

PDF issue: 2024-06-04

Systemic therapy for salivary gland malignancy: current status and future perspectives

Imamura, Yoshinori ; Kiyota, Naomi ; Tahara, Makoto ; Hanai, Nobuhiro ; Asakage, Takahiro ; Matsuura, Kazuto ; Ota, Ichiro ; Saito, Yuki ;…

(Citation)

Japanese Journal of Clinical Oncology, 52(4):293-302

(Issue Date) 2022-02-04

(Resource Type) journal article

(Version)

Accepted Manuscript

(Rights)

© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com This is a pre-copyedited, author-produced version of an article accepted for publication in Japanese Journal of Clinical Oncology following peer review. The…

(URL)

https://hdl.handle.net/20.500.14094/0100477343

1	

Title: Systemic therapy for salivary gland malignancy: current status and future perspectives

n	
Z	

3	Authors: Yoshinori Imamura ^{1,*} , Naomi Kiyota ^{1,2} , Makoto Tahara ³ , Nobuhiro Hanai ⁴ , Takahiro
4	Asakage ⁵ , Kazuto Matsuura ⁶ , Ichiro Ota ⁷ , Yuki Saito ⁸ , Daisuke Sano ⁹ , Takeshi Kodaira ¹⁰ , Atsushi
5	Motegi ¹¹ , Koichi Yasuda ¹² , Shunji Takahashi ¹³ , Tomoya Yokota ¹⁴ , Susumu Okano ³ , Kaoru
6	Tanaka ¹⁵ , Takuma Onoe ¹⁶ , Yosuke Ariizumi ⁵ , and Akihiro Homma ¹⁷
7	
8	Affiliations: ¹ Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe,
9	Japan; ² Cancer Center, Kobe University Hospital, Kobe, Japan; ³ Department of Head and Neck
10	Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan; ⁴ Department of Head
11	and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan; ⁵ Department of Head and Neck
12	Surgery, Tokyo Medical and Dental University, Tokyo, Japan; ⁶ Department of Head and Neck
13	Surgery, National Cancer Center Hospital East, Kashiwa, Japan; 7Department of Otolaryngology-
14	Head and Neck Surgery, Nara Medical University, Kashihara, Japan; ⁸ Department of
15	Otolaryngology and Head and Neck Surgery, University of Tokyo, Tokyo, Japan; ⁹ Department of
16	Otorhinolaryngology, Head and Neck Surgery, Yokohama City University School of Medicine,
17	Yokohama, Japan; ¹⁰ Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya,
18	Japan; ¹¹ Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan;

19	¹² Department of Radiation Oncology, Hokkaido University Graduate School of Medicine, Sapporo,
20	Japan; ¹³ Department of Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for
21	Cancer Research, Tokyo, Japan; ¹⁴ Division of Gastrointestinal Oncology, Shizuoka Cancer Center,
22	Sunto-gun, Japan; ¹⁵ Department of Medical Oncology, Kindai University Faculty of Medicine
23	Hospital, Osaka-Sayama, Japan; ¹⁶ Department of Medical Oncology, Hyogo Cancer Center, Akashi;
24	Japan and ¹⁷ Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate
25	School of Medicine, Sapporo, Japan
26	
27	*Address for correspondence:
28	Yoshinori Imamura, M.D., Ph.D.
29	Medical Oncology and Hematology, Kobe University Hospital, 7-5-2, Kusunoki-cho, Chuo-ku,
30	Kobe 650-0017, Japan
31	e-mail: yimamura@med.kobe-u.ac.jp
32	Phone: +81-78-382-5820
33	Fax: +81-78-382-5821
34	
35	Running head: Systemic therapy for salivary gland malignancy

36 Abstract

37	Salivary gland malignancies (SGMs) are rare neoplasms which have a broad histological spectrum
38	and a variety of biologic behaviors. SGMs are known as chemo-resistant tumors, which renders
39	optimal treatment challenging. This review summarizes the role of systemic therapy for SGMs. To
40	date, the advantage of adding concurrent chemotherapy has remained undefined for both post-
41	operative and inoperable locally advanced SGM patients undergoing radiotherapy. For
42	recurrent/metastatic disease, local and/or systemic treatment options should be discussed in a
43	multidisciplinary setting with consideration to both patient needs and tumor factors. For
44	symptomatic patients or those who may compromise organ function, palliative systemic therapy can
45	be a reasonable option based on the results of phase II studies. Platinum-combination regimens as
46	first-line therapy have been widely accepted. Personalized therapies have become established
47	options, particularly for androgen receptor (AR)-positive, HER2-positive, and NTRK fusion-positive
48	SGMs (ie. AR and HER2 in salivary duct carcinoma, and NTRK3 in secretory carcinoma). For
49	patients with adenoid cystic carcinoma, multi-targeted tyrosine kinase inhibitors have also been
50	developed. Anti-PD1 checkpoint inhibitors have shown limited activity to date. Investigation of
51	active systemic treatments for SGM remains a significant unmet need. Future directions might
52	include a more comprehensive genomic screening approach (usually next-generation sequencing-

- 53 based) and combination strategies using immune checkpoint inhibitors. These are rare malignancies
- 54 which require ongoing effort in the conduct of high-quality clinical trials.
- 55
- 56 Key words: salivary gland malignancy, chemotherapy, personalized therapy, immunotherapy

57 Introduction

58	Salivary gland malignancies (SGMs) are rare neoplasms that account for fewer than 0.5% of all
59	malignancies and about 5% of cancers of the head and neck (1). SGMs consist of up to 20 distinct
60	histopathologic entities (2), and this histological heterogeneity may contribute to diversity in clinical
61	behavior and prognosis. Due to this rarity and limited number of animal models (3), few clinical trial
62	data are available to help guide therapy especially histotype-specific approach. Furthermore, SGMs
63	are known as chemo-resistant tumors that are challenging to treat optimally. A recent ASCO
64	guideline provided management recommendations for SGMs based on published literature and an
65	expert panel consensus (4). The present review incorporates the topics specifically covered in the
66	ASCO guideline, namely cytotoxic chemotherapy, personalized therapy, and immune check point
67	inhibitors, and includes additional evidence presented at international conferences which aimed to
68	summarize optimal management approaches and therapeutic outcomes for these rare diseases. Future
69	directions might include a more comprehensive genomic screening approach and combination
70	strategies using immune checkpoint inhibitors. The epidemiology, risk factors, pathology, and
71	clinical features of SGMs are reviewed elsewhere (3,5-7).
72	

73 Postoperative radiotherapy with or without concomitant chemotherapy

74	Data supporting the role of postoperative radiotherapy in patients with high-risk features such as
75	high-grade histology, advanced stage, nodal status and/or positive surgical margins are available (8-
76	11); nevertheless, the benefit of adding concurrent chemotherapy remains controversial. This is
77	because survival outcomes in patients with SGM candidates for postoperative radiotherapy have not
78	been compared in randomized trials between those with or without concomitant chemotherapy. Of
79	the eight most relevant retrospective studies (n \ge 100 of any histology, or n \ge 50 of a specific
80	histology), only two showed an advantage following the addition of chemotherapy to postoperative
81	radiotherapy (10-17) [Table 1]: the first showed an improvement in overall survival (OS) for
82	squamous cell carcinoma (11) while the second observed an advantage in local control for adenoid
83	cystic carcinoma (AdCC) (12). These inconsistent findings included a degree of selection bias,
84	regarding not only oncological features but also patient characteristics (ie. age, performance status,
85	and comorbidity). Against this background, the latest ASCO guideline did not recommend the
86	routine use of adjuvant concurrent chemoradiotherapy in patients with SGMs outside of a clinical
87	trial (4).
88	At least three prospective studies to evaluate the efficacy and safety of concurrent chemotherapy
89	in this adjuvant setting are now ongoing (NCT02776163, NCT01220583, NCT02998385) [Table 2].
90	Their eligibility criteria are similar but not identical. These studies should identify the most relevant
91	high-risk factors, as in the case of head and neck squamous cell carcinoma (18).

93	Adjuvant androgen deprivation therapy (ADT) and HER2–targeted therapies
94	No randomized trial has compared survival outcomes in patients with SGMs expressing androgen
95	receptor (AR) and/or HER2 between those with or without adjuvant systemic therapy, and only
96	retrospective data are available (19-21) [Table 3]. Although results are promising, further
97	prospective evaluation of efficacy and safety is required, along with efforts to identify the optimal
98	agent(s), duration, and most relevant high-risk factors of use in routine practice.
99	At least one prospective study aimed at addressing these issues is now ongoing (NCT04620187).
100	The aim of this study is to evaluate efficacy and safety of postoperative radiotherapy with concurrent
101	trastuzumab emtansine (T-DM1).
102	
103	Concurrent systemic therapy for inoperable locally advanced disease
104	No randomized trial or prospective study have compared survival outcomes in patients with
105	inoperable SGM candidates receiving definitive radiotherapy between those with or without
106	concomitant chemotherapy. Only case series have been reported in patients with locally advanced
107	SGMs or AdCC of the head and neck (22-26) [Table 4]. It is noteworthy that cisplatin-based
108	chemoradiotherapy is associated with some long-term local control of unresected AdCC, although
109	this promising result may simply be due to full-dose radiotherapy or proton therapy. Because the

110 benefit of adding concurrent chemotherapy is unclear, the ASCO Guideline does not recommend the

111 routine use of concurrent chemoradiotherapy in patients with inoperable SGMs (4).

112

113 Initiating systemic therapy for recurrent/metastatic disease

- 114 Palliative systemic therapy is a key part of treatment for recurrent/metastatic SGMs. Nevertheless,
- some patients survive for an extended period (> 10 years), particularly in the setting of low-grade
- 116 tumors with indolent biology (ie. AdCC). In this context, for patients with limited metastases (ie. ≤ 5
- 117 metastases (27)), palliative local therapy such as metastasectomy or stereotactic body radiation
- 118 therapy may be a treatment option, with the aim of delaying local disease progression (28-30).
- 119 The ASCO Guideline recommended that initiation of systemic therapy should be considered
- 120 under the following conditions: (i) metastatic tumors are symptomatic and not amenable to palliative
- 121 local therapy, (ii) growth has the potential to compromise organ function, or (iii) lesions have grown
- 122 more than 20% in the preceding 6 months (4). Accordingly, local and/or systemic treatment options
- 123 need to be discussed in a multidisciplinary setting with consideration to both patient context and
- 124 tumor factors.

125

126 Cytotoxic chemotherapy for recurrent/metastatic disease

- 127 In prospective trials of cytotoxic regimens for SGMs, patients appear to show clinically relevant
- 128 objective responses to cytotoxic chemotherapy [Table 5].
- 129 In early phase II studies, single-agent cytotoxic agents provided modest efficacy with objective
- 130 response rates (ORRs) of 0%-20% (31-36). Not surprisingly, objective responses in patients with
- 131 AdCC were disappointing: among AdCC patients who initiated therapy with paclitaxel or
- 132 gemcitabine, for examples, no objective responses were observed (34,35).
- 133 To date, platinum combination therapy has been regarded as the most promising regimen. In a
- 134 randomized phase II trial, for example, Airoldi and colleagues reported that the combination of
- 135 cisplatin plus vinorelbine was more active than vinorelbine alone (36), showing a good risk/benefit
- 136 balance with ORRs of 33%-44% and median overall survival (OS) of 10-16.9 months (36-38). CAP
- 137 (cyclophosphamide, doxorubicin, cisplatin) has also been reported as an active regimen in SGMs.
- 138 The reported ORR from multiple studies (39-44) was 46% (43 of 92), although in the largest phase
- 139 II trial of 22 patients treated with CAP, Licitra and colleagues reported that only 6 patients achieved
- 140 a partial response, giving an ORR of 27% (39). In addition, platinum plus taxane combination
- 141 therapy can be a good treatment choice (45-48): indeed, the reference arm of an ongoing randomized
- 142 phase II study comparing ADT to cytotoxic regimens in recurrent/metastatic AR-positive SGMs was
- 143 cisplatin plus docetaxel or carboplatin plus paclitaxel (NCT01969578).

144	Thus, against a lack of high-level evidence for a survival benefit over best supportive care,
145	platinum combination therapy has become the most common option for systemic therapy for
146	recurrent/metastatic SGM patients with progressive or symptomatic disease. No consensus has yet
147	been reached on what the standard regimen should be in this setting (49).
148	
149	Personalized therapy for recurrent/metastatic disease
150	A number of studies demonstrated that selected targetable oncogenic drivers have an
151	exceptionally high prevalence in specific histologic types (ie. HER2 amplification in salivary duct
152	carcinoma [SDC] or adenocarcinoma, not otherwise specified [ANOS] (50), and ETV6-NTRK3
153	translocation in secretory carcinoma (51)). AR expression is also notable in SDC and ANOS (50).
154	Targeted therapy for these patients should include confirmatory target-specific testing. In addition,
155	these patients may be offered personalized therapy in place of cytotoxic chemotherapy, given the
156	high efficacy and favorable toxicity profile of this therapy. Evidence for ADT, HER-2 targeted
157	therapy, and NTRK inhibitors will be described separately.
158	Non-targetable molecular alterations have also been documented. For example, KIT, EGFR,
159	AKT/mTOR pass-way, or c-MET inhibitors for AdCC showed disappointing efficacy, with ORRs of

160 0%-7% in a number of phase II studies (52-62) [Table 6].

161	On the other hand, several phase II studies have demonstrated the activity of multi-targeted
162	tyrosine kinase inhibitors (mTKIs) in AdCC including lenvatinib (63,64), sorafenib (65,66), and
163	axitinib (67-69) [Table 6], and the ASCO Guideline recommended that these agents may
164	accordingly be offered for AdCC patients who are candidates for the initiation of systemic therapy
165	(4). In contrast, sunitinib, nintedanib, pazopanib, and regorafenib failed to demonstrate their efficacy
166	in both AdCC and non-AdCC patients (70-73). The reason for these inconsistent results has not been
167	fully clarified.
168	
169	Androgen deprivation therapy (ADT) for recurrent/metastatic disease
170	For patients with AR-positive SGMs (ie. SDC and ANOS), ADT can be provided in the first- or
171	subsequent-line setting [Table 7]. In a nationwide case series of bicalutamide plus or minus
172	luteinizing hormone-releasing hormone (LHRH) analog involving 35 patients in the Netherlands
173	(74), the ADT-treated patients had a significantly better OS than those receiving best supportive care
174	in a Cox regression model (hazard ratio 0.53). A single-arm phase II trial of first-line bicalutamide
175	plus leuprorelin involving 36 patients with AR-positive SGMs reported an ORR of 42% and median
176	progression-free survival (PFS) of 8.8 months (75). The reported ORR with a first-line AR
177	antagonist (enzalutamide or bicalutamide) and/or LHRH analog based on multiple studies (74-79)
178	was 33% (30 of 90). In addition, second-line AR antagonist (enzalutamide or abiraterone)

- 179 plus/minus LHRH analog achieved clinically meaningful disease control rates of 63%-67% and
- 180 median PFS of 3.7-5.5 months in single-arm phase II studies (80,81).
- 181

182 HER2-targeted therapy for recurrent/metastatic disease

- 183 For patients with HER2-positive SGMs (ie. SDC and ANOS), HER2-targeted therapies can be
- administered in the first- or subsequent-line setting [Table 7]. Two single-arm phase II trials of first-
- 185 or subsequent-line trastuzumab plus docetaxel reported ORRs of 60%-70% and median PFS of 8.5-
- 186 8.9 months (82,83). Similarly, a phase IIa basket trial of first- or subsequent-line trastuzumab plus
- 187 pertuzumab demonstrated an ORR of 60% and median PFS of 8.6 months (84). These combination
- 188 therapies had higher ORRs than those of single-agent cytotoxic agents or trastuzumab monotherapy
- 189 (0-20%) (31-35,85). In addition, HER2-tageting antibody-drug conjugates such as T-DM1 and
- 190 trastuzumab deruxtecan (T-DXd) showed clinically meaningful efficacies in multiple basket trials
- 191 (86,87).
- 192 A prospective Japanese study to assess the efficacy and safety of T-DXd both in HER2-positive
- 193 and in HER2-low SGMs is currently under preparation.

194

195 NTRK inhibitors for recurrent/metastatic secretory carcinomas

196	Secretory carcinoma represents 5% of SMGs with morphological overlap with acinic cell
197	carcinoma, mucoepidermoid carcinoma, and ANOS (88,89). As a critical difference, secretory
198	carcinoma characteristically harbors <i>NTRK</i> gene fusion (95%-98%, <i>ETV6-NTRK3</i> translocation (2))
199	and are excellent candidates for NTRK inhibitor therapy in the first- or subsequent-line setting
200	[Table 7]. Two pooled analyses consisting of phase I/II trials of entrectinib and larotectinib revealed
201	ORRs of 86%-90% with a long duration of response (90,91).
202	
203	Roles of comprehensive genomic screening in SGMs
204	For patients with a low prevalence of targetable molecular alterations and an unknown driver
204 205	For patients with a low prevalence of targetable molecular alterations and an unknown driver mutation status, a more comprehensive genomic screening approach (usually next-generation
204 205 206	For patients with a low prevalence of targetable molecular alterations and an unknown driver mutation status, a more comprehensive genomic screening approach (usually next-generation sequencing-based) may be useful. This platform may provide information about unanticipated
204 205 206 207	For patients with a low prevalence of targetable molecular alterations and an unknown driver mutation status, a more comprehensive genomic screening approach (usually next-generation sequencing-based) may be useful. This platform may provide information about unanticipated druggable targets such as ALK (92), tumor mutational burden (93), or microsatellite instability (94).
204 205 206 207 208	For patients with a low prevalence of targetable molecular alterations and an unknown driver mutation status, a more comprehensive genomic screening approach (usually next-generation sequencing-based) may be useful. This platform may provide information about unanticipated druggable targets such as ALK (92), tumor mutational burden (93), or microsatellite instability (94). At least one prospective tumor agonistic study which includes SGMs is evaluating genomic
204 205 206 207 208 209	For patients with a low prevalence of targetable molecular alterations and an unknown driver mutation status, a more comprehensive genomic screening approach (usually next-generation sequencing-based) may be useful. This platform may provide information about unanticipated druggable targets such as ALK (92), tumor mutational burden (93), or microsatellite instability (94). At least one prospective tumor agonistic study which includes SGMs is evaluating genomic matched therapy (EGFR, HER2, FGFR, c-kit, AR, NOTCH, MEK, PI3K; NCT02069730), and will
204 205 206 207 208 209 210	For patients with a low prevalence of targetable molecular alterations and an unknown driver mutation status, a more comprehensive genomic screening approach (usually next-generation sequencing-based) may be useful. This platform may provide information about unanticipated druggable targets such as ALK (92), tumor mutational burden (93), or microsatellite instability (94). At least one prospective tumor agonistic study which includes SGMs is evaluating genomic matched therapy (EGFR, HER2, FGFR, c-kit, AR, NOTCH, MEK, PI3K; NCT02069730), and will likely identify novel treatment seeds.

212 Anti-PD1 checkpoint inhibitors for recurrent/metastatic disease

213	Several prospective and retrospective experiences with anti-PD1 checkpoint inhibitors in SGMs
214	have been reported (95-99) [Table 8]. Considerable selection bias was present (heterogenous
215	histologies and variations in study design and eligibility), and findings are currently unsatisfactory.
216	Combination immunotherapy has also been investigated (100-102) [Table 8]. Although each
217	combination strategy has a basic rationale (103) , the effectiveness for SGMs is unfortunately
218	modest, and no definitive biomarkers have been detected.
219	
220	Featured ongoing clinical trials for recurrent/metastatic disease
221	As listed in Table 9, several phase II trials for recurrent/metastatic SGM are underway, which
222	include personalized therapy and combination immunotherapy with a variety of partners. Further, a
223	number of tumor agnostic clinical trials are now ongoing (ie. T-DXd for unresectable/metastatic
224	solid tumors harboring HER2 activating mutation; NCT04639219). Their findings will aid in
225	optimizing agent(s) and sequencing, and will assist the development of novel treatment options. The
226	next breakthrough will require patience and consistent effort.
227	
228	Conclusions
229	Because of the rarity of SGM, few adequate clinical trials are available with which to define an
230	optimal systemic approach. Further investigation of active systemic treatments for SGMs is still

- 231 required. Additional efforts to conduct high-quality clinical trials (ie. combination immunotherapy)
- 232 for these rare malignancies are warranted. These trials should be accompanied by translational
- 233 research which includes a next-generation-sequencing-based approach.

2	3	4
2	υ	4

236	We express our appreciation to the Japan Clinical Oncology Group (JCOG) Head and Neck
237	Cancer Study Group
238	
239	Funding
240	None declared.
241	
242	Conflict of interest statement
243	Dr. Imamura reports honoraria from Ono Pharmaceutical, and Bristol-Myers Squibb. Dr Kiyota
244	reports grants from research funding from Ono Pharmaceutical, Bristol-Meyers Squibb,
245	AstraZeneca, Pfizer, Chugai Pharmaceutical, and Rakuten Medical, during the conduct of the study;
246	and honoraria from Ono Pharmaceutical, Bristol-Meyers Squibb, Merck Biopharma, AstraZeneca,
247	Merck Sharp & Dohme, Eisai and Bayer. Dr. Tahara reports grants and personal fees from Pfizer,
248	MSD, BMS, Ono Pharmaceutical, and AstraZeneca, during the conduct of the study; grants and
249	personal fees from Bayer, Eisai, Merck Serono, Rakuten Medical, and Novartis, outside the
250	submitted work; personal fees from LOXO, Celgene, and Amgen, outside the submitted work. Dr.
251	Hanai reports advisory role for Sanwa; grants from research funding from Chugai Pharmaceutical,

252	Rakuten Medical, Merck Sharp & Dohme, GlaxoSmithKline, and Bristol-Meyers Squib/Ono
253	Pharmaceutical, during the conduct of the study; and honoraria from Bristol-Meyers Squibb, Merck
254	Biopharma, Eisai, Merck Sharp & Dohme, Ethicon/Johnson & Johnson, Amco, and Ono
255	Pharmaceutical. Dr. Asakage reports personal fees from Ono Pharmaceutical, outside the submitted
256	work. Dr. Kodaira reports grants from Ministry of Health, Labour and Welfare, Japan, grants from
257	National Cancer Center, Japan, during conduct of the study; personal fees from Merck Serono,
258	Hitachi, Bayer, Kyowa Kirin, Elekta, and Otsuka Pharmaceutical, outside the submitted work. Dr
259	Takahashi reports grants and personal fees from MSD, AstraZeneca, Chugai, Bayer, Ono
260	Pharmaceutical, and Bristol-Myers Squib, outside the submitted work. Dr Yokota serves in an
261	advisory role in Merck Biopharma and MSD, and has received lecture fees from Merck Biopharma,
262	Ono Pharmaceutical, Bristol-Myers Squibb, AstraZeneca, Chugai, MSD, and Eisai. Dr. Okano
263	reports personal fees from Merck Serono, Ono Pharmaceutical, Bristol-Myers Squibb, Eisai, Taiho
264	Pharmaceutical, AstraZeneca, and Kirin Pharmaceuticals, outside the submitted work. Dr. Tanaka
265	reports personal fees from AstraZeneca, Merck Serono, Eisai, Bristol-Myers Squibb, Ono
266	Pharmaceutical, and MSD, outside the submitted work. Dr. Onoe reports honoraria from Bristol-
267	Myers Squibb. Dr.Homma reports personal fees from Bristol-Myers Squibb, grants and personal fees
268	from Ono Pharmaceutical, during the conduct of the study.

270 References

- 271 1. Guzzo M, Locati LD, Prott FJ et al. Major and minor salivary gland tumors. Crit Rev Oncol
- **272** Hematol 2010; 74 (2): 134-148.
- 273 2. Skalova A, Stenman G, Simpson RH, Hellquist H, Slouka D, Svoboda T, et al. The Role of
- 274 Molecular Testing in the Differential Diagnosis of Salivary Gland Carcinomas. Am J Surg Pathol
- **275** 2018; 42 (2): e11-e27.
- 276 3. El-Naggar AK, Chan JKC, et al. Tumours of salivary glands, in WHO Classification of Head and
- 277 Neck Tumours (ed 4). Lyon, France, IARC Press, 2017, p 159.
- 278 4. Geiger JL, Ismaila N, Beadle B et al. Management of Salivary Gland Malignancy: ASCO
- **279** Guideline. J Clin Oncol 2021; 39 (17): 1909-1941.
- 280 5. Son E, Panwar A, Mosher CH, et al. Cancers of the Major Salivary Gland. J Oncol Pract 2018;
- **281** 14(2): 99-108.
- 282 6. Lin HH, Limesand KH, and Ann DK. Current State of Knowledge on Salivary Gland Cancers.
- **283** Crit Rev Oncog 2018; 23 (3-4): 139-151.
- 284 7. Skalova A, Michal M, and Simpson RH. Newly described salivary gland tumors. Mod Pathol
 285 2017; 30 (s1): S27-S43.
- 286 8. Mahmood U, Koshy M, Goloubeva O et al. Adjuvant radiation therapy for high-grade and/or
- locally advanced major salivary gland tumors. Arch Otolaryngol Head Neck Surg 2011; 137 (10):

288 1025-1030.

- 289 9. Safdieh J, Givi B, Osborn V et al. Impact of Adjuvant Radiotherapy for Malignant Salivary Gland
- **290** Tumors. Otolaryngol Head Neck Surg 2017; 157 (6): 988-994.
- 291 10. Cheraghlou S, Kuo P, Mehra S et al. Adjuvant therapy in major salivary gland cancers: Analysis
- of 8580 patients in the National Cancer Database. Head Neck 2018; 40 (7): 1343-1355.
- 293 11. Cheraghlou S, Schettino A, Zogg CK et al. Adjuvant Chemotherapy Is Associated With Improved
- **294** Survival for Late-Stage Salivary Squamous Cell Carcinoma. Laryngoscope 2019; 129 (4): 883-
- **295** 889.
- 296 12. Hsieh CE, Lin CY, Lee LY et al. Adding concurrent chemotherapy to postoperative radiotherapy
- improves locoregional control but Not overall survival in patients with salivary gland adenoid
- 298 cystic carcinoma-a propensity score matched study. Radiat Oncol 2016; 11: 47.
- 299 13. Mifsud MJ, Tanvetyanon T, McCaffrey JC et al. Adjuvant radiotherapy versus concurrent
- 300 chemoradiotherapy for the management of high-risk salivary gland carcinomas. Head Neck 2016;
- **301** 38 (11): 1628-1633.
- 302 14. Amini A, Waxweiler TV, Brower JV et al. Association of Adjuvant Chemoradiotherapy vs
- **303** Radiotherapy Alone With Survival in Patients With Resected Major Salivary Gland Carcinoma:
- **304** Data From the National Cancer Data Base. JAMA Otolaryngol Head Neck Surg 2016; 142 (11):
- **305** 1100-1110.

306	15.	Osborn V, Givi B, Lee A et al. Characterization, treatment and outcomes of salivary ductal
307		carcinoma using the National Cancer Database. Oral Oncol 2017; 71: 41-46.
308	16.	Gebhardt BJ, Ohr JP, Ferris RL et al. Concurrent Chemoradiotherapy in the Adjuvant Treatment
309		of High-risk Primary Salivary Gland Malignancies. Am J Clin Oncol 2018; 41 (9): 888-893.
310	17.	Tanvetyanon T, Fisher K, Caudell J et al. Adjuvant chemoradiotherapy versus with radiotherapy
311		alone for locally advanced salivary gland carcinoma among older patients. Head Neck 2016; 38
312		(6): 863-870.
313	18.	Bernier J, Cooper JS, Pajak TF et al. Defining risk levels in locally advanced head and neck
314		cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of
315		the EORTC (#22931) and RTOG (# 9501). Head Neck 2005; 27 (10): 843-850.
316	19.	van Boxtel W, Locati LD, van Engen-van Grunsven ACH et al. Adjuvant androgen deprivation
317		therapy for poor-risk, androgen receptor-positive salivary duct carcinoma. Eur J Cancer 2019;
318		110: 62-70.
319	20.	Limaye SA, Posner MR, Krane JF et al. Trastuzumab for the treatment of salivary duct carcinoma.
320		Oncologist 2013; 18 (3): 294-300.
321	21.	Hanna GJ, Bae JE, Lorch JH et al. The Benefits of Adjuvant Trastuzumab for HER-2-Positive
322		Salivary Gland Cancers. Oncologist 2020; 25 (7): 598-608.
323	22.	Rosenberg L, Weissler M, Hayes DN et al. Concurrent chemoradiotherapy for locoregionally

advanced salivary gland malignancies. Head Neck 2012; 34 (6): 872-876.

- 325 23. Katori H, Tsukuda M. Concurrent chemoradiotherapy with cyclophosphamide, pirarubicin, and
- 326 cisplatin for patients with locally advanced salivary gland carcinoma. Acta Otolaryngol 2006; 126
- **327** (12): 1309-1314.
- 328 24. Bhattasali O, Holliday E, Kies MS et al. Definitive proton radiation therapy and concurrent
- 329 cisplatin for unresectable head and neck adenoid cystic carcinoma: A series of 9 cases and a
- critical review of the literature. Head Neck 2016; 38 Suppl 1: E1472-1480.
- 331 25. Haddad RI, Posner MR, Busse PM, et al. Chemoradiotherapy for adenoid cystic carcinoma:
- 332 preliminary results of an organ sparing approach Am J Clin Oncol 2006; 29 (2): 153-157.
- 333 26. Samant S, van den Brekel MW, Kies MS et al. Concurrent chemoradiation for adenoid cystic
- **334** carcinoma of the head and neck. Head Neck 2012; 34 (9): 1263-1268.
- 335 27. Lievens Y, Guckenberger M, Gomez D et al. Defining oligometastatic disease from a radiation
- 336 oncology perspective: An ESTRO-ASTRO consensus document. Radiother Oncol 2020; 148:

337 157-166.

- **338** 28. Girelli L, Locati L, Galeone C et al. Lung metastasectomy in adenoid cystic cancer: Is it worth it?
- **339** Oral Oncol 2017; 65: 114-118.
- 340 29. Locati LD, Guzzo M, Bossi P et al. Lung metastasectomy in adenoid cystic carcinoma (ACC) of
- **341** salivary gland. Oral Oncol 2005; 41 (9): 890-894.

- 342 30. Bobbio A, Copelli C, Ampollini L et al. Lung metastasis resection of adenoid cystic carcinoma of
- 343 salivary glands. Eur J Cardiothorac Surg 2008; 33 (5): 790-793.
- 344 31. Licitra L, Marchini S, Spinazze S et al. Cisplatin in advanced salivary gland carcinoma. A phase
- **345** II study of 25 patients. Cancer 1991; 68 (9): 1874-1877.
- 346 32. Vermorken JB, Verweij J, de Mulder PH et al. Epirubicin in patients with advanced or recurrent
- 347 adenoid cystic carcinoma of the head and neck: a phase II study of the EORTC Head and Neck
- **348** Cancer Cooperative Group. Ann Oncol 1993; 4 (9): 785-788.
- 349 33. Mattox DE, Von Hoff DD, Balcerzak SP. Southwest Oncology Group study of mitoxantrone for
- 350 treatment of patients with advanced adenoid cystic carcinoma of the head and neck. Invest New
- **351** Drugs 1990; 8 (1): 105-107.
- 352 34. Gilbert J, Li Y, Pinto HA et al. Phase II trial of taxol in salivary gland malignancies (E1394): a
- trial of the Eastern Cooperative Oncology Group. Head Neck 2006; 28 (3): 197-204.
- 35. Van Herpen CM, Locati LD, Buter J, et al. Phase II study on gemcitabine in recurrent and/or
- 355 metastatic adenoid cystic carcinoma of the head and neck (EORTC 24982). Eur J Cancer 2008;
- **356** 44 (17): 2542–2545.
- 357 36. Airoldi M, Pedani F, Succo G et al. Phase II randomized trial comparing vinorelbine versus
- vinorelbine plus cisplatin in patients with recurrent salivary gland malignancies. Cancer 2001; 91

359 (3): 541-547.

360 37. Airoldi M, Garzaro M, Pedani F et al. Cisplatin+Vinorelbine Treatment of Recurrent or Metastatic

- **361** Salivary Gland Malignancies (RMSGM): A Final Report on 60 Cases. Am J Clin Oncol 2017; 40
- **362** (1): 86-90.
- 363 38. Hong MH, Kim CG, Koh YW et al. Efficacy and safety of vinorelbine plus cisplatin chemotherapy
- 364 for patients with recurrent and/or metastatic salivary gland cancer of the head and neck. Head
 365 Neck 2018; 40 (1): 55-62.
- 366 39. Licitra L, Cavina R, Grandi C et al. Cisplatin, doxorubicin and cyclophosphamide in advanced
- 367 salivary gland carcinoma. A phase II trial of 22 patients. Ann Oncol 1996; 7 (6): 640-642.
- 368 40. Alberts DS, Manning MR, Coulthard SW et al. Adriamycin/cis-platinum/cyclophosphamide
- 369 combination chemotherapy for advanced carcinoma of the parotid gland. Cancer 1981; 47 (4):
- **370** 645-648.
- 371 41. Kaplan MJ, Johns ME, Cantrell RW. Chemotherapy for salivary gland cancer. Otolaryngol Head
- **372** Neck Surg 1986; 95 (2): 165-170.
- 42. Belani CP, Eisenberger MA, Gray WC. Preliminary experience with chemotherapy in advanced
- 374 salivary gland neoplasms. Med Pediatr Oncol 1988; 16 (3): 197-202.
- 375 43. Dreyfuss AI, Clark JR, Fallon BG et al. Cyclophosphamide, doxorubicin, and cisplatin
- 376 combination chemotherapy for advanced carcinomas of salivary gland origin. Cancer 1987; 60
- **377** (12): 2869-2872.

- 378 44. Creagan ET, Woods JE, Rubin J et al. Cisplatin-based chemotherapy for neoplasms arising from
- 379 salivary glands and contiguous structures in the head and neck. Cancer 1988; 62 (11): 2313-2319.
- 380 45. Airoldi M, Fornari G, Pedani F, et al. Paclitaxel and carboplatin for recurrent salivary gland
- 381 malignancies. Anticancer Res 2000; 20 (5C): 3781-3783.
- 382 46. Imamura Y, Kiyota N, Tanaka K, et al. A phase II trial of docetaxel plus cisplatin in recurrent
- and/or metastatic non-squamous cell carcinoma of head and neck. Medical Oncol 2021; 38: 128.
- 384 47. Okada T, Saotome T, Nagao T, et al. Carboplatin and Docetaxel in Patients With Salivary Gland
- 385 Carcinoma: A Retrospective Study. In Vivo 2019; 33 (3): 843-853.
- 386 48. Nakano K, Sato Y, Sasaki T et al. Combination chemotherapy of carboplatin and paclitaxel for
- 387 advanced/metastatic salivary gland carcinoma patients: differences in responses by different
- 388 pathological diagnoses. Acta Otolaryngol 2016; 136 (9): 948-951.
- 389 49. Alfieri S, Granata R, Bergamini C, et al. Systemic therapy in metastatic salivary gland carcinomas:
- **390** A pathology-driven paradigm? Oral Oncol 2017; 66: 58-63.
- 391 50. Locati LD, Perrone F, Losa M et al. Treatment relevant target immunophenotyping of 139 salivary
- **392** gland carcinomas (SGCs). Oral Oncol 2009; 45 (11): 986-990.
- 393 51. Skalova A, Vanecek T, Sima R et al. Mammary analogue secretory carcinoma of salivary glands,
- 394 containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am
- **395** J Surg Pathol 2010; 34 (5): 599-608.

- 396 52. Pfeffer MR, Talmi Y, Catane R et al. A phase II study of Imatinib for advanced adenoid cystic
- 397 carcinoma of head and neck salivary glands. Oral Oncol 2007; 43 (1): 33-36.
- 398 53. Hotte SJ, Winquist EW, Lamont E et al. Imatinib mesylate in patients with adenoid cystic cancers
- 399 of the salivary glands expressing c-kit: a Princess Margaret Hospital phase II consortium study. J
- 400 Clin Oncol 2005; 23 (3): 585-590.
- 401 54. Guigay JM, Bidault F, Temam S, et al. Antitumor activity of imatinib in progressive, highly
- 402 expressing KIT adenoid cystic carcinoma of the salivary glands: A phase II study. J Clin Oncol
- **403** 2007; 25 [suppl abstr 6086].
- 404 55. Wong SJ, Karrison T, Hayes DN et al. Phase II trial of dasatinib for recurrent or metastatic c-KIT
- 405 expressing adenoid cystic carcinoma and for nonadenoid cystic malignant salivary tumors. Ann
- **406** Oncol 2016; 27 (2): 318-323.
- 407 56. Agulnik M, Cohen EW, Cohen RB, et al. Phase II study of lapatinib in recurrent or metastatic
- 408 epidermal growth factor receptor and/or erbB2 expressing adenoid cystic carcinoma and non
- 409 adenoid cystic carcinoma malignant tumors of the salivary glands. J Clin Oncol 2007; 25 (25):
- **410** 3978-3984.
- 411 57. Jakob JA, Kies MS, Glisson BS et al. Phase II study of gefitinib in patients with advanced salivary
- 412 gland cancers. Head Neck 2015; 37 (5): 644-649.
- 413 58. Locati LD, Bossi P, Perrone F et al. Cetuximab in recurrent and/or metastatic salivary gland

414 carcinomas: A phase II study. Oral Oncol 2009; 45 (7): 574-578.

- 415 59. Kim DW, Oh DY, Shin SH et al. A multicenter phase II study of everolimus in patients with
- 416 progressive unresectable adenoid cystic carcinoma. BMC Cancer 2014; 14: 795.
- 417 60. Hoover AC, Milhem MM, Anderson CM et al. Efficacy of nelfinavir as monotherapy in refractory
- 418 adenoid cystic carcinoma: Results of a phase II clinical trial. Head Neck 2015; 37 (5): 722-726.
- 419 61. Ho AL, Foster NR, Meyers JP, et al. Alliance A091104: A phase II trial of MK-2206 in patients
- 420 (pts) with progressive, recurrent/metastatic adenoid cystic carcinoma. J Clin Oncol 2015; 33
- **421** [suppl abstr 6039].
- 422 62. van Boxtel W, Uijen MJM, Krens S, et al. Excessive toxicity of cabozantinib in a phase II study
- 423 in patients with recurrent and/or metastatic salivary gland cancer. Eur J Cancer. 2021; S0959-
- **424** 8049(21)01191-6.
- 425 63. Tchekmedyian V, Sherman EJ, Dunn L et al. Phase II Study of Lenvatinib in Patients With
- 426 Progressive, Recurrent or Metastatic Adenoid Cystic Carcinoma. J Clin Oncol 2019; 37 (18):

427 1529-1537.

- 428 64. Locati LD, Galbiati D, Calareso G et al. Patients with adenoid cystic carcinomas of the salivary
- glands treated with lenvatinib: Activity and quality of life. Cancer 2020; 126 (9): 1888-1894.
- 430 65. Thomson DJ, Silva P, Denton K et al. Phase II trial of sorafenib in advanced salivary adenoid
- 431 cystic carcinoma of the head and neck. Head Neck 2015; 37 (2): 182-187.

432	66. Locati LD, Perrone F, Cortelazzi B et al. A phase II study of sorafenib in recurrent and/or
433	metastatic salivary gland carcinomas: Translational analyses and clinical impact. Eur J Cancer
434	2016; 69: 158-165.
435	67. Ho AL, Dunn L, Sherman EJ et al. A phase II study of axitinib (AG-013736) in patients with
436	incurable adenoid cystic carcinoma. Ann Oncol 2016; 27 (10): 1902-1908.
437	68. Locati LD, Cavalieri S, Bergamini C et al. Phase II trial with axitinib in recurrent and/or metastatic
438	salivary gland cancers of the upper aerodigestive tract. Head Neck 2019; 41 (10): 3670-3676.
439	69. Keam B, Kang EJ, Ahn MJ, et al. Randomized phase II study of axitinib versus observation in
440	patients with recurred or metastatic adenoid cystic carcinoma. J Clin Oncol 2020; 38 [suppl abstr
441	6503].
442	70. Chau NG, Hotte SJ, Chen EX et al. A phase II study of sunitinib in recurrent and/or metastatic
443	adenoid cystic carcinoma (ACC) of the salivary glands: current progress and challenges in
444	evaluating molecularly targeted agents in ACC. Ann Oncol 2012; 23 (6): 1562-1570.
445	71. Kim Y, Lee SJ, Lee JY et al. Clinical trial of nintedanib in patients with recurrent or metastatic
446	salivary gland cancer of the head and neck: A multicenter phase 2 study (Korean Cancer Study
447	Group HN14-01). Cancer 2017; 123 (11): 1958-1964.
448	72. Guigay J, Fayette J, Even C, et al. PACSA: Phase II study of pazopanib in patients with
449	progressive recurrent or metastatic (R/M) salivary gland carcinoma (SGC). J Clin Oncol 2016; 34

450 [suppl abstr 6086].

451	73. Ho	AL,	Sherman	EJ,	Baxi	SS,	et	al.	Phase	Π	study	of	regorafenib	in	progressive,

- 452 recurrent/metastatic adenoid cystic carcinoma. J Clin Oncol 2016; 34 [suppl; abstr 6096].
- 453 74. Boon E, van Boxtel W, Buter J et al. Androgen deprivation therapy for androgen receptor-positive
- 454 advanced salivary duct carcinoma: A nationwide case series of 35 patients in The Netherlands.
- 455 Head Neck 2018; 40 (3): 605-613.
- 456 75. Fushimi C, Tada Y, Takahashi H et al. A prospective phase II study of combined androgen
- 457 blockade in patients with androgen receptor-positive metastatic or locally advanced unresectable
- **458** salivary gland carcinoma. Ann Oncol 2018; 29 (4): 979-984.
- 459 76. Viscuse PV, Price KA, Garcia JJ et al. First Line Androgen Deprivation Therapy vs.
- 460 Chemotherapy for Patients With Androgen Receptor Positive Recurrent or Metastatic Salivary
- 461 Gland Carcinoma-A Retrospective Study. Front Oncol 2019; 9: 701.
- 462 77. Locati LD, Perrone F, Cortelazzi B et al. Clinical activity of androgen deprivation therapy in
- 463 patients with metastatic/relapsed androgen receptor-positive salivary gland cancers. Head Neck
- **464** 2016; 38 (5): 724-731.
- 465 78. Jaspers HC, Verbist BM, Schoffelen R et al. Androgen receptor-positive salivary duct carcinoma:
- a disease entity with promising new treatment options. J Clin Oncol 2011; 29 (16): e473-476.
- 467 79. Yajima Y, Fujii S, Kobayashi T, et al. Anti-androgen therapy for patients with recurrent and/or

metastatic salivary duct carcinoma expressing androgen receptors: a retrospective study. Ann

- **469** Oncol 2012; 23 [suppl 9 (abstract 1706P)].
- 470 80. Ho AL, Foster NR, Zoroufy AJ, et al. Alliance A091404: A phase II study of enzalutamide (NSC#
- 471 766085) for patients with androgen receptor-positive salivary cancers. J Clin Oncol 2019; 37
 472 [suppl abstr 6020].
- 473 81. Locati LD, Cavalieri S, Bergamini C, et al. Abiraterone Acetate in Patients With Castration-
- 474 Resistant, Androgen Receptor-Expressing Salivary Gland Cancer: A Phase II Trial. J Clin Oncol
- **475** 2021; 39 (36): 4061-4068.
- 476 82. Takahashi H, Tada Y, Saotome T et al. Phase II Trial of Trastuzumab and Docetaxel in Patients
- 477 With Human Epidermal Growth Factor Receptor 2-Positive Salivary Duct Carcinoma. J Clin
- **478** Oncol 2019; 37 (2): 125-134.
- 479 83. Ichiro Kinoshita I. Kano S, Satoshi Shimizu Y, et al. Phase II study of trastuzumab and docetaxel
- 480 therapy in patients with HER2-positive recurrent and/or metastatic salivary gland carcinoma.
- 481 Cancer Res 2019; 79 (13 Suppl): Abstract nr CT137.
- 482 84. Kurzrock R, Bowles DW, Kang H et al. Targeted therapy for advanced salivary gland carcinoma
- 483 based on molecular profiling: results from MyPathway, a phase IIa multiple basket study. Ann
- **484** Oncol 2020; 31 (3): 412-421.
- 485 85. Haddad R, Colevas AD, Krane JF, Cooper D, Glisson B, Amrein PC, et al. Herceptin in patients

with advanced or metastatic salivary gland carcinomas. A phase II study. Oral Oncol 2003; 39

487 (7): 724-727.

- 488 86. Li BT, Shen R, Offin M, et al. Ado-trastuzumab emtansine in patients with HER2 amplified
- 489 salivary gland cancers (SGCs): Results from a phase II basket trial. J Clin Oncol 2019; 37 [suppl
 490 abstr 6001].
- 491 87. Bando H, Kinoshita I, Modi S, et al. Trastuzumab deruxtecan (T-DXd) in patients with human
- 492 epidermal growth factor receptor 2 (HER2)-expressing salivary duct carcinoma: Subgroup
- analysis of two phase 1 studies. J Clin Oncol 2021; 39 [suppl abstr 6079].
- 494 88. Luk PP, Selinger CI, Eviston TJ, Lum T, Yu B, O'Toole SA, et al. Mammary analogue secretory
- 495 carcinoma: an evaluation of its clinicopathological and genetic characteristics. Pathology 2015;

496 47 (7): 659-666.

- 497 89. Inaki R, Abe M, Zong L, Abe T, Shinozaki-Ushiku A, Ushiku T, et al. Secretory carcinoma -
- 498 impact of translocation and gene fusions on salivary gland tumor. Chin J Cancer Res 2017; 29(5):

499 379-384.

- 500 90. Doebele RC, Drilon A, Paz-Ares L et al. Entrectinib in patients with advanced or metastatic
- 501 NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol
- **502** 2020; 21 (2): 271-282.
- 503 91. Hong DS, DuBois SG, Kummar S et al. Larotrectinib in patients with TRK fusion-positive solid

tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol 2020; 21 (4): 531-540.

- 505 92. Majewska H, Gorczynski A, Czapiewski P et al. ALK alterations in salivary gland carcinomas.
- 506 Virchows Arch 2021; 478 (5): 933-941.
- 507 93. Marabelle A, Le DT, Ascierto PA, et al. Efficacy of Pembrolizumab in Patients With
- 508 Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From
- 509 the Phase II KEYNOTE-158 Study. J Clin Oncol 2020; 38 (1): 1-10.
- 510 94. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid
- 511 tumors to PD-1 blockade. Science 2017; 357 (6349); 409-413.
- 512 95. Hanai N, Shimizu Y, Kariya S et al. Effectiveness and safety of nivolumab in patients with head
- and neck cancer in Japanese real-world clinical practice: a multicenter retrospective clinical study.
- 514 Int J Clin Oncol 2021; 26 (3): 494-506.
- 515 96. Niwa K, Kawakita D, Nagao T et al. Multicentre, retrospective study of the efficacy and safety of
- 516 nivolumab for recurrent and metastatic salivary gland carcinoma. Sci Rep 2020; 10 (1): 16988.
- 517 97. Fayette J, Even C, Digue L, et al. NISCAHN: Phase II Study of Nivolumab in Patients With
- **518**Progressive Recurrent or Metastatic Salivary Glands Carcinoma. J Clin Oncol 2019; 37 [suppl
- **519** abstr 6083].
- 520 98. Cohen RB, Delord JP, Doi T et al. Pembrolizumab for the Treatment of Advanced Salivary Gland
- 521 Carcinoma: Findings of the Phase 1b KEYNOTE-028 Study. Am J Clin Oncol 2018; 41 (11):

522 1083-1088.

- 523 99. Mahmood U, Bang A, Chen YH et al. A Randomized Phase 2 Study of Pembrolizumab With or
- 524 Without Radiation in Patients With Recurrent or Metastatic Adenoid Cystic Carcinoma. Int J
- 525 Radiat Oncol Biol Phys 2021; 109 (1): 134-144.
- 526 100. Tchekmedyian V, Sherman EJ, Dunn L, et al. A phase II trial cohort of nivolumab plus
- 527 ipilimumab in patients (Pts) with recurrent/metastatic adenoid cystic carcinoma (R/M ACC). J
- **528** Clin Oncol 2019; 37 [suppl abstr 6084].
- 529 101. Burman B, Sherman EJ, Dunn L, et al. A phase II trial cohort of nivolumab plus ipilimumab
- in patients (Pts) with recurrent/metastatic salivary gland cancers (R/M SGCs). J Clin Oncol 2021;
- **531** 39 [suppl abstr 6002].
- 532 102. Rodriguez CP, Wu QV, Voutsinas J et al. A Phase II Trial of Pembrolizumab and Vorinostat
- 533 in Recurrent Metastatic Head and Neck Squamous Cell Carcinomas and Salivary Gland Cancer.
- 534 Clin Cancer Res 2020; 26 (4): 837-845.
- 535 103. Ott PA, Hodi FS, Kaufman HL et al. Combination immunotherapy: a road map. J
- **536** Immunother Cancer 2017; 5: 16.
- 537 104. Hill ME, Constenla DO, A'Hern RP et al. Cisplatin and 5-fluorouracil for symptom control
- in advanced salivary adenoid cystic carcinoma. Oral Oncol 1997; 33 (4): 275-278.
- 539 105. Dimery IW, Legha SS, Shirinian M et al. Fluorouracil, doxorubicin, cyclophosphamide, and

cisplatin combination chemotherapy in advanced or recurrent salivary gland carcinoma. J Clin

- 541 Oncol 1990; 8 (6): 1056-1062.
- 542 106. Laurie SA, Siu LL, Winquist E, et al. A phase 2 study of platinum and gemcitabine in
- patients with advanced salivary gland cancer: a trial of the NCIC Clinical Trials Group. Cancer
 2010; 116 (2): 362-368.
- 545 107. Argiris A, Ghebremichael M, Burtness B et al. A phase 2 trial of bortezomib followed by
- the addition of doxorubicin at progression in patients with recurrent or metastatic adenoid cystic
- 547 carcinoma of the head and neck: a trial of the Eastern Cooperative Oncology Group (E1303).
- 548 Cancer 2011; 117 (15): 3374-3382.
- 549 108. Keam B, Kim SB, Shin SH et al. Phase 2 study of dovitinib in patients with metastatic or
- unresectable adenoid cystic carcinoma. Cancer 2015; 121 (15): 2612-2617.
- 551 109. Dillon PM, Petroni GR, Horton BJ et al. A Phase II Study of Dovitinib in Patients with
- **552** Recurrent or Metastatic Adenoid Cystic Carcinoma. Clin Cancer Res 2017; 23 (15): 4138-4145.
- 553 110. Goncalves PH, Heilbrun LK, Barrett MT et al. A phase 2 study of vorinostat in locally
- advanced, recurrent, or metastatic adenoid cystic carcinoma. Oncotarget 2017; 8 (20): 32918-
- **555** 32929.
- 556 111. Hanna GJ, Guenette JP, Chau NG, et al. Tipifarnib in recurrent, metastatic HRAS-mutant
- salivary gland cancer. Cancer 2020; 126 (17): 3972-3981.
 - 33

- 558 112. Hanna GJ, A ON, Cutler JM et al. A phase II trial of all-trans retinoic acid (ATRA) in
- advanced adenoid cystic carcinoma. Oral Oncol 2021; 119: 105366.

Table 1. Major retrospective studies of postoperative concurrent chemoradiotherapy for resected salivary gland malignancies

Treatment	N	Histolo gv	DFS or PFS	OS	Interpret ation	Adverse features
CRT (vs RT) (10)	3141	Any	NA	47.3% (5Y) HR 1.03	Negative	Histology, tumor grade, positive margins, or pathologic node involvement
CRT (vs RT) (12)	140	Any	42.1% vs 73.8% (3Y) HR 0.78 (0.40-1.55)	52.2% vs 78.1% (3Y)	Negative	Age, T classification, N classification, tumor grade, or extra nodal extension
CRT (vs RT) (14)	2210	Any	NA	38.5% vs 54.2% (5Y) aHR 1.22 (1.03-1.44)	Negative	T3-4, N1-3, or positive margins
CRT (vs RT) (15)	148	SDC	NA	40.9% vs 38.8% (5Y)	Negative	NA
CRT (16)	128	Any	61.2% (5Y)	73.7% (5Y)	Negative	T3-4, N1-3, positive margins, and extra nodal extension
CRT (vs RT) (17)	741 (≥66 y)	Any	NA	24.0M vs 41.0M aHR 1.39 (1.07-1.79)	Negative	Age, number of positive nodes, histology, or IMRT
CRT (vs RT) (11)	1052	SqCC	NA	58.4% vs 45.0% (5Y)	Positive	NA
CRT (vs RT) (12)	91	AdCC	96% vs 96% (5Y) 88% vs 78% (8Y)	(No statistically significant difference)	Positive	Stage III/IV, positive margins, and perineural invasion

AdCC, adenoid cystic carcinoma; aHR, adjusted hazard ratio; CRT, chemoradiotherapy; IMRT, intensity modulated radiation therapy; NA, not available; SDC, salivary duct carcinoma; SqCC, squamous cell carcinoma

Table 2. Ongoing prospective studies of postoperative concurrent chemoradiotherapy

Treatment	Study design	N	Primary endpoint	Histology	Other key eligibility
Cisplatn/docetaxel +RT (NCT02776163)	Phase II	53	Disease-free survival	Int-grade, or high-grade	T3-4 or N1-3 or T1-2 N0 with inadequate surgical margin (\leq 5mm)
Cisplatin+RT vs RT-alone (NCT01220583)	Phase II/III	252	Progression- free survival	Int-grade ANOS. int-grade MEC, high-grade acinic cell carcinoma, or high-grade AdCC	T3-4 or N1-3 or T1-2 N0 with inadequate surgical margin (≤1mm)
Cisplatin+RT vs RT-alone (NCT02998385)	Phase III	260*	Progression- free survival	AdCC, high-grade ANOS, int/high-grade MEC, SDC, etc	T3-4 or N1-3 or T1-2 N0 with inadequate surgical margin (<5mm)

*Including unresectable or not operable tumors

AdCC, adenoid cystic carcinoma; ANOS adenocarcinoma, not otherwise specified; MEC mucoepidermoid carcinoma; RT,

radiotherapy; SDC, salivary duct carcinoma

Table 3. Retrospective studies of adjuvant androgen deprivation therapy and HER2-targeted therapies for resected salivary

	- 1		•	•
α	and	1220	100	0100100
γı	and	III a	пуп	ancies
2				

Treatment	N	Histology	Target	mDFS (M)	mOS (M)
Bicalutamide and/or	22	SDC	AR	33 (vs 21)	-
LHRHa (19)				HR 0.14 (0.03-0.75)	HR 0.06 (0.01-0.76)
Carboplatin/paclitaxel	8	SDC	HER2	62% (2Y)	NA
/trastuzumab (20)					
Carboplatin/paclitaxel	9	SDC	HER2	117 (vs 9)	74 (vs 43)
/trastuzumab (21)					

HR, hazard ratio; LHRHa, luteinizing hormone-releasing hormone analog; mDFS, median disease-free survival; mOS median overall survival; NA, not available; SDC, salivary duct carcinoma; T-DM1, trastuzumab emtansine

Table 4. Retrospective studies of definitive concurrent chemoradiotherapy for locally advanced salivary gland malignancies

N	Histology	ORR	LC	PFS	OS
7	1 AdCC	NA	4 failures	NA	NA
	(14%)				
17	4 AdCC	76%	5 failures	NA	70% (5Y)
	(2470)	(CK, 2370)			
9	AdCC*	44%	1 failure	NA	NA
		(CR, 44%)			
5	AdCC*	100%	100% (3Y)	NA	20-43M
16	AdCC*	88% (CR, 44%)	61% (5Y)	39% (5Y)	87% (5Y)
	N 7 17 9 5 16	N Histology 7 1 AdCC (14%) 17 4 AdCC (24%) 9 AdCC* 5 AdCC* 16 AdCC*	N Histology ORR 7 1 AdCC (14%) NA 17 4 AdCC (24%) 76% (CR, 23%) 9 AdCC* 44% (CR, 44%) 5 AdCC* 100% 16 AdCC* 88% (CR, 44%)	N Histology ORR LC 7 1 AdCC (14%) NA 4 failures 17 4 AdCC (24%) 76% (CR, 23%) 5 failures 9 AdCC* 44% (CR, 44%) 1 failure 5 AdCC* 100% 100% (3Y) 16 AdCC* 88% (CR, 44%) 61% (5Y)	N Histology ORR LC PFS 7 1 AdCC (14%) NA 4 failures NA 17 4 AdCC (24%) 76% (CR, 23%) 5 failures NA 9 AdCC* 44% (CR, 44%) 1 failure NA 5 AdCC* 100% 100% (3Y) NA 16 AdCC* 88% (CR, 44%) 61% (5Y) 39% (5Y)

*AdCC of the head and neck

AdCC, adenoid cystic carcinoma; CR, complete response; LC, local control; NA, not available; OS overall survival; ORR, objective response rate; PFS, progression-free survival; SGM, salivary gland malignancy

Table 5. Largest phase II trials of respective cytotoxic regimens for recurrent/metastatic salivary gland malignancies

Treatment	N	Histology	ORR	ORR	mPFS	mOS
Troumont	11	Thistology	(AdCC %)	(non-AdCC %)	(M)	(M)
Cignitatin (21)	25	12 A dCC (520/)	15	17		14
Cispiauli (51)	23	13 AUCC (32%)	13	1/	INA	14
Epibubicin (32)	20	AdCC only	10	-	4	15.5
Mitoxantrone (33)	18	AdCC only	6	-	NA	19
Paclitaxel (34)	45	14 AdCC (31%)	0	26	4	12.5
Gemcitabine (35)	21	AdCC only	0	-	NA	NA
Vinorelbine (36)	20	13 AdCC (65%)	15	29	NA	8.5
Cisplatin/vinorelbine (38)	40	19 AdCC (48%)	32	38	6.3	16.9
Cyclophosphamide/doxorubicin/	22	12 AdCC (55%)	25	30	NA	21
cisplatin (39)						
Carboplatin/paclitaxel (45)	14	10 AdCC (71%)	20	0	NA	12.5
Cisplatin/docetaxel (46)	11	4 AdCC (36%)	50	57	6.6	18.8
Cisplatin/fluorouracil (104)	14	AdCC only	0	-	9	12
Cyclophosphamide/doxorubicin/	17	7 AdCC (44%)	43	50	NA	16.6
cisplatin/fluorouracil (105)						
Platinum/gemcitabine (106)	33	10 AdCC (30%)	20	26	NA	13.8

AdCC, adenoid cystic carcinoma; mOS, median overall survival; mPFS, median progression-free survival; NA, not available;

ORR, objective response rate; SDC, salivary duct carcinoma

Table 6. Phase II trials of targeted therapies for recurrent/metastatic salivary gland malignancies (except AR, HER2, and

INIKK)

Treatment	N	Histology	Target	ORR	ORR
			_	(AdCC, %)	(non-AdCC, %)
Imatinib (52-54)	44	AdCC only	KIT	5	-
Dasatinib (55)	54	40 AdCC (74%)	KIT	3	0
Lapatinib (56)	36	19 AdCC (53%)	EGFR/HER2	0	0
Gefitinib (57)	36	18 AdCC (50%)	EGFR	0	0
Cetuximab (58)	30	23 AdCC (77%)	EGFR	0	0
Everolimus (59)	34	AdCC only	mTOR	0	-
Nelfinavir (60)	15	AdCC only	AKT	0	-
MK-2206 (61)	14	AdCC only	AKT	0	-
Cabozantinib (62)	21	15 AdCC (71%)	c-MET/VEGFR	7	17
Bortezomib (107)	24	AdCC only	NF-ĸB	0	-
Dovitinib (108,109)	66	AdCC only	FGFR	5	-
Vorinostat (110)	30	AdCC only	HDAC	7	-
Tipifarnib (111)	12	1 AdCC (8%)	HRAS	100 (1/1)	0
All-trans retinoic acid (112)	18	AdCC only	MYB	0	-
Lenvatinb (63,64)	58	AdCC only	VEGFR/FGFR/PDGFR /RET/KIT	14	-
Sorafenib (65,66)	56	38 AdCC (68%)	BRAF/VEGFR/PDRFR	11	22
Axitinib (67-69)	89	69 AdCC (78%)	VEGFR	7	5
Sunitinib (70)	14	AdCC only	VEGFR/PDGFR	0	-
Nintedanib (71)	20	13 AdCC (65%)	VEGFR/PDGFR/FGFR	0	0
Pazopanib (72)	69	49 AdCC (71%)	VEGFR/PFGFR/KIT	2	6
Regorafenib (73)	38	AdCC only	VEGFR/RET/PDGFR	0	-

AdCC, adenoid cystic carcinoma; ANOS, adenocarcinoma, not otherwise specified; ORR, objective response rate

Table 7. Prospective studies of targeted therapies for recurrent/metastatic salivary gland malignancies (AR, HER2, and

NTRK)							
Treatment	Study design	N	Histology	Target	ORR	mPFS	mOS
					(%)	(M)	(M)
Bicalutamide/leuprorelin (75)	Phase II	36	SDC/ANOS	AR	42	8.8	30.5
Enzalutamide (80)	Phase II	45	SDC	AR	15	5.5	NR
Abiraterone/LHRHa (81)	Phase II	24	SDC/ANOS	AR	21	3.7	22.5
Trastuzumab (85)	Phase II	13	Any	HER2	NA	4.2	NA
Docetaxel/trastuzumab (82)	Phase II	57	SDC	HER2	70	8.9	39.7
Docetaxel/trastuzumab (83)	Phase II	16	SDC	HER2	60	8.5	NR
Trastuzumab/pertuzumab (84)	Phase IIa	15	Any	HER2	60	8.6	20.4
Trastuzumab emtansine (86)	Phase II	10	SDC/ANOS*	HER2	90	NR	NR
Trastuzumab deruxtecan (86)	Phase I (pool)	17	SDC*	HER2	47	14.1	NA
Entrectinib (90)	Phase I/II	7	SC*	NTRK	86	NA	NA
Larotectinib (91)	Phase I/II	12	SC*	NTRK	90	NA	NA

*Subgroup analysis

ANOS, adenocarcinoma, not otherwise specified; AR, androgen receptor; LHRHa, leuteinizing hormone-releasing hormone agonist; mOS, median overall survival; mPFS, median progression-free survival; NA, not available; NR, not reached; ORR, objective response rate; SC, secretory carcinoma; SDC, salivary duct carcinoma

Table 8. Clinical studies of immune checkpoint inhibitors for recurrent/metastatic salivary gland malignancies

Treatment	Study design	N	Histology (%)	PD-L1, N	ORR	mPFS	mOS
				(%)	(%)	(M)	(M)
Nivolumab (95)	Retrospective	22	NA	NA	14	2.1	NR
							(10.3+)
Nivolumab (96)	Retrospective	24	SDC (83)	11 (46)	4	1.6	10.7
Nivolumab (97)	Phase II	45	AdCC	NA	9	4.9	18.1
Nivolumab (97)	Phase II	50	Non-AdCC	NA	4	1.8	9.5
Pembrolizumab (98)	Phase Ib	26	Non-AdCC (92)	26 (100)	12	4	13
Pembrolizumab \pm RT (90)	Randomized	20	AdCC	11/16 (69)	0	6.6*	27.2*
	phase II						
Nivolumab/ipilimumab (100)	Phase II	32	AdCC	6	6	4.4	NA
Nivolumab/ipilimumab (101)	Phase II	32	Non-AdCC	NA	16	2.3	NA
Pembrolizumab/vorinostat (102)	Phase I/II	25	12 AdCC (48)	4/21(19)	16	4.5	12.6

*Pembrolizumab-alone

AdCC, adenoid cystic carcinoma; AR, androgen receptor; mOS, median overall survival; mPFS, median progression-free survival; NA, not available; NR, not reached; ORR, objective response rate; RT, radiotherapy; SDC, salivary duct carcinoma

Table 9. Featured ongoing clinical trials for recurrent/metastatic salivary gland malignancies

Treatment	Trial number	Trial design	N	Histology	Target
AL101	NCT03691207	Phase II	87	AdCC	NOTCH
Surufatinib	NCT05013515	Phase II	27	ANOS	VEGFR/FGFR/CSF-1R
Lutetium-177-PMSA	NCT04291300	Phase II	10	Cohort1: AdCC	Prostate specific
			10	Cohort2: SDC	membrane antigen
Bicalutamide/triptorelin (vs	NCT01969578	Dandomized			
cisplatin/docetaxel or		randonnized	76	SDC/ANOS	Androgen receptor
carboplatin/paclitaxel)					
Apalutamide/goserelin	JapicCTI-205249	Phase II	24	SDC/ANOS	Androgen receptor
Darolutamide	jRCT2031190241	Phase II	24	SDC/ANOS	Androgen receptor
Nivolumab	UMIN000029636	Phase II	24*	Any	-
Nivolumab/ipilimumab+SABR	NCT03749460	Phase II	20	Any	-
Docetaxel/pembrolizumab	NCT03360890	Phase II	46**	Any	-
Pemetrexed/pembrolizumab	NCT04895735	Phase II	45	Any	-
Goserelin/pembrolizumab	NCT03942653	Phase II	20	Any	Androgen receptor
Lenvatinib/pembrolizumab	NCT04209660	Phase II	64	Any	-

* Participants include all non-squamous-cell head and neck cancer.

** Participants include both salivary gland malignancies and thyroid cancer.

AdCC, adenoid cystic carcinoma; ANOS, adenocarcinoma, not otherwise specified; SABR, stereotactic ablative body radiotherapy; SDC, salivary duct carcinoma