O were better than those obtained using the

normal I/O.

It is also found that almost the sustained PCIe band-

widths are obtained for any of configurations by using the

accelerated I/O function, when the data size is large and

the number of MPI processes is large. As expected, the

A300-4 configuration, which has four PCIe connections

between the VH and four VEs, was found to achieve the

highest performance level using the accelerated I/O. More

specifically, a 32.5 GB/s read performance was obtained by

32 MPI processes for a 1 GB file size and a 512 KB buffer.

V. CONCLUSION

I/O performance from/to sequential unformatted files is

a matter of significant concern, and efforts are ongoing to

reduce simulation wall-clock time, including I/O time, as

much as possible. However, since performance levels depend

on the configuration of the high-performance computing

systems to be used, careful I/O performance evaluations are

necessary to recognize system characteristics and optimal

code implementations should be chosen.

This paper clarified the I/O performance of the SX-

Aurora TSUBASA, with particular attention to the acceler-

ated I/O function that is dedicatedly implemented by using

the VE DMA engine installed in the VE. Three SX-Aurora

TSUBASA A300 configurations have been used in our

experiments, and the results showed that the I/O performance

levels increased as the number of MPI processes and file

sizes increased, and that the performance provided by the

accelerated I/O is significantly better than that provided by

the normal I/O. In fact, A 32.5 GB/s read performance level

is achieved by using the accelerated I/O function with 64

MPI processes for 1 GB file size and 512 KB buffer on the

A300-4. In order to use the accelerated I/O function, users

simply set an environmental variable as specified.

34

Figure 22. Comparison of read performance of A300 configuration in
C code

Figure 23. Comparison of write performance of A300 configuration in
C code

As expected, the performance level of the A300-4 configu-

ration, which has the largest number of the PCIe connections

between the VH and VEs, was the highest of the three. It

was also found that the mapping of MPI processes to VEs

is important for improving the performance on the A300-

8 configuration because two PCIe connections between the

VH and the PCIe SWs, each of which has four connections

with four VEs, are configured.

It is observed that the larger the data size to be

read/written are, the greater the performance of the accel-

erated I/O obtained on any configuration is. Therefore, data

size should be carefully chosen to achieve higher perfor-

mance. Program modification in I/O parts of applications by

using C functions such as fread and fwrite is preferable

even if the original code was written in Fortran.

In general, however, the entire file size of a realistic

simulation program to be output as checkpoints is fixed

according to the problem size to be solved, and the output

data capacity from simulation codes is usually partitioned

into multiple files based on the degree of parallelism, even

though the partitioned data are kept together as a parallel

file. This means the file size to be read and written in each

MPI process becomes smaller.

In these experiments, we set all file sizes the same so

that system performance could be revealed. From the results

obtained, we conclude that an appropriate file size should

be determine carefully according to the system configura-

tion and the degree of parallelism for realistic simulation

problems.

ACKNOWLEDGMENT

This work is supported partially by MEXT Next Genera-

tion High-Performance Computing Infrastructure and Ap-

plications R&D Program, entitled R&D of a Quantum-

Annealing-Assisted Next Generation HPC Infrastructure and

Its Applications.

REFERENCES

[1] E. C. Inacio, P. A. Barbetta, and M. A. Dantas, “A statistical
analysis of the performance variability of read/write operations
on parallel file systems,” Procedia Computer Science, vol.
108, pp. 2393 – 2397, 2017, international Conference on
Computational Science, ICCS 2017, 12-14 June 2017, Zurich,
Switzerland.

[2] E. C. Inacio and M. A. Dantas, “An i/o performance evaluation
tool for distributed data-intensive scientific applications,” in
Proceedings of the Latin America Data Science Workshop, 08
2018, pp. 1–8.

[3] NEC Corporation, “NEC releases new high-end HPC product
line, SX-Aurora TSUBASA,” 2017. [Online]. Available:
https://www.nec.com/en/press/201710/global 20171025 01.html

[4] ——, “NEC SX-Aurora TSUBASA -
Vector Engine,” 2018. [Online]. Avail-
able: https://www.nec.com/en/global/solutions/hpc/sx/vector-
engine.html

[5] K. Komatsu, S. Momose, Y. Isobe, O. Watanabe, A. Musa,
M. Yokokawa, T. Aoyama, M. Sato, and H. Kobayashi, “Per-
formance Evaluation of a Vector Supercomputer SX-Aurora
TSUBASA,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and
Analysis, ser. SC ’18. Piscataway, NJ, USA: IEEE Press,
2018, pp. 54:1–54:12.

[6] R. Egawa, K. Komatsu, S. Momose, Y. Isobe, A. Musa,
H. Takizawa, and H. Kobayashi, “Potential of a modern
vector supercomputer for practical applications: performance
evaluation of SX-ACE,” The Journal of Supercomputing,
vol. 73, no. 9, pp. 3948–3976, Sep 2017. [Online]. Available:
https://doi.org/10.1007/s11227-017-1993-y

[7] T. Soga, A. Musa, Y. Shimomura, R. Egawa, K. Itakura,
H. Takizawa, K. Okabe, and H. Kobayashi, “Performance
evaluation of NEC SX-9 using real science and engineering
applications,” in Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis, ser.
SC ’09, 2009, pp. 28:1–28:12.

35

