

PDF issue: 2024-09-23

Effectiveness, Moderators and Mediators of Self-regulation Intervention on Older Adults' Exercise Behavior: a Randomized, Controlled Crossover Trial

Harada, Kazuhiro

(Citation)

International Journal of Behavioral Medicine, 29(5):659-675

(Issue Date) 2022-10-01

(Resource Type) journal article

(Version)

Accepted Manuscript

(Rights)

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:…

(URL)

https://hdl.handle.net/20.500.14094/0100476868

Section/topic	Item No	Description	Page No*
Title†	1a	Identification as a randomised crossover trial in the title	1
Abstract†	1b	Specify a crossover design and report all information outlined in table 2	1
Introduction:			•
Background‡	2a	Scientific background and explanation of rationale	2 to 6
Objectives‡	2b	Specific objectives or hypotheses	6
Methods:		aposino soposinos or ripportessos	
Trial design†	3a	Rationale for a crossover design. Description of the design features including allocation ratio,	
		especially the number and duration of periods, duration of washout period, and consideration of carry over effect	6 to 7
Change from protocol‡	3b	Important changes to methods after trial commencement (such as eligibility criteria), with reasons	7
Participants‡	4a	Eligibility criteria for participants	8
Settings and location‡	4b	Settings and locations where the data were collected	8
Interventions†	5	The interventions with sufficient details to allow replication, including how and when they were actually administered	9 to 11
Outcomes‡	6a	Completely defined prespecified primary and secondary outcome measures, including how and when they were assessed	11
Changes to outcomes‡	6b	Any changes to trial outcomes after the trial commenced, with reasons	11
Sample sizet	7a	How sample size was determined, accounting for within participant variability	7 to 8
Interim analyses and stopping	7b	When applicable evaluation of any interim applying and stanning guidelines	
guidelines‡ Randomisation:			ot applicat
Sequence generation‡	8a	Method used to generate the random allocation sequence	7
Sequence generation‡	8b	Type of randomisation; details of any restriction (such as blocking and block size)	7
Allocation concealment	9	Mechanism used to implement the random allocation sequences (such as sequentially numbered	
mechanism‡	10	containers), describing any steps taken to conceal the sequence until interventions were assigned Who generated the random allocation sequence, § who enrolled participants, and who assigned	7
Implementation†		participants to the sequence of interventions	7
Blinding‡	11a	If done, who was blinded after assignment to interventions (for example, participants, care providers, those assessing outcomes) and how	7
Similarity of interventions‡	11b	If relevant, description of the similarity of interventions	24 to 25
Statistical methods†	12a	Statistical methods used to compare groups for primary and secondary outcomes which are appropriate fo crossover design (that is, based on within participant comparison)	13 to 15
Additional analyses‡	12b	Methods for additional analyses, such as subgroup analyses and adjusted analyses	13 to 15
Results			
Participant flow (a diagram is strongly recommended)†	13a	The numbers of participants who were randomly assigned, received intended treatment, and were analysed for the primary outcome, separately for each sequence and period	rigure i
Losses and exclusions†	13b	No of participants excluded at each stage, with reasons, separately for each sequence and period	Figure1
Recruitment‡	14a	Dates defining the periods of recruitment and follow-up	7, Figure1
Trial end‡	14b	Why the trial ended or was stopped	7
Baseline data†	15	A table showing baseline demographic and clinical characteristics by sequence and period	Table1
Numbers analysed†	16	Number of participants (denominator) included in each analysis and whether the analysis was by original assigned groups	Figure1
Outcomes and estimation†	17a	For each primary and secondary outcome, results including estimated effect size and its precision (such as 95% confidence interval) should be based on within participant comparisons.¶ In addition, results for each intervention in each period are recommended	
Binary outcomes‡	17b		t applicable
Ancillary analyses‡	18	Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing prespecified from exploratory	15 to 17
Harmst	19	Describe all important harms or untended effects in a way that accounts for the design (for specific guidance, see CONSORT for harms ³²)	9
Discussion:			
Limitations†	20	Trial limitations, addressing sources of potential bias, imprecision, and if relevant, multiplicity of analyses. Consider potential carry over effects	25 to 26
Generalisability‡	21	Generalisability (external validity, applicability) of the trial findings	24
Interpretation‡	22	Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence	21 to 24
Other information:			
Registration‡	23	Registration number and name of trial registry 7. c	coverpage
Protocol‡	24		applicable
Funding‡	25	Sources of funding and other support (such as supply of drugs), role of funders C	overpage

CONSORT=Consolidated Standards of Reporting Trials.

^{*}Note: page numbers are optional depending on journal requirements. †Modified original CONSORT item.

[‡]Unmodified CONSORT item.

[§]Random sequence here refers to a list of random orders, typically generated through a computer program. This should not be confused with the sequence of interventions in a randomised

crossover trial, for example receiving intervention A before B for an individual trial participant.

¶A within participant comparison takes into account the correlation between measurements for each participant because they act as their own control, therefore measurements are not independent.

Electronic Supplementary Material 2.

Components of Print-Based Intervention Materials

	Component 1:	Component 2:	Component 3:
Week	Information about exercise and	Information about tips for effective	Fill-out forms for practice of self-regulatory strategies of
-	health promotion	behavior change techniques	exercise
1	Recommended amounts and types of exercise for health promotion (four pages)	Tips for effective self-monitoring (two pages)	Fill-out form for self-monitoring every day (one page)
2	Key points of walking for health	Tips for effective goal settings and	Fill-out form for goal setting and action planning
	promotion (three pages)	action planning (two pages)	Fill-out form for self-monitoring
			Fill-out form for review behavior goal achievement (two pages)
3	Key points of strength training	Tips for creating and keeping	Fill-out form for goal setting and action planning
	for health promotion (three	desirable motivation (two pages)	Fill-out form for self-monitoring
	pages)		Fill-out form for review behavior goal achievement (two pages)
4	Exercise and brain health (three	Tips for receiving social support	Fill-out form for goal setting and action planning
	pages)	effectively (two pages)	Fill-out form for self-monitoring
			Fill-out form for review behavior goal achievement (two pages)
5	Exercise and mental health (two	Tips for preventing relapse and	Fill-out form for goal setting and action planning
	pages)	coping barriers (three pages)	Fill-out form for self-monitoring
			Fill-out form for review behavior goal achievement (two pages)
6	Exercise, sedentary behavior,	Tips for building self-confidence to	Fill-out form for goal setting and action planning
	and health promotion (two	maintain exercise behavior (three	Fill-out form for self-monitoring
_	pages)	pages)	Fill-out form for review behavior goal achievement (two pages)
7	Reviews of Week 1 to Week 6	Reviews of Week 1 to Week 6 (three	
	(two pages)	pages)	strategies (two pages)

Note. Apart from the three components, the print material at each week had one front cover page. In the final week, in addition to the intervention material, the leaflets for health promotion policies and practices in the local community were also delivered to the participants.

Electronic Supplementary Material 3.

Descriptive Statistics and Factor Structure for Items on Habit Strength of Exercise

		Coefficie	ent in CFA
	M (SD)	Model 1	Model 2
Item 1: I do automatically. (score, 1–7)	4.7 (1.7)	0.67	0.61
Item 2: I do without having to consciously remember. (score, 1–7)	4.1 (1.8)	0.91	0.87
Item 3: I do without thinking. (score, 1–7)	3.8 (1.8)	0.95	0.98
Item 4: I start doing before I realize I'm doing it. (score, 1–7)	3.4 (1.8)	0.80	0.80

M, mean; SD, standard deviation, CFA, confirmatory factor analysis

A one-factor structure was examined using confirmatory factor analysis. Model 1 did not contain any correlated errors. Model 2 contained the correlated error between item 1 and item 2 (standardized coefficient of correlated error, 0.43 [p<0.001]).

Model fit indices of model 1 were $\chi^2(2) = 60.7$ (p<0.001), CFI = 0.949, TLI = 0.847, and RMSEA = 0.275. The model fit indices of model 2 were ${}^{b}\chi^{2}(1) = 1.0$ (p = 0.307), CFI > 0.990, TFI > 0.999, and RMSEA = 0.011.

Electronic Supplementary Material 4.

Descriptive Statistics for Perceived Adherence and Acceptance of intervention

	n	Total, M (SD)	Delayed intervention group, M (SD)	Immediate intervention group, M (SD)	p- value ^a
Overall, how many pages on the materials did you actually read?	370	8.7 (2.0)	8.8 (1.9)	8.6 (2.1)	0.282
Overall, how many fill-out forms on the materials did you actually fill out?	366	7.2 (2.9)	7.1 (3.0)	7.3 (2.9)	0.646
Overall, were the print materials easy to understand?	366	8.8 (1.5)	8.9 (1.4)	8.7 (1.7)	0.151
Overall, was the participation in the intervention meaningful to promote your exercise behavior?	366	8.2 (2.0)	8.3 (1.9)	8.1 (2.0)	0.520
Overall, were you satisfied with the participation in the intervention?	365	8.3 (1.8)	8.4 (1.7)	8.2 (1.9)	0.358

Note. at-test

The participants responded to each item from "0" (not at all) to "10" (all).

Electronic Supplementary Material 5.

Fixed Effects in Mixed Models for Intervention Effects on Exercise Behavior

	Mod	el 1		Model 2			
	B (95%CI)	β	p-value	B (95%CI)	β	p-value	
Intervention group							
Delayed	(reference)			(reference)			
Immediate	-5.8 (-14, 2.4)	-0.14	0.165	-5.1 (-13.3, 3.1)	-0.13	0.222	
Survey point							
T1	(reference)			(reference)			
T2	2.4 (-2.1, 6.8)	0.06	0.298	2.0 (-2.7, 6.7)	0.05	0.399	
T3	10.1 (5.5, 14.6)	0.25	< 0.001	9.5 (4.8, 14.3)	0.24	< 0.001	
Intervention group × survey	y point						
Immediate × T2	9.4 (3.0, 15.9)	0.24	0.004	9.8 (3.1, 16.4)	0.24	0.004	
Immediate × T3	0.8 (-5.6, 7.3)	0.02	0.799	0.9 (-5.8, 7.6)	0.02	0.790	
Sex at T1							
Men	_			(reference)			
Women	_			-11.2 (-20.2, -2.1)	-0.14	0.016	
Age (years) at T1				0.8 (0.2, 1.3)	0.12	0.013	
Educational background at	T1						
< 4-year college	_			(reference)			
≥ 4-year college	_			-0.9 (-9.4, 7.6)	-0.01	0.841	
Marital status at T1							
Single	_			(reference)			
Married	_			6.0 (-6.7, 18.7)	0.06	0.356	
Living arrangement at T1							
Alone	_			(reference)			
With others	_			4.1 (-10.0, 18.3)	0.04	0.569	
Perceived economic				-1.2 (-6.6, 4.2)	-0.02	0.663	
status at T1 (score, 1–5)	_			-1.2 (-0.0, 4.2)	-0.02		
Frailty at T1 (score, 0–25)	_			-1.8 (-3.0, -0.5)	-0.13	0.005	
Enrollment with spouse							
No	_			(reference)			
Yes	_			2.7 (-5.7, 11.1)	0.03	0.535	

Note. B: unstandardized regression coefficient; 95%CI: 95% confidence interval; β: standardized regression coefficient; T1: baseline survey; T2: second survey; T3: third survey. Intercepts for individual differences (variance) were treated as random effects: B = 1196.6 (95% confidence interval; 1012.5, 1414.1) in Model 1, B for variance = 1090.4 (95% confidence interval; 915.4, 1298.9) in Model 2.

Electronic Supplementary Material 6.

Fixed Effects in Mixed Models for Intervention Effects on Self-Regulation of Exercise

	Mod	del 1		Model 2			
	B (95%CI)	β	p-value	B (95%CI)	β	p-value	
Intervention group							
Delayed	(reference)			(reference)			
Immediate	-0.8 (-1.7, 0.1)	-0.16	0.089	-0.6 (-1.5, 0.3)	-0.13	0.200	
Survey point							
T1	(reference)			(reference)			
T2	-0.3 (-0.9, 0.3)	-0.07	0.313	-0.4 (-1.0, 0.3)	-0.07	0.269	
T3	3.0 (2.4, 3.7)	0.64	< 0.001	3.0 (2.3, 3.6)	0.62	< 0.001	
Intervention group × survey	point						
Immediate \times T2	4.0 (3.2, 4.9)	0.85	< 0.001	4.1 (3.2, 5.0)	0.86	< 0.001	
Immediate \times T3	-0.9 (-1.7, 0.0)	-0.18	0.054	-0.8 (-1.6, 0.1)	-0.16	0.095	
Sex at T1							
Men	_			(reference)			
Women	_			-0.1 (-1.1, 0.8)	-0.01	0.768	
Age (years) at T1				0.0 (-0.1, 0.1)	-0.01	0.754	
Educational background at T	Γ1						
< 4-year college	_			(reference)			
≥ 4-year college	_			0.0 (-0.9, 0.8)	-0.01	0.916	
Marital status at T1							
Single	_			(reference)			
Married	_			0.8 (-0.6, 2.1)	0.07	0.267	
Living arrangement at T1							
Alone	_			(reference)			
With others	_			-0.8 (-2.3, 0.6)	-0.07	0.263	
Perceived economic				-0.1 (-0.7, 0.5)	-0.02	0.689	
status at T1 (score, 1–5)	_			-0.1 (-0.7, 0.3)	-0.02		
Frailty at T1 (score, 0–25)	_			-0.2 (-0.3, -0.1)	-0.13	0.003	
Enrollment with spouse							
No	_			(reference)			
Yes	_			-0.1 (-0.1, 0.8)	-0.01	0.774	

Note. B: unstandardized regression coefficient; 95%CI: 95% confidence interval; β: standardized regression coefficient; T1: baseline survey; T2: second survey; T3: third survey. Intercepts for individual differences (variance) were treated as random effects: B = 11.2 (95% confidence interval; 9.3, 13.4) in Model 1, B for variance = 10.9 (95% confidence interval; 9.0, 13.2) in Model 2.

Electronic Supplementary Material 7.

Fixed Effects in Mixed Models for Intervention Effects on Habit Strength of Exercise

	Mod	lel 1		Model 2			
	B (95%CI)	β	p-value	B (95%CI)	β	p-value	
Intervention group							
Delayed	(reference)			(reference)			
Immediate	-1.1 (-2.3, 0.1)	-0.17	0.086	-0.7 (-1.8, 0.5)	-0.11	0.271	
Survey point							
T1	(reference)			(reference)			
T2	-0.4 (-1.1, 0.3)	-0.07	0.243	-0.4 (-1.2, 0.3)	-0.07	0.271	
T3	1.4 (0.7, 2.1)	0.23	< 0.001	1.5(0.7, 2.2)	0.24	< 0.001	
Intervention group × surve	y point						
Immediate \times T2	1.9 (0.9, 3.0)	0.32	< 0.001	2.0(0.9,3.0)	0.32	< 0.001	
Immediate \times T3	0.4 (-0.7, 1.4)	0.06	0.483	0.3 (-0.7, 1.4)	0.05	0.559	
Sex at T1							
Men	_			(reference)			
Women	_			0.2 (-1.1, 1.5)	0.02	0.741	
Age (years) at T1				0.2(0.1, 0.2)	0.17	< 0.001	
Educational background at	T1						
< 4-year college	_			(reference)			
≥ 4-year college	_			-0.1 (-1.3, 1.1)	-0.01	0.831	
Marital status at T1							
Single	_			(reference)			
Married	_			0.5(-1.3, 2.3)	0.04	0.585	
Living arrangement at T1							
Alone	_			(reference)			
With others	_			0.8 (-1.1, 2.8)	0.05	0.416	
Perceived economic				-1.0 (-1.8, -0.3)	-0.12	0.008	
status at T1 (score, 1–5)	_			-1.0 (-1.0, -0.5)	-0.12	0.000	
Frailty at T1 (score, 0–25)	_			-0.5 (-0.7, -0.3)	-0.26	< 0.001	
Enrollment with spouse							
No	_			(reference)			
Yes	_			0.4 (-0.8, 1.5)	0.03	0.558	

Note. B: unstandardized regression coefficient; 95%CI: 95% confidence interval; β: standardized regression coefficient; T1: baseline survey; T2: second survey; T3: third survey. Intercepts for individual differences (variance) were treated as random effects: B = 23.8 (95% confidence interval; 20.1, 28.2) in Model 1, B for variance = 20.3 (95% confidence interval; 17.0, 24.2) in Model 2.

Electronic Supplementary Material 8. Pearson's correlations of socio-demographic factors with exercise behavior, self-regulation, and habit strength

CI	nanges from T1 to	12	Changes from T2 to T3			
Changes in	Changes in	Changes in	Changes in	Changes in	Changes in	
average	self-regulation of	habit strength	average	self-regulation of	habit strength	
exercise time	exercise	of exercise	exercise time	exercise	of exercise	
0.10	-0.03	0.02	0.02	-0.05	0.11	
(p = 0.054)	(p = 0.592)	(p = 0.680)	(p = 0.730)	(p = 0.322)	(p = 0.036)	
-0.06	-0.02	-0.03	-0.03	0.03	0.01	
(p = 0.272)	(p = 0.723)	(p = 0.572)	(p = 0.541)	(p = 0.516)	(p = 0.921)	
-0.07	0.01	0.01	0.05	-0.01	-0.05	
(p = 0.210)	(p = 0.785)	(p = 0.845)	(p = 0.328)	(p = 0.892)	(p = 0.392)	
0.01	0.00	0.06	0.06	-0.02	0.01	
(p = 0.882)	(p = 0.992)	(p = 0.284)	(p = 0.298)	(p = 0.658)	(p = 0.911)	
0.02	0.02	0.08	0.08	-0.07	0.07	
(p = 0.732)	(p = 0.745)	(p = 0.127)	(p = 0.151)	(p = 0.206)	(p = 0.186)	
-0.02	0.00	0.03	-0.07	0.04	-0.02	
(p = 0.759)	(p = 0.971)	(p = 0.539)	(p = 0.222)	(p = 0.506)	(p = 0.722)	
-0.10	-0.03	-0.12	-0.05	-0.27	-0.15	
(p = 0.081)	(p = 0.537)	(p = 0.027)	(p = 0.417)	(p = < 0.001)	(p = 0.006)	
-0.10	-0.04	0.01	0.10	0.06	0.04	
(p = 0.063)	(p = 0.414)	(p = 0.846)	(p = 0.061)	(p = 0.283)	(p = 0.407)	
	Changes in average exercise time 0.10 (p = 0.054) -0.06 (p = 0.272) -0.07 (p = 0.210) 0.01 (p = 0.882) 0.02 (p = 0.732) -0.02 (p = 0.759) -0.10 (p = 0.081) -0.10	$\begin{array}{ c c c } \hline \text{Changes in} \\ \text{average} \\ \text{exercise time} \\ \hline \hline 0.10 \\ \text{(p = 0.054)} \\ \text{-0.06} \\ \text{(p = 0.272)} \\ \text{-0.07} \\ \text{(p = 0.210)} \\ \text{(p = 0.282)} \\ \text{0.01} \\ \text{(p = 0.882)} \\ \text{0.02} \\ \text{(p = 0.732)} \\ \text{-0.02} \\ \text{(p = 0.732)} \\ \text{-0.03} \\ \text{(p = 0.732)} \\ \text{-0.04} \\ \text{(p = 0.081)} \\ \text{(p = 0.081)} \\ \text{(p = 0.081)} \\ \text{(p = 0.0414)} \\ \end{array}$	$\begin{array}{ c c c c } \hline \text{Changes in} \\ \text{average} \\ \text{exercise time} \\ \hline \hline 0.10 \\ \text{($p=0.054$)} \\ \text{($p=0.592$)} \\ \text{($p=0.680$)} \\ \text{-0.06} \\ \text{($p=0.722$)} \\ \text{-0.07} \\ \text{($p=0.723$)} \\ \text{($p=0.882$)} \\ \text{($p=0.882$)} \\ \text{($p=0.992$)} \\ \text{($p=0.272$)} \\ \text{($p=0.292$)} \\ \text{($p=0.292$)} \\ \text{($p=0.210$)} \\ \text{($p=0.210$)} \\ \text{($p=0.210$)} \\ \text{($p=0.785$)} \\ \text{($p=0.845$)} \\ \text{0.00} \\ \text{($p=0.882$)} \\ \text{0.02} \\ \text{($p=0.992$)} \\ \text{0.02} \\ \text{($p=0.992$)} \\ \text{0.03} \\ \text{($p=0.732$)} \\ \text{-0.02} \\ \text{0.00} \\ \text{0.03} \\ \text{($p=0.759$)} \\ \text{-0.10} \\ \text{-0.03} \\ \text{-0.12} \\ \text{($p=0.846$)} \\ ($p=0.$	$ \begin{array}{ c c c c c c } \hline Changes in average exercise time & Changes in exercise & of exercise & of exercise & exercise time \\ \hline 0.10 & -0.03 & 0.02 & 0.02 \\ (p=0.054) & (p=0.592) & (p=0.680) & (p=0.730) \\ -0.06 & -0.02 & -0.03 & -0.03 \\ (p=0.272) & (p=0.723) & (p=0.572) & (p=0.541) \\ -0.07 & 0.01 & 0.01 & 0.05 \\ (p=0.210) & (p=0.785) & (p=0.845) & (p=0.328) \\ 0.01 & 0.00 & 0.06 & 0.06 \\ (p=0.882) & (p=0.992) & (p=0.284) & (p=0.298) \\ 0.02 & 0.02 & 0.08 & 0.08 \\ (p=0.732) & (p=0.745) & (p=0.127) & (p=0.151) \\ -0.02 & 0.00 & 0.03 & -0.07 \\ (p=0.759) & (p=0.971) & (p=0.539) & (p=0.222) \\ -0.10 & -0.03 & -0.12 & -0.05 \\ (p=0.081) & (p=0.537) & (p=0.027) & (p=0.417) \\ -0.10 & -0.04 & 0.01 & 0.10 \\ (p=0.063) & (p=0.414) & (p=0.846) & (p=0.061) \\ \hline \end{array} $	$\begin{array}{ c c c c c c }\hline Changes in average & self-regulation of habit strength average exercise time & exercise & of exercise & exercise time & exercise & of exercise & exercise time & exercise & of exercise & exercise time & exercise & exercise time & exercise & exer$	

Note. T1: baseline survey; T2: second survey; T3: third survey. Values represent Pearson's correlation coefficients.

Each change score represents residualized change score.

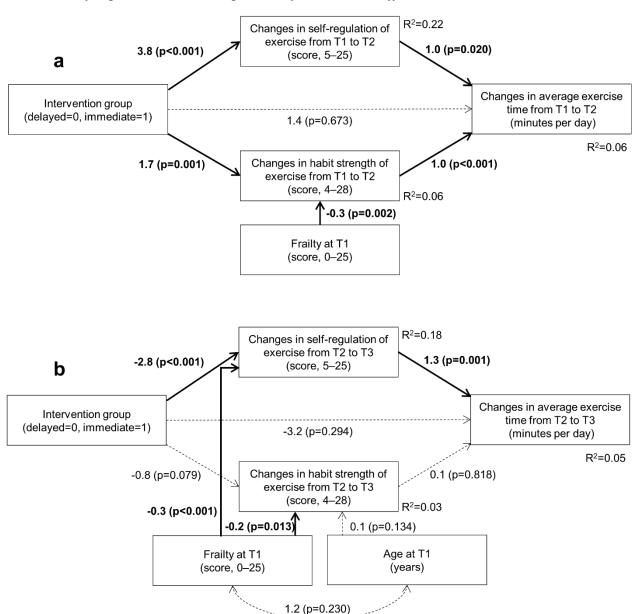
Electronic Supplementary Material 9.

Total, Direct, and Indirect Effects of Path Analyses for Sequential Mediation Process of Intervention Effects on Exercise Behavior

	To	tal effects	Direct effects			Indirect effects			
	Unstandardized	Standardized		Unstandardized	l Standardized		Unstandardized	Standardized	# vvolvo
	(95%CI)	(95%CI)	p-value	(95%CI)	(95%CI)	p-value	(95%CI)	(95%CI)	p-value
Path model for changes in average exerc	cise time from T1	to T2							_
Intervention group	6.8	0.12	0.033	1.4	0.03	0.686	5.4	0.10	0.002
(delayed = 0, immediate = 1)	(0.6, 12.7)	(0.01, 0.22)	0.055	(-5.4, 8.4)	(-0.10, 0.15)	0.000	(1.9, 9.3)	(0.03, 0.17)	0.002
Changes in self-regulation of exercise	1.4	0.20	0.004	1.0	0.14	0.040	0.4	0.06	0.001
from T1 to T2 (score, 5–25)	(0.5, 2.2)	(0.07, 0.33)	0.004	(0.0, 1.9)	(0.01, 0.28)	V.V 4 V	(0.2, 0.7)	(0.02, 0.11)	0.001
Changes in habit strength of exercise	1.0	0.18	0.001	1.0	0.18	0.001			
from T1 to T2 (score, 4–28)	(0.4, 1.7)	(0.07, 0.28)	0.001	(0.4, 1.7)	(0.07, 0.28)	0.001	_	_	
Emilty at T1 (gapra 0, 25)	-0.2	-0.02)2				-0.2	-0.02	0.006
Frailty at T1 (score, 0–25)	(-0.5, -0.0)	(-0.06, -0.01)	0.006	_	_		(-0.5, -0.0)	(-0.06, -0.01)	0.000
Path model for changes in average exerc	cise time from T2	to T3							
Intervention group	-6.9	-0.13	0.017	-3.2	-0.06	0.200	-3.6	-0.07	0.005
(delayed = 0, immediate = 1)	(-12.7, -1.3)	(-0.24, -0.03)	0.017	(-10.4, 3.3)	(-0.19, 0.06)	0.309	(-6.7, -1.0)	(-0.13, -0.02)	0.005
Changes in self-regulation of exercise	1.3	0.19	0.005	1.3	0.19	0.005	0.0	0.00	0.742
from T2 to T3 (score, 5–25)	(0.4, 2.2)	(0.05, 0.32)	0.003	(0.4, 2.2)	(0.05, 0.31)	0.003	(-0.2, 0.2)	(-0.02, 0.03)	0.742
Changes in habit strength of exercise	0.1	0.01	0.791	0.1	0.01	0.791			
from T2 to T3 (score, 4–28)	(-0.5, 0.7)	(-0.09, 0.11)	0.791	(-0.5, 0.7)	(-0.09, 0.11)	0.791	_	_	
A co of T1 (years)	0.0	0.00	0.625				0.0	0.00	0.625
Age at T1 (years)	(-0.0, 0.1)	(-0.01, 0.02)	0.023		_		(-0.0, 0.1)	(-0.01, 0.02)	0.625
Emiltry at T1 (appear 0, 25)	-0.4	-0.04	0.002				-0.4	-0.04	0.002
Frailty at T1 (score, 0–25)	(-0.8, -0.1)	(-0.09, -0.01)	0.003 —		<u> </u>		(-0.8, -0.1)	(-0.09, -0.01)	0.003

Note. 95%CI: 95% confidence interval; T1: baseline survey; T2: second survey; T3: third survey

The values represent the total, direct, and indirect effects of each factor on the changes in the average exercise time.


The path models are shown in Figure 3.

The bias-corrected method (5,000 bootstrap samples) was used to estimate the 95% confidence intervals and p-values.

Each change score represents residualized change score.

Electronic Supplementary Material 10.

Path models for parallel mediation process of intervention effects on exercise behavior.

Note. T1: baseline survey; T2: second survey; T3: third survey. Figure (a) represents the effects from the baseline to the second survey (a), and Figure (b) represents the effects from the second to third surveys. The bold and dashed lines represent statistically significant and non-significant paths, respectively. Each change score represents a residualized change score. The model–fit indices were $\chi^2(4) = 36.1$ (p<.001), CFI = 0.787, TLI = 0.467, and RMSEA = 0.156 in the model for changes from the baseline to the second survey (a), and $\chi^2(6) = 21.0$ (p=.002), CFI = 0.855, TLI = 0.638, and RMSEA = 0.088 in the model for changes from the second to third survey (b), respectively.

Electronic Supplementary Material 11.

Total, Direct, and Indirect Effects of Path Analyses for Parallel Mediation Process of Intervention Effects on Exercise Behavior

	Total effects			Di	rect effects		Indirect effects		
	Unstandardized	Standardized	# volue	Unstandardized	Standardized	4 v /olymo	Unstandardized	Standardized	
	(95%CI)	(95%CI)	p-value	(95%CI)	(95%CI)	p-value	(95%CI)	(95%CI)	p-value
Path model for changes in average exerc	ise time from T1	to T2							
Intervention group	6.8	0.12	0.032	1.4	0.03	0.686	5.4	0.10	0.002
(delayed = 0, immediate = 1)	(0.6, 12.7)	(0.01, 0.23)	0.032	(-5.4, 8.4)	(-0.10, 0.15)	0.080	(2.0, 9.3)	(0.03, 0.17)	0.002
Changes in self-regulation of exercise	1.0	0.14	0.040	1.0	0.14	0.040		_	
from T1 to T2 (score, 5–25)	(0.0, 1.9)	(0.01, 0.28)	U.U4U	(0.0, 1.9)	(0.01, 0.28)	U.U4U	_		
Changes in habit strength of exercise	1.0	0.18	0.001	1.0	0.18	0.001			
from T1 to T2 (score, 4–28)	(0.4, 1.7)	(0.07, 0.28)	0.001	(0.4, 1.7)	(0.07, 0.28)	0.001	_		
Emilty at T1 (gapra 0.25)	-0.3	-0.03	0.002				-0.3	-0.03	0.002
Frailty at T1 (score, 0–25)	(-0.6, -0.1)	(-0.07, -0.01)	0.002				(-0.6, -0.1)	(-0.07, -0.01)	0.002
Path model for changes in average exerc	ise time from T2	to T3							
Intervention group	-6.9	-0.13	0.017	-3.2	-0.06	0.200	-3.6	-0.07	0.005
(delayed = 0, immediate = 1)	(-12.7, -1.3)	(-0.24, -0.03)	0.017	(-10.4, 3.3)	(-0.19, 0.06)	0.309	(-6.6, -1.0)	(-0.13, -0.02)	0.005
Changes in self-regulation of exercise	1.3	0.19	0.005	1.3	0.19	0.005		_	
from T2 to T3 (score, 5–25)	(0.4, 2.2)	(0.05, 0.31)	0.005	(0.4, 2.2)	(0.05, 0.31)	0.005	_		
Changes in habit strength of exercise	0.1	0.01	0.701	0.1	0.01	0.701		_	
from T2 to T3 (score, 4–28)	(-0.5, 0.7)	(-0.09, 0.11)	0.791	(-0.5, 0.7)	(-0.09, 0.11)	0.791	_		
A ma at T1 (reason)	0.0	0.00	0.507	,			0.0	0.00	0.507
Age at T1 (years)	(-0.0, 0.1)	(-0.01, 0.02)	0.587	_			(-0.0, 0.1)	(-0.01, 0.02)	0.587
F. 11 T1. (-0.4	-0.04	0.002				-0.4	-0.04	0.002
Frailty at T1 (score, 0–25)	(-0.8, -0.1)	(-0.09, -0.01)	0.003	_			(-0.8, -0.1)	(-0.09, -0.01)	0.003

Note. 95%CI: 95% confidence interval; T1: baseline survey; T2: second survey; T3: third survey

The values represent the total, direct, and indirect effects of each factor on the changes in the average exercise time.

The path models are shown in Figure 3.

The bias-corrected method (5,000 bootstrap samples) was used to estimate the 95% confidence intervals and p-values.

Each change score represents a residualized change score.