

PDF issue: 2025-12-05

Innovative Tools and Strategies for Optimizing Yeast Cell Factories

Guirimand, Georges, Yves, Gregory Kulagina, Natalja Papon, Nicolas Hasunuma, Tomohisa Courdavault, Vincent

(Citation)

Trends in Biotechnology, 39(5):488-504

(Issue Date)

2021-05

(Resource Type)

journal article

(Version)

Accepted Manuscript

(Rights)

© 2020 Elsevier Ltd. All rights reserved.

This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

(URL)

https://hdl.handle.net/20.500.14094/0100476421

- 1 Innovative tools and strategies for optimizing yeast cell factories
- 2 Gregory Guirimand^{1,2,†,‡}, Natalja Kulagina^{2,‡}, Nicolas Papon³, Tomohisa Hasunuma^{1,4*}, Vincent
- 3 Courdavault^{2*}
- ⁴ Graduate School of Sciences, Technology and Innovation, Kobe University, Kobe, Japan
- ² Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France.
- ³ Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), UNIV Angers, UNIV
- 7 Brest, SFR 4208 ICAT, Angers, France.
- ⁴ Engineering Biology Research Center, Kobe University, Kobe, Japan
- 9 † LE STUDIUM RESEARCH FELLOW, Loire Valley Institute for Advanced Studies
- [‡] Equal contribution

12

13

23

24

25

26

29

- *Correspondence: vincent.courdavault@univ-tours.fr; hasunuma@port.kobe-u.ac.jp
- 14 list of contact information:
- ORCIDs: GG: https://orcid.org/0000-0002-0001-7978-7771; NK: https://orcid.org/0000-0001-7978-7771; NK: https://orcid.org/0000-0001-7978-7771; NK: https://orcid.org/0000-0001-77771; NK: https://orcid.org/0000-0001-777
- 16 9173-5250; NP: https://orcid.org/0000-0001-6265-7321; TH: https://orcid.org/0000-0002-
- 17 8382-2362; VC: https://orcid.org/0000-0001-8902-4532.
- Lab/institute websites: ¹ http://www.stin.kobe-u.ac.jp/en/index.html; ² http://bbv-u.ac.jp/en/index.html; ² http://bbv-u.ac.jp/en/index.html; ² http://bbv-u.ac.jp/en/index.html; ³ http://bbv-u.ac.jp/en/index.html; ⁴ http://bbv-u.ac.jp/en/index.html; ⁵ http://bbv-u.ac.jp/en/index.html; ⁶ http://bbv-u.ac.jp/en/index.html; ⁷ http://bbv-u.ac.jp/en/index.html; ⁸ http://bbv-u.ac.jp/en/index.html; ⁹ <a href="http://bbv-u.ac.jp/en/index.html
- 19 <u>ea2106.sciences.univ-tours.fr/;</u> 3 <u>http://geihp.univ-angers.fr/fr/index.html;</u>
- 20 http://www.egbrc.kobe-u.ac.jp/en/index.html; † http://www.lestudium-ias.com/
- Social media: VC: https://twitter.com/v_courdavault ; ²
- https://twitter.com/BBVEA2106_Tours; 3 https://www.facebook.com/geihp.angers.9

Keywords (2 to 6) [6]

Metabolic engineering; genome editing; cis/trans regulators; metabolic fluxes; subcellular compartmentation; adaptive laboratory evolution.

Abstract (100 - 120 words) [119 words]

Metabolic engineering aims to develop efficient microbial cell factories that can produce a wide variety of valuable compounds, ideally at the highest yield and from various feedstocks. In this review, we summarize recent developments in metabolic engineering approaches to tailor different yeast cell factories. In particular, we highlight the most timely and cutting-edge molecular tools and strategies for biosynthetic pathways optimization (including genome editing tools), combinatorial transcriptional and post-transcriptional engineering (*cis/trans* regulators), dynamic control of metabolic fluxes (e.g. rewiring of primary metabolism), and spatial reconfiguration of metabolic pathways. Finally, we discuss some challenges and perspectives for the adaptive laboratory evolution of yeast to advance metabolic engineering in microbial cell factories.

Glossary (450 words, strongly recommended) [403words]

adaptive laboratory evolution (ALE): integrated approach relying on the capacity of microorganisms to evolve in response to specific cultivation conditions, under selection pressure, and along an extended period (hundreds to thousands of generations), to obtain improved strains (growth, tolerance, titer, etc).

carbon source res

- carbon source response elements (CSRE): short promoter sequences, identified as activating
- motifs of yeast gluconeogenic genes, and responsive to ethanol.
- cell surface engineering (CSE): recombinant protein expression and incorporation into the
- 55 yeast cell wall, to generate a whole-cell catalyst capable to accommodate different enzymatic
- reactions directly on the extracellular interface.
- **cellulosome:** multi-enzyme complexes associated with the cell surface of cellulolytic
- 58 microorganisms, mediating cell attachment to insoluble substrates for degradation into soluble
- 59 products.

- "Design, Build, Test, Learn" (DBTL) cycle: an integrated iterative approach for metabolic
- engineering of high-performance microbial biocatalysts and improvement of the commercially
- relevant metrics of titer, rate, and yield.
- 63 **genome editing:** genetic modification using genome editing tools that result in DNA deletion,
- integration or substitution within a genome.
- 65 **global fitness:** physiological state of living cells at a given time.
- 66 **metabolic biosensors:** biomolecules able to detect/respond to specific metabolites within
- 67 metabolic pathways.
- 68 **metabolic engineering (ME):** an optimization process of cellular activity to enhance/adjust the
- 69 production of desired compounds.
- 70 **metabolic flux:** a movement of metabolites through metabolic pathways over time, which
- 71 characterizes enzymatic activity.
- 72 **metabolite responsive allosteric transcription factors (aTFs or MRTFs):** activator/repressor
- 73 type transcription factors, which are activated through conformational changes upon the direct
- 74 interaction with metabolites via specific inactive binding sites.
- 75 **metabolons:** molecular complexes that are dynamically formed within a metabolic pathway,
- including enzymes, cellular structures and annex proteins.
- 77 natural products (NPs): chemical compounds found in nature, including functional specialized
- 78 metabolites produced by microorganisms (mostly bacteria and molds...), mushrooms, marine
- animals, algae, or land plants, often used in human pharmacopeia.
- spatial reconfiguration: the modification of protein subcellular localization according to the
- employed strategies via truncation/substitution/addition of targeting sequences.

- synthetic biology (SB): a recently emerged multidisciplinary research area that focuses on the
- 83 de novo engineering/(re)design of biological components with user-defined features.
- 84 titer, rate, and yield (TRY): refers to production metrics of product concentration, the time
- required to generate it, and the final amount.
- yeast cell factories (YCFs): an approach in bio-engineering, which relies on metabolic engineering and employs yeast cells as a production unit.

Highlights (900 characters, including spaces, required) [881 char.]

90

91

89

• Bio-production of many medicinal natural products suffering from shortage or low availability is the best option to ensure a stable supply to the pharmaceutical industry.

92 93

94

95

 Among all the microorganisms, yeasts (including Saccharomyces cerevisiae and other non-conventional strains) constitute highly valuable platforms for industrial bio-production of natural products.

96 97

98

 Progress in metabolic engineering and synthetic biology enabled the development of yeast cell factories capable of producing natural products efficiently.

99 100

101

102

• Implementation of yeast cell factories relies on molecular tools and strategies for the optimization of biosynthetic pathways, dynamic control and spatial (re)configuration of metabolic fluxes *in vivo*.

103104

105

106

• Several of these tools and strategies still have limitations, however, constant effort in the field is made to overcome it and to optimize yeast cell factories.

107108

Outstanding Questions Box (2000 characters, including spaces, required) [753 char.]

- How can we accelerate the establishment of yeast cell factories?
- How can we rationally diversify the palette of target compounds for bio-production?

- 113 • How can we develop efficient tools for subtle functionalizations (chlorination, fluorination...) of target compounds in yeast? 114 115
 - How can we find the best yeast chassis for each application?

117

118

119

120

121

122

123

- How can we efficiently evaluate/predict the output of different metabolic engineering modifications applied during the development of yeast cell factories?
- How can we further combine artificial intelligence (design; learn) and automation (build; test) to improve metabolic engineering approaches?
- How can we accelerate the scale-up for the bio-production of target compounds by yeast cell factories at an industrial scale?

Text body [4522/4000]

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

Towards the ideal yeast cell factory: from rational design to adaptive laboratory evolution

Medicinal **natural products (NPs)** (see Glossary) suffer from recurrent shortages, mainly due to the overexploitation of their sources [1-4]. While the well-known and long-established uses of synthetic chemistry (SC) allow producing many NPs and their derivatives, at large scales, some NPs (monoterpene plant-derived compounds such as indole alkaloids (MIAs); benzylisoguinoline alkaloids (BIAs)...) and mammal derived NPs (hormones: neurotransmitters...) are too complex molecules (asymmetric carbons, long multi-step biosynthetic pathway...) to be synthesized by SC alone at an industrial scale [4–9]. Although recent progress made in SC allows nowadays to produce very complex NPs such as strictosidine [8], chemical synthesis is not always the most suitable approach in terms of ecological impact and cost efficiency, therefore, alternative strategies have been considered to produce these NPs in greater quantities, such as using recombinant microorganisms (Fig. 1, Key Figure). Microorganisms such as yeast have evolved to maintain constant metabolic homeostasis regardless of rapidly changing environmental conditions, so intensively rewiring their metabolism is essential for bioproduction of NPs with high titer, rate, and yield (TRY) at scale [6, 7]. Several examples of successful heterogeneous biosynthesis of mammal/plant NPs can be cited (progesterone [9], hydrocortisone [10, 11]/ artemisinic acid [12–14], resveratrol [15], strictosidine [3, 16], (S)-reticuline [17]), only few, nevertheless, reached an industrial-scale production. For instance, the commercialization of artemisinic acid biosynthesis (a precursor of antimalarial artemisinin), produced at high levels by Saccharomyces cerevisiae, did not persist due to poor market demand [14]. In contrast, the major mammal anti-inflammatory hormone hydrocortisone is synthesized by S. cerevisiae [10, 11], which is still the main hydrocortisone producer. However, many NPs, particularly highly valuable plant pharmaceuticals (such as anticancer vinblastine and vincristine, or opioids) are still not able to be produced by recombinant

microorganisms efficiently due to multiple limitations [1-7], which will be discussed in this review. In the recent years, metabolic engineering (ME), which aims to rewire cellular metabolism, has utterly empowered and accelerated the development of yeast cell factories (YCFs) by enhancing the TRY of the bio-produced target compounds, broadening the spectrum of these compounds (e.g., taxol, opioids), increasing the range of substrates (e.g., xylose, arabinose), and enhancing strain physiological properties (e.g., global fitness, stress tolerance) [3-7]. In particular, baker's yeast (Saccharomyces cerevisiae), as well as some non-conventional yeasts (Pichia pastoris, Yarrowia lipolytica; with specific features of interest, such as high secretion ability or lipophilic compounds accumulation [18, 19]), generally regarded as safe (GRAS) and robust microorganisms, have their genome entirely known and easy to manipulate. In recent decades, remarkable progress has been made in the field of molecular and cell biology of yeast, due to the rapid development of genome sequencing, cell engineering and synthetic biology (SB) [4-7]. However, many limiting factors remain that make genome manipulation and the construction of YCFs inefficient and time-consuming [6, 7]. Indeed, creating YCFs commonly implies the integration of complex biosynthetic pathways, which requires the high-fidelity assembly of long DNA fragments and sophisticated genome editing tools [18, 20, 21]. Novel strategies and approaches are continuously developing to facilitate multiplex marker-free genomic integration, DNA assembly and transformation efficiency [5-7, 20, 22]. Besides, integrating heterologous pathways in yeast generally involves fine-tuning gene expression, which has been limited by the availability of characterized native gene regulatory elements, because they are lengthy and unable to cover the required range of the expression strength [23-25]. Multiple approaches aiming at optimizing and extending transcription regulation [26, 27] are still constantly evolving to further broaden the assortment of regulatory elements and overcome their limitations. Moreover, the overexpression of heterologous biosynthetic pathways is frequently responsible for massive stress affecting global cell fitness, which includes the accumulation of toxic intermediates, carbon source competition, and a loss of reducing power

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

(i.e. oxidative stress, and/or unbalanced/competitive use of cofactors) [6, 7, 22]. In particular, developing an industrial bioprocess based on YCFs compatible with commercial purposes, with a maximal product TRY and optimal metabolic fluxes of the multiple integrated genes, demands precise control and balance and remains a key goal for already-established recombinant strains [28, 29].

Key figure

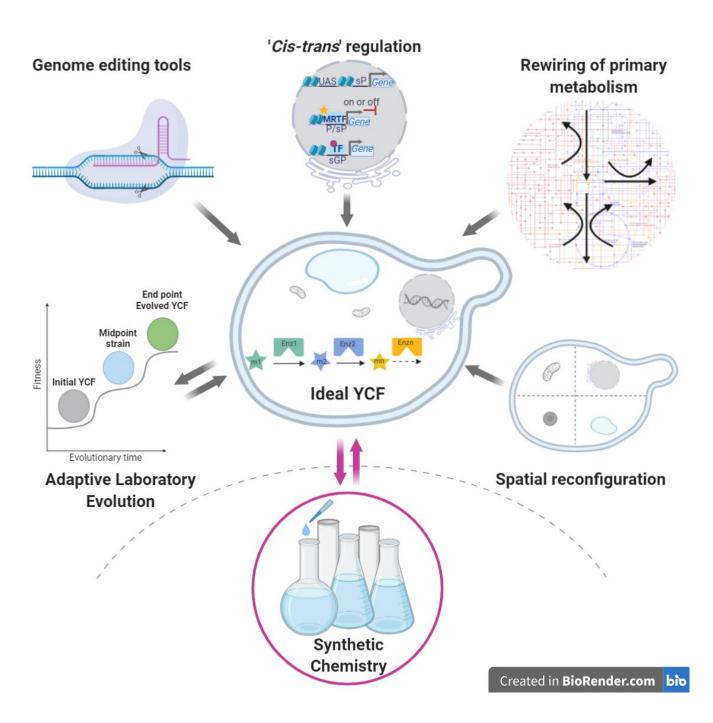


Figure 1, Key Figure: Comprehensive overview of cutting-edge molecular tools and strategies to implement the ideal Yeast Cell Factory (YCF). This figure illustrates various synthetic biology tools that are employed for the YCF construction and optimization (grey arrows), such as advanced genome editing tools, transcriptional ("cis") and post-transcriptional ("trans") regulation, rewiring of yeast primary metabolism and adaptive laboratory evolution (ALE), which will be discussed in this review. However, heterologous production also presents several limitations/challenges, which, in tandem with synthetic chemistry (purple circle and arrows), potentially can be resolved (e.g. substrate chemical synthesis, product modification), and represent promising prospects.

Furthermore, enzyme and substrate differential subcellular localization [30–32], enzymatic promiscuity, and pathway lateral branches generally decrease substrate availability and metabolic fluxes by hijacking biosynthetic intermediates [33, 34]. As such, formal strategies are also required to redesign metabolic pathways in yeast. This work is a comprehensive review providing the reader with an integrative and clear view on the most recent and innovative molecular tools and approaches dedicated to the implementation and improvement of YCFs for the bioproduction of valuable molecules. It will especially emphasize specific challenges associated with already existing methods, and discuss successful examples that highlight the latest tools and advances, and future perspectives.

Genome editing tools

In yeast genome editing, homologous recombination and cre/lox-mediated integration were replaced by the CRISPR/Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats CRISPR, and CRISPR-associated protein 9 - nuclease Cas9 from *Streptococcus pyogenes*), which is still continuously improving to facilitate and accelerate DNA assembly and genome manipulation [18, 21]. Particularly laborious was the assembly of large template DNA (multiple expression cassettes), which is now generally realized *in vivo* via overlapping single-stranded oligonucleotides and homologous recombination (HR), the technique described as DNA assembler [35]. It bypasses multistep and multi plasmid cloning and was successfully employed in an assembly of up to eight-gene biosynthetic pathways in *S. cerevisiae* with the efficiency being inversely correlated to the number of genes [35]. Another limiting factor

consisted of multiplex genomic integration, which requires multiple gRNAs. Recently, several novel approaches were developed, aimed to perform multisite targeting and exploiting the simultaneous expression of numerous gRNA using Cas9-expressing yeast strains or all-in-one plasmids (Fig. 2A). For instance, in the CasEMBLR method (Cas9-facilitated multi loci integration of assembled DNA parts into S. cerevisiae chromosomes, in combination with DNA assembler techniques), DNA fragments are amplified by PCR to contain homologous overhangs for further in vivo assembly, and marker-free integration was reported to be successful into up to five sites with 50-100% efficiency, which implies both gRNAs-expressing plasmid and Cas9expressing yeast strain [36, 37]. All-in-one plasmids, such as gRNAs-Cas9 co-expressing vectors with an inducible promoter for Cas9 (also available in constitutive version), enable dissociating cloning from genome editing by yeast pre-transformation with all CRISPR/Cas9 components prior to the introduction of template DNA [38]. Time-effectively, the all-in-one plasmids contain a universal gRNA expression cassette, and the introduction of an appropriate gRNA targeting sequence upon plasmid recircularization takes place in vivo in yeast via HR [38]. However, the conventional expression and delivery of multiple gRNAs are delicate, either an individual expression cassette is required for each gRNA, or a common transcript is generated and further cleaved via various strategies into individual gRNAs [39]. Both approaches are limited by the number of gRNAs expressed in the system and the processing efficiency. Recently, alternative strategies were reported. In the GTR-CRISPR (Fig. 2B) (tandem gRNA-tRNA array for CRISPR/Cas9) the use of a gRNA-tRNA array within the Cas9-expressing plasmid, and exploiting the endogenous tRNA-processing system, which precisely cleaves the precursor of tRNA and enables the release of single gRNAs from the common gRNA-tRNA transcript, resulted in the simultaneous disruption of 8 genes in S. cerevisiae with 87% efficiency [40]. Moreover, Lightning GTR-CRISPR, an *E.coli*-free Golden Gate cloning system [41]-compatible version can be employed (the Golden Gate reaction is directly transformed into yeast), which was shown to result in 96% and 60% efficiency of correct editing, illustrated through the

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

241 disruption of four and six genes, respectively [40]. Alternatively, a plasmid-free gRNA delivery method gRNA- Transient Expression System (TES) was described, where gRNA-encoding PCR 242 fragments, composed of the promoter, guiding sequence and gRNA scaffold (two gRNAs are 243 required to cleave both sides of the targeted region), are transformed together with template 244 DNA into Cas9-expressing S. cerevisiae strain, which resulted in the substitution of different 245 sized regions of S. cerevisiae chromosome 4 by template DNA with 67-100% efficiency [42]. 246 247 In parallel, the CRISPR/Cas9 system has been explored to enhance the efficiency of its components (Fig. 2B). In this context Cpf1 (CRISPR from Prevotella and Francisella 1), a family 248 of class 2/type V CRISPR bacterial endonucleases was found to display several advantages 249 compared to Cas9. For instance, Cpf1 generates sticky ends instead of blunt ends upon DNA 250 cleavage [43], which potentially facilitates template DNA integration. Moreover, Cfp1 possesses 251 both RNAase and DNAse activities and does not need RNAse III, which results in the 252 requirement of only crispr RNA (crRNA) instead of a longer complex of trans-activating crispr 253 RNA (tracrRNA) and crRNA [43, 44]. Thus, S. cerevisiae strain producing patchould was 254 255 generated using self-cloning Cpf1-crRNA co-expressing plasmid, where singleplex and triplex genomic integrations of in vivo assembled template DNA were achieved with 80% and 32% of 256 efficiency, respectively [45]. 257 258 In addition, dCas9-mediated Target-AID (Activation Induced cytidine Deaminase from 259 vertebrate), a synthetic hybrid complex that performs highly efficient C to G and C to T mutations, 260 was successfully used in high throughput loss of function screens [46], which is an appealing 261 application to screen for yeast de novo features. On the other hand, the σ sequences, which are a family of repetitive DNA sequences (at least 100 copies) in the S. cerevisiae genome [47], 262 were used together with the CRISPR/Cas9 system in a novel method of genome shuffling [48]. 263 264 Cas9, guided by the gRNA targeting the σ sequences, cleaves DNA at multiple sites, thus promoting endogenous DNA repair and mutagenesis [49], which can lead to the improvement 265 of yeast characteristics when cultivated under specific conditions (e.g. thermotolerant S. 266

cerevisiae obtained under high-temperature conditions [48]). These approaches demonstrate the application of the CRISPR/Cas9 system beyond gene integration, notably useful in adaptive laboratory evolution (ALE), which will be presented in the last section of this review.

270

267

268

269

Transcriptional ("cis") and post-transcriptional ("trans") regulator toolboxes

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

271

Alteration and regulation of gene expression at the transcriptional level via promoter and terminator elements have been unceasingly considered as a powerful approach. Previously characterized long native elements were initially employed (S. cerevisiae pTEF1, pGAL1-10, tCYC1, tADH1, etc) [23–25], which, however, pointed out an extensive necessity of development of novel synthetic units, more compact and functionally diversified. Indeed, the integration of complex multigenic heterologous pathways in yeast mobilizes a promoter and a terminator for each gene, which considerably extends template DNA length, increases the risk of selfrecombination, as well as generally demands optimization of gene expression. To address these issues, several regulatory sequence libraries were recently constructed and investigated (Fig. **3A**). For instance, a library of short 69-bp semi-synthetic promoters, covering an 8.0-fold expression range, was generated from the determined minimal length of S. cerevisiae native pTEF1 [50] (Fig. 3A1). Moreover, the use of upstream activating sequences (UAS) expanded the library to reach a 20-fold expression range and a maximal length of 130 bp. Importantly, some of the pTEF1 variants demonstrated expression strength comparable to native pTEF1 and pPGK1. Another library of Y. lipolytica semi-synthetic promoters was generated, also based on the promoter core region between the TATA-box and the transcriptional starting site (TSS) upstream the 5' untranslated region (5'UTR) sequence [51] (Fig. 3A2). Artificial sequences of 30 bp in length were designed (various combinations of T-rich and G/C-rich fragments) and substituted in Y. lipolytica strong native pEXP1 and pGDP to assess expression levels of crtY enzyme and, consequently, conversion of lycopene to β-carotene. The results demonstrated a

population of novel Y. lipolytica promoters showing an up to a 5.5-fold increase in lycopene conversion. On the other hand, the impact of 10-bp terminator linker 1 (the sequence between the efficiency element and the positioning element) on gene expression was investigated via synthetic terminator library in S. cerevisiae [52] (Fig. 3A3). A 6.0-fold expression range was achieved and it was demonstrated that sequences with low GC content and enriched in T were conferring higher levels of expression. In addition to constitutive regulation of gene expression, **metabolic biosensors** play a central role in metabolic rewiring and the optimization of productivity in YCFs. For instance, **Metabolite** responsive allosteric transcription factors (aTFs or MRTFs) from bacteria interact with their corresponding metabolites prior to acting as repressors or activators of transcription [53]. To alter transcription, MRTFs bind promoter-specific sequences and, therefore, restrict or facilitate the access to RNA polymerase [53]. Thus, MRTFs enable dynamic control of heterologous gene expression and, consequently, regulate metabolic activity. However, the engineering of MRTFs in eukaryotic cells remains more than challenging. Recently, a novel strategy has been reported and aimed to generate user-defined biosensors via evolution-guided toggled selection (directed biosensor evolution and library construction, followed by the selection of mutants via alternating conditions according to the set criteria), based on the mutagenesis of aTF effector binding domain (EBD) and Fluorescence-Activated Cell Sorting (FACS)-mediated selection [54] (Fig. **3B1**). Thus, a variety of *de novo* features were identified, such as inversion of function and change of specificity, as well as modification of dynamic and operational range. Another approach focused on the optimization of biosensor reporter promoters in a binding sitedependent manner [55] (Fig. 3B2). The constructed synthetic promoter libraries (from native pTEF1 and truncated pCYC1) covered all the possible positions for introducing aTFs binding site within promoter core region, which resulted in the identification of function-related positions for most of the screened repressor or activator type aTFs [55]. The complementary aspect of gene expression regulation via promoters is related to the carbon source of yeast metabolism.

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

Given that multiple commonly used native promoters are associated with glycolytic genes and are less effective under glucose starvation [25], novel promoters, activated upon diauxic shift, are required to maintain constitutive gene expression (or to disassociate growth from production if required). Recently, **carbon source response elements (CSRE)** of gluconeogenic promoters were introduced upstream UAS of S. cerevisiae pTDH3, substituting the binding site of glycolytic genes transcriptional activator Gcr1 and surrounding neutral sequence [56] (Fig. 3C). This approach demonstrated strong induction of reporter Yellow Fluorescent Protein (YFP) in the low-glucose medium instead of a glucose-rich medium, which was validated in a vanillin-βglucoside-producing yeast strain. Indeed, when glycolytic promoters were employed, the production of vanillin-β-glucoside took place mostly during the ethanol phase leading to the accumulation of the cytotoxic intermediate protocatechuic acid (PCA). The use of generated gluconeogenic promoters to control the expression of enzymes converting PCA to vanillin-βglucoside showed an enhanced yeast growth, lower accumulation of PCA, and conserved vanillin-β-glucoside bioconversion [56]. Taken together, these advances are broadening the collection of available gene regulation elements and deliver compelling guidance to combinatorial approaches for metabolic rewiring in YCF.

335

336

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

Rewiring of primary metabolism strategies

337

338

339

340

341

342

343

344

The strategies to enhance TRY imply the optimization of host primary metabolism, which includes the modification of native metabolic fluxes and coupling/decoupling growth with production. Sufficient availability of the NADPH cofactor, required by numerous enzymes, in some cases (excluding, for instance, hydrocortisone biosynthesis [10]) stands as a limiting factor (e.g. *S. cerevisiae* 3-hydroxy-3-methylglutaryl-CoA reductase Hmg1, *S. cerevisiae* squalene synthase Erg9 etc) [57, 58], given that glucose is dispatched in both glycolysis and pentose phosphate pathway (PPP) upon consumption [59]. Several successful approaches have been

implemented to enhance NADPH (re)generation (Fig. **4**A) and, therefore, heterologous/homologous production. For instance, a number of S. cerevisiae genes involved in NADPH synthesis were deleted or overexpressed to assess the effect on NADPH concentration in the cytosol and heterologous protopanaxadiol (PPD) production from endogenous squalene [57]. In the best performing PPD-producing S. cerevisiae strain, the deletion of NADH-generating ALD2 and overexpression of NADPH-generating ALD6 aldehyde dehydrogenases-encoding genes, involved in ethanol metabolism, resulted in a 1.3-fold increase of NADPH cytosolic concentration and a 4.5-fold increase in PPD production [57]. Likewise, the positive effect of the overexpression of the Ald6-encoding gene was demonstrated in recombinant noscapine-producing S. cerevisiae [60]. The overexpression of S. cerevisiae fulllength mitochondrial or truncated cytoplasmic NADH kinase Pos5, which catalyzes NADPHgenerating reactions, led to the 9.0-fold and 7.0-fold enhancement of homologous squalene production respectively [58]. Similarly, the overexpression of truncated cytoplasmic Pos5 in antibody fragment-expressing P. pastoris was shown to significantly increase the production of recombinant protein [61]. Another important cofactor in cellular metabolism is S-adenosylmethionine (SAM), which is a donor of the methyl group upon methylation catalyzed by SAM-dependent methyltransferases (Mtases) [62]. Methylation, being required by a wide range of cellular processes, is used in biotechnological approaches for the heterologous production of valuable methylated compounds [63]. Engineering of SAM-dependent Mtases has been challenging, mostly due to the lack of efficiency and consistency. Recently, methylation was coupled to growth by combining enhanced Mtase activity and cysteine biosynthesis [64] (Fig. 4B), which was achieved via Mtase adaptive laboratory evolution in vivo and deletion of several S. cerevisiae genes. On the other hand, certain enzymes require specific chemical elements for their formation and activity such as the bacterial xylonate dehydratase (XyID, involved in xylose metabolism) that contains ironsulfur (Fe-S) cluster [65]. Although S. cerevisiae Fe metabolism was not reported to be limiting

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

for bovine Fe-S adrenodoxin and hydrocortisone biosynthesis [10], the folding and the activity of several bacterial Fe-S enzymes were reported to be insufficient in yeast [66–68], still being a key concern in the functional expression of bacterial Fe-S proteins. Recently, Fe metabolism of yeast cytosolic Fe-S cluster machinery was modified to enhance Fe uptake, XyID generation, and 1,2,4-butanetriol production [65] (Fig. 4C). In the best performing recombinant *S. cerevisiae* strain, the overexpression of truncated Tyw1 protein (tTyw1), unable to bind and sequestrate Fe-S clusters, and the deletion of one of the components of negative regulation of Fe uptake, resulted in 6.0-fold and 1.4-fold higher XyID activity and 1,2,4-butanetriol production, respectively [65].

Spatial reconfiguration strategies

The development of valuable compound-producing YCFs usually involves complex enzymatic pathways, requiring specific physicochemical conditions, substrates and cofactors, potentially affected by adverse side reactions or toxic intermediates [7, 20]. To meet these challenges, several approaches based on the spatial rearrangement of the desired pathway(s) have emerged, from the metabolic engineering of organelles (MEO) to the construction of artificial metabolons [30–32]. Recently, successful artificial compartmentalization of the triterpene biosynthetic pathway in the peroxisome of *S. cerevisiae* allowed producing a high concentration of squalene (Fig. 5A) revealing this organelle as a promising site for the biosynthesis and storage of terpene compounds [69]. In particular, the rapid and highly efficient protein import machinery of peroxisomes, along with their high plasticity (number and size dynamically adjusted according to the physiological state of the cells), combined to a channeling effect insured by the close vicinity of overexpressed heterologous biosynthetic enzymes, make this subcellular compartment an ideal target for improvement of YCFs.

Previously, the successful bioproduction of hydrocortisone in yeast elegantly showed the flexibility of yeast in accommodating the relocalization of membrane-bound enzymes to a

different subcellular compartment, without affecting the final titer of hydrocortisone produced [10, 11]. More recently, the successful artificial compartmentalization of isoprenoid biosynthesis into the mitochondria was achieved (Fig. 5B), with an enhanced supply of acetyl-CoA and tricarboxylic acid cycle intermediates [70]. However, as mitochondrion is gathering crowds of essential proteins involved in respiration, the compartmentalization of heterologous biosynthetic pathways in this organelle might be, in some cases, responsible for metabolic stresses. In MEO, important physiological parameters such as the size and the biogenesis of organelles can increase the physical space available for enzyme encapsulation and storage of metabolites [71– 74]. For example, increasing the size of lipid droplets, by modulating triacylglycerol metabolism, allowed a 1.25-fold increase in lycopene bio-production in a recombinant strain of S. cerevisiae, correlated to the improved storage capacity of hydrophilic lycopene [74]. Similarly, the overexpression of a key ER size regulatory factor gene, INO2, allowed a significant increase of the surface of the ER [73], associated with a drastic augmentation of production of P450s [71-73], and lead to an 8-fold increase in PPD bio-production, along with a 7.1-fold increase of protein secretion, emphasizing the crucial role of ER in protein synthesis and folding, to circumvent potential metabolic constraints [73, 75]. In parallel to MEO, another approach has emerged allowing the display of enzymes directly at the surface of the yeast cells (Fig. 5C) [76]. The cell surface engineering (CSE) approach enables the generation of the whole cell catalysts to achieve the hydrolysis of numerous substrates, including lignocellulosic biomass, consecutively converted by fermentation into a variety of valuable compounds such as ethanol and xylitol [31, 76–78]. In brief, CSE consists of targeting heterologous enzymes to the cell wall, through the secretion pathway, to expose their catalytic sites toward the extracellular environment. The enzymes can be displayed either individually or gathered in association with a protein-based scaffold to form the cellulosome, a multi-enzymatic complex structure capable of accommodating up to 63 enzymes for the largest one reported to date [31, 78]. One of the main challenges in CSE resides in controlling the

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

efficiency of the display, as well as the anchorage position of the target protein within the cell wall. In the case of the bio-production of xylitol from lignocellulose by CSE, the uptake of xylose across the membrane of the cells constitutes a critical point, as the bioconversion reaction requires NADH and cannot be achieved at the surface of the cells [77, 79]. Interestingly, the coexpression of a homologous maltose transporter (*Sc*Mal11) along with a beta-glucosidase (*Aa*Bgl) degrading cello-oligosaccharides (e.g. cellobiose) on the cell surface of *S. cerevisiae* allowed to enhancing xylitol production from the co-utilization of cellobiose/xylose contained in lignocellulose [80].

To prevent the accumulation of toxic/unstable intermediates as well as the loss of the desired intermediates, another interesting option has emerged based on the spatial (re)arrangement of enzymes into artificial metabolon, ensuring substrate channeling for a continuous metabolic flux within the YCF [32, 81]. Two main approaches enable constructing such artificial metabolons: one consisting of a direct fusion of the enzymes to each other (protein linker), and one relying on the interaction of enzymes with protein (or nucleic acid)-based scaffolds (**Fig. 5D**). While protein fusion is considered as the easiest way to enhance substrate channeling, this approach may alter the structure of the enzymes and is always restricted to a very limited (two to three) number of enzymes. Nevertheless, the over-expression of an engineered tridomain enzyme (CrtB, CrtI, CrtY) harboring the full β-carotene biosynthetic pathway lead to an improved bioproduction of the pigment in *S. cerevisiae* highlighting the potential of this approach for the improvement of YCFs [81]. On another hand, artificial metabolon using protein-based scaffold technologies allows the gathering of several enzymes in close vicinity through affinity binding, leading to significantly improved xylose utilization and resveratrol bio-production in *S. cerevisiae* and to decrease the accumulation of by-product xylitol [82].

Adaptive laboratory evolution strategies

Besides pathway engineering and metabolic flux rewiring approaches, the development of robust YCFs is crucial for industrial application purposes, due to harsh culture conditions and frequent limiting toxicity of intermediates and products [83, 84]. Adaptive laboratory evolution (ALE) relies on yeast adaptation capacity allowed by multiple DNA recombination events and high genomic plasticity, utterly difficult to achieve through the rational engineering approach alone (Fig. 6A) [83]. For instance, ALE led to improved xylose utilization ability in S. cerevisiae along with an enhanced isobutanol bioproduction due to point mutations in the CCR4 and TIF1 genes, and fine-tuning of gene expression in the evolved strain (Fig. 6B) [85]. Associated with high throughput screening methodologies [84, 86], ALE constitutes a powerful approach allowing speeding up the conception of highly efficient recombinant YCFs (Fig. 6C-E). In particular, ALE allows overcoming numerous physiological limitations (i.e. thermotolerance, osmotic stress, low pH, toxicity, etc) [48, 84-92] as well as to complement the rational engineering approaches presented in the above sections, and providing new targets for the next round of rational design [64, 83-86, 92-102]. Noteworthily, the use of CRISPR/Cas9 system in combination with ALE approach enabled the generation of evolved YCF with improved thermotolerance, as mentioned in the "Genome editing" section of this review [48]. Other stricking studies, such as growthcoupling strategies associated to ALE, can be cited [64, 103]. In particular, when the production of the essential amino acid cysteine was tied to the activity of methyltransferases, ALE was used to select for both E. coli and S. cerevisiae strains with mutations leading to 2-fold increases in heterologous methyltransferase activity [64]. In this study, adaptive mutations were forced to preferentially target the methyltransferase activity bottleneck which was limiting for growth-rate. This approach allowed to significantly improve activity of both N- and O-type methyltransferases, as illustrated in the "Rewiring of primary metabolism" section of this review. In addition, ALE virtually allows to improve the "Design, Build, Test, Learn" (DBTL) cycle classically used in ME to generate YCFs (Fig. 6E), when performed in the continuity of the "Build" step for rescuing/optimizing a strain with decreased fitness [83]. Nevertheless, given that

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

that evolution of the strains often drives the population towards a low-production high-fitness phenotype, which constitutes an important limitation of ALE, an extensive effort is still required to overcome this problem [83–85, 103, 104]. In that sense, combining ALE with multi-omic technologies is emerging as the most promising and efficient approach in YCFs engineering [48, 64, 84, 86, 95, 102, 104, 105].

480

475

476

477

478

479

481 482

Concluding remarks: Future Challenges and Directions

483 484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

Using synthetic biology to implement YCFs is a promising approach to produce very complex compounds (e.g. vinblastine, vincristine...) almost impossible to obtain by SC alone (i.e. asymmetric carbons). However, although several molecular tools (e.g. halogenases) have been characterized in marine bacteria and plants, reports on bioproduction of halogenated NPs in yeast is scarce [106-108]. This kind of subtle modification (chlorination, fluorination...) remains therefore as a future challenge for YCFs engineering to generate new-to-nature compounds with high pharmaceutical interest (see Outstanding Questions) [1-3, 106-109]. Recently, an indirect way to obtain such compounds was reported, consisting in incorporating precursor derivatives (i.e. halogenated tyrosine) to produce S-reticuline derivatives [60]. Another recent study elegantly showed the bioproduction of halogenated oxo-(2-aminophenyl) and quinoline scaffolds in S. cerevisiae, by overexpressing regiospecific L-tryptophan halogenases [109]. Therefore SC is still indispensable to generate valuable fluorinated or chlorinated NPs derivatives, usually presenting much higher pharmacodynamic characteristics, and a larger demand in drug industries. Like for instance, the fluorinated derivative of hydrocortisone, namely dexamethasone, which is 40-times more potent than hydrocortisone and far more stable in vivo. In that sense, a strong complementarity between SB and SC exists, while SB is a highly sustainable and ecological way to produce platform compounds, SC can be employed in the compound downstream fine-tuning/modification and the upstream precursor-directed yeastmediated biosynthesis (bioconversion, [110]). Despite some technical limitations, yeast cells represent a proficient eukaryotic tool, suitable for the bio-production of valuable and complex molecules. Meanwhile, constant progress in SB has accelerated the industrial applications of YCFs [2–7]. Besides model yeasts such as *S. cerevisiae*, several non-conventional chassis present increasing interest in ME applications, due to their unique features [18, 19]. While SC has made huge progress in the recent years, allowing nowadays to synthesize molecules as complex as strictosidine [8], tailoring the ideal YCFs capable of producing high-scale NPs as well as their derivatives (e.g. chlorination, fluorination...) is essential to establish next-generation bio-foundries as cost- and time-efficient alternatives for sustainable bio-production at an industrial scale. The coming decade is undoubtedly going to be full of exciting improvements in the YCFs-based technology, and even allow us to see the final convergence of SC and SB, allowing the production of a truly infinite palette of complex molecules.

Acknowledgments

The authors are truly grateful to the two reviewers who utterly improved the quality of this work by their valuable comments on this review. GG acknowledges the research fellowship of Le Studium-Institute for Advanced Studies, Loire Valley, Orléans, France. We acknowledge funding from the ARD2020 Biopharmaceutical Program of the Région Centre Val de Loire (BioPROPHARM, ETOPOCentre and CatharSIS projects), La Ligue Contre le Cancer and Le Studium (Consortium fellowship). The synthetic biology research of TH is supported by project P16009, Development of Production Techniques for Highly Functional Biomaterials Using Smart Cells of Plants and Other Organisms (Smart Cell Project), from the New Energy and Industrial Technology Development Organization (NEDO). TH also acknowledges support from JSPS KAKENHI (JP15H05557) and by the Advanced Low Carbon Technology Research and Development Program (ALCA, JPMJAL1306) from the Japan Science and Technology Agency (JST), the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. The

authors apologize for other excellent studies that have not been cited here due to space

530 limitations.

Figure Legends

Figure 1, Key Figure: Comprehensive overview of cutting-edge molecular tools and strategies to implement the ideal Yeast Cell Factory (YCF). This figure illustrates various synthetic biology tools that are employed for the YCF construction and optimization (grey arrows), such as advanced genome editing tools, transcriptional ("cis") and post-transcriptional ("trans") regulation, rewiring of yeast primary metabolism and adaptive laboratory evolution (ALE), which will be discussed in this review. However, heterologous production also presents several limitations/challenges, which, in tandem with synthetic chemistry (purple circle and arrows), potentially can be resolved (e.g. substrate chemical synthesis, product modification), and represent promising prospects.

Figure 2. Advanced genome editing tools in yeast (A) DNA assembly and CRISPR/Cas9mediated yeast transformations. Cas9 is expressed in yeast (plasmid-encoded under constitutive or inducible promoter, according to user needs). This is achieved either in tandem with gRNA(s) [38], followed by the Cas9-gRNA(s)-expressing strain transformation with template DNA, or yeast pre-transformation with Cas9-expressing plasmid only, further followed by the transformation of Cas9-expressing strain with template DNA and gRNA(s) plasmid [36, 37]. A recent gRNA delivery method Transient Expression System (TES) was described, where the PCR fragments encoding the gRNAs (and containing the promoter, the guiding sequence and the gRNA scaffold) are transformed together with template DNA into Cas9-expressing yeast strain [42]. The template DNA (multiple expression cassettes, composed of promoter and terminator for each gene of interest) is assembled in vivo via overlapping oligonucleotides (here represented as colored lines at the extremities of expression cassettes, black lines represent the so-called Arms - the sequences homologous to the specific yeast genomic regions) and Homologous Recombination (HR) [36, 37]. The schematic example of a single expression cassette is shown. (B) Advances in CRISPR/Cas9 system. The GTR-CRISPR (tandem gRNAtRNA array for CRISPR/Cas9) is based on the use of a gRNA-tRNA array encoded in a plasmid with Cas9, and the native tRNA-processing system (the precursor of tRNA is cleaved, which releases the individual gRNAs from the common transcript) [40]. Cpf1 (CRISPR from Prevotella and Francisella 1 endonuclease) demonstrates several advantages compared to Cas9 (generation of sticky ends, RNAse and DNAse activity, requirement of only crRNA) [44]. dCas9mediated Target-AID (Activation Induced cytidine Deaminase from vertebrate) is a synthetic hybrid complex, which performs C to G and C to T mutations with high accuracy [46].

Figure 3. New tools for the regulation of gene expression in yeast. (A) Generation of synthetic gene regulatory element libraries. Promoter (P) core region between the TATA box and the transcriptional starting site (TSS) was mutated. 1) The determined minimal sequence of S. cerevisiae pTEF1 core region was mutated. The variants, with or without UASs, were screened by measuring yECitrine (yECit, yellow-green fluorescent protein) fluorescence [50]. 2) The artificial sequences enriched in T and/or G/C were substituted in Y. lipolytica pEXP1 and pGDP core regions. The screening - colony-color spectrum due to crtY activity (accumulation of carotene pigments) [51]. 3) In the S. cerevisiae terminator library terminator (T) linker 1 sequence between the efficiency element (EE) and the positioning element (PE) was randomized. The screens were done using Green Fluorescent Protein (GFP) fluorescence as a

reporter [52]. (**B**) Engineering of metabolite sensing and downstream regulation in *S. cerevisiae*. 1) The method enables the design of user-defined MRTFs by random mutagenesis of the MRTF effector binding domain (EBD) upstream DNA binding domain (DBD). The selection of MRTFs with *de novo* features is GFP Fluorescence-Activated Cell Sorting (FACS) - based. ON state - dark green (presence of inducer), OFF state - light green (control medium). The dashed line rectangle - variant selection, the purple background - control strain not expressing MRTF. The criteria for selection vary according to user needs [54]. 2) Activator- or repressor-type MRTF binding site (BS) were inserted in front of every nucleotide of native p*TEF1* or truncated p*CYC1* core regions to generate MRTF operator library [55]. (**C**) Construction of synthetic gluconeogenic promoters in yeast [56]. Native promoters were reshaped from glycolytic to gluconeogenic via substitution of the glycolytic genes transcriptional activator Gcr1 BS by carbon source response elements (CSRE) of native gluconeogenic promoters. sP - synthetic promoter, purple and black circles/curves - ethanol and glucose, respectively. Overlapping of curves - diauxic shift.

Figure 4. Engineering of primary metabolism in yeast. (A) Redox engineering. PPP stands for the pentose phosphate pathway. The best performing strains are illustrated. Green color indicates overexpression while velvet color - deletion. ALD6 was overexpressed [57, 60] and ALD2 deleted [57]. Full-length POS5/truncated tPOS5 were overexpressed [58], as well as POS5 [61]. NADPH availability is estimated by the activity of heterologous NADPH-dependent enzymes. (B) Coupling methylation to growth via Mtase selection (adapted from [64]). Black arrows represent the native SAM cycle. SAH stands for S-adenosylhomocysteine, velvet cross represents the inhibition of reaction by gene deletion, green arrows show heterologous reactions. The graphics demonstrate the growth (optical density OD) of yeast strains (the tested strain on the left and the control strain on the right) over time, in the presence (+X) or absence (-X) of the corresponding heterologous Mtase substrate. (C) Fe metabolic engineering to enhance heterologous Fe-S enzyme activity (adapted from [65]). The assembly of Fe-S clusters is mediated by the assembly complex. The targeting complex guides Fe-S clusters to the corresponding apoprotein to form Fe-S proteins. Tyw1 binds Fe-S clusters to regulate Fe-S excess in the cell. Truncated Tyw1 (tTyw1) is not able to bind Fe-S clusters. Aft1/2 TFs enhance Fe uptake in the case of Fe deficiency, which is inhibited by the inhibitory complex. Yap5 TF promotes Fe sequestration when in excess. All the represented complexes contain several components omitted here. In the best performing strain, tTyw1 was overexpressed and the inhibitory complex component Bol2 was deleted ($\Delta bol2$). The red cross represents the abolishment of inhibitory complex activity.

Figure 5. Strategies of spatial (re)configuration for the metabolic engineering of YCF. (A) Artificial compartmentalization of the triterpene biosynthetic pathway in the peroxisome of *S. cerevisiae*, leading to a significant increase in squalene bio-production (adapted from [69]). (B) Artificial compartmentalization of the isoprenoid biosynthetic pathway in the mitochondria of *S. cerevisiae*, leading to a significant increase of geraniol bio-production (adapted from [70]). (C) Cell surface engineering of *S. cerevisiae* for the efficient bio-production of ethanol and xylitol from lignocellulosic biomass (adapted from [77, 78, 80]). (D) Two different types of artificial metabolons in *S. cerevisiae* (adapted from [32]).

Figure 6. The integrated approach of adaptive laboratory evolution (ALE) to improve YCF, (adapted from [83, 85]).

(A) Initial YCFs, obtained by rational ME steps, are cultured in desired growth conditions for an extended period, allowing natural selection to enrich for mutant strains with improved fitness. ALE then occurs via *n* repetitions of propagation of batch cultures, until obtaining the most efficiently evolved YCF (endpoint). (B) Enhancement of D-xylose utilization and isobutanol

production by combining the rational DBTL approach and ALE. The ALE experiment was conducted in the presence of 2% D-xylose as a unique carbon source over 12 cycles of cell culture. The pathway has been simplified and the cofactors and certain steps are omitted for easier comprehension. Enzymes written in green color are overexpressed. RE - Reverse Engineering. LI - Lactococcus lactis, Ss - Scheffersomyces stipitis, Sc - S. cerevisiae. Finetuning of gene expression - supplementary copies of LIKivD, ScADH7, ScIvI2, ScIvI3 and ScIvI5. (C) Evolved strains are characterized for phenotype improvements relative to the parental strain. (D) Evolved strains have their DNA sequenced to reveal the adaptive mutations enabling phenotype improvements. (E) Augmentation of the typical "Design, Build, Test, Learn" (DBTL) cycle used in ME to generate YCFs. Here, ALE is performed in the continuity of the "Build" step to either rescue a strain that displays decreased fitness due to a perturbation or to optimize a strain after removal or addition of genetic content.

References (110/100)

- 1. Ehrenworth, A. M., and Peralta-Yahya, P. (2017). Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering. Nature Chemical Biology, 13(3), 249–258. doi:10.1038/nchembio.2308
- 2. Rabin (2019) Faced With a Drug Shortfall, Doctors Scramble to Treat Children With

 Cancer. The New York Times. (https://www.nytimes.com/2019/10/14/health/cancer-drug-shortage.html)
- 3. Courdavault V., *et al.*, (2020) Towards the Microbial Production of Plant-Derived
 Anticancer Drugs. Trends in Cancer
- 4. Ausländer S, *et al.*, (2017) Synthetic Biology—The Synthesis of Biology. Angew Chemie
 Int Ed 56:6396–6419 . https://doi.org/10.1002/anie.201609229
- 5. Nielsen J and Keasling JD (2016) Engineering Cellular Metabolism. Cell 164:1185–
 1197 . https://doi.org/10.1016/j.cell.2016.02.004
- 6. Lian J, *et al.*, (2018) Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab Eng 50:85–108.

 https://doi.org/10.1016/j.ymben.2018.04.011
- 11ttps://doi.org/10.1010/j.ymben.2010.04.01
 - 7. Chen R, et al., (2020) Advanced Strategies for Production of Natural Products in Yeast.

656	iScience 23:100879 . https://doi.org/10.1016/j.isci.2020.100879
657	8. Sakamoto J, et al., (2020) Total Syntheses of (–)-Strictosidine and Related Indole
658	Alkaloid Glycosides. Angew Chemie - Int Ed.
659	https://doi.org/10.1002/anie.202005748
660	9. Duport C, et al., (1998) Self-sufficient biosynthesis of pregnenolone and progesterone in
661	engineered yeast. Nat Biotechnol 16:186–189 . https://doi.org/10.1038/nbt0898-773
662	10. Szczebara FM, et al., (2003) Total biosynthesis of hydrocortisone from a simple carbon
663	source in yeast. Nat Biotechnol 21:143–149 . https://doi.org/10.1038/nbt775
664	11. Kelly D and Kelly S (2003) Rewiring yeast for drug synthesis. Nat Biotechnol 21:133–
665	134
666	12. Ro DK, et al., (2006) Production of the antimalarial drug precursor artemisinic acid in
667	engineered yeast. Nature 440:940–943 . https://doi.org/10.1038/nature04640
668	13. Paddon CJ, et al., (2013) High-level semi-synthetic production of the potent antimalarial
669	artemisinin. Nature 496:528–532 . https://doi.org/10.1038/nature12051
670	14. Peplow M (2016) Synthetic biology's first malaria drug meets market resistance. Nature
671	530:389–390 . https://doi.org/10.1038/530390a
672	15. Li M, et al., (2015) De novo production of resveratrol from glucose or ethanol by
673	engineered Saccharomyces cerevisiae. Metab Eng 32:1–11 .
674	https://doi.org/10.1016/j.ymben.2015.08.007
675	16. Brown S, et al., (2015) De novo production of the plant-derived alkaloid strictosidine in
676	yeast. Proc Natl Acad Sci U S A 112:3205–3210 .
677	https://doi.org/10.1073/pnas.1423555112
678	17. Pyne ME, et al., (2020) A yeast platform for high-level synthesis of
679	tetrahydroisoguinoline alkaloids. Nat Commun 11:1–10

680	https://doi.org/10.1038/s41467-020-17172-x
681	18. Raschmanová H, et al., (2018) Implementing CRISPR-Cas technologies in conventional
682	and non-conventional yeasts: Current state and future prospects. Biotechnol. Adv.
683	36:641–665
684	19. Larroude M, et al., (2018) Synthetic biology tools for engineering Yarrowia lipolytica.
685	Biotechnol Adv 36:2150–2164 . https://doi.org/10.1016/j.biotechadv.2018.10.004
686	20. Choi KR, et al., (2019) Systems Metabolic Engineering Strategies: Integrating Systems
687	and Synthetic Biology with Metabolic Engineering. Trends Biotechnol 37:817–837.
688	https://doi.org/10.1016/j.tibtech.2019.01.003
689	21. Zhang S, et al., (2020) Recent Advances of CRISPR/Cas9-Based Genetic Engineering
690	and Transcriptional Regulation in Industrial Biology. Front. Bioeng. Biotechnol. 7
691	22. Rahmat E and Kang Y (2020) Yeast metabolic engineering for the production of
692	pharmaceutically important secondary metabolites. Appl Microbiol Biotechnol.
693	https://doi.org/10.1007/s00253-020-10587-y
694	23. Partow S, et al., (2010) Characterisation of different promoters for designing a new
695	expression vector in Saccharomyces cerevisiae. Yeast 27:955–964.
696	https://doi.org/10.1002/yea.1806
697	24. Sun J, et al., (2012) Cloning and characterization of a panel of constitutive promoters
698	for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol
699	Bioeng 109:2082–2092 . https://doi.org/10.1002/bit.24481
700	25. Peng B, et al., (2015) Controlling heterologous gene expression in yeast cell factories
701	on different carbon substrates and across the diauxic shift: A comparison of yeast
702	promoter activities. Microb Cell Fact 14:1–11 . https://doi.org/10.1186/s12934-015-
703	0278-5
704	26. Blazeck J and Alper HS (2013) Promoter engineering: Recent advances in controlling
705	transcription at the most fundamental level. Biotechnol J 8:46–58.

706	https://doi.org/10.1002/biot.201200120	
707	27. Redden H, et al., (2015) The synthetic biology toolbox for tuning gene expression in	
708	yeast. FEMS Yeast Res 15:1–10 . https://doi.org/10.1111/1567-1364.12188	
709	28. Eriksen DT, et al., (2014) Protein design for pathway engineering. J Struct Biol	
710	185:234–242 . https://doi.org/10.1016/j.jsb.2013.03.011	
711	29. Martin CH, et al., (2009) Synthetic Metabolism: Engineering Biology at the Protein and	
712	Pathway Scales. Chem Biol 16:277–286 .	
713	https://doi.org/10.1016/j.chembiol.2009.01.010	
714	30. Zhou YJ, et al., (2016) Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-	
715	Derived Biofuels and Chemicals with Relieved Side-Pathway Competition. J Am Chem	
716	Soc 138:15368–15377 . https://doi.org/10.1021/jacs.6b07394	
717	31. Inokuma K, et al., (2020) Novel strategy for anchorage position control of GPI-attached	
718	proteins in the yeast cell wall using different GPI-anchoring domains. Metab Eng	
719	57:110-117 . https://doi.org/10.1016/j.ymben.2019.11.004	
720	32. Pompon D, et al., (2017) Nanotechnology for Synthetic Biology: Crossroads Throughout	
721	Spatial Confinement. Nanotechnol. Agric. Food Sci. 209–234	
722	33. Scalcinati G, et al., (2012) Dynamic control of gene expression in Saccharomyces	
723	cerevisiae engineered for the production of plant sesquitepene α -santalene in a fed-	
724	batch mode. Metab Eng 14:91–103 . https://doi.org/10.1016/j.ymben.2012.01.007	
725	34. Tippmann S, et al., (2017) Affibody scaffolds improve sesquiterpene production in	
726	saccharomyces cerevisiae. ACS Synth Biol 6:19–28.	
727	https://doi.org/10.1021/acssynbio.6b00109	
728	35. Shao Z, et al., (2009) DNA assembler, an in vivo genetic method for rapid construction	
729	of biochemical pathways. Nucleic Acids Res 37:1–10.	
730	https://doi.org/10.1093/nar/gkn991	

36. Jakočiunas T, et al., (2015) CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration

732 of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae. ACS Synth Biol 4:1126-1134 . https://doi.org/10.1021/acssynbio.5b00007 733 37. Jakočiunas T, et al., (2018) Assembly and Multiplex Genome Integration of Metabolc 734 735 Pathways in Yeast Using CasEMBLR. In: Synthetic Metabolic Pathways: Methods and Protocols, Methods in Molecular Biology, pp 185–201 736 38. Degreif D, et al., (2018) Preloading budding yeast with all-in-one CRISPR/Cas9 vectors 737 738 for easy and high-efficient genome editing. J Biol Methods 5:98. https://doi.org/10.14440/jbm.2018.254 739 39. Stovicek V, et al., (2017) CRISPR/Cas system for yeast genome engineering: advances 740 and applications. FEMS Yeast Res 17:1–16. https://doi.org/10.1093/femsyr/fox030 741 40. Zhang Y, et al., (2019) A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed 742 genome editing in Saccharomyces cerevisiae. Nat Commun 10:1-10. 743 https://doi.org/10.1038/s41467-019-09005-3 744 41. Engler C, et al., (2008) A one pot, one step, precision cloning method with high 745 746 throughput capability. PLoS One 3: . https://doi.org/10.1371/journal.pone.0003647 42. Easmin F, et al., (2019) gRNA-transient expression system for simplified gRNA delivery 747 in CRISPR/Cas9 genome editing. J Biosci Bioeng 128:373-378. 748 749 https://doi.org/10.1016/j.jbiosc.2019.02.009 750 43. Zetsche B, et al., (2015) Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 751 CRISPR-Cas System. Cell 163:759–771 . https://doi.org/10.1016/j.cell.2015.09.038 44. Safari F, et al., (2019) CRISPR Cpf1 proteins: Structure, function and implications for 752 genome editing. Cell Biosci 9:1–21. https://doi.org/10.1186/s13578-019-0298-7 753 45. Li ZH, et al., (2018) Self-cloning CRISPR/Cpf1 facilitated genome editing in 754 saccharomyces cerevisiae. Bioresour Bioprocess 5:1-12. 755 https://doi.org/10.1186/s40643-018-0222-8 756

46. Després PC, et al., (2018) Double selection enhances the efficiency of target-AID and

758	Cas9-based genome editing in yeast. G3 Genes, Genomes, Genet 8:3163–3171.
759	https://doi.org/10.1534/g3.118.200461
760	47. Cameron JR, et al., (1979) Evidence for transposition of dispersed repetitive DNA
761	families in yeast. Cell 16:739–751 . https://doi.org/10.1016/0092-8674(79)90090-4
762	48. Mitsui R, et al., (2019) Improved Stress Tolerance of Saccharomyces cerevisiae by
763	CRISPR-Cas-Mediated Genome Evolution. Appl Biochem Biotechnol 189:810–821.
764	https://doi.org/10.1007/s12010-019-03040-y
765	49. Pâques F and Haber J (1999) Multiple Pathways of Recombination Induced by Double-
766	Strand Breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404
767	50. Decoene T, et al., (2019) Modulating transcription through development of semi-
768	synthetic yeast core promoters. PLoS One 14:1–21 .
769	https://doi.org/10.1371/journal.pone.0224476
770	51.Liu R, et al., (2020) Engineering yeast artificial core promoter with designated base
771	motifs. Microb Cell Fact 19:1–9 . https://doi.org/10.1186/s12934-020-01305-4
772	52. Wang Z, et al., (2019) Yeast Synthetic Terminators: Fine Regulation of Strength through
773	Linker Sequences. ChemBioChem 20:2383–2389.
774	https://doi.org/10.1002/cbic.201900163
775	53. Wan X, et al., (2019) Engineering metabolite-responsive transcriptional factors to sense
776	small molecules in eukaryotes: Current state and perspectives. Microb. Cell Fact. 18
777	54. Snoek T, et al., (2020) Evolution-guided engineering of small-molecule biosensors.
778	Nucleic Acids Res 48:e3 . https://doi.org/10.1093/nar/gkz954
779	55. Ambri F, et al., (2020) High-resolution scanning of optimal biosensor reporter promoters
780	in yeast. ACS Synth Biol 9:218–226 . https://doi.org/10.1021/acssynbio.9b00333
781	56. Rajkumar AS, et al., (2019) Engineered Reversal of Function in Glycolytic Yeast
782	Promoters. ACS Synth Biol 8:1462–1468 . https://doi.org/10.1021/acssynbio.9b00027
783	57 Kim IF et al. (2018) Resoluting of NADPH synthetic nathways for increased

/84	protopanaxadioi production in Saccharomyces cerevisiae. Sci Rep 8:1–11.
785	https://doi.org/10.1038/s41598-018-34210-3
786	58. Paramasivan K and Mutturi S (2017) Regeneration of NADPH Coupled with HMG-CoA
787	Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae. J Agric
788	Food Chem 65:8162–8170 . https://doi.org/10.1021/acs.jafc.7b02945
789	59. Stincone A, et al., (2015) The return of metabolism: biochemistry and physiology of the
790	pentose phosphate pathway. Biol Rev Camb Philos Soc 90:927–963.
791	https://doi.org/10.1111/brv.12140
792	60.Li Y, et al., (2018) Complete biosynthesis of noscapine and halogenated alkaloids in
793	yeast. Proc Natl Acad Sci U S A 115:E3922–E3931 .
794	https://doi.org/10.1073/pnas.1721469115
795	61. Tomàs-Gamisans M, et al., (2020) Redox Engineering by Ectopic Overexpression of
796	NADH Kinase. Appl Enviromental Microbiol 86:1–15.
797	https://doi.org/https://doi.org/10.1128/AEM .02038-19
798	62. Struck AW, et al., (2012) S-Adenosyl-Methionine-Dependent Methyltransferases: Highly
799	Versatile Enzymes in Biocatalysis, Biosynthesis and Other Biotechnological
800	Applications. ChemBioChem 13:2642–2655 . https://doi.org/10.1002/cbic.201200556
801	63. Schönherr H and Cernak T (2013) Profound methyl effects in drug discovery and a call
802	for new C-H methylation reactions. Angew Chemie - Int Ed 52:12256–12267.
803	https://doi.org/10.1002/anie.201303207
804	64. Luo H, et al., (2019) Coupling S-adenosylmethionine-dependent methylation to growth:
805	Design and uses. PLoS Biol 17:1–13 . https://doi.org/10.1371/journal.pbio.2007050
806	65. Bamba T, et al., (2019) Production of 1,2,4-butanetriol from xylose by Saccharomyces
807	cerevisiae through Fe metabolic engineering. Metab Eng 56:17–27.
808	https://doi.org/10.1016/j.ymben.2019.08.012

66. Carlsen S, et al., (2013) Heterologous expression and characterization of bacterial 2-C-

810	methyl-d-erythritol-4-phosphate pathway in Saccharomyces cerevisiae. Appl Microbiol
811	Biotechnol 97:5753–5769 . https://doi.org/10.1007/s00253-013-4877-y
812	67. Partow S, et al., (2012) Reconstruction and Evaluation of the Synthetic Bacterial MEP
813	Pathway in Saccharomyces cerevisiae. PLoS One 7:1–12.
814	https://doi.org/10.1371/journal.pone.0052498
815	68. Benisch F and Boles E (2014) The bacterial Entner-Doudoroff pathway does not
816	replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-sulfur
817	cluster enzyme 6-phosphogluconate dehydratase. J Biotechnol 171:45–55.
818	https://doi.org/10.1016/j.jbiotec.2013.11.025
819	69. Liu GS, et al., (2020) The yeast peroxisome: A dynamic storage depot and subcellular
820	factory for squalene overproduction. Metab Eng 57:151–161 .
821	https://doi.org/10.1016/j.ymben.2019.11.001
822	70. Yee DA, et al., (2019) Engineered mitochondrial production of monoterpenes in
823	Saccharomyces cerevisiae. Metab Eng 55:76–84 .
824	https://doi.org/10.1016/j.ymben.2019.06.004
825	71. Orrenius S, et al., (1965) Phenobarbital-induced synthesis of the microsomal drug-
826	metabolizing enzyme system and its relationship to the proliferation of endoplasmic
827	membranes. J Cell Biol 25:627–639
828	72. Kanai K, et al., (1986) Quantitative analysis of smooth and rough endoplasmic reticulum
829	proliferation in differentiating hepatocytes of midpostnatal mice treated with
830	phenobarbital. J Ultrastruct Res Mol Struct Res 97:64–72.
831	https://doi.org/10.1016/S0889-1605(86)80007-6
832	73. Kim JE, et al., (2019) Tailoring the Saccharomyces cerevisiae endoplasmic reticulum
833	for functional assembly of terpene synthesis pathway. Metab Eng 56:50–59 .
834	https://doi.org/10.1016/j.ymben.2019.08.013
835	74. Ma T, et al., (2019) Lipid engineering combined with systematic metabolic engineering

836	of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng 52:134–
837	142 . https://doi.org/10.1016/j.ymben.2018.11.009
838	75.Besada-Lombana PB and Da Silva NA (2019) Engineering the early secretory pathway
839	for increased protein secretion in Saccharomyces cerevisiae. Metab Eng 55:142–151.
840	https://doi.org/10.1016/j.ymben.2019.06.010
841	76. Inokuma K, et al., (2018) Whole Cell Biocatalysts Using Enzymes Displayed on Yeast
842	Cell Surface. Emerg. Areas Bioeng. 81–92
843	77. Guirimand G, et al., (2019) Cell-surface display technology and metabolic engineering
844	of: Saccharomyces cerevisiae for enhancing xylitol production from woody biomass.
845	Green Chem 21:1795–1808 . https://doi.org/10.1039/c8gc03864c
846	78. Anandharaj M, et al., (2020) Constructing a yeast to express the largest cellulosome
847	complex on the cell surface. Proc Natl Acad Sci U S A 117:2385–2394 .
848	https://doi.org/10.1073/pnas.1916529117
849	79. Nijland JG and Driessen AJM (2020) Engineering of Pentose Transport in
850	Saccharomyces cerevisiae for Biotechnological Applications. Front Bioeng Biotechnol
851	7:1–13 . https://doi.org/10.3389/fbioe.2019.00464
852	80. Guirimand GGY, et al., (2019) Combined Cell Surface Display of β-d-Glucosidase
853	(BGL), Maltose Transporter (MAL11), and Overexpression of Cytosolic Xylose
854	Reductase (XR) in Saccharomyces cerevisiae Enhance Cellobiose/Xylose Coutilization
855	for Xylitol Bioproduction from Lignocellulosic B. Biotechnol J 14:1–10.
856	https://doi.org/10.1002/biot.201800704
857	81. Rabeharindranto H, et al., (2019) Enzyme-fusion strategies for redirecting and
858	improving carotenoid synthesis in S. cerevisiae. Metab Eng Commun 8:1–11 .
859	https://doi.org/10.1016/j.mec.2019.e00086
860	82. Thomik T, et al., (2017) An artificial transport metabolon facilitates improved substrate

utilization in yeast. Nat Chem Biol 13:1158-1163 .

862	https://doi.org/10.1038/nchembio.2457
863	83. Sandberg TE, et al., (2019) The emergence of adaptive laboratory evolution as an
864	efficient tool for biological discovery and industrial biotechnology. Metab Eng 56:1–16.
865	https://doi.org/10.1016/j.ymben.2019.08.004
866	84. Kang K, et al., (2019) Linking genetic, metabolic, and phenotypic diversity among
867	Saccharomyces cerevisiae strains using multi-omics associations. Gigascience 8:1–14
868	https://doi.org/10.1093/gigascience/giz015
869	85. Promdonkoy P, et al., (2020) Improvement in d-xylose utilization and isobutanol
870	production in S. cerevisiae by adaptive laboratory evolution and rational engineering. J
871	Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-020-02281-9
872	86. Tian T, et al., (2020) A multiple-step strategy for screening Saccharomyces cerevisiae
873	strains with improved acid tolerance and aroma profiles. Appl Microbiol Biotechnol
874	104:3097–3107 . https://doi.org/10.1007/s00253-020-10451-z
875	87. Pereira R, et al., (2019) Adaptive laboratory evolution of tolerance to dicarboxylic acids
876	in Saccharomyces cerevisiae. Metab Eng 56:130–141 .
877	https://doi.org/10.1016/j.ymben.2019.09.008
878	88. Randez-Gil F, et al., (2020) Myriocin-induced adaptive laboratory evolution of an
879	industrial strain of Saccharomyces cerevisiae reveals its potential to remodel lipid
880	composition and heat tolerance. Microb Biotechnol 13:1066–1081.
881	https://doi.org/10.1111/1751-7915.13555
882	89. Zhang Q, et al., (2019) Adaptive evolution and selection of stress-resistant
883	Saccharomyces cerevisiae for very high-gravity bioethanol fermentation. Electron J
884	Biotechnol 41:88–94 . https://doi.org/10.1016/j.ejbt.2019.06.003
885	90. Xu X, et al., (2019) Evolutionary engineering in Saccharomyces cerevisiae reveals a
886	TRK1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnol
887	Biofuels 12:1–14 . https://doi.org/10.1186/s13068-019-1427-6

888	91.Zhu G, et al., (2020) Enhancement of sphingolipid synthesis improves osmotic
889	tolerance of saccharomyces cerevisiae. Appl Environ Microbiol 86:1–15.
890	https://doi.org/10.1128/AEM.02911-19
891	92. Caspeta L, et al., (2019) Engineering high-gravity fermentations for ethanol production
892	at elevated temperature with Saccharomyces cerevisiae. Biotechnol Bioeng 116:2587-
893	2597 . https://doi.org/10.1002/bit.27103
894	93. Jakočiūnas T, et al., (2018) CasPER, a method for directed evolution in genomic
895	contexts using mutagenesis and CRISPR/Cas9. Metab Eng 48:288–296.
896	https://doi.org/10.1016/j.ymben.2018.07.001
897	94. Papapetridis I, et al., (2018) Laboratory evolution for forced glucose-xylose co-
898	consumption enables identification of mutations that improve mixed-sugar fermentation
899	by xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 18:1–17.
900	https://doi.org/10.1093/femsyr/foy056
901	95. Strucko T, et al., (2018) Laboratory evolution reveals regulatory and metabolic trade-
902	offs of glycerol utilization in Saccharomyces cerevisiae. Metab Eng 47:73–82.
903	https://doi.org/10.1016/j.ymben.2018.03.006
904	96. Zhang W, et al., (2018) Adaptive Evolution Relieves Nitrogen Catabolite Repression
905	and Decreases Urea Accumulation in Cultures of the Chinese Rice Wine Yeast Strain
906	Saccharomyces cerevisiae XZ-11. J Agric Food Chem 66:9061–9069 .
907	https://doi.org/10.1021/acs.jafc.8b01313
908	97.Qi Y, et al., (2019) Engineering microbial membranes to increase stress tolerance of
909	industrial strains. Metab Eng 53:24–34 . https://doi.org/10.1016/j.ymben.2018.12.010
910	98. Kawai K, et al., (2019) Identification of metabolic engineering targets for improving
911	glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory
912	evolution and transcriptome analysis. J Biosci Bioeng 128:162–169 .
913	https://doi.org/10.1016/j.jbiosc.2019.02.001

- 99. Seppälä S, *et al.*, (2019) Heterologous transporters from anaerobic fungi bolster fluoride
 tolerance in Saccharomyces cerevisiae. Metab Eng Commun 9: .

 https://doi.org/10.1016/j.mec.2019.e00091

 100. Perli T, *et al.*, (2020) Adaptive Laboratory Evolution and Reverse Engineering of
 Single-Vitamin Prototrophies in Saccharomyces cerevisiae

 101. Betlei G. *et al.* (2020) Long-term adaption to high osmotic stress as a tool for
- 919 101. Betlej G, *et al.*, (2020) Long-term adaption to high osmotic stress as a tool for 920 improving enological characteristics in industrial wine yeast. Genes (Basel) 11: . 921 https://doi.org/10.3390/genes11050576
- 922 102. Chu HY, *et al.*, (2018) Assessing the benefits of horizontal gene transfer by
 923 laboratory evolution and genome sequencing. BMC Evol Biol 18:1–21 .
 924 https://doi.org/10.1186/s12862-018-1164-7
- Jensen K, *et al.*, (2019) OptCouple: Joint simulation of gene knockouts,
 insertions and medium modifications for prediction of growth-coupled strain designs.
 Metab Eng Commun 8: . https://doi.org/10.1016/j.mec.2019.e00087
- 928 104. Phaneuf P V., *et al.*, (2019) Aledb 1.0: A database of mutations from adaptive 929 laboratory evolution experimentation. Nucleic Acids Res 47:D1164–D1171 . 930 https://doi.org/10.1093/nar/gky983
- 931 105. Guzmán GI, *et al.*, (2019) Enzyme promiscuity shapes adaptation to novel 932 growth substrates. Mol Syst Biol 15:1–14 . https://doi.org/10.15252/msb.20188462
- 933 106. Sulzbach M and Kunjapur AM (2020) The Pathway Less Traveled: Engineering
 934 Biosynthesis of Nonstandard Functional Groups. Trends Biotechnol 38:532–545.
 935 https://doi.org/10.1016/j.tibtech.2019.12.014
- 936 107. Fejzagić, A. V., *et al.*, (2019) Halogenating enzymes for active agent synthesis: 937 First steps are done and many have to follow. Molecules 24, 4008
- 938 108. Cravens, A., *et al.*, (2019) Synthetic biology strategies for microbial biosynthesis 939 of plant natural products. Nature Communications vol. 10 1–12

940	109.	Torrens-Spence, M. P., et al., (2019) Engineering New Branches of the	
941	Kynurenine Pathway to Produce Oxo-(2-aminophenyl) and Quinoline Scaffolds in Yeas		
942	ACS Synth. Biol. 8, 2735–2745		
943	110.	Walia M, et al., (2020) Synthesis of (–)Melodinine K : A Case Study of Efficiency	
944	in Natural Product Synthesis. https://doi.org/10.1021/acs.jnatprod.0c00310		