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Abstract 17 

Recently, deep learning (DL) algorithms have been adapted for the diagnosis of 18 

medical images. The purpose of this study is to detect image features by DL without 19 

measuring median nerve cross-sectional area (CSA) in ultrasonography (US) images of 20 

carpal tunnel syndrome (CTS) and calculate the diagnostic accuracy from the obtained 21 

confusion matrix. US images of 50 hands without CTS and 50 hands diagnosed with CTS 22 

were used in this study. The short axis image of the median nerve was visualized and 5000 23 

images of both groups were prepared. Forty hands in each group were used as training 24 

data for the DL algorithm while the remaining were used as test data. Transfer learning 25 

was performed using three pre-trained models. The confusion matrix and receiver 26 

operating characteristic curves were used to evaluate the diagnostic accuracy. 27 

Furthermore, regions where DL was determined to be important were visualized. The 28 

highest score had an accuracy of 0.96, precision of 0.99, and recall of 0.94. Visualization 29 

of the important features showed that the DL models focused on the epineurium of the 30 

median nerve and the surrounding soft tissue. The proposed technique enables the 31 

accurate prediction of CTS without measuring the CSA. 32 

  33 

Key words: artificial intelligence, carpal tunnel syndrome, confusion matrix, deep 34 
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Introduction 36 

Carpal tunnel syndrome (CTS) is a peripheral neuropathy caused by compression 37 

of the median nerve and has been studied extensively (Olney 2001). CTS is caused by 38 

various factors, including edema around the wrist joint, tendon inflammation, and manual 39 

activity (Padua, et al. 2016). Symptoms of CTS include intermittent paresthesia and 40 

dysesthesia, which tend to worsen at night (Genova, et al. 2020). In severe cases, 41 

weakness in the muscles innervated by the median nerve may occur, leading to weakness 42 

of thumb abduction (Nataraj, et al. 2014). To diagnose CTS, an accurate history is 43 

necessary to evaluate the presence of motor and sensory disturbances (Padua, et al. 2016), 44 

and can be confirmed using diagnostic modalities such as electrophysiological studies 45 

(EPS, i.e., nerve conduction studies; NCS) or ultrasonography (US) (Demino and Fowler 46 

2020). According to the literature published by the American Association of 47 

Electrodiagnostic Medicine (AAEM), the sensitivity of NCS for CTS ranges from 63% 48 

to 85%, with a specificity of over 97% (Jablecki, et al. 2002). Although EPS reveals the 49 

level of the lesion with high diagnostic accuracy, it does not provide local information 50 

about the nerve or the etiology of the disease (Tai, et al. 2012). In this regard, US images 51 

can be used to evaluate the location of lesions and nerve conditions in real time and have 52 

been used as a diagnostic device for CTS in recent years (Inui, et al. 2016). The 53 
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measurement of the median nerve cross-sectional area (CSA) at the entrance of the carpal 54 

tunnel is useful in diagnosing CTS (Tai, et al. 2012). Although US imaging is noninvasive 55 

and has been widely accepted for nerve evaluation in recent years, nerve identification 56 

itself requires a level of skill that novice surgeons may lack. 57 

In recent years, research on using deep learning (DL) to assist in making a diagnosis for 58 

medical data has gained attention (Weston, et al. 2019). Especially in the field of medical 59 

imaging, DL using convolutional neural networks (CNNs) is used extensively to 60 

automatically learn image features (Shin, et al. 2016). This study focuses on the accuracy 61 

of DL and decision basis visualization techniques for US images of CTS. 62 

The purpose of this study is to detect the features of US images of CTS through DL 63 

without measuring CSA and calculate the diagnostic accuracy from the obtained 64 

confusion matrix. This study hypothesized that AI would accurately predict CTS without 65 

measuring CSA by learning the characteristic echo patterns of nerves and surrounding 66 

tissues in US images. 67 

Materials and Methods 68 

The ethics committee of the Kobe University Graduate School of Medicine 69 

approved this study (No. B21009), and informed consent was obtained from all the 70 
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patients involved. This is a retrospective case series (consecutive) study and all 71 

participants provided written informed consent. 72 

The hands of 50 healthy volunteers (22 men and 28 women), without any CTS by 73 

clinical symptoms or EPS (control group), and the hands of 50 patients (19 men, 31 74 

women) diagnosed with CTS by EPS between 2019 and 2021 (CTS group) were used in 75 

this study. The severity of CTS was defined based on previous reports and the results of 76 

EPS as follows (Bulut, et al. 2014, Kanatani, et al. 2013); stage 1 (normal distal motor 77 

latency [DML] and normal sensory nerve conduction velocity [SNCV] ), stage 2 (DML 78 

≥ 4.5 ms and normal SNCV), stage 3 (DML ≥ 4.5 ms and SNCV< 40 m/s), stage 4 (DML 79 

≥ 4.5 ms and the absence of sensory response), stage 5 ( absence of DML and SNCV). 80 

Patients with severity of stage 2 or higher were included in the CTS group. Healthy 81 

volunteers and those with EPS results of stage 1 were considered as the control group. 82 

Patients with a history of wrist surgery, including carpal tunnel release, were excluded. 83 

The sample size was determined by power analysis based on data from a previous study 84 

using G*Power 3.1 (Tai, et al. 2012),(Inui, et al. 2016). A prior sample size calculation 85 

showed that a difference in CSA of 3 mm2 was detectable in the two groups with a sample 86 

size of 70 participants (35 participants in each group) using a t-test (effect size = 0.6, α = 87 

0.05, power = 0.8). The diagnosis of CTS was performed by a certified hand surgeon 88 
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(A.I), and US imaging was performed by a certified surgeon (A.I) with 11 years of 89 

musculoskeletal US imaging experience. 90 

For US imaging, the short-axis image of the median nerve was delineated at the 91 

inlet of the carpal tunnel using an 18MHz linear probe (Canon APLIO300, TUS-A300, 92 

Toshiba, Canon Medical Systems, Tochigi, Japan). The gain, dynamic range, and frame 93 

rate were kept constant throughout all measurements and for all participants. The US 94 

movie was recorded by sliding the probe within 20 mm of the distal wrist crease (Figure 95 

1). From the obtained US movies, 100 images per hand were captured, and 5000 images 96 

were prepared for both groups, and a 15 × 15 mm area, including the median nerve, was 97 

cropped and used for DL. The Deeplearning Toolbox in MATLAB (Mathworks, 98 

Massachusetts, Natick, US) was used for DL, where forty hands in each group were used 99 

as training data, and the remaining were used as test data. (Figure 2). During 100 

preprocessing, data augmentation was performed to increase the variation in the original 101 

dataset. The ImageAugmentor tool in MATLAB was used to augment training and 102 

validation images by applying horizontal flipping, rotation (-10° to 10°), scaling (× 0.8 to 103 

× 1.2), horizontal translation, vertical translation, and random shearing. Transfer learning 104 

was performed using three pre-trained models (SqueezeNet, MobileNet_v2, and 105 

EfficientNet). These models selected are widely used for medical image data and have 106 
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been improved by reducing computation time and memory size. The models have 107 

different convolutional layers, namely: 18, 53, and 82 layers in SqueezeNet, 108 

MobileNet_v2, and EfficientNet, respectively. The confusion matrix was obtained using 109 

the test dataset of each training model. Furthermore, the AI detected the features from the 110 

original US images without measuring the CSA in this study. The image features which 111 

the DL models focused their attention to were visualized as heatmap and overlaid to the 112 

original images. In this study, local interpretable model agnostic explanations (LIME) and 113 

occlusion sensitivity were used to visualize the important features detected by the network 114 

(Zhou, et al. 2016). 115 

Statistical analysis 116 

Using the test data, the accuracy of DL with three different learning models was 117 

evaluated. The accuracy (percentage of correct answers for all data), precision 118 

(percentage of artificial intelligence (AI) correctly judging CTS group), recall (percentage 119 

of data correctly judged by AI as CTS group, same as sensitivity), specificity (percentage 120 

of data correctly judged by AI as control group), and F-measure (the harmonic mean of 121 

the accuracy and recall), which are widely used in the field of machine learning, were 122 

calculated based on the confusion matrix. In addition, the area under the ROC curve was 123 
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calculated by plotting the true positive rate and false positive rate on the coordinate axes. 124 

The 95 % confidence intervals (CIs) for sensitivity, specificity, and area under the curve 125 

(AUC) were calculated using the bootstrap method (Matsuo, et al. 2020). 126 

For comparison of manual CSA measurements between the two groups, Mann 127 

Whitney U test was performed using IBM SPSS Statistics v.21 (IBM, Armonk, NY, USA). 128 

For comparison of ROC curves, DeLong’s test was performed using R software package. 129 

A statistically significant difference was defined as p<0.05.  130 
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Results 131 

The flow diagram of the participants is shown in Figure 3. Of the 112 participants, 132 

including healthy volunteers who did not have symptoms (eight cases), 12 were excluded 133 

for surgical or other reasons. All participants, except healthy volunteers, underwent EPS 134 

and were assigned to two groups according to the severity. The breakdown of the severity 135 

was as follows; stage 1: 42 cases, stage 2: 12 cases, stage 3: 26 cases, stage 4: eight cases, 136 

stage 5: four cases. Finally, 50 hands including healthy volunteers were defined as the 137 

control group, and another 50 hands with severity of stage 2 or higher were defined as the 138 

CTS group. The mean age of the control group was 45.0 ± 7.3 years old (range: 35-55 139 

years old), and the mean age of the CTS group was 69.5 ± 13.2 years old (range: 37-88 140 

years old). The mean CSA (at the inlet of the carpal tunnel) measured manually was 8.2 141 

± 2.4 mm2 (range: 7- 10mm2) in the control group and 14.7 ± 5.3 mm2 (range: 9- 22mm2) 142 

in the CTS group, which was significantly larger in the CTS group (p<0.01). 143 

The diagnostic accuracy of each model was evaluated based on the confusion matrix 144 

obtained from the test data. The prediction accuracy of each learning model is shown in 145 

Table 1. For the prediction of CTS by the DL model, the best score of accuracy was 0.96 146 

in EfficientNet, for precision was 0.99 in EfficientNet, for recall was 0.94 in SqueezeNet, 147 

and for specificity was 0.99 in EfficientNet. The AUC, which is a plot of the true positive 148 
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rate and false positive rate on the coordinate axis, was 0.978 (95 % CI; 0.975-0.980) for 149 

SqueezeNet, 0.964 (95 % CI; 0,962-0.967) for MobileNet_v2, and 0.998 (95 % CI; 0.995-150 

0,999) for EfficientNet (Figure 4). There was no statistical difference of AUC between 151 

the three DL models. Occlusion sensitivity and image LIME visualized the important 152 

features detected by AI using an overlaid heat map. The results show that the learning 153 

models predict the presence or absence of CTS by focusing on the inner and surrounding 154 

tissues of the median nerve (Figure 5).  155 
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Discussion 156 

In this study, the accuracy of diagnosis using DL for US images of CTS was 157 

evaluated. Although CTS diagnosis is typically performed based on CSA measurement 158 

by US imaging, image recognition by DL can predict CTS based on the echo pattern of 159 

the median nerve and surrounding tissue without CSA measurement. The highest score 160 

was an accuracy of 0.96, sensitivity of 0.94, and specificity of 1.00, indicating that the 161 

diagnosis could be made with higher accuracy even without CSA measurement. 162 

Furthermore, all models were able to predict CTS with a higher accuracy than the reported 163 

diagnostic accuracy of CSA measurements (sensitivity 0.87 and specificity 0.83) (Tai, et 164 

al. 2012).  165 

In recent years, there has been an increasing number of reports on DL for such US 166 

images of CTS (Table 2). It has been reported that CSA measurements of the median 167 

nerve using a state-of-the-art CNN (Mask R-CNN) were in high agreement with CSA 168 

measurements of sonographers (Smerilli, et al. 2022); (Cosmo, et al. 2021). Wu et al. and 169 

Wang et al. reported a technique for automatic tracking of the median nerve from dynamic 170 

US (Wu, et al. 2021); (Wang, et al. 2020). In this study, we focused on how AI recognizes 171 

the characteristics of CTS, such as surrounding soft tissue changes and US intensity 172 

changes in the median nerve. 173 
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In this study, three pre-trained models with different convolutional layers were used. 174 

Recent advances in deep learning have focused not only on improving accuracy but also 175 

on reducing the weight of the model (Forrest N. Iandola, et al. 2016). A reduced network 176 

architecture results in shortened training time and reduced memory size. In the processing 177 

of medical images, it is important to make decisions with high accuracy in a short period 178 

of time from a huge amount of data. SqueezeNet uses model compression techniques to 179 

reduce the size of the convolutional layer (Forrest N. Iandola, et al. 2016) and is often 180 

applied in medical imaging for chest X-ray diagnosis (Ucar and Korkmaz 2020). 181 

MobileNet_v2 simplifies DL, improves efficiency, and reduces memory footprint by 182 

introducing inverted residuals with linear bottlenecks (Mark Sandler, et al. 2019). 183 

MobileNet_v2 is efficient in image classification and object detection and has been 184 

applied to the lung CT (Gang, et al. 2021). EfficientNet is capable of processing 6.1 times 185 

faster with 8.4 times smaller capacity than the previous learning models such as ResNet, 186 

which were widely used before 2019 (Tan and LE 2019). Although with more 187 

convolutional layers, a more detailed evaluation is possible in the learning model used in 188 

this study,  good accuracy was obtained with SqueezeNet, which has the fewest 189 

convolutional layers. The accuracy of AI-based recognition and measurement of the CSA 190 

of the median nerve may be reduced by anatomical variations associated with CTS 191 
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(Smerilli, et al. 2022). In this study, AI learned the features of the images taking into 192 

account the anatomical variations, therefore, the accuracy may have been comparable to 193 

previous reports. 194 

In medical research files, it is important to know the basis for the AI decision. 195 

Various explanatory methods are currently being studied for this, including gradient-196 

weighted class activation mapping (Grad-CAM), occlusion sensitivity, and LIME (Zhou, 197 

et al. 2016). Grad-CAM is a technique used to visualize important pixels by weighing the 198 

gradient against the prediction (Selvaraju, et al. 2017). Grad-CAM is useful for image 199 

classification, while occlusion sensitivity and LIME are useful for detailed lesion 200 

observation (Panwar, et al. 2020); (Aminu, et al. 2021). However, Grad-CAM has a lower 201 

resolution than occlusion sensitivity and LIME. Therefore, in this study, occlusion 202 

sensitivity and LIME were used to visualize the basis of AI decisions. The occlusion 203 

sensitivity can effectively visualize multifocal glass opacities and consolidations and can 204 

evaluate important image features in detail (Aminu, et al. 2021). LIME is a method of 205 

extracting important regions by creating superpixels, and has recently become popular in 206 

the field of medical imaging (Ahsan, et al. 2021). Visualizing the basis for AI's decision 207 

could provide the necessary information for diagnosis. In the visualization of the region 208 

of interest by occlusion sensitivity and LIME in this study, the contrast in echogenicity 209 
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between the epineurium and its internal tissues and the echogenicity of perineural tissues 210 

were captured as features. This may reflect the presence of a pseudo-neuroma due to 211 

compression by the transcarpal ligament and inflammation of the surrounding flexor 212 

tendon synovium in the CTS. As a result, it was possible to diagnose CTS with high 213 

accuracy without measuring CSA. The application of DL-based imaging to clinical 214 

practice can lead to a more accurate and convenient diagnosis of CTS. Furthermore, 215 

because DL models learn image features using an uninhibited and unbiased neural model 216 

compared to humans, DL feature visualizations may enable physicians to detect 217 

previously overlooked and unquantified features.  218 

This study has some limitations. First, although power analysis was performed, the 219 

number of cases in which the analysis images were based was not large. Further studies 220 

are required to corroborate the results of the present study. Second, the present results 221 

were obtained with only a single US instrument, and no comparison of diagnostic 222 

accuracy with other instruments was made. US imaging is excellent for the diagnosis of 223 

soft tissues and we hope that this system can be extended to provide a more convenient 224 

and accurate diagnosis of CTS. Third, the AI in this study was trained through supervised 225 

learning based on images with established diagnoses. Therefore, comparisons of the 226 

accuracy of CTS predictions by AI were performed based on historical data. Prospective 227 
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comparisons between AI diagnosis and CSA measurement should be performed in the 228 

future. Finally, US images are taken by one evaluator and reproducibility with other 229 

evaluators is not considered. Further research is expected to support this study. 230 

  231 
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Conclusion 232 

In recent years, AI-based medical imaging diagnosis has attracted attention. In this 233 

study, DL was used to predict the presence of CTS from US images of the median nerve. 234 

As an evaluation, the prediction accuracy of three learning models with different 235 

convolutional layers was examined. Results showed that all three learning models were 236 

able to predict with high accuracy, with the highest model having an accuracy of 0.96, 237 

sensitivity of 0.94, and specificity of 1.00. This study has the potential to be extended and 238 

applied clinically in the future, based on further studies of more cases, to provide a more 239 

convenient and accurate diagnosis of CTS. 240 

 241 
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Figure Legends 325 

Figure 1. (a) The ultrasonography (US) transducer positioned at the inlet of the carpal 326 

tunnel. (b) Short-axis image of the median nerve (red arrows) at the inlet of the carpal 327 

tunnel  328 

Figure 2. Randomly extracted images using Matlab's Deeplearning Toolbox (Mathworks) 329 

(Blue; Control, Red; carpal tunnel syndrome (CTS)).  330 

Figure 3. Flow of participants 331 

Figure 4. Area under the curve (AUC) based on the receiver operating characteristic 332 

(ROC) curve was high for all learning models. 333 

Figure 5. Visualization of region of interest using occlusion sensitivity and image local 334 

interpretable model agnostic explanations (LIME). Learning models focus on the neural 335 

interior and perineural tissue. 336 

  337 
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Table Legends 338 

Table 1; Diagnostic accuracy of each learning model 339 

(95 % confidence interval)  340 

Network Accuracy Precision Recall 

(Sensitivity) 

Specificity F measure 

SqueezeNet 0.943 

(0.941–0.945) 

0.957 

(0.954–0.959) 

0.943 

(0.941–0.946) 

0.937 

(0.935–0.939) 

0.950 

(0.948–0.951) 

MobileNet_v2 0.941 

(0.940–0.943) 

0.961 

(0.960–0.963) 

0.937 

(0.935–0.939) 

0.953 

(0.951–0.955) 

0.949 

(0.947–0.951) 

EfficientNet 0.959 

(0.958–0.961) 

0.998 

(0.997–0.998) 

0.935 

(0.933–0.937) 

0.997 

(0.995–0.998) 

0.965 

(0.964–0.966) 
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Table2; Summary of recent studies on US CTS identification 341 

Reference Method N Results and evaluations 
Smerlli et al. 

(2022) 
Localize and segment the 

median nerve section 
(Mask R-CNN) 

246 images Precision; 0.86, Recall; 0.88 
Mean average precision; 0.88 

Dice similarity coefficient; 0.86 
Cosmo et al. 

(2021) 
Localize and segment the 

median nerve section 
(Mask R-CNN) 

151 images Dice similarity coefficient; 0.93 

Wu et al. 
(2021) 

Segment the median nerve in 
dynamic US 

(Deeplabv3+, U-Net 
FPN, Mask R-CNN) 

52 dynamic 
US images 

Intersection over union 
Average 0.83 for Deeplabv3+ 

and 
Mask R-CNN 

Wang et al. 
(2020) 

Median nerve tracking using 
a DL model. 

(MNT-DeepSL) 

100 cases, 
84 with CTS 

Accuracy; 0.9 

Our study Visualization 
(SqueezeNet, MobileNet_v2, 

EfficientNet) 

100 cases, 
10,000 images 

Best score 
Accuracy; 0.96, Precision; 0.99 
Recall; 0.94, F measure; 0.97 
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