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ABSTRACT: Organic–inorganic hybrid halide perovskites 
(ABX3, where A = CH3NH3+ (methylammonium ion, MA); B = 
Pb2+; and X = Br−, I−, or Cl−) have excellent optoelectronic 
properties and are highly efficient photovoltaic materials, but 
their chemical instability impedes their development for use 
in next-generation solar cells, wherein they serve as the light-
harvesting material. Here, we propose a mechanism of photo-
luminescence red shift, a performance-loss phenomenon 
known as light-induced halide segregation, in mixed halide 
perovskites upon illumination using in situ single-particle 
spectroscopy and synchrotron-based X-ray techniques. Our 
experimental analyses suggest a defect-assisted photoinduced 
transition from ordinary nonpolar phases to polar phases at 
the local scale within seconds is coupled with organic cation 
reorientation, which in turn narrows the bandgap; first-
principles calculations quantitatively supported this result. 
Our findings provide deeper insights into the nature of local 
polar domains in hybrid perovskite materials and help im-
prove device stability and efficiency. 

A power conversion efficiency (PCE) of over 25% can be 
achieved with organic–inorganic hybrid halide perovskites,1,2 
which can be further increased by bandgap tuning by intro-
ducing two or more halide anions under moderate synthetic 
conditions.3–5 However, visible light illumination causes the 
segregation of halogen anions in mixed halide systems,6 creat-
ing I-rich domains with narrower bandgaps. This leads to a 
large loss of voltage (by over 10%7) owing to charge recombi-
nation. Photoluminescence (PL) redshifts of 0.1–0.5 eV, as 
observed by different researchers (Table S1), are recognised 
as a signature of this halide segregation, but the underlying 
mechanism is still under debate,6 perhaps owing to differ-
ences in the sample conditions. Furthermore, this segregation 
is probably triggered by ion migration at the defective surfac-
es and grain boundaries of polycrystalline films8 that subse-
quently extends into the entire film.9 

Here, to investigate the relationship between the crystal 
structure and the optical properties of halide perovskites 
while avoiding particle aggregation and any substrate effects, 
we prepared homogeneous isolated monocrystalline nanopar-
ticles (~18 nm) of a mixed halide perovskite, MAPb(Br0.5I0.5)3 

(Figure 1a). The UV-visible absorption and emission spectra of 
the nanoparticles (dispersed in toluene) were typical for 
MAPb(Br0.5I0.5)3 (Figures 1b, S1, and S2). The PL properties 
were investigated using widefield and confocal microscopy by 
depositing the nanoparticles on a cover glass and immersing 
them in solvent (1:1 (v/v) toluene/n-heptane) to avoid degra-
dation (Figure 1c). A single nanoparticle or small aggregates 
of particles appeared as luminescent spots in the PL images 
(Figure 1d), but these spots were larger than the actual parti-
cles owing to the diffraction limit of visible light. Under 405 
nm excitation (excitation intensity: 20 mW cm−2), the PL in-
tensity gradually increased over time, and the peak position 
shifted from 640 to 720 nm (Figure 1e). This redshift was also 
observed for a solvent-dispersed sample (Figure S2) and is 
consistent with the findings of previous studies.10,11 The PL 
shift, which was reversible and depended on the excitation 
intensity (Figure S3), saturated in tens of seconds (Figure 1f, 
kforward = 0.066 s−1), whereas the backward change was faster 
(kbackward = 0.091 s−1) than that for bulk crystals (6.8 × 10−3 
s−1).11 Furthermore, the average PL decay lifetime gradually 
increased under illumination (Figure S4 and Table S2), indi-
cating suppressed nonradiative recombination.12 The PL spec-
tra exhibited no peaks assignable to Br-rich phases (500–600 
nm) (Figures 1e and S2).13  

To further explore the mechanism of PL redshift, we meas-
ured the PL emission from individual spots over time in two 
wavelength regions: 574–626 nm (orange PL), originating 
from the as-prepared particles; and 672–696 nm (red PL), 
which slowly increases with a weak excitation intensity (exci-
tation intensity: 3.5 mW cm−2). As shown in Figures 2a and 2b, 
the red PL signals from individual nanoparticles exhibited a 
blinking behavior (intermittent on and off PL) during the ini-
tial stage, which is a characteristic signature of a single parti-
cle,14 whereas the orange PL intensity gradually decreased 
without blinking. The independent blinking of the red PL sig-
nals suggests the formation and dissociation of emissive sites 
for lower-energy PL rather than the charging and discharging 
of nanoparticles.15 The uncorrelated PL  

 



 

Figure 1. (a) Transmission electron microscopy image and (inset) particle size distribution. (b) UV-visible absorption and PL spec-
tra of toluene-dispersed nanoparticles. (Insets) Photographs of the colloidal solution illuminated by visible (left) and UV (right) 
light. (c) Schematic of the PL microscopy measurement system. Particles were deposited on a cover glass in solvent and observed 
using inverted fluorescence microscopy with 405 nm laser irradiation. (d) PL images captured immediately after irradiation (left) 
and after sustained irradiation (right). Scale bars: 1 μm. (e) Temporal evolution of PL spectra. (f) Typical change in the PL intensity 
under irradiation. The backward process was traced by intermittently recording the PL spectra by flashing the excitation light. 

 

 
Figure 2. (a) PL images captured simultaneously using two 
bandpass filters under irradiation. Scale bars: 1 μm. (b) Typi-
cal intensity trajectories for a single object. (c) Histogram of 
on-time (τredon) for bursts of red PL. 
 
behavior can be accounted for by two possible mechanisms. 
(i) The PL intensities of two species reflect the difference in 
their emission efficiencies. The red-emitting species that are 
stochastically generated from the initial state should be only a 
small part of the particle. If quantum yields of the red-emitting 

species are much higher than those of the original orange-
emitting species (approximately 0.01), as suggested by PL 
lifetime measurements (Figure S4 and Table S2), the corre-
sponding PL intensity changes in the orange channel might be 
buried in the background. (ii) It is presumed that there is no 
direct equilibrium between the orange- and red-emitting spe-
cies. If the structural transition involves non- or weakly lumi-
nescent intermediate(s), the orange PL intensity is not corre-
lated with the red PL intensity.  

As shown in Figure 2c, the probability distribution of the 
red PL duration time (τredon) followed a single-exponential 
curve with a characteristic lifetime of 6.8 ± 0.5 s. Because this 
value is close to the reciprocal of the backward rate of change 
(kbackward), the increasing PL under intense excitation condi-
tions is ascribed to the accumulation of emissive local do-
mains with a specific lifetime. Temperature-dependent exper-
iments (Figure S5) revealed that the integral of the PL change 
had an activation energy of 0.3–0.4 eV, which is close to that 
for halide anion migration (0.17–0.43 eV).16 As nanoparticles 
embedded in the polystyrene film did not show a directional 
peak shift (Figure S6),17 these PL changes are likely to be trig-
gered by halide migration through/to anion vacancies, proba-
bly at the surface.  

The structural changes upon illumination were analysed by 
in situ synchrotron X-ray scattering using colloidal nanoparti-
cle dispersions, which were kept dilute to avoid coagulation 
(Figure 3a). The solvent signal was subtracted to  
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Figure 3. (a) Schematic of the data collection system. (b) XRD patterns obtained from X-ray total scattering data. (c) Pair distribu-
tion functions (PDFs) before (blue), under (red), and after (green) light irradiation with notation of nearest neighbour positions. 
The arrow shows the shoulders formed by illumination. (d) Left, PDF fittings using structural models in the three space groups of 
Pnma, P1� , and Pm (P1m1). The fittings were performed in the range of 1.5 to 16 Å (details are shown in the supporting information 
file) (Blue dots: experimental data; red curves: simulated data; green curves: difference). Right, the PbX6 octahedra in the perov-
skite structures (Pb: grey; Br/I: red). The numbers are site numbers of the halogen sites. Point groups of the octahedra are also 
shown in red. (e) Structural models used for PDF fitting (Pb: grey; Br/I: red, N: blue; C: yellow). 
 

obtain data for the nanoparticles (Figure S7). In the X-ray dif-
fraction (XRD) patterns, no peak splitting was observed (Fig-
ure 3b), indicating that there was no distinct phase segrega-
tion. Peak splitting has been observed previously10; however, 
it does not always accompany PL shifts and has not been re-
produced quantitatively.16 In addition, the XRD peaks did not 
appear to shift drastically upon illumination. 

Pair distribution functions (PDFs) reveal interatomic dis-
tances and are useful for discussing the local structure, such 
as PbX6 octahedral tilts. The PDF peak (Figure 3c) associated 
with halide–halide (X–X) atomic pairs (3.8–5.3 Å) changes 
upon illumination, with a shoulder appearing at around 4.0 Å, 
indicating octahedral distortion.18,19 The XRD and PDF curves 
were simultaneously fitted using the typical orthorhombic 
structural model for the space group (Pnma: P21/n 21/m 21/a). 
The orthorhombic lattice of the perovskite structure, wherein 
PbX6 corner-linked octahedra are rotated along all three axes, 
simulates the experimental X-ray data well. In more details, 
the Pnma space group does not simulate details of PDF peak 
intensities well (Figure S8). Moreover, the shoulder at 4.0 Å 
found during the irradiation (Figure 3c) cannot be simulated. 
These are reasonable because this space group has two inde-
pendent halogen sites of multiplicities of 4 and 8 (Table S3), 
where the halogen ions of Br0.5I0.5 are not arranged well. Thus, 
taking the halogen contents into account, subgroups of Pnma 
are reasonable candidates for describing the local structure.  

The X-ray data were analysed by the joint refinements of 
PDF (local structure) and XRD (averaged structure) systemat-
ically using the maximal subgroups of Pnma (seven space 

groups) (Figures S8–31). In the joint refinements, we used the 
common occupancies and lattice parameters, and different 
atomic coordinates and atomic displacement parameters. The 
space groups of P21ma and P21/m can simulate the PDFs and 
XRD patterns well (Tables S4-6). Both the space groups lose 
the 21 screw axis parallel to the c axis and n glide plane (Table 
S3). Upon the irradiation, the structure can be simulated using 
the P21ma space group slightly better than P21/m. This is rea-
sonable because the point group of PbX6 octahedra in P21ma 
(C1) is more flexible to simulate the anisotropic X–X peak be-
havior than of P21/m (Ci) (cf. Table S3). Such lower symme-
tries of octahedra were known as the cation displacement (i.e. 
cation off-centring in PbX6 octahedra), which is considered to 
originate from lone pairs of Pb2+ (s2p0 electronic configura-
tion).20 

The goodness of fit parameters of the P21ma and P21/m 
space groups are not significantly different, and the choice of 
space group is not conclusive. Thus, we further analysed the 
local structures by the PDF fitting using subgroups of P21ma 
and P21/m (P2111, P1m1, P11a, P1211, and P1�) in order to 
find the minimum constraints for simulating the shoulder 
feature. It is apparent that the P1m1 space group is the best to 
represent the PDF data, in particular the shoulder was simu-
lated well, rather than the centrosymmetric P1� space group 
(Figures 3d, S32, S33, and Table S7). Thus, from these struc-
tural analyses, it is found that the appearance of the shoulder 
peak indicates formation of low-symmetric octahedra. We can 
summarize the structural change as the structure before irra-
diation, where no shoulder was found, should be in the P21/m 
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or a centrosymmetric structure, and it turned into the Pm 
structure by losing the inversion centres (Figure 3e).  

Such formation of non-centrosymmetric structure from 
centrosymmetric perovskites was reported for perovskites: 
The P21ma structure, which is observed for perovskite oxides 
(e.g. BiFeO321) and halide perovskites under tensile strain.22 
These properties have been used to interpret the emergence 
of ferroelectricity in CdTiO3 upon slight lattice changes 
through a centrosymmetric-to-noncentrosymmetric ortho-
rhombic structural transition,23 as noncentrosymmetric crys-
tals are ferroelectric under illumination,24 which has been 
observed in BaTiO3.25 The photoinduced electric field is con-
sidered to stabilize the structure itself and trigger local ion 
migration through/to halide vacancies at the surface,26,27 thus 
increasing the PL lifetime and intensity. 

The formation of non-centrosymmetric structure in our 
mixed halide perovskite nanoparticles may be associated with 
rotation of the MA cations. The P21ma space group and their 
subgroups (e.g. Pm) enable the MA cations to independently 
rotate in the ac plane, whereas the MA cations alternate in the 
Pnma space group or P21/m (Figure 3e). We consider such 
rotation of MA cations, probably by the irradiation, is key to 
form the non-centrosymmetric structures. Our X-ray analysis 
does not conclusively confirm the rotation of MA cations, 
however, because carbon and nitrogen atoms are not well 
recognised by X-ray analysis. Nevertheless, MA cations rotate 
easily and rapidly (in picoseconds), thereby altering the 
bandgap28; the symmetry lowering is probably correlated 
with this rotation.29 

To better understand the impact of symmetry lowering, we 
performed first-principles calculations of geometrical and 
electronic structures (Figure S34 and Table S8–12) of three 
subgroups of P21ma with different arrangements of Br and I 
ions and different ordering of MA cations (alternating or par-
allel (Figure 3e)). The Pm structure with parallel MA cations 
has a narrower bandgap (~1.7 eV) than structures with alter-
nating MA cations (~1.8 eV) (Figures S35, S36, and Table S10). 
This ~0.1 eV difference is consistent with the experimental 
value of 0.2 eV. Furthermore, the structures with parallel MA 
cations have shorter X–X distances (~3.8 Å) than the struc-
tures with alternating MA cations (~4.0 Å) (Table S8), which 
is in agreement with the PDF result. These simulations indi-
cate that the optical properties of mixed halide perovskites 
change because of local symmetry lowering, which enables 
MA cation rotation.  

The X-ray structural analysis did not indicate long-range an-
ion ordering as indicated by the site occupancies which corre-
spond to mixed halogen sites (Figure S33); namely, the nano-
particles are considered to be composed of a mosaic of differ-
ent anion arrangements as simulated by the DFT. Thus, this 
simulation supports the conclusion that the optical properties 
are related to local domains in the nanoparticles. The simula-
tion results for possible local domains revealed that lower-
symmetry domains have PbX6 octahedra with shorter Pb–X 
bonds, as supported by the PDF peak shift for the nearest 
neighbours (Figure 3c), thus narrowing the bandgap. This 
structural change is small, but would cause the detectable PL 
redshift owing to directional charge transfer to the polar do-
mains with smaller band gaps.30,31  

To conclude, we have proposed a mechanism where the PL 
redshift originates from symmetry changes between nonpo-
lar and polar systems at the local scale triggered by defor-
mation of PbX6 octahedra coupled with the rotation of MA 
cations under light illumination. The local and dynamic sym-

metry change may not be limited to nanoparticle systems but 
could also occur at the surface or grain boundaries of perov-
skite films, leading to anion segregation. This conclusion 
should be reasonable on the assumption that the structure has 
the same unit cell as the typical Pnma structure and/or is ho-
mogeneous, but different interpretation of the experimental 
data may be possible if the structure is inhomogeneous. Thus, 
further investigation including verification of polar behavior 
at the bulk scale is required for concluding more details. Our 
findings will help to understand the nature of photogenerated 
polar domains for improving the stability and performance of 
mixed-halide perovskite solar cells. 
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