
Kobe University Repository : Kernel

PDF issue: 2025-08-06

Neumann Boundary Stabilization of One-
Dimensional Linear Parabolic Systems With Input
Delay

(Citation)
IEEE Transactions on Automatic Control,63(9):3105-3111

(Issue Date)
2018-01-09

(Resource Type)
journal article

(Version)
Accepted Manuscript

(Rights)
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or…
reuse of any copyrighted component of this work in other works.(URL)
https://hdl.handle.net/20.500.14094/0100477401

佐野, 英樹



1

Neumann Boundary Stabilization of
One-Dimensional Linear Parabolic Systems

With Input Delay
Hideki Sano

Abstract—This work addresses the boundary stabilization
problem of one-dimensional linear parabolic systems with input
delay. Especially, the case of Neumann boundary control is
studied. The purpose is to derive the stabilizing controller of
predictor type in a Hilbert space, by using a backstepping
method combined with the semigroup theory. The use of the
semigroup theory makes the proof of continuity of the inverse
transformation easy. Also, it is shown that the implementation
of the abstract controller is feasible by using a finite number of
eigenvalues and eigenfunctions of the system operator.

Index Terms—Boundary stabilization, input delay, parabolic
system, backstepping, semigroup, predictor.

I. INTRODUCTION

Since early times, the control problem of the system with
input delay has been investigated by many researchers (see
e.g. the monograph [9] and references therein). The sphere
of the control objects treated in [9] ranges from lumped
parameter systems to distributed parameter systems, and from
linear systems to nonlinear systems. Especially, when one
considers the thermal control problem, large time lag exists in
the feedback loop, since it is generally difficult to regulate heat
quickly. So, it is very important to study the control problem
of parabolic systems with input delay.

In this technical note, we study the Neumann boundary sta-
bilization problem of one-dimensional linear parabolic systems
with input delay. Since the element of time lag of this type,
i.e., e−τs with τ > 0 being a time lag, can be equivalently
expressed by using a transport equation, the original system
can be expressed as a cascade consisting of the transport
equation and the parabolic equation with boundary input. In
this note, by using a backstepping method of PDEs [7], it
is shown that the control law can be constructed by using
the solution to a parabolic equation and the solution to a
hyperbolic equation. Then, an approach within the existing
framework of functional analysis is useful when a target
system is designed. Especially, by using the semigroup theory
([17], [13], [4], [10]), we can give an abstract expression of
the control law obtained here. Here, we note that, in [11], a
result for the case of distributed control with input delay has
been given for an unstable reaction-diffusion process, where a
backstepping method based on single integral transformation
[6] is used and an abstract expression of predictor is given.

H. Sano is with the Department of Applied Mathematics, Graduate School
of System Informatics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501,
Japan. e-mail: sano@crystal.kobe-u.ac.jp

In [8], the control law was designed by a backstepping
method based on two kinds of integral transformations for
the Dirichlet boundary stabilization problem of an unstable
reaction-diffusion process with input delay, but an abstract
expression of predictor type was not given for the control law.
On the other hand, in this note, we consider the Neumann
boundary stabilization problem with input delay and use a
backstepping method based on single integral transformation
[6]. The purpose is to derive the stabilizing controller of
predictor type in a Hilbert space, by using a backstepping
method combined with the semigroup theory. Also, the use
of the semigroup theory makes the proof of continuity of
the inverse transformation easy. Further, it is shown that the
abstract controller can be easily implemented by using a
finite number of eigenvalues and eigenfunctions of the system
operator.

This technical note is organized as follows: In Section 2, we
introduce the PDE describing a boundary controlled parabolic
system with input delay and formulate it in a Hilbert space.
In Section 3, we set a target system and assume the form of
integral transformation and control law, and further determine
the kernels of the integral transformation as well as the control
law so as to convert the original system to the target system.
In Section 4, it is shown that the inverse transformation is also
continuous. In Section 5, we give a numerical example, and,
finally the note is concluded in Section 6.

II. SYSTEM DESCRIPTION AND FORMULATION

A. System Description

We shall consider the following boundary controlled
parabolic system defined on the spatial domain (0, 1):

zt(t, x) = −Lz(t, x),
zx(t, 0) = 0, zx(t, 1) = f(t− τ),
z(0, x) = z0(x),
f(θ) = ϕ(θ), θ ∈ [−τ, 0],

(1)

where L is a Sturm-Liouville operator defined by

(Lφ)(x) = 1

h(x)

(
− d

dx

(
a(x)

dφ(x)

dx

)
+ b(x)φ(x)

)
.

In the above, we assume that h(x), a(x), and b(x) are real-
valued, sufficiently smooth functions defined on [0, 1], and that
h(x) > 0, a(x) > 0. f(t) is the control input and τ > 0 is
a time lag. As is well-known, since the element of time lag
can be expressed by using the transport equation, system (1)
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can be expressed as the cascade consisting of the transport
equation and the parabolic equation with boundary input:

zt(t, x) = −Lz(t, x),
zx(t, 0) = 0, zx(t, 1) = u(t, 0),
z(0, x) = z0(x),
ut(t, x) =

1
τ ux(t, x),

u(t, 1) = f(t),
u(0, x) = ϕ(τ(x− 1)).

(2)

B. Formulation of the System
Let L2

h(0, 1) be the weighted L2-space with inner product
defined by ⟨f, g⟩h =

∫ 1

0
f(x)g(x)h(x)dx for f, g ∈ L2

h(0, 1),
and let us define the operator A : D(A) ⊂ L2

h(0, 1) →
L2
h(0, 1) by

Aφ = Lφ, φ ∈ D(A),

D(A) = {φ ∈ H2(0, 1) ; φ′(0) = φ′(1) = 0 }. (3)

Then, the operator A is closed and self-adjoint in L2
h(0, 1),

and it has compact resolvent and is bounded from below.
Therefore, A has the eigenvalues {λi}∞i=0 such that −∞ <
λ0 < λ1 < · · · < λi < · · · → ∞, and the corresponding
eigenfunctions {φi}∞i=0 forms a complete orthonormal system
in L2

h(0, 1). Especially, in this note, let λ0 < 0 be assumed.
Now, we choose a positive number c such that λ0+c > 0 and
hereafter fix it.

Let us formulate system (2) in the Hilbert space L2
h(0, 1).

Here, we set Ac = A+ c and use the variable transformation
ζ(t) = A

− 1
4−ϵ

c z(t, ·) (0 < ϵ < 1
4 ) [12]. Then, noting the

inclusion relation [5]

H2(0, 1) ⊂ H
3
2−2ϵ(0, 1) = D(A

3
4−ϵ
c ) ⊂ D(A

1
4+ϵ
c ), (4)

system (2) is expressed as1
ζ̇(t) = −Aζ(t) +Bu(t, 0),

ζ(0) = A
− 1

4−ϵ
c z0 =: ζ0,

ut(t, x) =
1
τ ux(t, x),

u(t, 1) = f(t),
u(0, x) = ϕ(τ(x− 1)),

(5)

where B : R → L2
h(0, 1) is the bounded operator defined by

Bv = a(1)A
3
4−ϵ
c ψv, v ∈ R, (6)

and, ψ ∈ H2(0, 1) is the unique solution of the boundary value
problem

(L+ c)ψ = 0, ψ′(0) = 0, ψ′(1) = 1
a(1) . (7)

Hereafter, we assume that z0 ∈ L2
h(0, 1), ϕ ∈ Cr[−τ, 0]

(0 < r ≤ 1), where Cr[−τ, 0] denotes the set consisting of
Hölder continuous functions with index r. Here, we note that
the operator −A generates an analytic semigroup T−A(t) on
L2
h(0, 1) and the concrete expression is as follows:

T−A(t)φ =
∞∑
i=0

e−λit⟨φ,φi⟩hφi, φ ∈ L2
h(0, 1). (8)

1See e.g. [14] for the derivation. From the process of derivation, it is clear
that (2) is equivalent to (5). In the case of Dirichlet boundary control with

input delay, the variable transformation ζ(t) = A
− 3

4
−ϵ

c z(t, ·) (0 < ϵ < 1
4
)

is used [10], where Aφ = Lφ, φ ∈ D(A) = H2(0, 1) ∩H1
0 (0, 1).

Since the growth bound of T−A(t) is equal to −λ0 > 0
under the assumption, system (5), namely (2) is unstable. The
purpose of this note is to construct the control law to stabilize
system (5) and to give an abstract expression of the controller.

III. CONSTRUCTION OF CONTROL LAW

A. Backstepping Method

First of all, by using a function k ∈ L2
h(0, 1), we define an

operator K : L2
h(0, 1) → R by Kφ = ⟨k, φ⟩h, φ ∈ L2

h(0, 1).
If the function k ∈ L2

h(0, 1) is chosen so that the operator
−A + BKA

1
4+ϵ
c generates an exponentially stable analytic

semigroup, it makes possible to consider the following system
as a target system2:

ζ̇(t) = (−A+BKA
1
4+ϵ
c )ζ(t) +Bw(t, 0),

ζ(0) = ζ0,
wt(t, x) =

1
τwx(t, x),

w(t, 1) = 0,
w(0, x) = w0(x).

(9)

The following theorem assures that such a choice of k is
actually possible.

Theorem 1: For a given ω > 0, let the integer n be chosen
such that ω < λn+1. Then, there exists a function k ∈ L2

h(0, 1)

such that the operator −A + BKA
1
4+ϵ
c generates an analytic

semigroup T−A+BKA
1/4+ϵ
c

(t) with growth bound −ω, where
Kφ = ⟨k, φ⟩h, φ ∈ L2

h(0, 1). Especially, it is possible to
choose the function k within the domain of A, D(A).

Proof: By using the orthogonal projection operator Pnφ =∑n
i=0 ⟨φ,φi⟩hφi, φ ∈ L2

h(0, 1), we decompose the state
variable ζ(t) and the space L2

h(0, 1) of system (9) as follows:

ζ(t) = ζ1(t) + ζ2(t),

ζ1(t) := Pnζ(t), ζ2(t) := (I − Pn)ζ(t),

L2
h(0, 1) = PnL

2
h(0, 1)︸ ︷︷ ︸

dim=n+1

⊕ (I − Pn)L
2
h(0, 1)︸ ︷︷ ︸

dim=∞

.

Then, the operators A, B, and K are expressed as follows (see
e.g. [1]):

A =

[
A1 0
0 A2

]
, B =

[
B1

B2

]
, K =

[
K1 K2

]
,

where A1 := PnAPn, B1 := PnB, K1 := KPn, A2 :=
(I − Pn)A(I − Pn), B2 := (I − Pn)B, K2 := K(I − Pn).
In the above, the operator A2 is unbounded, whereas all the
other operators are bounded3. Hereafter, we identify the finite-
dimensional Hilbert space PnL

2
h(0, 1) with the Euclidean

space Rn+1 with respect to the basis {φ0, φ1, . . . , φn}. In

2In the case of distributed control [11], the operator −A + BKA
1
4
+ϵ

c is
replaced by −A + BK. Thus, in the case of Neumann boundary control,

the additional operator A
1
4
+ϵ

c appears under the influence of the variable

transformation ζ(t) = A
− 1

4
−ϵ

c z(t, ·) (0 < ϵ < 1
4
).

3The projections have been widely used in the field of distributed parameter
systems. For example, Byrnes et al. solved the output regulation problem for
a class of infinite-dimensional systems [2]. Christofides and Daoutidis applied
approximate inertial manifolds to the stabilization problem of semilinear
distributed parameter systems [3].
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this way, each element in PnL
2
h(0, 1) is identified with an

(n+1)-dimensional vector, and the operators A1, B1, and K1

are identified with matrices with appropriate size.
Here, let us set K2 = 0. Then, the operator −A+BKA

1
4+ϵ
c

of system (9) becomes

−A+BKA
1
4+ϵ
c =

[
−A1 +B1K1(A1 + c)

1
4+ϵ 0

B2K1(A1 + c)
1
4+ϵ −A2

]
.

Since the pair (−A1, B1) is controllable (see Appendix A), we
can choose a matrix K̃1 such that the matrix −A1 + B1K̃1

becomes Hurwitz (e.g. [19]). Especially, it is possible to
choose the matrix K1 := K̃1(A1 + c)−

1
4−ϵ such as

σ(−A1 +B1K1(A1 + c)
1
4+ϵ) ⊂ {λ ∈ C;Re(λ) < −ω}.

Here, noting that −A2 generates an analytic semigroup
T−A2(t) with norm bound ∥T−A2(t)∥ ≤ e−λn+1t, t ≥
0, we see that the operator −A + BKA

1
4+ϵ
c generates

an analytic semigroup T−A+BKA
1/4+ϵ
c

(t) with norm bound
∥T−A+BKA

1/4+ϵ
c

(t)∥ ≤ me−ωt, t ≥ 0, where m is some
positive constant.

From the above discussion, by expressing the matrix K1 as
K1 = [k0, · · · , kn], the function k(x) can be constructed as

k(x) =
∞∑
i=0

⟨k, φi⟩hφi(x) =
n∑

i=0

kiφi(x). (10)

Hence, it follows that k ∈ D(A) since each φi (0 ≤ i ≤ n)
belongs to D(A).

Remark 1: For the operator A
1
4+ϵ
c T−A+BKA

1/4+ϵ
c

(t), the
following norm estimate holds:

∥A
1
4+ϵ
c T−A+BKA

1/4+ϵ
c

(t)∥ ≤ (α+t−
1
4−ϵ)e−ωt, t > 0, (11)

where α is some positive constant.

Based on Theorem 1 and Remark 1, we have the following
stability result for system (9):

Theorem 2: Let ζ0 ∈ D(A
1
4+ϵ
c ) and w0 ∈ Cr[0, 1] (0 < r ≤

1). Suppose that the function k ∈ D(A) is chosen as stated
in Theorem 1. Then, system (9) is asymptotically stable in
the sense of norm (∥w(t, ·)∥2h + ∥A

1
4+ϵ
c ζ(t)∥2h)

1
2 , where ∥ · ∥h

denotes the norm of L2
h(0, 1).

Proof: Note that the subsystem wt(t, x) =
1
τwx(t, x),

w(t, 1) = 0,
w(0, x) = w0(x)

is exponentially stable with any decay rate in the sense of
norm ∥w(t, ·)∥h, since the solution w(t, x) vanishes after
t = τ . Also, note that w(·, 0) ∈ Cr[0, τ ] by the assumption
w0 ∈ Cr[0, 1]. Therefore, the first equation of system (9) has
a unique solution

ζ(t) = T−A+BKA
1/4+ϵ
c

(t)ζ0

+

∫ t

0

T−A+BKA
1/4+ϵ
c

(t− s)Bw(s, 0)ds, 0 ≤ t ≤ τ,

and

ζ(t) = T−A+BKA
1/4+ϵ
c

(t− τ)ζ(τ), τ < t.

Note that ζ(t) ∈ D(A) for each t > 0 and ζ ∈ C([0,∞);
L2
h(0, 1)). Here, by using (11), we have the following estimate

for sufficiently large t (> τ):

∥A
1
4+ϵ
c ζ(t)∥h ≤ ∥A

1
4+ϵ
c T−A+BKA

1/4+ϵ
c

(t− τ)∥∥ζ(τ)∥h
≤ {α+ (t− τ)−

1
4−ϵ}e−ω(t−τ)∥ζ(τ)∥h.

Therefore, we see that system (9) becomes asymptotically
stable in the sense of norm (∥w(t, ·)∥2h + ∥A

1
4+ϵ
c ζ(t)∥2h)

1
2 .

The above target system (9) is equivalent to the following
system:

zt(t, x) =
1

h(x)

((
a(x)zx(t, x)

)
x
− b(x)z(t, x)

)
,

zx(t, 0) = 0,
zx(t, 1) = ⟨k, z(t, ·)⟩h + w(t, 0),
wt(t, x) =

1
τwx(t, x),

w(t, 1) = 0.

(12)

Of course, system (12) is also asymptotically stable. To convert
system (2) to the target system (12), we consider the following
integral transformation and control law:

w(t, x) = u(t, x)−
∫ x

0

q(x, y)u(t, y)dy

−
∫ 1

0

γ(x, y)z(t, y)h(y)dy, (13)

f(t) =

∫ 1

0

q(1, y)u(t, y)dy

+

∫ 1

0

γ(1, y)z(t, y)h(y)dy, (14)

where the kernels q(x, y) and γ(x, y) are functions which
should be designed.

B. Derivation of Kernels

First, differentiating eq. (13) with respect to x and t, we
have

wx(t, x) = ux(t, x)− q(x, x)u(t, x)−
∫ x

0

qx(x, y)u(t, y)dy

−
∫ 1

0

γx(x, y)z(t, y)h(y)dy, (15)

wt(t, x) =
1

τ
ux(t, x)−

1

τ
q(x, x)u(t, x) +

1

τ
q(x, 0)u(t, 0)

+
1

τ

∫ x

0

qy(x, y)u(t, y)dy − a(1)γ(x, 1)u(t, 0)

+a(1)γy(x, 1)z(t, 1)− a(0)γy(x, 0)z(t, 0)

−
∫ 1

0

(
a(y)γy(x, y)

)
y
z(t, y)dy

+

∫ 1

0

γ(x, y)b(y)z(t, y)dy. (16)
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Here, from wt(t, x)− 1
τwx(t, x) = 0, we have

wt(t, x)−
1

τ
wx(t, x)

=

{
1

τ
q(x, 0)− a(1)γ(x, 1)

}
u(t, 0)

+
1

τ

∫ x

0

{qy(x, y) + qx(x, y)}u(t, y)dy

+a(1)γy(x, 1)z(t, 1)− a(0)γy(x, 0)z(t, 0)

+

∫ 1

0

{
−
(
a(y)γy(x, y)

)
y
+ b(y)γ(x, y)

+
1

τ
h(y)γx(x, y)

}
z(t, y)dy = 0. (17)

In order for eq. (17) to hold for all u and z, q(x, y) and γ(x, y)
need to satisfy{

γx(x, y) =
τ

h(y)

((
a(y)γy(x, y)

)
y
− b(y)γ(x, y)

)
,

γy(x, 0) = γy(x, 1) = 0,
(18){

qx(x, y) + qy(x, y) = 0,
q(x, 0) = τa(1)γ(x, 1).

(19)

Since eq. (18) is of parabolic type, we need the initial condition
to solve it. We can determine it in the following way. Setting
x = 0 in the integral transformation (13), we have

w(t, 0) = u(t, 0)− ⟨γ(0, ·), z(t, ·)⟩h, (20)

and, by substituting (20) to the third equation of system (12),
we have

zx(t, 1) = ⟨k, z(t, ·)⟩h + w(t, 0)

= ⟨k − γ(0, ·), z(t, ·)⟩h + u(t, 0). (21)

Here, comparing (21) with the corresponding boundary con-
dition of system (2), we obtain

γ(0, y) = k(y) (22)

as the initial condition for eq. (18).
From these, we can solve the kernels q(x, y) and γ(x, y) of

integral transformation (13) in the following steps:
(i) First, we solve the solution γ(x, y) (0 ≤ x, y ≤ 1) of
parabolic equation (18) under the initial condition (22).

(ii) Next, we solve the solution q(x, y) (0 ≤ x ≤ 1, 0 ≤
y ≤ x) of hyperbolic equation (19) by using the solution
obtained by Step (i).

C. Abstract Expression of Control Law

By using the operator A, we can formulate (18), (22) as
follows:

γ′(x, ·) = −τAγ(x, ·), γ(0, ·) = k. (23)

Since the operator −τA generates an analytic semigroup
T−τA(x) on L2

h(0, 1), the solution of (23) is written as

γ(x, ·) = T−τA(x)k. (24)

By using this expression, eq. (19) becomes{
qx(x, y) + qy(x, y) = 0,
q(x, 0) = τa(1)(T−τA(x)k)(1).

(25)

Note that the solution of eq. (25) can be expressed as q(x, y) =
ν(x−y). Therefore, by putting y = 0 in it, we have q(x, 0) =
ν(x) = τa(1)(T−τA(x)k)(1), that is,

q(x, y) = ν(x− y) = τa(1)(T−τA(x− y)k)(1). (26)

Accordingly, using (24) and (26), the control law (14) can be
expressed as follows:

f(t) = ⟨q(1, ·), u(t, ·)⟩+ ⟨γ(1, ·), z(t, ·)⟩h
= ⟨τa(1)(T−τA(1− ·)k)(1), u(t, ·)⟩

+⟨T−τA(1)k, z(t, ·)⟩h
= ⟨τa(1)(T−τA(1− ·)k)(1), f(t+ τ(· − 1))⟩

+⟨T−τA(1)k, z(t, ·)⟩h

=

∫ 1

0

τa(1)(T−τA(1− x)k)(1)f(t+ τ(x− 1))dx

+⟨T−τA(1)k, z(t, ·)⟩h, (27)

where ⟨·, ·⟩ denotes the usual inner product on L2(0, 1). Here,
setting t+ τ(x− 1) = θ, it follows that

f(t) =

∫ t

t−τ

a(1)(T−τA((t− θ)/τ)k)(1)f(θ)dθ

+⟨T−τA(1)k, z(t, ·)⟩h. (28)

Moreover, noting that

T−τA(x/τ) = T−A(x), (29)

we finally obtain

f(t) =

∫ t

t−τ

a(1)(T−A(t− θ)k)(1)f(θ)dθ

+⟨T−A(τ)k, z(t, ·)⟩h. (30)

Remark 2: We can give another expression of predictor
(30). Note that, by using the similar techniques as in [15]–
[16], γ(x, 1) contained in the second equation of (19) can
be formulated as follows: γ(x, 1) = ⟨A

3
4−ϵ
c ψ,A

1
4+ϵ
c γ(x, ·)⟩h,

where ψ is the solution of the boundary value problem (7).
Further noting that k ∈ D(A), it is done as follows:

f(t) =

∫ t

t−τ

a(1)⟨A
3
4−ϵ
c ψ,A

1
4+ϵ
c T−A(t− θ)k⟩hf(θ)dθ

+⟨T−A(τ)k, z(t, ·)⟩h

=

∫ t

t−τ

⟨a(1)ψ, T−A(t− θ)Ack⟩hf(θ)dθ

+⟨T−A(τ)k, z(t, ·)⟩h. (31)

Remark 3: It may seem difficult to implement the control law
(30) to system (2), because of the abstract expression. But, it
is easy since we have constructed the function k(x) such as
k =

∑n
i=0 kiφi ∈ D(A). By using (8) and (10), we can give

the gain functions of (30) as

a(1)(T−A(t− θ)k)(1) = a(1)

n∑
i=0

kiφi(1)e
−λi(t−θ),

(T−A(τ)k)(x) =
n∑

i=0

kie
−λiτφi(x). (32)
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In this way, we can implement the control law based on a
finite number of eigenpairs {λi, φi}ni=0 of the operator A.

Finally, in this section, we show that, if ϕ ∈ Cr[−τ, 0] (0 <
r ≤ 1) is satisfied in system (1), it follows that w0 ∈ Cr[0, 1]
as assumed in Theorem 2. This is actually verified as follows:
Substituting t = 0 to the integral transformation (13), we have

w0(x) = u(0, x)−
∫ x

0

q(x, y)u(0, y)dy−⟨γ(x, ·), z0⟩h. (33)

In the above, it is clear that u(0, ·) ∈ Cr[0, 1] since ϕ ∈
Cr[−τ, 0]. Also, ⟨γ(x, ·), z0⟩h is differentiable and its deriva-
tive is expressed as d

dx ⟨γ(x, ·), z0⟩h = d
dx ⟨T−τA(x)k, z0⟩h =

⟨ − τT−τA(x)Ak, z0⟩h, i.e., ⟨γ(x, ·), z0⟩h is in C1[0, 1]. Fur-
thermore,

∫ x

0
q(x, y)u(0, y)dy is differentiable and its deriva-

tive is expressed as

d

dx

∫ x

0

q(x, y)u(0, y)dy

= q(x, x)u(0, x) +

∫ x

0

qx(x, y)u(0, y)dy

= τa(1)k(1)u(0, x)

+

∫ x

0

∂

∂x
τa(1)(T−τA(x− y)k)(1)u(0, y)dy

= τa(1)k(1)u(0, x)

+τa(1)

∫ x

0

∂

∂x
⟨A

3
4−ϵ
c ψ,A

1
4+ϵ
c T−τA(x− y)k⟩h

×u(0, y)dy
= τa(1)k(1)u(0, x)

+τa(1)

∫ x

0

∂

∂x
⟨ψ, T−τA(x− y)Ack⟩hu(0, y)dy

= τa(1)k(1)u(0, x)

−τ2a(1)
∫ x

0

⟨ψ, T−τA(x− y)AAck⟩hu(0, y)dy,

where ψ is the solution of the boundary value problem (7).
That is,

∫ x

0
q(x, y)u(0, y)dy is in C1[0, 1]. Therefore, noting

that C1[0, 1] ⊂ C1[0, 1] ⊂ Cr[0, 1] (0 < r ≤ 1), from (33) we
see that w0 ∈ Cr[0, 1].

IV. CLOSED-LOOP STABILITY

A. Inverse Integral Transformation

To assure the asymptotical stability of the closed-loop
system consisting of system (2) and the control law (30) (or,
(31)), we need to show that the inverse transformation of (13)
exists and that it is continuous. We assume that the inverse
integral transformation from the target system (12) to system
(2) is expressed as

u(t, x) = w(t, x) +

∫ x

0

p(x, y)w(t, y)dy

+

∫ 1

0

β(x, y)z(t, y)h(y)dy, (34)

where the kernels p(x, y) and β(x, y) are functions whose
existence should be shown.

B. Derivation of Kernels

By the similar discussion as in Subsection 3.2, we can solve
the kernels p(x, y), β(x, y) of the inverse transformation (34).
The concrete steps are as follows:

(i’) First, we solve the solution β(x, y) (0 ≤ x, y ≤
1) of the following parabolic equation with term τa(1)
k(y)β(x, 1):

βx(x, y) =
τ

h(y)

((
a(y)βy(x, y)

)
y
− b(y)β(x, y)

)
+τa(1)k(y)β(x, 1),

βy(x, 0) = βy(x, 1) = 0,
β(0, y) = k(y).

(35)

(ii’) Next, using the value at y = 1 of the solution, we
solve the solution p(x, y) (0 ≤ x ≤ 1, 0 ≤ y ≤ x) of the
following hyperbolic equation:{

px(x, y) + py(x, y) = 0,
p(x, 0) = τa(1)β(x, 1).

(36)

C. Abstract Expression of Inverse Transformation

Note that, similarly as in Remark 2, β(x, 1) contained in
the first equation of (35) can be formulated as follows:

β(x, 1) = ⟨A
3
4−ϵ
c ψ,A

1
4+ϵ
c β(x, ·)⟩h, (37)

where ψ is the solution of the boundary value problem (7).
Also, note that the adjoint operators B∗ : L2

h(0, 1) → R and
K∗ : R → L2

h(0, 1) of the bounded operators B, K defined
in Subsections 2.2 and 3.1 are expressed as follows:

B∗φ = ⟨a(1)A
3
4−ϵ
c ψ,φ⟩h, φ ∈ L2

h(0, 1), (38)
K∗v = kv, v ∈ R. (39)

By using these adjoint operators, the self-adjoint operator A
defined by (3), and the above (37), eq. (35) can be formulated
as {

β′(x, ·) = τ(−A+K∗B∗A
1
4+ϵ
c )β(x, ·),

β(0, ·) = k.
(40)

Since the operator τ(−A+K∗B∗A
1
4+ϵ
c ) generates an analytic

semigroup T
τ(−A+K∗B∗A

1/4+ϵ
c )

(x) on L2
h(0, 1), the solution of

(40) is written as

β(x, ·) = T
τ(−A+K∗B∗A

1/4+ϵ
c )

(x)k. (41)

By using this expression, eq. (36) becomes{
px(x, y) + py(x, y) = 0,
p(x, 0) = τa(1)(T

τ(−A+K∗B∗A
1/4+ϵ
c )

(x)k)(1). (42)

Since the solution of (42) is expressed as p(x, y) = µ(x− y),
it follows by setting y = 0 that

p(x, 0) = µ(x) = τa(1)(T
τ(−A+K∗B∗A

1/4+ϵ
c )

(x)k)(1),

as a result,

p(x, y) = µ(x− y)

= τa(1)(T
τ(−A+K∗B∗A

1/4+ϵ
c )

(x−y)k)(1).(43)
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Therefore, from (41) and (43), the inverse transformation (34)
can be expressed as follows:

u(t, x)

= w(t, x) +

∫ x

0

p(x, y)w(t, y)dy + ⟨β(x, ·), z(t, ·)⟩h

= w(t, x) +

∫ x

0

τa(1)(T
τ(−A+K∗B∗A

1/4+ϵ
c )

(x− y)k)(1)

×w(t, y)dy
+⟨T

τ(−A+K∗B∗A
1/4+ϵ
c )

(x)k, z(t, ·)⟩h. (44)

Moreover, noting that

T
τ(−A+K∗B∗A

1/4+ϵ
c )

(x/τ) = T−A+K∗B∗A
1/4+ϵ
c

(x), (45)

we finally obtain the abstract expression

u(t, x) = w(t, x)

+

∫ x

0

τa(1)(T−A+K∗B∗A
1/4+ϵ
c

(τ(x− y))k)(1)

×w(t, y)dy
+⟨T−A+K∗B∗A

1/4+ϵ
c

(τx)k, z(t, ·)⟩h. (46)

Using the expression (46) and Theorems 1 and 2, we have
the following stability result.

Theorem 3: Let z0 ∈ L2
h(0, 1) and ϕ ∈ Cr[−τ, 0] (0 < r ≤

1). Then, the closed-loop system consisting of system (2) and
control law (30) (or, (31)) is asymptotically stable in the sense
of norm (∥u(t, ·)∥2h + ∥z(t, ·)∥2h)

1
2 .

Proof: Noting that the analytic semigroup T−A+BKA
1/4+ϵ
c

(x)

is exponentially stable and further that T−A+K∗B∗A
1/4+ϵ
c

(x)

and T−A+BKA
1/4+ϵ
c

(x) have the same growth bound, it fol-
lows that T−A+K∗B∗A

1/4+ϵ
c

(x) is exponentially stable as well.
Also, since k ∈ D(A) by Theorem 1, it is assured that
(T−A+K∗B∗A

1/4+ϵ
c

(τξ)k)(1) is continuous on 0 ≤ ξ ≤ 1. Let
us set

M1 = max
ξ∈[0,1]

|(T−A+K∗B∗A
1/4+ϵ
c

(τξ)k)(1)| (<∞).

From (46), we have

|u(t, x)|

≤ |w(t, x)|+
∫ x

0

τa(1)|(T−A+K∗B∗A
1/4+ϵ
c

(τ(x− y))k)(1)|

×|w(t, y)|dy
+|⟨T−A+K∗B∗A

1/4+ϵ
c

(τx)k, z(t, ·)⟩h|

≤ |w(t, x)|+ τa(1)M1

∫ 1

0

|w(t, y)|dy

+∥T−A+K∗B∗A
1/4+ϵ
c

(τx)k∥h∥z(t, ·)∥h
≤ |w(t, x)|+ τa(1)M1∥w(t, ·)∥+M2∥z(t, ·)∥h, (47)

where ∥ · ∥ denotes the usual L2-norm, and

M2 = max
ξ∈[0,1]

∥T−A+K∗B∗A
1/4+ϵ
c

(τξ)k∥h.

Here, squaring the both sides of (47) and integrating over [0, 1]
with respect to x, we have

∥u(t, ·)∥2

≤ (3+3τ2a(1)2M2
1 )∥w(t, ·)∥2 + 3M2

2 ∥z(t, ·)∥2h.(48)

Furthermore, noting that ∥ · ∥ and ∥ · ∥h are equivalent, i.e.,
there exist positive constants c1 and c2 such that

c1∥v∥ ≤ ∥v∥h ≤ c2∥v∥ for all v ∈ L2
h(0, 1) = L2(0, 1),

(49)
from (48) we obtain

∥u(t, ·)∥h ≤ C(∥w(t, ·)∥2h + ∥z(t, ·)∥2h)
1
2 , (50)

where C is some positive constant. This means that the inverse
transformation (46), which maps from L2

h(0, 1)× L2
h(0, 1) to

L2
h(0, 1), is continuous. Also, it follows from (50) that

(∥u(t, ·)∥2h + ∥z(t, ·)∥2h)
1
2 ≤ C ′(∥w(t, ·)∥2h + ∥z(t, ·)∥2h)

1
2 ,
(51)

where C ′ is some positive constant. Based on the fact stated
in Theorem 2, we can conclude the assertion of this theorem.

Remark 4: We can rewrite system (35) as the following
parabolic system with boundary feedback loop:

βx(x, y) =
τ

h(y)

((
a(y)βy(x, y)

)
y
− b(y)β(x, y)

)
+τk(y)Y (t),

βy(x, 0) = βy(x, 1) = 0,
β(0, y) = k(y),
Y (t) = a(1)β(x, 1).

(52)

In this, by defining the unbounded operator Γ : D(A) → R
as Γζ = a(1)ζ(1), ζ ∈ D(A), we can express the observation
equation of (52) as

Y (t) = Γβ(x, ·). (53)

On the other hand, by using (37) and (38), we can formulate
the observation equation of (52) as

Y (t) = B∗A
1
4+ϵ
c β(x, ·). (54)

Here, note that the operator B∗A
1
4+ϵ
c of (54) is the Λ-extension

of the operator Γ of (53) (see [18] as for the definition of Λ-
extension).

V. NUMERICAL EXAMPLE: LINEAR DIFFUSION SYSTEM

Consider the system (1) with h(x) ≡ 1, a(x) ≡ 1, b(x) ≡
−1, and τ = 0.1. Then, A has a set of eigenpairs {λi, φi}∞i=0

in L2(0, 1), where λi = i2π2−1 (i ≥ 0), φ0(x) ≡ 1, φi(x) =√
2 cos iπx (i ≥ 1). In the variable transformation ζ(t) =

A
− 1

4−ϵ
c z(t, ·), let us set c = 2 and ϵ = 0.1. Then, the boundary

value problem (7) is solved as ψ(x) = coshx/ sinh 1.
First, we give ω = 5 and choose an integer n (n ≥ 0) as n =

0. In fact, the inequality ω < λn+1 holds with n = 0. Since
the pair (−A1, B1) is controllable, we can choose a matrix K1

such that σ(−A1 +B1K1(A1 + c)
1
4+ϵ) = {−3}. In this case,

K1 is a scalar and it is solved as K1 = k0 = −4, since A1 =
−1 and B1 = 1. Note that, by (10), k(x) = k0φ0(x) ≡ −4.
Fig. 1 shows the simulation result of the closed-loop system.
Thus, we see that the control law (30) works effectively as a
stabilizing controller.

To solve the linear diffusion equation numerically, we used
the finite difference method with mesh width ∆x = 0.02, and
the Runge-Kutta method of the fourth order with time step
∆t = 0.0001 for its time integration. As initial conditions, we
set z0(x) = exp{−50(x− 0.6)2} and ϕ(θ) ≡ 0 for (1).



7

0 0.2 0.4 0.6 0.8 1

00.511.522.5
-0.5

0

0.5

1

xt

z(t
, x
)

0 0.5 1 1.5 2 2.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

t

Inp
ut
  f(
t)

f(t)

Fig. 1. Evolution of the state z(t, x) and the control input f(t).

VI. CONCLUSION

In this note, we treated the Neumann boundary stabilization
problem of unstable parabolic systems with input delay. After
this system was expressed as a cascade consisting of the
transport equation and the parabolic equation with boundary
input, it was shown that the control law was constructed by
using the solution to a parabolic equation and the solution to
a hyperbolic equation, based on a backstepping method using
single integral transformation. Also, by using the semigroup
theory, we gave an abstract expression of the control law and
further showed the continuity of the inverse transformation.
Especially, the fact that the function k(x) contained in the
target system could be designed as k = k0φ0 + · · ·+ knφn ∈
D(A) is a key point of this work. Based on this fact, we could
give a concrete expression for the abstract controller. By using
the similar way, it is possible to give the controller of predictor
type such as (31) for the Dirichlet boundary stabilization of
unstable parabolic systems with input delay.
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APPENDIX A. CONTROLLABILITY OF THE PAIR (−A1, B1)

From the definition of the matrix B1 and the fact that the
eigenfunctions {φi}∞i=0 of A forms a complete orthonormal
system in L2

h(0, 1), we have B1 = [b0, b1, · · · , bn]T , where

bi = a(1)(λi + c)
3
4−ϵ⟨ψ,φi⟩h, 0 ≤ i ≤ n. (A.1)

First, let us calculate the value of inner product ⟨ψ,φi⟩h. Since
ψ is the solution of the boundary value problem (7), it satisfies

1

h(x)

(
− d

dx

(
a(x)

dψ(x)

dx

)
+ b(x)ψ(x)

)
= −cψ(x). (A.2)

Here, multiplying φi(x)h(x) on both sides of (A.2) and
integrating over [0, 1], we have

−
∫ 1

0

(
a(x)ψx(x)

)
x
φi(x)dx+

∫ 1

0

b(x)ψ(x)φi(x)dx

= −c⟨ψ,φi⟩h. (A.3)

Moreover, using integration by parts for the first term of the
left-hand side of (A.3) and noting that ψ′(0) = 0, ψ′(1) =
1

a(1) , we have (λi + c)⟨ψ,φi⟩h = φi(1), which leads to

⟨ψ,φi⟩h =
φi(1)

λi + c
, (A.4)

since λi + c > 0.
Now, note that φi(1) ̸= 0 for all i ≥ 0, since h(x), a(x),

b(x) are sufficiently smooth and a(1) > 0. Therefore, from
(A.1) and (A.4) as well as a(1) > 0, we obtain bi = a(1)(λi+
c)

3
4−ϵ⟨ψ,φi⟩h ̸= 0, 0 ≤ i ≤ n. Thus, the controllability of

the pair (−A1, B1) follows, since each element of the matrix
B1 is not zero.
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