

PDF issue: 2025-07-01

Effects of propofol on cortico-cortical evoked potentials in the dorsal language white matter pathway

Yamao, Yukihiro ; Matsumoto, Riki ; Kunieda, Takeharu ; Nakae, Takuro ; Nishida, Sei ; Inano, Rika ; Shibata, Sumiya ; Kikuchi, Takayuki ;…

(Citation)

Clinical Neurophysiology, 132(8):1919-1926

(Issue Date) 2021-08-01

(Resource Type) journal article

(Version) Accepted Manuscript

(Rights)

© 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V.

This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

(URL)

https://hdl.handle.net/20.500.14094/0100476685

1	Effect of propofol on cortico-cortical evoked potentials: findings of intraoperative
2	dorsal language pathway monitoring
3	
4	Yukihiro Yamao ^a *, Riki Matsumoto ^b *, Takeharu Kunieda ^c , Takuro Nakae ^a , Sei Nishida ^a ,
5	Rika Inano ^a , Sumiya Shibata ^{a,d} , Takayuki Kikuchi ^a , Yoshiki Arakawa ^a , Kazumichi Yoshida ^a ,
6	Akio Ikeda ^e , Susumu Miyamoto ^a
7	
8	^a Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto,
9	Japan
10	^b Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
11	^c Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon,
12	Japan
13	^d Kinugasa Research Organization, Ritsumeikan University, Kyoto, Japan
14	^e Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of
15	Medicine, Kyoto, Japan
16	

17 ***Co-Corresponding authors**

- 1 Riki Matsumoto, M.D. Ph.D.
- 2 Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
- 3 7-5-2, Kusunokicho, Chuo-ku, Kobe, 650-0017, Japan
- 4 **Tel & fax**: +81-78-382-5885 & +81-78-382-5899
- 5 **E-mail**: matsumot@med.kobe-u.ac.jp
- 6 and
- 7 Yukihiro Yamao, M.D., Ph.D.
- 8 Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- 9 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- 10 **Tel & Fax**: +81-75-751-3459 & +81-75-752-9501
- 11 **E-mail**: yyamao@kuhp.kyoto-u.ac.jp
- 12
- 13 **Running title:** Anesthetic effect on CCEPs
- 14
- 15 Keywords: cortico-cortical evoked potential; propofol; electrical stimulation; dorsal
- 16 language pathway; awake craniotomy

2	Abbreviations: AF = arcuate fasciculus, AL = anterior language area, BIS = bispectral index,
3	CCEP = cortico-cortical evoked potential, ECoG = electrocorticogram, ES = electrical
4	stimulation, $GABA = \gamma$ -aminobutyric acid, MEP = motor evoked potential, MRI = magnetic
5	resonance imaging, PL = posterior language area, SD = standard deviation, SEP =
6	somatosensory evoked potential

1 Highlights:

- The distribution of larger CCEP responses was marginally affected by anesthesia.
- The CCEP N1 amplitude increased from general anesthesia to waking.
- The CCEP provides the efficiency to preserve language functions even under general
- 5 anesthesia.
- 6
- 7 Abstract
- 8 **Objective**
- 9 In order to evaluate the clinical utility even under general anesthesia, the present study
- 10 aimed to clarify the effect of anesthesia on the cortico-cortical evoked potentials (CCEPs).

11 Methods

- 12 We analyzed 14 patients' data in monitoring the integrity of the dorsal language pathway by
- 13 using CCEPs both under general anesthesia with propofol and remifentanil and awake
- 14 condition, with the main aim of clarifying the effect of anesthesia on the distribution and
- 15 waveform of CCEPs.

1 Results

2	The distribution	of larger CCEP	response sites.	including the	locus of the	maximum CCEP
		0	•			

- 3 response site, was marginally affected by anesthesia. With regard to similarity of
- 4 waveforms, the mean waveform correlation coefficient indicated a strong agreement. CCEP
- 5 N1 amplitude increased by an average of 25.8% from general anesthesia to waking, except
- 6 three patients. CCEP N1 latencies had no correlation in changes between the two
- 7 conditions.

8 Conclusions

- 9 We demonstrated that the distribution of larger CCEP responses was marginally affected by
- 10 anesthesia and that the CCEP N1 amplitude had tendency to increase from general
- 11 anesthesia to the awake condition.

12 Significance

- 13 The CCEP method provides the efficiency of intraoperative monitoring for dorsal language
- 14 white matter pathway even under general anesthesia.

1 1. Introduction

2	When brain lesions are located within or near the language center of the brain, it is necessary
3	to preserve postoperative language functions while ensuring maximal lesion resection. High-
4	frequency electrical stimulation (ES) during awake craniotomy has recently become the gold
5	standard for mapping the brain function of the cortex and white matter, including language
6	functions (Duffau et al., 2005; Duffau, 2008). However, these cortical- and subcortical high-
7	frequency ES methods could map only the stimulus site (part of the language cortices or
8	language fibers). As a result, even during awake craniotomy, no methods have yet been
9	established to monitor the integrity of the language network during surgery.
10	We have recently developed electrophysiological methods using cortico-cortical
11	evoked potentials (CCEPs) for intraoperative monitoring in the dorsal language pathway
12	(the arcuate fasciculus; AF) in awake patients (Yamao et al., 2014; Yamao et al., 2017).
13	Direct single-pulse ES was administered to the cortex, and CCEPs were recorded from the
14	remote cortex through cortico-cortical connections in the extraoperative setting to probe
15	functional and seizure networks, as well as to evaluate epileptogenicity (Matsumoto et al.,

1	2004; Matsumoto et al., 2007; Koubeissi et al., 2012; Enatsu et al., 2013; Matsuzaki et al.,
2	2013; Keller et al., 2014; Enatsu et al., 2015; Matsumoto et al., 2017). In our previous
3	studies (Yamao et al., 2014; Yamao et al., 2017), we demonstrated that the CCEP
4	connectivity was able to map the anterior (AL) and posterior language area (PL) even in the
5	intraoperative setting, and that intraoperative dorsal language network monitoring was
6	feasible only under general anesthesia or without preoperative neuroimaging studies. The
7	CCEP technique potentially has a clinical application of intraoperative mapping and
8	monitoring of the language network.
9	Intraoperative monitoring is affected by multiple factors, such as anesthetic
10	agents, and anesthetic depth. Motor evoked potentials (MEPs) and somatosensory evoked
11	potentials (SEPs) have been widely used and are clinically significant, since MEPs and
12	SEPs can indicate the integrity of the brain function, in particular the motor and sensory
13	pathways, even under general anesthesia (Macdonald, 2006; Saito et al., 2015; MacDonald
14	et al., 2019). MEP and SEP amplitude and latency were closely correlated with depth of
15	anesthesia using propofol (Liu et al., 2005; Ohtaki et al., 2017). Similarly, in a recent

1	intraoperative CCEP study (Suzuki et al., 2019), N1 amplitude of the maximum CCEP
2	response site was closely correlated with depth of anesthesia, but N1 peak latencies were
3	not correlated. However, the effect of anesthesia on the CCEP connectivity, especially the
4	distribution of CCEP responses, remains unclear. The integrity of the dorsal language
5	pathway was monitored with the maximum CCEP response site recorded mainly at the PL
6	(Yamao et al., 2014; Yamao et al., 2017), but the consistency of the maximum CCEP
7	response site between awake and anesthetized patients was not evaluated. In addition, our
8	previous comparison of N1 latencies (Yamao et al., 2014) has indicated that N1 onset might
9	represent the fastest monosynaptic impulse directly projecting into the middle or deep
10	cortical layers. Thus, it is also necessary to evaluate the anesthetic effect on N1 onset
11	latencies, not only N1 peak latencies.
12	Our ultimate goal is to establish a method of intraoperative language monitoring
13	that can indicate the integrity of the language network even under general anesthesia. The
14	objective of the present study was to clarify the anesthetic effect on the CCEP distribution,
15	especially the effect of propofol, in monitoring the functional integrity of the AF by using

- 1 continuous single-pulse ES (CCEPs).
- 2

3 2. Methods

4 2.1. Patients

5	Patients had brain tumors or epileptic foci located within or near the perisylvian language
6	areas in the language-dominant left hemisphere between January 2011 and March 2015
7	from Kyoto University Hospital. Informed consent was obtained from all patients, and the
8	present study was approved by the Kyoto University Graduate School and Faculty of
9	Medicine Ethics Committee (IRB C573). Of the 42 CCEP investigations in 40 patients, we
10	included the following criteria: 1) the investigation was performed both under general
11	anesthesia and awake and 2) the locations or types of subdural electrodes, which were used
12	for electrical stimulation and recording, were not replaced during the surgical procedure.
13	These inclusion criteria were employed because we analyzed waveforms of all recorded
14	electrodes to evaluate CCEP connectivity in this study, whereas we compared the
15	amplitude of the maximum CCEP response site in previous CCEP studies (Yamao et al.,

1	2014; Yamao et al., 2017). Therefore, we analyzed 14 CCEP investigations in 14 patients
2	(mean age 43.6 years, ranging from ages 16 to 72; 9 males and 5 females). Language
3	function was evaluated before and after surgery using the Japanese version of the Western
4	Aphasia Battery (WAB). Postoperative evaluations [WAB and magnetic resonance imaging
5	(MRI) scans including tractography] were performed between two and six weeks after
6	surgery. For those who showed language impairment during the immediate postoperative
7	evaluation, follow-up evaluation was performed within six months of surgery (Yamao et
8	al., 2017).
9	Since we did not perform intraoperative magnetic resonance imaging with subdural
10	electrode implantation, the location of subdural electrodes was identified based on
11	operative visual inspection and neuronavigation data. The demographics are summarized in
12	Table 1. Patients 1–11 are reported elsewhere (Yamao et al., 2014; Yamao et al., 2017).
13	

14 2.2. General anesthesia and awake craniotomy

1	All surgical procedures were performed using an asleep-awake technique with direct
2	electrical cortical stimulation, as described previously (Yamao et al., 2014; Yamao et al.,
3	2017). A wide craniotomy exposing the distal end of the Sylvian fissure, the frontal
4	operculum of the inferior frontal gyrus, and the posterior part of the superior and middle
5	temporal gyri was performed under general anesthesia (Maldonado et al., 2011; Rolland et
6	al., 2018). Propofol boluses were used only at the induction of general anesthesia. General
7	anesthesia was maintained with propofol and remifentanil to achieve a target bispectral
8	index (BIS) under 60, and the rate of propofol infusion was almost fixed at the beginning of
9	CCEP monitoring after craniotomy. In all patients, to avoid seizure, phenytoin was
10	administered just before or after the anesthetic was stopped. We diagnosed waking, or "the
11	awake condition," as the state just after extubation, or BIS >70. After patients were
12	awaken, the pain was controlled with the decreased dose of remifentanil (0-0.03
13	μg/kg/min).

15 2.3. Intraoperative single-pulse electrical stimulation

1	As	reported previously (Yamao et al., 2014; Yamao et al., 2017), we used single-pulse ES,
2	in	the following order:
3	1)	After craniotomy, under general anesthesia, grid-type (4 x 5 or 2 x 8) subdural
4		electrodes were placed on the ventrolateral frontal and lateral temporoparietal cortices.
5		The electrodes were made of platinum with a recording diameter of 3 mm and an inter-
6		electrode distance of 1 cm (Unique Medical Co., Ltd., Tokyo, Japan).
7	2)	Under general anesthesia, we applied single-pulse ES (1 Hz, square-wave pulse of
8		alternating polarity, 0.3 ms duration, 10–15 mA, two sets of 30 stimuli) to cortices
9		around the AL. Based on the CCEP distribution in the PL, namely, CCEP connectivity,
10		we determined the stimulus site (i.e. the putative AL).
11	3)	To evaluate the integrity of the dorsal language pathway, online sequential $\text{CCEP}_{\text{AL}\rightarrow\text{PL}}$
12		monitoring (stimulating the AL and recording CCEPs from the PL) was performed
13		under general anesthesia and in the awake condition (the same stimulation conditions
14		that we used to identify the CCEP connectivity, as mentioned above).
15		A 32-channel intraoperative monitoring system (MEE 1232 Neuromaster,

1	equipped with MS 120B electrical stimulator; NIHON KOHDEN CORPORATION,
2	Tokyo, Japan) was used to deliver electric currents and to record CCEPs and raw
3	electrocorticograms (ECoGs). The reference electrodes were placed on the skin over the
4	contralateral mastoid process. The bandpass filter for data acquisition was set at 0.5 or 1–
5	1,500 Hz with a sampling rate of 5,000 Hz.
6	In the operating theater, the intraoperative integrity of the dorsal language
7	pathway can be evaluated in real time by observing the largest CCEP N1 amplitude
8	recorded at the posterior language area (see Video 1; the video recording of the on-line
9	monitoring). In this study, in order to exclude the influence of intraoperative artifacts for
10	the precise analysis of CCEP waveforms, CCEPs were also analyzed offline in MATLAB
11	(Mathworks, Inc., Natick, MA) by averaging ECoGs time-locked to the stimulus onset
12	(analysis window: -100 to +500 ms, baseline: -100 to -5 ms).
12	

13

14 2.4. Analysis of CCEP waveform

1	The N1 peak was identified as a first negative deflection from the stimulus artifact. The
2	onset, peak latency, and amplitude of N1 were measured as reported previously (Figure 1)
3	(Matsumoto et al., 2004; Yamao et al., 2014). We only took those negative deflections (N1)
4	as significant when the amplitude was larger than six times the standard deviation (SD) of
5	the baseline fluctuation (between 100 and 5 ms before the stimulus onset) in each CCEP
6	investigation (Usami et al., 2015).
7	To examine an anesthetic effect, we compared CCEP distribution, using the
8	correlation ratio of CCEP responses and the similarity of waveforms, and CCEP amplitudes
9	and latencies, between the two conditions: just before the anesthetic ceased (i.e. "general
10	anesthesia"), and immediately after the patients became fully awake (i.e. "awake
11	condition"), in the following manner.
12	1) To compare the correlation ratio of CCEP responses, first, we checked for the locus of
13	maximum CCEP response site between the two conditions. We also evaluated the
14	number of electrodes with the amplitude showing >6 standard deviation (SD) from the
15	baseline fluctuation, $\geq 20\%$ (20-100%), and $\geq 60\%$ (60-100%) of the maximum CCEP

1	response between the two conditions, respectively. The correlation ratio of CCEP
2	responses (the numbers of electrodes showing $\geq 20\%$ and $\geq 60\%$ CCEP responses of the
3	maximum CCEP response) were performed using the following equations, respectively:
4	Correlation ratio ($\geq X\%$) = (A \cap B)/(A \cup B),
5	where A= the number of electrodes showing $\ge X\%$ of the maximum CCEP
6	response under general anesthesia and B= the number of electrodes showing
7	\geq X% of the maximum CCEP response in the awake condition (X = 20 or 60).
8	2) In addition to the correlation ratio, we evaluated the similarity of CCEP waveforms. For
9	the intraoperative dorsal language pathway monitoring (Yamao et al., 2014; Yamao et
10	al., 2017), we compared the N1 amplitude of the maximum CCEP response sites, and
11	N1 peak latency ranged from 10 to 50 ms (Matsumoto et al., 2017). Therefore, a
12	waveform correlation coefficient was calculated at large CCEP response sites; sites
13	showing $\geq 60\%$ of the maximum CCEP response, (analysis window: -5 and +100 ms
14	from the stimulus) in each investigation. The waveform correlation coefficient was
15	defined as the covariance of two CCEP waveforms (under general anesthesia and in the

1	awake condition) divided by the product of their standard deviations. The waveform
2	correlation was calculated using the N1 part of the CCEP waveforms (i.e., from the
3	preceding trough to the following trough of the N1 activity). We defined ≥ 0.7 of a
4	correlation coefficient as a strong agreement.
5	3) The N1 onset and peak latency, and N1 amplitude of the maximum CCEP response site
6	between the two conditions were calculated.
7	
8	2.5. Statistical analysis
9	The t-test was used to compare N1 onset latencies and the distribution correlation ratio
10	between the two conditions. P values <0.05 indicate statistical significance. Statistical
11	analyses were performed with JMP software (version 14, SAS Institute Inc., Cary, NC, USA).
12	
13	3. Results
14	3.1. The correlation ratio and similarity of CCEP responses between awake patients and
15	patients under general anesthesia

1	In all investigations, single-pulse ES was delivered to the frontal stimulus site, and CCEPs
2	were successfully recorded from the lateral temporoparietal area both under general
3	anesthesia and in the awake condition, without provoking clinical seizures or seizure
4	patterns on ECoG. In all investigations, the locus of the maximum CCEP response site was
5	not changed between the two conditions.
6	We calculated the similarity of CCEP between the two conditions at electrodes
7	showing 1) >6 SD of the baseline fluctuation, 2) \geq 20%, and 3) \geq 60% of the maximum
8	CCEP response in each patient. The mean numbers of electrodes showing $\geq 20\%$ of the
9	CCEP N1 maximum responses under general anesthesia and in the awake condition were
10	7.1 (ranging from 1 to 12) and 6.8 (ranging from 1 to 15), respectively. The mean numbers
11	of electrodes showing $\geq 60\%$ of the CCEP N1 maximum responses under general anesthesia
12	and in the awake condition were 2.0 (ranging from 1 to 6) and 2.1 (ranging from 1 to 6),
13	respectively. The mean correlation ratio of CCEP responses (\geq 20%) and (\geq 60%) was 0.72 ±
14	0.06 (ranging from 0.33 to 1.0; mean \pm SD), and 0.86 \pm 0.06 (ranging from 0.50 to 1.0;
15	mean \pm SD), respectively. The mean correlation ratio of CCEP responses ($\geq 60\%$) was larger

1	than that ($\geq 20\%$), but there was no statistical significance ($P = 0.08$).
2	With regards to the similarity of CCEP waveforms, a waveform correlation
3	coefficient between two conditions was calculated at electrodes showing $\geq 60\%$ of the
4	maximum CCEP response. In all 14 CCEP investigations across all patients, the 14
5	electrode sites showed the maximum CCEP response, and other 11 electrode sites showed
6	60-99% of the maximum CCEP responses both under general anesthesia and in the awake
7	condition. Thus, the 25 electrode sites showed $\geq 60\%$ (60-100%) of the maximum CCEP
8	responses across all patients. In the 14 maximum CCEP response sites, the mean waveform
9	correlation coefficient was 0.95 (ranging from 0.86 to 0.99). In the 11 electrodes showed
10	60-99% of the maximum CCEP responses, the mean waveform correlation coefficient was
11	0.95 (ranging from 0.91 to 0.97). Therefore, in the 25 electrodes showing 60-100% of the
12	maximum CCEP response across all patients, the mean waveform correlation coefficient
13	was 0.95, indicating a strong agreement. Waveforms obtained from a representative case
14	(Patient 10) are shown in Figure 2, and the results in all patients are summarized in Tables
15	2 and 3.

2	3.2. N1 latency and amplitude of the maximum CCEP response site between awake
3	patients and those under general anesthesia
4	The average N1 amplitude at the maximum CCEP response site under general anesthesia
5	was 324.9 μV (ranging from 74.6 to 997.0 μV), while the average N1 amplitude in the
6	awake condition was 344.0 μV (ranging from 86.8 to 742.2 μV). N1 amplitude increased
7	by an average of 25.8% (ranging from 0.5 to 76.8%) from general anesthesia to the awake
8	condition in eight patients, while N1 amplitude decreased by an average of 16.4% (ranging
9	from 4.5 to 25.6%) in three patients. In all three patients with N1 amplitude decreases
10	(≤30%), the partial resection of the tumor started during general anesthesia (Supplementary
11	figure 1). In these three patients (Patient 2, 7, and 11), postoperative tractography revealed
12	the preservation of the AF (Supplementary figure 2), and they did not demonstrate even a
13	transient decline in language function, including repetition, in the postoperative phase
14	(Table 1).

15

An average N1 onset latency at the maximum CCEP response site in patients

1	under general anesthesia and in the awake condition was 10.0 ms (ranging from 3.0 to 13.6
2	ms) and 9.9 ms (ranging from 3.0 to 13.6 ms), respectively. N1 onset latency was equal in 6
3	patients from general anesthesia to the awake condition, decreased in 5, and increased in 3.
4	The absolute value of the difference in N1 onset latency between the two conditions was
5	0.6 ± 0.4 ms (mean \pm SD). An average of N1 peak latency at the maximum CCEP response
6	site under general anesthesia and in the awake condition was 28.1 ms (ranging from 8 to
7	38.4 ms) and 27.4 ms (ranging from 8.4 to 33.4 ms), respectively. N1 peak latency was
8	equal in 1 patient from general anesthesia to the awake condition, decreased in 7, and
9	increased in 6. The absolute value of the difference in N1 peak latency between the two
10	conditions was 1.9 ± 0.4 ms (mean \pm SD). As for N1 onset and peak latency, there was no
11	correlation in changes between the two conditions, but the absolute value of the difference
12	in N1 onset latency, i.e., the variability of N1 onset latency, between the two conditions was
13	significantly smaller than that of the N1 peak latency ($P = 0.04$). The results of the N1
14	amplitude and latency are summarized in Table 4.

1 4. Discussion

2	In the present study, we demonstrated the anesthetic effects of propofol on the CCEP
3	responses: 1) the CCEP distribution of larger CCEP responses, including the locus of the
4	maximum CCEP response site, was marginally affected by anesthesia, and 2) the CCEP N1
5	amplitude had tendency to increase from general anesthesia to the awake condition.
6	There is no consensus concerning the effect of propofol on intraoperative ECoG
7	(San-juan et al., 2010). Propofol infusions can effectively terminate refractory status
8	epilepticus (Stecker et al., 1998), while propofol can cause epileptic activation of the ECoG
9	(Smith et al., 1996; Hewitt et al., 1999). Remifentanil is an ultra-short-acting opioid,
10	increasingly used today in neurosurgical anesthesia. In previous ECoG studies in temporal
11	lobe epilepsy (McGuire et al., 2003; Kjaer et al., 2017), remifentanil activated epileptiform
12	activity in the epileptogenic foci, such as the hippocampus and amygdala, while not in non-
13	epileptic brain tissue, such as the frontal lobe. In this study, CCEP responses were recorded
14	successfully under general anesthesia by propofol and remifentanil in all patients without
15	provoking clinical seizures or seizure patterns on ECoG.

1	In a previous intraoperative MEP study (Ohtaki et al., 2017), MEP amplitude was
2	significantly higher in the awake state as compared to deep anesthesia, and latency was
3	shorter in the awake state. The same finding has been observed in SEP studies (Liu et al.,
4	2005). Propofol directly activates the γ -aminobutyric acid (GABA) _A receptor, resulting in
5	anesthesia. $GABA_A$ is the major inhibitory system in the central nervous system, and is
6	involved in the down-regulation of neuronal activity (Orser et al., 1994). Therefore,
7	propofol induces a reduction in amplitude and a delay in the latency of SEPs. Propofol also
8	increases the threshold of α -motor neurons in the anterior horn of the spinal cord, which
9	induces a reduction of the MEP amplitude and a delay in the latency (Ohtaki et al., 2017).
10	In this study, as reported in another intraoperative CCEP study (Suzuki et al., 2019), CCEP
11	N1 amplitude also increased from general anesthesia to the awake condition, except in three
12	patients (Patients 2, 7, and 11). In those three patients with N1 amplitude decreases (\leq 30%),
13	the partial resection of the tumor had already started during general anesthesia, and
14	especially in Patients 2 and 11 in whom N1 amplitude decreased during the general
15	anesthesia (Supplementary figure 1), temporal lobectomy was also performed under the

1	general anesthesia. From previous studies (Yamao et al., 2014; Yamao et al., 2017), only
2	more than 50% reductions in CCEP amplitude during the awake state would impact
3	language function, in particular, permanent repetition related impairment due to damage to
4	the AF, which was endorsed by inability to tract the AF tract postoperatively. In the three
5	patients in our study with \leq 30% N1 amplitude, the postoperative AF by diffusion
6	tractography was preserved (Supplementary figure 2), and those three patients did not show
7	even a transient decline including repetition during the postoperative period (Table 1). This
8	suggests that 1) CCEP <50% amplitude decrease might neither influence the language
9	function or tractography as reported in MEP studies (Mikuni et al., 2007; Saito et al., 2020),
10	2) CCEP recorded in our study might include responses of other language-related tracts,
11	especially ventral language pathways (Ellmore et al., 2009; Nakae et al., 2020), considering
12	the CCEP change under general anesthesia in Patients 2 and 11. High frequency subcortical
13	ES will be required in order to detect the tracts beneath the sulci of the cortex or the floor of
14	removal cavity, but subcortical ES could not be performed in those three patients due to
15	clinical limitations. Combined 50 Hz and single-pulse subcortical ES would complement

1	diffusion tractography and help clarify the function and anatomy of the stimulated tracts.
2	As for latencies, neither N1 onset nor peak latencies were correlated with
3	anesthesia, as reported elsewhere (Suzuki et al., 2019). However, the absolute value of the
4	difference in N1 onset latency, i.e., the variability of N1 onset latency, between the two
5	conditions was significantly smaller than that of the N1 peak latency, which implied that
6	N1 onset latency is less affected by anesthetics. The precise generator mechanism of
7	CCEPs still remains unclear, but different mechanisms are probably associated with the
8	effect of anesthesia on the CCEP N1 potential, unlike MEPs and SEPs. From our previous
9	studies (Matsumoto et al., 2007; Yamao et al., 2014), the N1 potential likely represents the
10	summation of direct corticocortical impulses conveyed both by small fibers with slower
11	conduction velocities and by large myelinated fibers that are activated through indirect
12	oligo-synaptic corticocortical projections. N1 onset might represent the direct fastest
13	monosynaptic impulse projecting into the middle or deep cortical layers, whereas the N1
14	peak might represent indirect oligo- or multi-synaptic responses, i.e., local jitter of synaptic
15	activity at the site of stimulation and at the target cortex. Therefore, because propofol

1	affects synaptic transmission, N1 onset which represents direct monosynaptic connection is
2	less affected; however, further prospective studies are needed to clarify the mechanisms of
3	CCEP, and the anesthetic effect, on N1 latencies.
4	A previous extraoperative CCEP study across spontaneous sleep stages revealed
5	that CCEP N1 amplitude significantly increased during sleep (non-rapid eye movement
6	sleep), compared with the awake state, and that more intense neuronal activation occurred
7	during non-rapid eye movement sleep than in the awake state (Usami et al., 2015). The
8	mechanism of the unconscious state by anesthetics remains unclear, but the state under
9	general anesthesia using propofol was quite different from the spontaneous sleep state in
10	terms of cortical excitability studied by CCEP. Further studies are warranted to evaluate the
11	ECoG activity between the general anesthesia and the spontaneous sleep state.
12	As for CCEP distribution, the locus of the maximum CCEP response site had not
13	changed between general anesthesia and the awake condition. The mean correlation ratio of
14	CCEP responses (0.82 \pm 0.07; mean \pm SD) in \geq 60% CCEP responses of the maximum
15	CCEP response was larger than that in $\geq 20\%$ (0.73 \pm 0.07; mean \pm SD). In addition, in 22

1	electrodes showing 60-100% of the maximum CCEP response across all patients, the mean
2	similarity of the waveform (waveform correlation coefficient) was 0.95, indicating a strong
3	agreement. These results suggest that CCEP distribution of larger CCEP responses
4	including the maximum response site has good correlation among the two conditions.
5	Namely, CCEP distribution of larger CCEP response is marginally affected by propofol.
6	Thus, CCEP monitoring at the maximum CCEP response site is clinically reasonable for
7	the preservation of language functions even when the surgery is performed only under
8	general anesthesia.
9	There are several limitations to be considered in our study. The first limitation is
10	the reliability of anesthesia level measurements. BIS monitoring was not able to be
11	recorded in all patients because of clinical limitations. BIS analysis is based on the
12	electroencephalogram, but BIS value might not fully reflect the real-time depth of
13	anesthesia because BIS can be affected by various factors including electromyography
14	(Ohtaki et al., 2017; Suzuki et al., 2019). In our study, CCEP monitoring started after
15	craniotomy, that is, after the injection rate of propofol was almost fixed. Thus, this study

1	cannot discuss whether bolus injection of propofol affect N1 amplitude or not. In order to
2	evaluate the "real" anesthetic effect of propofol, the measurement of the blood
3	concentration at the same time as CCEP investigation would be warranted. In addition, in
4	previous small cases (Jones et al., 2014; Yamao et al., 2017), under general anesthesia by
5	using volatile anesthetics (sevoflurane or isoflurane), CCEPs were also available. The
6	future systematic study would be required in order to clarify the protocol of anesthetics and
7	anesthetic effects on the CCEPs. Second, the patient backgrounds with regard to
8	antiepileptic drugs, location of subdural electrodes, location and pathology of tumor, and
9	stimulus intensity varied. The inconsistency of these backgrounds would bias the findings.
10	The subdural electrodes with an inter-electrode distance of 1 cm had limitations in spatial
11	resolution and exploration of the sulcal part of the cortices (Ookawa et al., 2017). Other
12	types of electrodes, such as depth electrodes or high-density electrodes, would provide
13	more detailed results. Third, recent studies suggest that high frequency activities (>100 Hz),
14	i.e. high-gamma activity related to evoked potentials are proxies for neuronal activity (Ray
15	et al., 2008a; Ray et al., 2008b). In this study, stimulus-induced high gamma activity could

1	not be analyzed because of a lot of noise in the intraoperative setting. Fourth, in this study,
2	a wide craniotomy was performed to map the anterior and posterior language areas, as
3	reported by Duffau and his group, a pioneer of brain stimulation (Maldonado et al., 2011;
4	Rolland et al., 2018). There is a trend in the neurosurgical community towards performing
5	smaller craniotomies in order to provide minimally invasive surgery and reduce the
6	postoperative morbidity and length of hospital stay. However, subdural electrode placement
7	in a blind fashion potentially risks complications through vascular injury (Tanriverdi et al.,
8	2009; McGinity et al., 2017). In these circumstances, intraoperative neurophysiological
9	evaluations with subdural electrode placement would be limited, and alternative non-
10	invasive preoperative evaluations such as functional MRI and tractography would help
11	address this.
12	Despite these limitations, many institutions, including our institution, have
13	recently reported the usefulness of CCEPs for intraoperative mapping to preserve brain
14	function (Kikuchi et al., 2012; Saito et al., 2014; Yamao et al., 2014; Tamura et al., 2016;
15	Ookawa et al., 2017; Yamao et al., 2017). We previously demonstrated that: 1) a

1	combination of 50 Hz and single-pulse ES to the cortices and white matter delineated the
2	cortical terminations of the dorsal language pathway electrophysiologically; and 2) when
3	compared to 50 Hz mapping findings, the intraoperative CCEP connectivity pattern itself
4	was able to delineate the dorsal language pathway. In the present study, that focuses on the
5	effect of propofol, we demonstrated that the distribution of larger CCEP response sites,
6	including the locus of the maximum CCEP response site, and the waveform were
7	marginally affected by anesthesia. Therefore, although alternative preoperative
8	neuroimaging studies, i.e., functional MRI or tractography, are still required, intraoperative
9	CCEPs could be used to monitor the dorsal language network, even if CCEPs were only
10	performed under general anesthesia.
11	
12	5. Conclusions
13	Here, we report a correlation between CCEP responses and anesthesia. This single-pulse ES
14	method provides the possibility of intraoperative monitoring to preserve language function
15	only under general anesthesia. We hope that further multicenter collaborative studies will
16	proceed to establish intraoperative language monitoring even under general anesthesia.

- 1
- 2

3 Funding

- 4 This work was partly supported by JSPS KAKENHI Grant Number 19K18424 (YY),
- 5 18K19514, 18H02709, and 20H05471 (RM).
- 6

7 Conflict of Interest Statement

- 8 Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate
- 9 School of Medicine is an endowment department, supported with grants by
- 10 GlaxoSmithKline K.K., the NIHON KOHDEN CORPORATION, Otsuka Pharmaceutical
- 11 Co., and UCB Japan Co., Ltd.
- 12

1 References

- 2 Duffau H. The anatomo-functional connectivity of language revisited. New insights provided
- 3 by electrostimulation and tractography. Neuropsychologia 2008; 46: 927-34.
- 4 Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L. New insights
- 5 into the anatomo-functional connectivity of the semantic system: a study using cortico-
- 6 subcortical electrostimulations. Brain 2005; 128: 797-810.
- 7 Ellmore TM, Beauchamp MS, O'Neill TJ, Dreyer S, Tandon N. Relationships between
- 8 essential cortical language sites and subcortical pathways. J Neurosurg 2009; 111: 755-66.
- 9 Enatsu R, Gonzalez-Martinez J, Bulacio J, Kubota Y, Mosher J, Burgess RC, et al.
- 10 Connections of the limbic network: a corticocortical evoked potentials study. Cortex 2015;
 11 62: 20-33.
- Enatsu R, Matsumoto R, Piao Z, O'Connor T, Horning K, Burgess RC, et al. Cortical negative
 motor network in comparison with sensorimotor network: a cortico-cortical evoked potential
 study. Cortex 2013; 49: 2080-96.
- 15 Hewitt PB, Chu DL, Polkey CE, Binnie CD. Effect of propofol on the electrocorticogram in

1	epileptic patients undergoing cortical resection. Br J Anaesth 1999; 82: 199-202.
2	Jones SE, Zhang M, Avitsian R, Bhattacharyya P, Bulacio J, Cendes F, et al. Functional
3	magnetic resonance imaging networks induced by intracranial stimulation may help defining
4	the epileptogenic zone. Brain Connect 2014; 4: 286-98.
5	Keller CJ, Honey CJ, Entz L, Bickel S, Groppe DM, Toth E, et al. Corticocortical evoked
6	potentials reveal projectors and integrators in human brain networks. J Neurosci 2014; 34:
7	9152-63.
8	Kikuchi T, Matsumoto R, Mikuni N, Yokoyama Y, Matsumoto A, Ikeda A, et al. Asymmetric
9	bilateral effect of the supplementary motor area proper in the human motor system. Clin
10	Neurophysiol 2012; 123: 324-34.
11	Kjaer TW, Hogenhaven H, Lee AP, Madsen FF, Jespersen B, Brennum J, et al.
12	Pharmacodynamics of remifentanil. Induced intracranial spike activity in mesial temporal
13	lobe epilepsy. Epilepsy Res 2017; 133: 41-5.
14	Koubeissi MZ, Lesser RP, Sinai A, Gaillard WD, Franaszczuk PJ, Crone NE. Connectivity
15	between perisylvian and bilateral basal temporal cortices. Cereb Cortex 2012; 22: 918-25.

1	Liu EH, Wong HK, Chia CP, Lim HJ, Chen ZY, Lee TL. Effects of isoflurane and propofol
2	on cortical somatosensory evoked potentials during comparable depth of anaesthesia as
3	guided by bispectral index. Br J Anaesth 2005; 94: 193-7.
4	Macdonald DB. Intraoperative motor evoked potential monitoring: overview and update. J
5	Clin Monit Comput 2006; 20: 347-77.
6	MacDonald DB, Dong C, Quatrale R, Sala F, Skinner S, Soto F, et al. Recommendations of
7	the International Society of Intraoperative Neurophysiology for intraoperative
8	somatosensory evoked potentials. Clin Neurophysiol 2019; 130: 161-79.
9	Maldonado IL, Moritz-Gasser S, Duffau H. Does the left superior longitudinal fascicle
10	subserve language semantics? A brain electrostimulation study. Brain Struct Funct 2011; 216:
11	263-74.
12	Matsumoto R, Kunieda T, Nair D. Single pulse electrical stimulation to probe functional and
13	pathological connectivity in epilepsy. Seizure 2017; 44: 27-36.
14	Matsumoto R, Nair DR, LaPresto E, Bingaman W, Shibasaki H, Lüders HO. Functional
15	connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain

1 2007; 130: 181-97.

Matsumoto R, Nair DR, LaPresto E, Najm I, Bingaman W, Shibasaki H, et al. Functional
connectivity in the human language system: a cortico-cortical evoked potential study. Brain
2004; 127: 2316-30.

Matsuzaki N, Juhász C, Asano E. Cortico-cortical evoked potentials and stimulation-elicited
gamma activity preferentially propagate from lower- to higher-order visual areas. Clin
Neurophysiol 2013; 124: 1290-6.

- 8 McGinity M, Patel V, Karkar K, Papanastassiou A. Temporopolar bridging veins during
- 9 anteromedial temporal strip placement: a case report on complication avoidance. J Surg Case
- 10 Rep 2017; 2017: rjx186.
- 11 McGuire G, El-Beheiry H, Manninen P, Lozano A, Wennberg R. Activation of
- 12 electrocorticographic activity with remifentanil and alfentanil during neurosurgical excision
- 13 of epileptogenic focus. Br J Anaesth 2003; 91: 651-5.
- 14 Mikuni N, Okada T, Enatsu R, Miki Y, Urayama S, Takahashi JA, et al. Clinical significance
- 15 of preoperative fibre-tracking to preserve the affected pyramidal tracts during resection of

2	2007; 78: 716-21.
3	Nakae T, Matsumoto R, Kunieda T, Arakawa Y, Kobayashi K, Shimotake A, et al.
4	Connectivity Gradient in the Human Left Inferior Frontal Gyrus: Intraoperative Cortico-
5	Cortical Evoked Potential Study. Cereb Cortex 2020; 30: 4633-50.
6	Ohtaki S, Akiyama Y, Kanno A, Noshiro S, Hayase T, Yamakage M, et al. The influence of
7	depth of anesthesia on motor evoked potential response during awake craniotomy. J
8	Neurosurg 2017; 126: 260-5.
9	Ookawa S, Enatsu R, Kanno A, Ochi S, Akiyama Y, Kobayashi T, et al. Frontal Fibers
10	Connecting the Superior Frontal Gyrus to Broca Area: A Corticocortical Evoked Potential
11	Study. World Neurosurg 2017; 107: 239-48.
12	Orser BA, Wang LY, Pennefather PS, MacDonald JF. Propofol modulates activation and
13	desensitization of GABAA receptors in cultured murine hippocampal neurons. J Neurosci
14	1994; 14: 7747-60.
15	Ray S, Crone NE, Niebur E, Franaszczuk PJ, Hsiao SS. Neural correlates of high-gamma

brain tumours in patients with preoperative motor weakness. J Neurol Neurosurg Psychiatry

1	oscillations (60-200 Hz) in macaque local field potentials and their potential implications in
2	electrocorticography. J Neurosci 2008a; 28: 11526-36.
3	Ray S, Niebur E, Hsiao SS, Sinai A, Crone NE. High-frequency gamma activity (80-150Hz)
4	is increased in human cortex during selective attention. Clin Neurophysiol 2008b; 119: 116-
5	33.
6	Rolland A, Herbet G, Duffau H. Awake Surgery for Gliomas within the Right Inferior Parietal
7	Lobule: New Insights into the Functional Connectivity Gained from Stimulation Mapping
8	and Surgical Implications. World Neurosurg 2018; 112: e393-e406.
9	Saito T, Muragaki Y, Maruyama T, Tamura M, Nitta M, Okada Y. Intraoperative Functional
10	Mapping and Monitoring during Glioma Surgery. Neurol Med Chir (Tokyo) 2015; 55: 1-13.
11	Saito T, Muragaki Y, Tamura M, Maruyama T, Nitta M, Tsuzuki S, et al. Correlation between
12	localization of supratentorial glioma to the precentral gyrus and difficulty in identification of
13	the motor area during awake craniotomy. J Neurosurg 2020; 1: 1-10.
14	Saito T, Tamura M, Muragaki Y, Maruyama T, Kubota Y, Fukuchi S, et al. Intraoperative
15	cortico-cortical evoked potentials for the evaluation of language function during brain tumor

1	resection: initial experience with 13 cases. J Neurosurg 2014; 121: 827-38.
2	San-juan D, Chiappa KH, Cole AJ. Propofol and the electroencephalogram. Clin
3	Neurophysiol 2010; 121: 998-1006.
4	Smith M, Smith SJ, Scott CA, Harkness WF. Activation of the electrocorticogram by
5	propofol during surgery for epilepsy. Br J Anaesth 1996; 76: 499-502.
6	Stecker MM, Kramer TH, Raps EC, O'Meeghan R, Dulaney E, Skaar DJ. Treatment of
7	refractory status epilepticus with propofol: clinical and pharmacokinetic findings. Epilepsia
8	1998; 39: 18-26.
9	Suzuki Y, Enatsu R, Kanno A, Yokoyama R, Suzuki H, Tachibana S, et al. The Influence of
10	Anesthesia on Corticocortical Evoked Potential Monitoring Network Between Frontal and
11	Temporoparietal Cortices. World Neurosurg 2019; 123: e685-e92.
12	Tamura Y, Ogawa H, Kapeller C, Prueckl R, Takeuchi F, Anei R, et al. Passive language
13	mapping combining real-time oscillation analysis with cortico-cortical evoked potentials for
14	awake craniotomy. J Neurosurg 2016; 125: 1580-8.
15	Tanriverdi T, Ajlan A, Poulin N, Olivier A. Morbidity in epilepsy surgery: an experience

2	1111-23.
3	Usami K, Matsumoto R, Kobayashi K, Hitomi T, Shimotake A, Kikuchi T, et al. Sleep
4	modulates cortical connectivity and excitability in humans: Direct evidence from neural
5	activity induced by single-pulse electrical stimulation. Hum Brain Mapp 2015; 36: 4714-29.
6	Yamao Y, Matsumoto R, Kunieda T, Arakawa Y, Kobayashi K, Usami K, et al. Intraoperative
7	dorsal language network mapping by using single-pulse electrical stimulation. Hum Brain
8	Mapp 2014; 35: 4345-61.
9	Yamao Y, Suzuki K, Kunieda T, Matsumoto R, Arakawa Y, Nakae T, et al. Clinical impact of
10	intraoperative CCEP monitoring in evaluating the dorsal language white matter pathway.
11	Hum Brain Mapp 2017; 38: 1977-91.
12	

based on 2449 epilepsy surgery procedures from a single institution. J Neurosurg 2009; 110:

13

1 Figure legends

2 Figure 1.

3	Measurement of the N1 amplitude and latency of cortico-cortical evoked potentials. A line
4	was drawn from the onset to the offset of the N1 peak, and the N1 amplitude was then
5	measured as the height of a vertical line drawn from the negative peak of N1 to the
6	intersection of the vertical line with the above-described line (Matsumoto et al., 2004). The
7	latencies of N1 onset and N1 peak were measured from the time of stimulation to the N1
8	onset and N1 peak, respectively. The vertical bar represents the time of stimulation.
9	
10	Figure 2.
11	Intraoperative CCEP distribution map (Patient 10). A: CCEP waveforms under general
12	anesthesia and in the awake condition (before tumor removal). In each waveform, two trials
13	are plotted in superimposition. CCEP distribution, including the maximum CCEP response
13 14	are plotted in superimposition. CCEP distribution, including the maximum CCEP response site (Electrode B13), did not change between the two conditions. Each waveform was

1	baseline: -100 to -5 ms). To improve visualization, line has been lifted in each waveform.
2	B: CCEP distribution map under general anesthesia. The diameter of the circle at each
3	electrode represents the percentile to the amplitude at the maximum CCEP response site
4	(Electrode B13). C: Change of the N1 amplitude during surgery at the maximum CCEP
5	response site (Electrode B13). The waveform correlation coefficient was calculated at 0.95.
6	The N1 amplitude increased from 188.6 to 232.6 μ V. CCEP N1 latencies are shown only in
7	the awake condition.
8	CCEP = cortico-cortical evoked potential
9	
10	Video 1.
11	The illustrative case (Patient 10) of the on-line CCEP monitoring in the operation theater,
12	using a 32-channel intraoperative evoked potential machine (MEE 1232 Neuromaster,
13	equipped with MS 120B electrical stimulator; NIHON KOHDEN CORPORATION, Tokyo,
14	Japan). The contents of the video are described below. (0-2 s); Left upper column;
15	Preoperative MR images (left; fluid-attenuated inversion recovery image, right; T1-weighted

1	image with gadolinium enhancement). Right upper column; Electrode configuration in the
2	intraoperative view (after tumor removal). Lower column; Electrode placement. A plate is
3	placed on the frontal cortex, and B plate is placed on the temporoparietal cortex. (2-4 s);
4	CCEPs were recorded by single-pulse electrical stimulation at the electrode pair A14-15
5	(anterior language area). Three consecutive sets (i.e., averaged CCEP waveforms) are shown
6	at each electrode on the display. The upper two waveforms are the ones currently being
7	recorded (two sets were obtained to confirm the reproducibility). The lower one is the one
8	performed 5 min previously. The left 5 x 4 columns (red square) demonstrate waveforms on
9	the B plate, and the right 3 x 4 columns (blue square) show waveforms on the A plate.
10	Electrode B13 (red circle) shows the maximum CCEP response at the posterior language area.
11	(4 s to the end of the video); Real-time CCEP acquisition. The blue waveform (the uppermost
12	waveform) represents the ongoing averaged CCEP waveform. The other two waveforms
13	(green) were already recorded previously. Note that the waveform being averaged on-line is
14	very similar to the one recorded just previously (the second upper waveform in green) within
15	several seconds (i.e., several trials), although 30 stimuli were delivered to obtain the averaged

- 1 CCEP in each set. The intraoperative integrity of the dorsal language pathway can be
- 2 evaluated by the amplitude change in the maximum CCEP response site (Electrode B13).
- 3 CCEP = cortico–cortical evoked potential