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In this paper, we study five-dimensional Dirac fermions of which the extra-dimension is compactified on
quantum graphs. We find that there is a nontrivial correspondence between matrices specifying boundary
conditions at the vertex of the quantum graphs and zero-dimensional Hamiltonians in gapped free-fermion
systems. Based on the correspondence, we provide a complete topological classification of the boundary
conditions in terms of noninteracting fermionic topological phases. The ten symmetry classes of
topological phases are fully identified in the language of five-dimensional Dirac fermions, and topological
numbers of the boundary conditions are given. In analogy with the bulk-boundary correspondence in
noninteracting fermionic topological phases, the boundary condition topological numbers predict four-
dimensional massless fermions localized at the vertex of the quantum graphs and thus govern the low
energy physics in four dimensions.
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I. INTRODUCTION

A quantum graph is a one-dimensional (1D) graph that
consists of edges and vertices connected to each other with
differential operators defined on each edge like Fig. 1 (see
[1,2] for a review of the quantum graph). The quantum
graph describes quantum mechanics on a 1D graph and has
been paid attention to since we can obtain attractive physics
caused by the degrees of freedom in boundary conditions
for wave functions imposed at vertices from the require-
ment of current conservation. The graph has been applied to
the wide range of research areas, e.g. scattering theory on
1D graphs [3–6], quantum chaos [7–9], anyons [10–12],
supersymmetric quantum mechanics [13–15], Berry’s
phases [16–19], extra-dimensional models [20–30] and
so on.
Here we focus on applying quantum graphs to the extra

space of 5D fermions, that is, 5D fermions with the extra

space given by the quantum graph. In the previous paper
[31], three of the present authors and collaborators revealed
that 5D fermions on quantum graphs could naturally solve
the problems of the fermion generation, namely the fermion
mass hierarchy and the origin of the CP-violating phase in
the standard model. However, the possible 4D effective
theories remained unclear because the parameter space of
the boundary conditions was huge. Thus, the next step is a
systematic investigation of the boundary conditions. A hint
to this step is that we obtained 4D chiral zero modes
localized at the vertex depending on the topological
structure of the parameter space of the boundary
conditions. This reminds us of topological insulators and
superconductors, where gapless states appear on the boun-
daries by the topology in bulk from the bulk-boundary
correspondence. These topological matters are classified
into ten symmetry classes by the presence or absence
of time-reversal, particle-hole, and chiral symmetries
[32–34].

FIG. 1. Quantum graph consisting of five vertices and six
edges.
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In this paper, we perform a topological classification of
the boundary conditions for 5D Dirac fermions on quantum
graphs. The boundary conditions are classified into ten
symmetry classes by considering time reversal, charge
conjugation, and extra spatial symmetries in 5D Dirac
fermions. Surprisingly, the classification of the boundary
conditions has a complete correspondence to the topologi-
cal classification of 0þ 1D gapped free-fermion systems:
A Hermitian matrix that specifies the boundary conditions
of quantum graphs corresponds to a zero-dimensional
Hamiltonian for topological insulators and superconduc-
tors. In addition, symmetry classes of the boundary con-
ditions coincide with those in the topological matter side.
This means that the restrictions for the boundary conditions
by the symmetries of 5D fermions are the same as those
for zero-dimensional Hamiltonians with the Altland-
Zirnbauder symmetries. Furthermore, we obtain the topo-
logical numbers Z;Z2; 2Z for each symmetry class of the
boundary conditions in the same manner as those of
topological insulators and superconductors. Importantly,
these numbers predict the number of 4D massless fields
localized at the vertex of quantum graphs, i.e. the Z and 2Z
indices are equal to the number of Kaluza-Klein (KK)
chiral zero modes, and the Z2 index coincides with the
parity of the number of Dirac zero modes. These zero
modes would be regarded as gapless boundary states of
topological phases. A similar relation between boundary
conditions and 1þ 1D symmetry-protected topological
(SPT) phases [35] or 1þ 2D SPT phases [36] has been
known in the boundary conformal field theories. In this
paper, we reveal for the first time the relation between the
boundary conditions on quantum graphs and 1þ 0d SPT
phases.
This paper is organized as follows: In the next section,

we briefly review 5D Dirac fermions on quantum graphs.
Quantum graphs provide the most general 1D extra
compactified spaces. In particular, we consider the so-
called rose graph where any edge of the graph forms a loop
that begins and ends at a common vertex, as shown in
Fig. 2. This choice does not lose the generality because the
rose graph can generate an arbitrary graph with the same
number of edges by imposing suitable boundary conditions
for wave functions at the vertex. See Fig. 3.1 In Sec. III, we
classify allowed boundary conditions in the rose graph
subject to symmetries of 5D fermions and obtain ten
symmetry classes. Then we relate them to Hamiltonians
and symmetries in the gapped free-fermion systems. In

Sec. IV, we investigate the topological number of the
boundary conditions in each symmetry class and the
number of KK zero modes. Section V is devoted to
summary and discussion.

II. 5D DIRAC FERMION ON QUANTUM GRAPH

In this section, we briefly review the properties of a 5D
Dirac fermion on a quantum graph given in the previous
paper [31]. As discussed in Sec. I, we take the extra space
as the rose graph which consists of one vertex and N loops
with the length Laða ¼ 1;…; NÞ shown in Fig. 4. We
consider a KK decomposition of the 5D field and derive
boundary conditions that the field should satisfy at the
vertex in the graph. We also discuss how the degeneracy of
4D chiral zero-modes depend on the boundary conditions
and show that it corresponds to the topological invariant so-
called Witten index.

A. Setup

Let us consider the 5D Dirac action

S ¼
Z

d4x
XN
a¼1

Z
La

La−1

dyΨ̄ðx; yÞ½iγμ∂μ þ iγy∂y þM�Ψðx; yÞ;

ð2:1Þ

where xμs’ (μ ¼ 0; 1; 2; 3) are the coordinates of the 4D
Minkowski space-time and y is the coordinate on the rose
graph. Ψðx; yÞ is a four-component 5D Dirac spinor and
the Dirac conjugate Ψ̄ is defined by Ψ̄ ¼ Ψ†γ0. γμs’
(μ ¼ 0; 1; 2; 3) are 4 × 4 gamma matrices that satisfy the
Clifford algebra

fγμ; γνg ¼ −2ημν; ημν ¼ diagð−;þ;þ;þÞ; ð2:2Þ

and γy is taken to be γy ¼ −iγ5ðγ5 ¼ iγ0γ1γ2γ3Þ with 4D
chiral matrix γ5. The hermiticity of the gamma matrices is
given by

ðγ0Þ†¼ γ0; ðγiÞ†¼−γiði¼1;2;3Þ; ðγyÞ†¼−γy: ð2:3Þ

The parameter M in the action (2.1) is the bulk mass of the
5D Dirac fermion.

FIG. 2. Rose graph consisting of one vertex and six loops.

1For example, if we impose the Dirichlet boundary condition
on all edges of a rose graph, wave functions on different edges are
independent of each other. Thus, this boundary condition
decomposes the rose graph into isolated edges with the Dirichlet
boundary conditions at both ends. The other graphs can also be
obtained by suitable boundary conditions. Thus, we can collec-
tively investigate any 1D extra space with N edges by using a
single rose graph with N edges.
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It should be noted that the model in Eq. (2.1) can realize
the domain wall fermion used in the lattice gauge theory
[37] as a special case. The domain wall configuration is
obtained by a circular rose graph consisting of two edges
and two vertices, where the bulk mass has an opposite sign
on the two edges. Each vertex of this graph supports a 4D
chiral fermion, of which chirality is opposite to each other
on the two vertices. In the long length limit of the edges, the
two 4D chiral fermions are decoupled to each other, so a
chiral theory is realized effectively. Because rose graphs
allow configurations other than the domain wall, our
quantum graph approach is more general than that of the
domain wall fermions.
The action principle δS ¼ 0 gives the 5D Dirac equation

½iγμ∂μ þ iγy∂y þM�Ψðx; yÞ ¼ 0; ð2:4Þ
and also the condition for the surface term

XN
a¼1

½Ψ̄ðx; yÞγyδΨðx; yÞ�y¼La−ε
y¼La−1þε ¼ 0; ð2:5Þ

where ε is an infinitesimal positive constant. This condition
can be regarded as the conservation of the current for
y-direction. As we will see in the next section, Eq. (2.5) leads

to boundary conditions that the field Ψðx; yÞ should obey at
the boundaries y ¼ L0 þ ε; L1 � ε;…; LN−1 � ε; LN − ε.2

If the extra dimension is compact, a higher dimensional
field can be decomposed into 4D fields with x-dependence
and Kaluza–Klein (KK) mode functions with discrete
eigenvalues on an extra space. Here, we decompose

Ψðx; yÞ into 4D chiral fields ψ ðiÞ
R=L;nðxÞ and KK mode

functions fðiÞn ðyÞ, gðiÞn ðyÞ as follows:

Ψðx; yÞ ¼
X
i

X
n

½ψ ðiÞ
R;nðxÞfðiÞn ðyÞ þ ψ ðiÞ

L;nðxÞgðiÞn ðyÞ�; ð2:6Þ

where the index n indicates the nth level of the KK modes
and i denotes the index that distinguishes the degeneracy of

the nth KK modes (if it exists). The mode functions fðiÞn ðyÞ
and gðiÞn ðyÞ are assumed to form a complete set, respec-
tively, and satisfy the orthonormality relations

XN
a¼1

Z
La

La−1

dyfðiÞ�n ðyÞfðjÞm ðyÞ ¼ δnmδ
ij; ð2:7Þ

XN
a¼1

Z
La

La−1

dygðiÞ�n ðyÞgðjÞm ðyÞ ¼ δnmδ
ij: ð2:8Þ

We also require that the 4D fields ψ ðiÞ
R=L;n are mass

eigenstates with masses mn and the following 4D action
can be obtained by substituting the decomposition (2.6)
into the 5D action Eq. (2.1):

FIG. 3. Decompositions of the rose graph with six edges.

FIG. 4. Rose graph consisting of one vertex and N loops.

2If we impose boundary conditions such that partial summa-
tions of the terms in the left hand side of Eq. (2.5) vanish
independently, the rose graph is decomposed into graphs corre-
spond to the partial summations, as discussed in Sec. I.

CORRESPONDENCE OF TOPOLOGICAL CLASSIFICATION … PHYS. REV. D 106, 085006 (2022)

085006-3



S ¼
Z

d4x

�X
i

ψ̄ ðiÞ
R;0ðxÞiγμ∂μψ ðiÞ

R;0ðxÞ

þ
X
j

ψ̄ ðjÞ
L;0ðxÞiγμ∂μψ ðjÞ

L;0ðxÞ

þ
X
i

X
n≠0

ψ̄ ðiÞ
n ðxÞðiγμ∂μ þmnÞψ ðiÞ

n ðxÞ
�
; ð2:9Þ

where ψ ðiÞ
n ðxÞ≡ ψ ðiÞ

R;nðxÞ þ ψ ðiÞ
L;nðxÞ for n ≠ 0, and

ψ ðiÞ
R=L;0ðxÞ denote the 4D chiral massless spinors with

m0 ¼ 0. Then the mode functions fðiÞn ðyÞ and gðiÞn ðyÞ should
satisfy the relation

ð∂y þMÞfðiÞn ðyÞ ¼ mng
ðiÞ
n ðyÞ; ð2:10Þ

ð−∂y þMÞgðiÞn ðyÞ ¼ mnf
ðiÞ
n ðyÞ: ð2:11Þ

It follows that fðiÞn and gðiÞn are given by the eigenfunctions
of the equations

ð−∂2y þM2ÞfðiÞn ðyÞ ¼ m2
nf

ðiÞ
n ðyÞ; ð2:12Þ

ð−∂2y þM2ÞgðiÞn ðyÞ ¼ m2
ng

ðiÞ
n ðyÞ; ð2:13Þ

and the 4D masses mn are determined by solving these
equations with allowed boundary conditions.

B. Boundary conditions

Then, let us derive the allowed boundary conditions.
From the decomposition (2.6) of Ψðx; yÞ [and also

δΨðx; yÞ] and the independence of the fields ψ ðiÞ
R=L;nðxÞ

and δψ ðiÞ
R=L;nðxÞ, Eq. (2.5) can be written as

F⃗ðiÞ†
n G⃗ðjÞ

m ¼ G⃗ðjÞ†
m F⃗ðiÞ

n ¼ 0 for ∀ n;m; i; j; ð2:14Þ

where F⃗ðiÞ
n and G⃗ðjÞ

m are 2N-dimensional complex vectors
defined by

F⃗ðiÞ
n ≡

0
BBBBBBBBBBBBBBBBBBBBBBBB@

fðiÞn ðL0 þ εÞ
fðiÞn ðL1 − εÞ
fðiÞn ðL1 þ εÞ
fðiÞn ðL2 − εÞ

..

.

fðiÞn ðLa−1 þ εÞ
fðiÞn ðLa − εÞ

..

.

fðiÞn ðLN−1 þ εÞ
fðiÞn ðLN − εÞ

1
CCCCCCCCCCCCCCCCCCCCCCCCA

; G⃗ðjÞ
m ≡

0
BBBBBBBBBBBBBBBBBBBBBBBB@

gðjÞm ðL0 þ εÞ
−gðjÞm ðL1 − εÞ
gðjÞm ðL1 þ εÞ
−gðjÞm ðL2 − εÞ

..

.

gðjÞm ðLa−1 þ εÞ
−gðjÞm ðLa − εÞ

..

.

gðjÞm ðLN−1 þ εÞ
−gðjÞm ðLN − εÞ

1
CCCCCCCCCCCCCCCCCCCCCCCCA

:

ð2:15Þ

These vectors consist of values of the mode function at
the boundaries y ¼ L0 þ ε; L1 � ε;…; LN−1 � ε; LN − ε.
Here, we call F⃗ðiÞ

n and G⃗ðjÞ
m boundary vectors. The condition

(2.14) means that the vector space spanned by fF⃗ðiÞ
n g is

orthogonal to the one by fG⃗ðjÞ
m g.

Now, to solve the Eqs. (2.12) and (2.13) and determine
the mass eigenvalues mn, we want to obtain 4N constraints
in total, since the graph has 2N boundaries y ¼ L0 þ
ε; L1 � ε;…; LN−1 � ε; LN − ε for fðiÞn and gðjÞm . However,
the relations (2.10) and (2.11) imply that the massive mode

functions fðiÞn and gðjÞm are related with each other (except for
the zero mode functions which obey the first differential
equations). Thus, we should require that the condition
(2.14) provides 2N constraints in total, otherwise the
system is undetermined or overdetermined.3 It follows
from this observation that Eq. (2.14) is replaced by the
boundary conditions

ð12N −UBÞF⃗ðiÞ
n ¼ 0; ð2:16Þ

ð12N þ UBÞG⃗ðjÞ
m ¼ 0; ð2:17Þ

where UB is a 2N × 2N Hermitian unitary matrix

U2
B ¼ 12N; U†

B ¼ UB: ð2:18Þ

We can find that ð12N ∓ UBÞ=2 in Eqs. (2.16) and (2.17)
correspond to the projection matrices which map the 2N-
dimensional complex vector space into the ones spanned by
fF⃗ðiÞ

n g and fG⃗ðjÞ
m g, respectively. Thus, we conclude that a

3For example, if we impose 4N constraints with the condition
that fðiÞn and gðjÞm equal to 0 at each boundary, there are no
solutions for (2.12) and (2.13) since the mode functions should
satisfy both the Dirichlet and Neumann boundary conditions
from the relations (2.10) and (2.11).

INOUE, SAKAMOTO, SATO, and UEBA PHYS. REV. D 106, 085006 (2022)

085006-4



Hermitian unitary matrixUB specifies a 5D Dirac theory on
a rose graph depicted in Fig. 4.
We can classify the matrix UB into 2N þ 1 types by the

number of the eigenvalues þ1 (or −1). We call the case

with k negative eigenvalues the type (2N − k, k) boundary
condition (BC) (k ¼ 0; 1;…; 2N). The matrix UB in this
type can be represented as

ð2:19Þ

with a 2N × 2N unitary matrix V. Therefore the parameter
space of the type (2N − k; k) BC is given by the complex
Grassmaniann

Uð2NÞ
Uð2N − kÞ ×UðkÞ : ð2:20Þ

Since continuous deformations of V do not change the
numbers of positive and negative eigenvalues in UB, the
different types of boundary conditions cannot be connected
continuously.
For later convenience, we write the 2N × 2N unitary

matrix V as

V ¼ ðu⃗1; u⃗2; � � � ; u⃗2NÞ; ð2:21Þ

where u⃗rðr ¼ 1; 2;…; 2NÞ are 2N-dimensional orthonor-
mal complex vectors which satisfy u⃗†r u⃗s ¼ δrsðr; s ¼
1; 2;…; 2NÞ. Then, the matrix UB for the type (2N − k,
k) BC can be expressed by

UB ¼
X2N−k

r¼1

u⃗ru⃗
†
r −

X2N
r¼2N−kþ1

u⃗ru⃗
†
r ð2:22Þ

and the boundary conditions (2.16) and (2.17) are of the
form

u⃗†rF⃗
ðiÞ
n ¼ 0 for r ¼ 2N − kþ 1;…; 2N; ð2:23Þ

u⃗†rG⃗
ðjÞ
m ¼ 0 for r ¼ 1;…; 2N − k: ð2:24Þ

C. Zero-mode degeneracy

One of the features of the quantum graph is that the mode
functions can be degenerate due to the boundary

conditions. In our model, this degeneracy can be regarded
as the number of four dimensional fields with degenerate
masses. In particular, the degeneracy of zero mode sol-
utions plays important roles to classify the boundary
conditions. Then, we focus on the zero mode solutions

fðiÞ0 ðyÞ and gðjÞ0 ðyÞ, which obey the equations [see
Eqs. (2.10) and (2.11)]

ð∂y þMÞfðiÞ0 ðyÞ ¼ 0; ð2:25Þ

ð−∂y þMÞgðjÞ0 ðyÞ ¼ 0: ð2:26Þ

The mode functions fðiÞ0 ðyÞ and gðjÞ0 ðyÞ on the rose graph
can be discontinuous at the vertex and written into the form
of exponentially localized functions:

fðiÞ0 ðyÞ ¼
XN
a¼1

θðy − La−1ÞθðLa − yÞFðiÞ
a Cae−My; ð2:27Þ

gðjÞ0 ðyÞ ¼
XN
a¼1

θðy − La−1ÞθðLa − yÞGðiÞ
a C0

aeþMy; ð2:28Þ

where θðyÞ denotes the Heaviside step function and the

complex constants FðiÞ
a , GðjÞ

a ∈ Cða ¼ 1;…; NÞ are deter-
mined by the boundary conditions. Here we also introduced
the constants

Ca ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

e−2MðLa−1−εÞ þ e−2MðLaþεÞ

r
;

C0
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

e2MðLa−1−εÞ þ e2MðLaþεÞ

r
; ð2:29Þ

for later convenience.
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We can see that the number of linearly independent
solutions fðiÞ0 ðyÞðgðjÞ0 ðyÞÞ corresponds to the number of
linearly independent N-dimensional complex vectors

FðiÞ≡ðFðiÞ
1 ;FðiÞ

2 ;…;FðiÞ
N Þ⊤ ðGðjÞ ≡ ðGðjÞ

1 ; GðjÞ
2 ;…; GðjÞ

N Þ⊤Þ.
Then, let us discuss the vectors FðiÞ and GðjÞ under the type
ð2N − k; kÞ BC. For this purpose, we introduce orthonor-

mal 2N-dimensional vectors F⃗ a and G⃗aða ¼ 1;…; NÞ

F⃗ a≡Cað0;…;0|fflfflffl{zfflfflffl}
2ða−1Þ

;e−MðLa−1þεÞ;e−MðLa−εÞ;0;…;0Þ⊤; ð2:30Þ

G⃗a≡C0
að0;…;0|fflfflffl{zfflfflffl}

2ða−1Þ
;eMðLa−1þεÞ;−eMðLa−εÞ;0;…;0Þ⊤; ð2:31Þ

which form a complete set in the 2N-dimensional complex
vector space. Here the constants Ca and C0

a are the same
as Eq. (2.29).
Then the boundary vectors F⃗ðiÞ

0 , G⃗ðjÞ
0 in Eq. (2.15)

for n ¼ 0 and the 2N-dimensional complex vectors
upðp ¼ 1;…; 2NÞ in Eq. (2.21) can be decomposed by

F⃗ a and G⃗aða ¼ 1;…; NÞ as follows:

F⃗ðiÞ
0 ¼

XN
a¼1

FðiÞ
a F⃗ a; G⃗ðjÞ

0 ¼
XN
a¼1

GðjÞ
a G⃗a; ð2:32Þ

u⃗r ¼
XN
a¼1

αr;aF⃗ a þ
XN
a¼1

βr;aG⃗a ðr ¼ 1; 2;…; 2NÞ;

ð2:33Þ

where αr;a and βr;a are complex constants and satisfy

XN
a¼1

ðα�r;aαs;a þ β�r;aβs;aÞ ¼ δrs ðr; s ¼ 1; 2;…; 2NÞ

ð2:34Þ

from the orthonormal relations for u⃗r. From the boundary
conditions (2.23) and (2.24) for n ¼ 0, we obtain the
conditions that FðiÞ and GðjÞ are orthogonal to the vector
αq ≡ ðαq;1; αq;2;…; αq;NÞ⊤ ðq ¼ 2N − kþ 1;…; 2NÞ and
βp ≡ ðβp;1; βp;2;…; βp;NÞ⊤ðp ¼ 1;…; 2N − kÞ, respec-
tively:

α†
qFðiÞ ¼ 0 ðq ¼ 2N − kþ 1;…; 2NÞ; ð2:35Þ

β†pGðjÞ ¼ 0 ðp ¼ 1; 2;…; 2N − kÞ: ð2:36Þ

Let us suppose that the number of the linearly indepen-
dent vectors for αqðq ¼ 2N − kþ 1;…; 2NÞ is l. Then
the number of the linearly independent vectors for
βqðq ¼ 2N − kþ 1;…; 2NÞ, αp and βpðp¼1;…;2N−kÞ
are k − l; N − l and N − kþ l, respectively, because

of the independence of u⃗pðp ¼ 1;…; 2N − kÞ and
u⃗qðq ¼ 2N − kþ 1;…; 2NÞ. Therefore the range of l is
restricted to 0 ≤ l ≤ k for the case of k ¼ 0;…; N and
k − N ≤ l ≤ N for the case of k ¼ N;…; 2N. If the
number of the linearly independent vectors for αqðq ¼
2N − kþ 1;…; 2NÞ and βpðp ¼ 1;…; 2N − kÞ are l and
N − kþ l, respectively, we can find that there exist N − l
linearly independent solutions for FðiÞði ¼ 1;…; N − lÞ
and k − l linearly independent solutions for GðjÞðj ¼
1;…; k − lÞ from Eqs. (2.35) and (2.36). Therefore,
for the type ð2N − k; kÞ BC, we can conclude that the

degeneracy of zero mode fðiÞ0 ðyÞ is given by Nf0 ¼ N − l,

and that of zero mode gðiÞ0 ðyÞ is given by Ng0 ¼ k − l. The
degeneracies Nf0 and Ng0 for each boundary condition are
described in Table I.
We also comment about phenomenological aspects of

this model. In the case of the type (2N − k, k) BC, there are
jN − kj massless chiral fields in the 4D effective theory
since pairs of left and right-handed chiral zero modes can
form massless Dirac spinors (and these may become
massive through quantum corrections if we introduce
interactions). Therefore, we can obtain three generations
of chiral fermions for the type (N − 3, N þ 3) and (N þ 3,
N − 3) BCs. Since the zero mode functions are exponen-
tially localized at some boundaries, overlap integrals of the
mode functions can easily produce hierarchical masses and
also the flavor mixing if we introduce the 5D Yukawa
interactions. Moreover, complex parameters in the matrix
UB generally give the genuine complex zero mode func-
tions and this would result in the CP violating phase in the
CKM (Cabibbo-Kobayashi-Maskawa) matrix. Therefore,
we can find that this model has the desired properties to
explain the fermion flavor structure in the standard model
from the viewpoint of higher dimensional theories.

TABLE I. The number of the zero mode solutions of fðiÞ0 ðyÞ and
gðjÞ0 ðyÞ for the type ð2N − k; kÞ BC. l denotes the maximal
number of the linearly independent vectors αqðq ¼ 2N − kþ
1;…; 2NÞ in Eq. (2.33).Nf0 (Ng0 ) is the number of the zero mode

solutions of fðiÞ0 ðyÞ (gðjÞ0 ðyÞ). We can find that Nf0 − Ng0 is
independent of l, though both of Nf0 and Ng0 depend of l.

k l Nf0 Ng0 ΔW ¼ Nf0 − Ng0

0 ≤ k ≤ N 0 N k N − k
1 N − 1 k − 1 N − k

..

. ..
. ..

. ..
.

k N − k 0 N − k

N ≤ k ≤ 2N k − N 2N − k N N − k
k − N þ 1 2N − k − 1 N − 1 N − k

..

. ..
. ..

. ..
.

N 0 k − N N − k
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D. Witten index

We can notice that the difference Nf0 − Ng0ð¼ N − kÞ is
independent of l. This implies that the number of chiral
zero modes is invariant under continuous deformations of
the boundary conditions, since the type (2N − k, k) BC is
not continuously connected to the type (2N − k0; k0) one
with k ≠ k0 (although l can be changed by those defor-
mations). This topological property is related to a hidden
structure of the supersymmetric quantum mechanics in
this model.

If we introduce the two-component functions con-
structed from the mode functions

ΦðiÞ
n;þðyÞ¼

�
fðiÞn ðyÞ

0

�
; ΦðiÞ

n;−ðyÞ¼
�

0

gðiÞn ðyÞ

�
ð2:37Þ

and also the Hermitian operators H, Q and ð−1ÞF
defined by

H ¼
�−∂2y þM 0

0 −∂2y þM

�
; Q ¼

�
0 −∂y þM

∂y þM 0

�
; ð−1ÞF ¼

�
1 0

0 −1

�
; ð2:38Þ

we can find that these satisfy the supersymmetric relations

H ¼ Q2; fQ; ð−1ÞFg ¼ 0; ½H; ð−1ÞF� ¼ 0; ð2:39Þ

HΦðiÞ
n;�ðyÞ ¼ m2

nΦ
ðiÞ
n;�ðyÞ; QΦðiÞ

n;�ðyÞ ¼ mnΦ
ðiÞ
n;∓ðyÞ; ð−1ÞFΦðiÞ

n;�ðyÞ ¼ �ΦðiÞ
n;�ðyÞ: ð2:40Þ

Then we can regard the operators H, Q, ð−1ÞF and the

functions ΦðiÞ
n;�ðyÞ as the Hamiltonian, supercharge, fer-

mion number operator, and bosonic and fermionic states in
the supersymmetric quantum mechanics, respectively. In
the supersymmetric quantum mechanics, it is known that
there is a topological invariant which is called the Witten
index ΔW. This index is defined by the difference of the
number of the zero energy states with the eigenvalue
ð−1ÞF ¼ þ1 and with ð−1ÞF ¼ −1. The topological prop-
erty of this index is due to the fact that nonzero energy
states with ð−1ÞF ¼ þ1 and ð−1ÞF ¼ −1 should be paired
with each other by the supercharge Q, and can move to or
from zero energy states together. In our model, this index
corresponds to

ΔW ¼ Nf0 − Ng0 ¼ N − k; ð2:41Þ

and then the number of chiral zero modes becomes a
topological invariant. We will see that this index plays
important roles for the topological classification of the
boundary conditions with symmetries in Sec. IV.

III. TENFOLD CLASSIFICATION OF BOUNDARY
CONDITIONS WITH SYMMETRIES

So far, we have not considered symmetries except for the
4D Lorentz invariance. It should be emphasized that even if
the 5D Dirac equation or action is invariant under some
transformations, our model does not necessarily have those
symmetries since transformed fields may not always satisfy
the boundary conditions. Therefore, in order for our model

to have the symmetries, additional restrictions should be on
the boundary conditions at the vertex.
Here, we introduce the time-reversal and charge con-

jugation symmetries combined with some extra-spatial
symmetries and show that the boundary matrix UB can
be classified into ten classes by those symmetries. We
reveal these classes correspond to the ones in the classi-
fication of SPT phases of zero-dimensional noninteracting
gapped fermions with the Altland-Zirnbauer (AZ) sym-
metries, which gives the tenfold classification of topologi-
cal insulators and superconductors. In this section, we will
discuss the correspondence between the boundary matrix
UB and the zero-dimensional Hamiltonian for the gapped
free-fermion system, and also show that the symmetries in
our model provide the restrictions for UB identical to the
ones for the Hamiltonian from the AZ symmetries. The
correspondence of topological properties will be given
in Sec. IV.

A. Topological classification of gapped
free-fermion system

The topological insulators and superconductors of fully
gapped free-fermion systems are topologically classified
with AZ symmetries which denote three nonspatial discrete
symmetries: time-reversal symmetry (TRS), particle-hole
symmetry (PHS) and chiral symmetry (CS), i.e. a single-
particle Hamiltonian is classified with the presence or
absence of the following symmetries:

TRS∶ THðkÞT−1 ¼ Hð−kÞ ðT2 ¼ �1Þ; ð3:1Þ
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PHS∶ CHðkÞC−1 ¼ −Hð−kÞ ðC2 ¼ �1Þ; ð3:2Þ

CS∶ ΓHðkÞΓ−1 ¼ −HðkÞ ðΓ2 ¼ 1Þ; ð3:3Þ

where HðkÞ is the Hamiltonian in the momentum space
with the momentum k and we assume that there are no
nontrivial unitary symmetries which commute with the
Hamiltonian. If there are such symmetries, we take the
Hamiltonian as a block diagonal form and treat each
irreducible block as the Hamiltonian H in (3.1)–(3.3).
The TRS and PHS are the antiunitary transformations
whose squares should be þ1 or −1. The CS is the unitary
transformation and can be given by the product Γ ¼ TC up
to a phase. Here we take the CS as its square to beþ1. This
symmetry is always present when both the TRS and PHS
are present, although the CS can be symmetry alone even if
the TRS and PHS are absent. It should be noted that we can
assume there are single TRS, PHS, and CS. For example, if
there are two TRS such as T1 and T2, we can consider
the unitary symmetry T1T2 which commutes with the
Hamiltonian. Then the Hamiltonian can be taken to the
block diagonal form and T1 and T2 are trivially related in
each irreducible block, which is regarded as H in
(3.1)–(3.3).
It is known that we can obtain total ten symmetry classes

with topological numbers as shown in Table II [32–34].
These ten symmetry classes were originally introduced by
A. Altland and M. R. Zirnbauer and are therefore called AZ
symmetry classes [38,39]. The topological numbers Z, Z2

and 2Z in Table II indicate the presence of nontrivial
topological insulators or superconductors. This topological
classification is obtained by classifying symmetry-allowed
mass terms in the Dirac Hamiltonian and the topological
numbers correspond to the 0th homotopy groups of the

classifying spaces, which is the parameter space of the
symmetry-allowed mass terms with taking the limit of an
infinite number of energy bands. See Table III. These
topological numbers characterize whether Hamiltonians
can continuously deform to each other or not without
closing a mass gap or breaking the symmetries. When they
belong to the same symmetry class and have the same
topological number, they can be continuously deformed to
each other. One of the significant features of the topological

TABLE II. Tenfold classification of topological insulators and superconductors. The class A, AIII, AI, BDI, � � � represent the ten AZ
symmetry classes of the Hamiltonian. The signsþ1 in the chiral symmetry Γ and�1 in the time-reversal T and the particle-hole Cmean
the presence of those symmetries and also they denote the squares of corresponding symmetries, while 0 indicates the absence of the
symmetries. d is the spatial dimension of the system and Vd denotes the classifying space in each class for the d dimensional space given
in Table III. Z, Z2, 2Z and 0 in the other entries mean the presence or absence of nontrivial topological insulators or superconductors.
The class A and AIII are called the complex AZ symmetry classes and have twofold periodicity, while the other classes are referred to the
real AZ symmetry classes and have eightfold periodicity. These periodicities are known as the Bott periodicity, which are related to the
structure of the K-theory and Clifford algebra.

Class T C Γ Vd π0ðV0Þ π0ðV1Þ π0ðV2Þ π0ðV3Þ π0ðV4Þ π0ðV5Þ π0ðV6Þ π0ðV7Þ
A 0 0 0 C0þd Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 C1þd 0 Z 0 Z 0 Z 0 Z

AI þ1 0 0 R0þd Z 0 0 0 2Z 0 Z2 Z2

BDI þ1 þ1 1 R1þd Z2 Z 0 0 0 2Z 0 Z2

D 0 þ1 0 R2þd Z2 Z2 Z 0 0 0 2Z 0
DIII −1 þ1 1 R3þd 0 Z2 Z2 Z 0 0 0 2Z
AII −1 0 0 R4þd 2Z 0 Z2 Z2 Z 0 0 0
CII −1 −1 1 R5þd 0 2Z 0 Z2 Z2 Z 0 0
C 0 −1 0 R6þd 0 0 2Z 0 Z2 Z2 Z 0
CI þ1 −1 1 R7þd 0 0 0 2Z 0 Z2 Z2 Z

TABLE III. Classifying spaces and 0-th homotopy groups. The
integers p and q are related to the number of empty bands and
occupied bands, respectively. Here, taking the limit of p means
that there are an infinite number of empty bands and we focus on
the stable classification which is independent of the addition of
empty bands. From the viewpoint of the K-theory, this limit
results from the property of the so-called stable equivalence.

l mod 2 Complex classifying space Cl π0ðClÞ
l ¼ 0 C0 ¼ ⋃q limp→∞

UðpþqÞ
UðpÞ×UðqÞ Z

l ¼ 1 C1 ¼ limp→∞ UðpÞ 0

l mod 8 Real classifying space Rl π0ðRlÞ
l ¼ 0 R0 ¼ ⋃q limp→∞

OðpþqÞ
OðpÞ×OðqÞ Z

l ¼ 1 R1 ¼ limp→∞ OðpÞ Z2

l ¼ 2 R2 ¼ limp→∞
Oð2pÞ
UðpÞ Z2

l ¼ 3 R3 ¼ limp→∞
Uð2pÞ
SpðpÞ 0

l ¼ 4 R4 ¼ ∪qlimp→∞
SpðpþqÞ

SpðpÞ×SpðqÞ 2Z

l ¼ 5 R5 ¼ limp→∞SpðpÞ 0
l ¼ 6 R6 ¼ limp→∞

SpðpÞ
UðpÞ 0

l ¼ 7 R7 ¼ limp→∞
UðpÞ
OðpÞ 0
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insulators and superconductors is that if there are bounda-
ries in the system and the bulk Hamiltonians in each side
have different topological numbers, topologically protected
gapless states appear on the boundaries. This is well known
as the bulk-boundary correspondence.

B. Correspondence to zero-dimensional Hamiltonian

Let us focus on the zero-dimensional Hamiltonian. In
this case, the Hamiltonian has no momentum dependence.
Therefore it consists of only a mass term and is given by a
constant Hermitian matrix. As long as the mass gap does
not close and symmetries are restored, the topological
structure does not change. Then we can discuss the
topological classification by deforming the Hamiltonian
to the following normalized form without closing the gap:

H2 ¼ 1; H† ¼ H: ð3:4Þ

This Hamiltonian is called a flattened Hamiltonian and has
eigenvalues�1.We can aware that this condition is the same
as Eq. (2.18) and there is a correspondence between the
flattened Hamiltonian and the boundary matrixUB. Then, it
is expected that the classification of the zero-dimensional
topological insulators and superconductors can be applied to
that of the boundary conditions in our model.
To show the correspondence of the classification, we

need symmetries which correspond to the TRS and PHS in
the zero-dimensional gapped free Hamiltonian. In the
following subsections, we introduce the time-reversal
and charge conjugation symmetries combined with some

extra-spatial symmetries in our model and show that these
provide restrictions for the boundary matrix UB consistent
with the conditions (3.1)–(3.3).

C. Transformations in the y-direction

First of all, we introduce transformations that act only in
the extra dimensional direction, i.e. y-direction. These
transformations will be used later when we construct the
symmetries corresponding to the AZ symmetry classes. For
convenience, we will label the edge La−1 < y < La on the
rose graph as

Da ¼ fyjLa−1 < y < Lag; a ¼ 1; 2;…; N: ð3:5Þ

1. Permutation Sy
We introduce a permutation Sy that exchanges the a-edge

to the ðN=2þ aÞ-edge ða ¼ 1;…; N=2Þ. This permutation
is well defined when the a-edge and the ðN=2þ aÞ-edge
have the same length

La − La−1 ¼ LaþN=2 − La−1þN=2 ða ¼ 1; 2;…; N=2Þ
ð3:6Þ

and the number of edges N is even. This transformation can
be also regarded as the translation of the a-edge to the

ðN=2þ aÞ-edge. The mode functions φðyÞ ¼ ffðiÞn ðyÞ
or gðiÞn ðyÞg on Da are transformed as

ðSyφÞðyÞ ¼
�
φðyþ La−1þN=2 − La−1Þ ðy ∈ Da; a ¼ 1; 2;…; N=2Þ;
φðyþ La−1−N=2 − La−1Þ; ðy ∈ Da; a ¼ N=2þ 1;…; NÞ: ð3:7Þ

Figure 5 is a diagram of the transformation Sy.
Under the permutation Sy, the boundary vectors F⃗ðiÞ

n and G⃗ðjÞ
m transform as follows:

F⃗ðiÞ
n ⟶

Sy

0
BBBBBBBBBBBBBBBBBBB@

fðiÞn ðLN=2 þ εÞ
fðiÞn ðLN=2þ1 − εÞ

..

.

fðiÞn ðLN−1 þ εÞ
fðiÞn ðLN − εÞ
fðiÞn ðL0 þ εÞ
fðiÞn ðL1 − εÞ

..

.

fðiÞn ðLN=2−1 þ εÞ
fðiÞn ðLN=2 − εÞ

1
CCCCCCCCCCCCCCCCCCCA

¼
�

0 1N

1N 0

�

0
BBBBBBBBBBBBBBBBBBB@

fðiÞn ðL0 þ εÞ
fðiÞn ðL1 − εÞ

..

.

fðiÞn ðLN=2−1 þ εÞ
fðiÞn ðLN=2 − εÞ
fðiÞn ðLN=2 þ εÞ
fðiÞn ðLN=2þ1 − εÞ

..

.

fðiÞn ðLN−1 þ εÞ
fðiÞn ðLN − εÞ

1
CCCCCCCCCCCCCCCCCCCA

¼ ðσ1 ⊗ 1NÞF⃗ðiÞ
n ; ð3:8Þ
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G⃗ðjÞ
m ⟶

Sy

0
BBBBBBBBBBBBBBBBBBB@

gðjÞm ðLN=2 þ εÞ
−gðjÞm ðLN=2þ1 − εÞ

..

.

gðjÞm ðLN−1 þ εÞ
−gðjÞm ðLN − εÞ
gðjÞm ðL0 þ εÞ
−gðjÞm ðL1 − εÞ

..

.

gðjÞm ðLN=2−1 þ εÞ
−gðjÞm ðLN=2 − εÞ

1
CCCCCCCCCCCCCCCCCCCA

¼
�

0 1N

1N 0

�

0
BBBBBBBBBBBBBBBBBBB@

gðjÞm ðL0 þ εÞ
−gðjÞm ðL1 − εÞ

..

.

gðjÞm ðLN=2−1 þ εÞ
−gðjÞm ðLN=2 − εÞ
gðjÞm ðLN=2 þ εÞ

−gðjÞm ðLN=2þ1 − εÞ
..
.

gðjÞm ðLN−1 þ εÞ
−gðjÞm ðLN − εÞ

1
CCCCCCCCCCCCCCCCCCCA

¼ ðσ1 ⊗ 1NÞG⃗ðjÞ
m : ð3:9Þ

2. Half-reflection Ry

Next, we consider a transformation Ry that multiplies the
mode function onDaða ¼ N=2þ 1;…; 2NÞ by −1. This is
called the half-reflection conversion because only signs of
the mode functions on the half sections Daða ¼ N=2þ
1;…; 2NÞ are flipped as if they were reflected in a mirror.
This transformation is well definedwhen the quantum graph
has even edges. It should be emphasized that the trans-
formation Ry on the mode functions does not change the
mass eigenvalues. Figure 6 is a diagramof half-reflectionRy.
The mode functions φðyÞ ¼ ffðiÞn ðyÞ or gðiÞn ðyÞg on

Daða ¼ 1; 2;…; NÞ are transformed as

ðRyφÞðyÞ ¼
�
φðyÞ ðy ∈ Da; a ¼ 1; 2;…; N=2Þ;
−φðyÞ ðy ∈ Da; a ¼ N=2þ 1;…; NÞ:

ð3:10Þ

Then, this half-reflection Ry acts on the boundary vectors

F⃗ðiÞ
n and G⃗ðjÞ

m as

F⃗ðiÞ
n ⟶

Ry ðσ3 ⊗ 1NÞF⃗ðiÞ
n ; ð3:11Þ

G⃗ðjÞ
m ⟶

Ry ðσ3 ⊗ 1NÞG⃗ðjÞ
m : ð3:12Þ

3. Composite transformation Qy = − iRySy
Furthermore, we can consider the transformation Qy

which is given by the product of Sy and Ry

Qy ¼ −iRySy; ð3:13Þ
where we suppose that Sy acts on the mode function first,
and then Ry acts on it.4

The mode functions φðyÞ ¼ ffðiÞn ðyÞ or gðiÞn ðyÞg on
Daða ¼ 1; 2;…; NÞ are transformed as

L0 < y < L1

LN/2 < y < LN/2+1

LN−1 < y < LN

LN/2−1 < y < LN/2

−

−

+

+

FIG. 6. Half-reflection Ry that multiplies the mode functions on
Daða ¼ N=2þ 1;…; 2NÞ by −1.

L0 < y < L1

LN/2 < y < LN/2+1

LN−1 < y < LN

LN/2−1 < y < LN/2

FIG. 5. Permutation Sy that exchanges the ath edge for the
ðN=2þ aÞth edge ða ¼ 1;…; N=2Þ.

4It is worth noting that operatorsQy, Ry and Sy form the SUð2Þ
algebra and that the operators ðO1;O2;O3Þ ¼ ðQy; Ry; SyÞ sat-
isfy the following relations:

fOi;Ojg ¼ 2δij; ½Oi;Oj� ¼ 2iεijkOk ði; j ¼ 1; 2; 3Þ:
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ðQyφÞðyÞ ¼
�−iφðyþ La−1þN=2 − La−1Þ ðy ∈ Da; a ¼ 1;…; N=2Þ;
iφðyþ La−1−N=2 − La−1Þ ðy ∈ Da; a ¼ N=2þ 1;…; NÞ; ð3:14Þ

and the transformation for the boundary vectors F⃗ðiÞ
n and

G⃗ðjÞ
m are given as

F⃗ðiÞ
n ⟶

Qy ðσ2 ⊗ 1NÞF⃗ðiÞ
n ; ð3:15Þ

G⃗ðjÞ
m ⟶

Qy ðσ2 ⊗ 1NÞG⃗ðjÞ
m : ð3:16Þ

4. Parity in the y-direction Py

Finally, we introduce the parity Py that inverts
the coordinates in each edge described in Fig. 7. The

transformation for the mode functions φðyÞ ¼ ffðiÞn ðyÞ
or gðiÞn ðyÞg on Daða ¼ 1; 2;…; NÞ is given by

ðPyφÞðyÞ ¼ φðLa − yþ La−1Þ y ∈ Daða ¼ 1;…; NÞ;
ð3:17Þ

and the boundary vectors transform as

F⃗ðiÞ
n ⟶

Py ð1N ⊗ σ1ÞF⃗ðiÞ
n ; ð3:18Þ

G⃗ðjÞ
m ⟶

Py
− ð1N ⊗ σ1ÞG⃗ðjÞ

m : ð3:19Þ

D. Correspondence to time-reversal symmetries

Here we define the two types of time-reversal sym-
metries in the 5D spacetime, the one of which is combined
with the extra-spatial transformation Qy. These time-
reversal symmetries lead to the restrictions for the boundary
matrix UB. We show that these restrictions correspond to
the condition of the TRS (3.1) in the AZ symmetry classes.

1. Time-reversal T +

First, we consider the ordinary time-reversal transforma-
tion T þ for the 5D Dirac fermion

Ψðx; yÞ⟶T þ ΨT þðx; yÞ ¼ UTΨ�ð−x0; xi; yÞ; ð3:20Þ

where UT is defined as a 4 × 4 unitary matrix that satisfies
the following relation:5

UTðγAÞ�U−1
T ¼

8>><
>>:

γ0 ðA ¼ 0Þ;
−γi ðA ¼ i ¼ 1; 2; 3Þ;
−γy ðA ¼ yÞ:

ð3:21Þ

Although the 5D Dirac equation is invariant under this
transformation, we should further require that the boundary
conditions (2.16) and (2.17) hold even after the trans-
formation (3.20) in order that T þ becomes a symmetry in
our model.
Then, let us substitute the KK decomposition (2.6) into

(3.20) to derive the restrictions for UB:X
i

X
n

½ψ ðiÞ
R;nðxÞfðiÞn ðyÞ þ ψ ðiÞ

L;nðxÞgðiÞn ðyÞ�

⟶
T þ X

i

X
n

UTψ
ðiÞ�
R;n ð−x0; xiÞfðiÞ�n ðyÞ

þ
X
i

X
n

UTψ
ðiÞ�
L;n ð−x0; xiÞgðiÞ�n ðyÞ: ð3:22Þ

Taking account of the chirality in four dimensions, we

obtain the transformations for the 4D fields ψ ðiÞ
R=L;n and the

mode functions fðiÞn , gðiÞn as

ψ ðiÞ
R=L;nðxÞ⟶

T þ
UTψ

ðiÞ�
R=L;nð−x0; xiÞ; fðiÞn ðyÞ⟶T þ

fðiÞ�n ðyÞ;

gðiÞn ðyÞ⟶T þ
gðiÞ�n ðyÞ: ð3:23Þ

The 4D part follows the usual 4D Dirac equation and gives
no restrictions. On the other hand, the following additional
relations must hold for the transformation of the mode
functions:

L0 < y < L1

L1 < y < L2

L3 < y < L4

LN−1 < y < LN

L2 < y < L3

FIG. 7. Parity in the y-direction Py that inverts the coordinates
in each edge.

5In the chiral representation γ0 ¼ σ1 ⊗ 12, γi ¼ −iσ2 ⊗ σi,
γy ¼ −iσ3 ⊗ 12, the matrix UT is given by UT ¼ γ1γ3 up to a
phase.
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ð12N − UBÞF⃗ðiÞ�
n ¼ 0; ð3:24Þ

ð12N þ UBÞG⃗ðjÞ�
m ¼ 0: ð3:25Þ

Comparing these relations with the complex conjugate of
the original boundary conditions (2.16) and (2.17), we
obtain the restriction

TþUBT−1þ ¼ UB; Tþ ≡K; ð3:26Þ

where K is a complex conjugate operator that acts like
KzK−1 ¼ z� on the complex number z. Since Tþ is
antiunitary and satisfies

T2þ ¼ 1; ð3:27Þ

Eq. (3.26) implies that Tþ corresponds to the TRS with
T2 ¼ 1 in the AZ symmetry classes.

2. Time-reversal T −

Next, let us consider a symmetry which leads to the
restriction corresponds to the TRS with T2 ¼ −1 in the AZ
symmetry classes. Here we introduce a transformation that
combines Qy with the transformation of T þ

Ψðx; yÞ⟶T − ΨT −ðx; yÞ ¼ QyUTΨ�ð−x0; xi; yÞ; ð3:28Þ

where UT is defined by Eq. (3.21). The only difference
from the case of T þ is that the transformation Qy is
included and we will see that this plays the role to flip the
sign of the square (3.27). Qy does not affect the 5D Dirac
equation described on each edge and then the 5D Dirac
equation is also invariant for the transformation (3.28).
However, the transformed field should satisfy the same
boundary condition as the original one in order for T − to be
a symmetry.
If we compare the 4D chirality in the same way, we

obtain the transformation T þ for the 4D fields and the
mode functions as

ψ ðiÞ
R=L;nðxÞ⟶

T − UTψ
ðiÞ�
R=L;nð−x0;xiÞ; fðiÞn ðyÞ⟶T − Qyf

ðiÞ�
n ðyÞ;

gðiÞn ðyÞ⟶T − Qyg
ðiÞ�
n ðyÞ: ð3:29Þ

Then, in order for our model to have the time-reversal
symmetry T −, we find that the relations

ð12N −UBÞðσ2 ⊗ 1NÞF⃗ðiÞ�
n ¼ 0; ð3:30Þ

ð12N þUBÞðσ2 ⊗ 1NÞG⃗ðjÞ�
m ¼ 0 ð3:31Þ

must hold from Eqs. (3.15) and (3.16).

Comparing these relations with the complex conjugate of
the original boundary condition (2.16) and (2.17), we
obtain the restriction

T−UBT−1
− ¼ UB; T− ≡ ðiσ2 ⊗ 1NÞK: ð3:32Þ

T− is antiunitary and its square is

T2
− ¼ −1: ð3:33Þ

Therefore Eq. (3.32) implies T− corresponds to the TRS
with T2 ¼ −1 in the AZ symmetry classes.

E. Correspondence to particle-hole symmetries

We consider two types of charge conjugations with extra-
spatial transformations similar to the time-reversal sym-
metries and show those provide the restrictions forUB. They
correspond to the PHS (3.2) in the AZ symmetry classes.

1. Charge conjugation C−

First, we introduce a transformation defined by the 4D
charge conjugation with the parity Py in the extra space
which is consistent with the 4D Lorentz symmetry in our
model:

Ψðx; yÞ⟶C− ΨC−ðx; yÞ ¼ PyUCΨ̄⊤ðx; yÞ; ð3:34Þ

whereUC is the usual 4D charge conjugationmatrix defined
by6

UCðγμÞ⊤U−1
C ¼ −γμ; U⊤

C ¼ −UC: ð3:35Þ

From the above relation between UC and γμ, the gamma
matrix γyð¼ −iγ5Þ satisfies

UCðγyÞ⊤U−1
C ¼ γy: ð3:36Þ

In this paper, we refer to this transformation as the charge
conjugation C−.While the 5DDirac equation is not invariant
by only the 4D charge conjugation due to the sign of the
right-hand side in Eq. (3.36), it is invariant by C− since this
transformation additionally includes the parity Py.

7

6In the chiral representation γ0 ¼ σ1 ⊗ 12, γi ¼ −iσ2 ⊗ σi,
γy ¼ −iσ3 ⊗ 12, the matrix UC is given by UC ¼ γ0γ2 up to a
phase.

7Although we focus on the C− symmetry in this paper, we can
also consider a 5D charge conjugation without the parity which is
given by

Ψðx; yÞ → UC0Ψ̄⊤ðx; yÞ; U⊤
C0 ¼ −UC0 ;

UC0 ðγAÞ⊤U−1
C0 ¼ þγA ðA ¼ 0;…; 3; yÞ:

The bulk mass should vanish under this symmetry unlike the case
of C−. See [40] for detail.
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In addition to the invariance of the 5D Dirac equation, the
field after the transformation should satisfy the boundary
condition in order for C− to be a symmetry. By substituting
the KK decomposition (2.6) into (3.34) and comparing the
chirality in four dimensions, we obtain the transformation C−
for the 4D fields and the mode functions as

ψ ðiÞ
R=L;nðxÞ⟶

C− UCψ
ðiÞ
L=R;n

⊤ðxÞ; fðiÞn ðyÞ⟶C− Pyg
ðiÞ�
n ðyÞ;

gðiÞn ðyÞ⟶C− Pyf
ðiÞ�
n ðyÞ: ð3:37Þ

The mode functions fðiÞn and gðiÞn are interchanged because of
the change of the 4D chirality. Therefore, if there exist zero

mode functions fðiÞ0 , zero modes gðiÞ0 should also exist andwe
can take it as

gðiÞ0 ðyÞ ¼ Pyf
ðiÞ�
0 ðyÞ: ð3:38Þ

For massive modes (n ≠ 0), since the relations between

fðiÞn ðyÞ and gðiÞn ðyÞ are already fixed by Eqs. (2.10) and

(2.11), Pyg
ðiÞ�
n ðyÞðPyf

ðiÞ�
n ðyÞÞ is given by linear combina-

tions of fðiÞn ðyÞðgðiÞn ðyÞÞ.
The transformation for the boundary vectors F⃗ðiÞ

n and

G⃗ðjÞ
m are

F⃗ðiÞ
n ⟶

C− − ð1N ⊗ iσ2ÞG⃗ðiÞ�
n ; ð3:39Þ

G⃗ðjÞ
m ⟶

C− ð1N ⊗ iσ2ÞF⃗ðjÞ�
m ; ð3:40Þ

and the following relations must hold:

ð12N −UBÞð1N ⊗ iσ2ÞG⃗ðiÞ�
n ¼ 0; ð3:41Þ

ð12N þUBÞð1N ⊗ iσ2ÞF⃗ðjÞ�
m ¼ 0: ð3:42Þ

From the original boundary conditions (2.16) and (2.17),
the above relations give the restriction for UB

C−UBC−1
− ¼ −UB; C− ≡ ð1N ⊗ iσ2ÞK: ð3:43Þ

Here C− is antiunitary and satisfies

C2
− ¼ −1: ð3:44Þ

Then we can find that C− corresponds to the PHS with
C2 ¼ −1 in the AZ symmetry classes.

2. Charge conjugation C +

Next, we consider the transformation Cþ which consists
of the charge conjugation C− with the transformation Qy

Ψðx; yÞ⟶Cþ ΨCþðx; yÞ ¼ QyPyUCΨ̄⊤ðx; yÞ; ð3:45Þ

where UC is defined by Eq. (3.35). The 5D Dirac equation
is also invariant by this transformation.
Then let us consider the restriction for UB in order

for Cþ to be a symmetry. The transformation for the 4D
fields and the mode functions are given by

ψ ðiÞ
R=L;nðxÞ⟶

Cþ
UCψ

ðiÞ
L=R;n

⊤ðxÞ; fðiÞn ðyÞ⟶Cþ QyPyg
ðiÞ�
n ðyÞ;

gðiÞn ðyÞ⟶Cþ QyPyf
ðiÞ�
n ðyÞ: ð3:46Þ

Then the boundary vectors F⃗ðiÞ
n and G⃗ðjÞ

m are transformed as

F⃗ðiÞ
n ⟶

Cþ − ðσ2 ⊗ 1N=2 ⊗ iσ2ÞG⃗ðiÞ�
n ; ð3:47Þ

G⃗ðjÞ
m ⟶

Cþ ðσ2 ⊗ 1N=2 ⊗ iσ2ÞF⃗ðjÞ�
m : ð3:48Þ

Therefore the following relations must hold:

ð12N −UBÞðσ2 ⊗ 1N=2 ⊗ iσ2ÞG⃗ðiÞ�
n ¼ 0; ð3:49Þ

ð12N þUBÞðσ2 ⊗ 1N=2 ⊗ iσ2ÞF⃗ðjÞ�
m ¼ 0: ð3:50Þ

Comparing these relations with the original boundary
conditions (2.16) and (2.17), we obtain the restriction

CþUBC−1þ ¼ −UB; Cþ ≡ ðiσ2 ⊗ 1N=2 ⊗ iσ2ÞK:

ð3:51Þ
Cþ is antiunitary and its square is

C2þ ¼ þ1: ð3:52Þ

Therefore Cþ corresponds to the PHS with C2 ¼ þ1 in the
AZ symmetry classes.

F. Correspondence to chiral symmetry

Finally, let us discuss the symmetries which are obtained
by the product of the time-reversal and charge conjugation
transformations discussed above. We show that these
symmetries lead to restrictions for UB and correspond to
the CS (3.3) in the AZ symmetry classes.

1. Chiral symmetry Γ +

We introduce the transformation of the product T þCþ or
T −C−. From Eqs. (3.20), (3.45) or (3.28), (3.34), the
transformation properties of Ψðx; yÞ are given by

Ψðx; yÞ⟶T þCþ −QyPyUTU�
Cγ

0Ψð−x0; xi; yÞ; ð3:53Þ

Ψðx; yÞ⟶T −C− þQyPyUTU�
Cγ

0Ψð−x0; xi; yÞ: ð3:54Þ

Thus, these transformations are equivalent up to the
sign. Comparing the chirality in four dimensions, we
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obtain the transformations for the 4D fields and the mode
functions as

ψ ðiÞ
R=L;nðxÞ ⟶

T �C� UTU�
Cγ

0ψ ðiÞ
L=R;nð−x0; xiÞ; ð3:55Þ

fðiÞn ðyÞ⟶T �C� ∓QyPyg
ðiÞ
n ðyÞ; gðiÞn ðyÞ⟶T �C� ∓QyPyf

ðiÞ
n ðyÞ:
ð3:56Þ

Therefore, the boundary vectors F⃗ðiÞ
n and G⃗ðjÞ

m are trans-
formed as

F⃗ðiÞ
n ⟶

T �C� � ðσ2 ⊗ 1N=2 ⊗ iσ2ÞG⃗ðiÞ
n ; ð3:57Þ

G⃗ðjÞ
m ⟶

T �C� ∓ ðσ2 ⊗ 1N=2 ⊗ iσ2ÞF⃗ðjÞ
m : ð3:58Þ

These indicate that the relations

ð12N −UBÞðσ2 ⊗ 1N=2 ⊗ iσ2ÞG⃗ðiÞ
n ¼ 0; ð3:59Þ

ð12N þ UBÞðσ2 ⊗ 1N=2 ⊗ iσ2ÞF⃗ðiÞ
n ¼ 0 ð3:60Þ

must hold in order for T �C� to be a symmetry. We then
obtain the restriction for UB

ΓþUBΓ−1þ ¼ −UB; Γþ ≡ iσ2 ⊗ 1N=2 ⊗ iσ2: ð3:61Þ

Γþ is unitary and we can find that Γþ corresponds to the CS
in the AZ symmetry classes. In terms of operators that act
on UB, we can confirm the relation

Γþ ¼ T�C�: ð3:62Þ

2. Chiral symmetry Γ−

We can consider the another transformation of the
product T þC− or equivalently T −Cþ

Ψðx; yÞ⟶T �C∓ � PyUTU�
Cγ

0Ψð−x0; xi; yÞ: ð3:63Þ

The transformation for the 4D fields and the mode
functions are then given by

ψ ðiÞ
R=L;nðxÞ⟶

T �C∓
UTU�

Cγ
0ψ ðiÞ

L=R;nð−x0; xiÞ; ð3:64Þ

fðiÞn ðyÞ⟶T �C∓ � ðPyg
ðiÞ
n ÞðyÞ; gðiÞn ðyÞ⟶T �C∓ � ðPyf

ðiÞ
n ÞðyÞ:
ð3:65Þ

Therefore, the boundary vectors F⃗ðiÞ
n and G⃗ðjÞ

m are trans-
formed as

F⃗ðiÞ
n ⟶

T �C∓ ∓ ð1N ⊗ iσ2ÞG⃗ðiÞ
n ; ð3:66Þ

G⃗ðjÞ
m ⟶

T �C∓ � ð1N ⊗ iσ2ÞF⃗ðjÞ
m ; ð3:67Þ

and the following relations should be satisfied in order for
T �C∓ to be a symmetry:

ð12N −UBÞð1N ⊗ iσ2ÞG⃗ðiÞ
n ¼ 0; ð3:68Þ

ð12N þ UBÞð1N ⊗ iσ2ÞF⃗ðiÞ
n ¼ 0: ð3:69Þ

These relations yield the restriction for UB

Γ−UBΓ−1
− ¼ −UB; Γ− ≡ 1N ⊗ σ2: ð3:70Þ

Γ− is unitary and we can find that Γ− corresponds to the
chiral symmetry in the AZ symmetry classes. We can also
confirm that Γ− can be given by

Γ− ¼ ∓ iT�C∓: ð3:71Þ

G. Summary of correspondence to AZ symmetry class

In this section, we considered the time-reversal and the
charge conjugation with the extra-spatial transformations in
our model and it was revealed that these symmetries
provide the restrictions for the boundary matrix UB as
shown in Table IV. These correspond to the TRS, PHS and
CS in the AZ symmetry classes. The matrix UB corre-
sponds to the zero-dimensional Hamiltonian H in (3.1)–
(3.3) and therefore we can classify UB into ten symmetry
classes as in Table II for the d ¼ 0 case.
It should be noted that we assume only one of the same

type symmetries such as T þ and T − can be present so far. If
both symmetries are present,Qy also becomes the symmetry
independently sinceQy can be given by their product. In this
case, we consider the identification of the ðaþ N=2Þ-edge to
a-edge (a ¼ 1;…; N=2) by the symmetry Qy with the
eigenvalues Qy ¼ þ1 or Qy ¼ −1, and then classify the
boundary conditions of this reduced system. This identi-
fication effectively reduces the rose graph with N edges to
the one with N=2 edges like the S1 is reduced to the interval
by the Z2 orbifold, and the same type symmetries such as
T þ and T − are trivially related with each other after the
identification. The symmetryQy requires that UB commutes
with σ2 ⊗ 1N from Eqs. (3.15) and (3.16), and the matrix
UB can be written as

UB ¼ 12 þ σ2
2

⊗ uBþ þ 12 − σ2
2

⊗ uB−; ð3:72Þ

where uB� are N × N Hermitian unitary matrices. This
uBþðuB−Þ specifies the boundary condition for the reduced
rose graph with N=2 edges with Qy ¼ þ1ðQy ¼ −1Þ and
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corresponds to the irreducible blocks in the Hamiltonian for
the gapped free-fermion system discussed in Sec. III A.

IV. INDEX AND ZERO MODES IN EACH
SYMMETRY CLASS

From the correspondence of the boundary conditions in
our model and the zero-dimensional gapped free-fermion
system, we can obtain the nontrivial topological numbers
Z;Z2 and 2Z for the boundary conditions in each sym-
metry class as well as the topological insulators and
superconductors in Table II for the d ¼ 0 case. In the
topological matter side, the topological numbers specify the

number of gapless states which appear on boundaries.

Then, the question is what do these topological numbers

physically mean in our model?
In this section, we will reveal that these topological

numbers correspond to the numbers of zero modes local-
ized at the vertex in our model as summarized in Table V.
The topological numbersZ and 2Z are related to theWitten
index, which describes the number of chiral zero modes
given in Sec. II D. By considering a sufficiently large
number of the edges N, this number can take any integer
values in the class A and AI and also any multiple of two in
the class AII. The large N limit corresponds to taking an

TABLE V. Tenfold classification of the boundary conditions in our model. The sign�1 in the column of T and C denote the presence
of T� and C�, respectively and also 1 in Γ indicates the presence of the chiral symmetry Γþ or Γ−, while 0 means the absence of
corresponding symmetries. We also describe the Witten index for the type ð2N − k; kÞ BC in each symmetry class, which is equivalent to
the number of the chiral zero modes in our model. In addition,Z2 in the column of theZ2 index indicates that the number of massless 4D
Dirac fields in module 2 is topologically nontrivial, while 0 means topologically trivial and the number of massless 4D Dirac fields can
be zero by continuous deformations of parameters. These correspond to the topological numbers in Table II for the d ¼ 0 case.

Class T C Γ Classifying space of UB ΔW for type ð2N − k; kÞ BC Z2 index

A 0 0 0 C0 ¼ ⋃2N
k¼0

Uð2NÞ
Uð2N−kÞ×UðkÞ N − k 0

AIII 0 0 1 C1 ¼ UðNÞ 0 0

AI þ1 0 0 R0 ¼ ⋃2N
k¼0

Oð2NÞ
Oð2N−kÞ×OðkÞ N − k 0

BDI þ1 þ1 1 R1 ¼ OðNÞ 0 Z2

D 0 þ1 0 R2 ¼ Oð2NÞ
UðNÞ 0 Z2

DIII −1 þ1 1 R3 ¼ UðNÞ
UðN=2Þ 0 0

AII −1 0 0 R4 ¼ ⋃2N
k¼0

SpðNÞ
Spðð2N−kÞ=2Þ×Spðk=2Þ N − k ðN; k∶evenÞ 0

CII −1 −1 1 R5 ¼ SpðN=2Þ 0 0
C 0 −1 0 R6 ¼ SpðNÞ

UðNÞ 0 0

CI þ1 −1 1 R7 ¼ UðNÞ
OðNÞ 0 0

TABLE IV. The transformations in our model and the correspondence to the AZ symmetries.

AZ symmetry Transformation for Ψðx; yÞ Restriction for UB

Time-reversal Ψðx; yÞ⟶T þ
UTKΨð−x0; xi; yÞ TþUBT−1þ ¼ UB

ðT2 ¼ þ1Þ Tþ ¼ K

Time-reversal Ψðx; yÞ⟶T − QyUTKΨð−x0; xi; yÞ T−UBT−1
− ¼ UB

ðT2 ¼ −1Þ T− ¼ ðiσ2 ⊗ 1NÞK
Particle-hole Ψðx; yÞ⟶Cþ QyPyUCΨ̄⊤ðx; yÞ CþUBC−1þ ¼ −UB

ðC2 ¼ þ1Þ Cþ ¼ ðiσ2 ⊗ 1N=2 ⊗ iσ2ÞK
Particle-hole Ψðx; yÞ⟶C− PyUCΨ̄⊤ðx; yÞ C−UBC−1

− ¼ −UB

ðC2 ¼ −1Þ C− ¼ ð1N ⊗ iσ2ÞK
Chiral Ψðx; yÞ ⟶T �C� ∓QyPyUTU�

Cγ
0Ψð−x0; xi; yÞ ΓþUBΓ−1þ ¼ −UB

Γþ ¼ iσ2 ⊗ 1N=2 ⊗ iσ2

Chiral Ψðx; yÞ ⟶T �C∓ � PyUTU�
Cγ

0Ψð−x0; xi; yÞ Γ−UBΓ−1
− ¼ −UB

Γ− ¼ 1N ⊗ σ2
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infinite number of bands in the zero-dimensional
Hamiltonian. In addition, the topological number Z2 in
the class BDI and D corresponds to the number of Dirac
zero modes in module 2. Here we call it Z2 index. We will
see that the Z2 index becomes topological invariant due to
the additional degeneracy of the massive modes by the
symmetry Cþ. We also investigate the classifying spaces of
UB in our model, which are the parameter spaces of UB
restricted by symmetry conditions, and show they are
identical to the ones in the gapped free-fermion system.

A. Witten index and classifying spaces

Here, let us discuss the Witten index and the classifying
space for each symmetry class in our model, and show the
correspondence to the topological numbers Z, 2Z and
the classifying spaces in the gapped free-fermion system.
The Z2 index will be discussed in the next subsection.

1. Class A

Since the class A has no symmetries, there are no
additional conditions forUB. Therefore,UB is diagonalized
as follows (see Section II B):

UB ¼ V

�
12N−k 0

0 −1k

�
V†; V ∈ Uð2NÞ

ðk ¼ 0; 1;…; 2NÞ: ð4:1Þ

The Witten index is determined by the number of the
eigenvalues �1 of UB, and is given by

ΔW ¼ N − k ðk ¼ 0; 1;…; 2NÞ: ð4:2Þ

By considering a sufficiently large N, the Witten index can
take any integer and this corresponds to the topological
number Z.
In addition, the parameter space of UB in the type ð2N −

k; kÞ BC is Uð2NÞ=ðUð2N − kÞ ×UðkÞÞ from the matrix
V. Then we can obtain the classifying space of UB as

C0 ¼ ⋃
2N

k¼0

Uð2NÞ
Uð2N − kÞ ×UðkÞ : ð4:3Þ

This is also identical to the one for the zero-dimensional
Hamiltonian in the gapped free-fermion system.

2. Class AIII

The class AIII has only the CS with the unitarity operator
Γ for UB which denotes Γþ or Γ− given in Sec. III. This
operator satisfies

fUB;Γg ¼ 0; Γ2 ¼ 12N: ð4:4Þ
This implies that the boundary vectors of the zero mode

functions with the chiral operator ΓF⃗ðiÞ
0 ðΓG⃗ðjÞ

0 Þ satisfy the

boundary condition of G⃗ðjÞ
0 ðF⃗ðiÞ

0 Þ. Therefore, if the CS is

present, F⃗ðiÞ
0 and G⃗ðjÞ

0 have the same degrees of degeneracy,
i.e. the equal degrees of freedom for i and j. For this reason,
UB should be diagonalized as

UB ¼ V

�
1N 0

0 −1N

�
V†; V ∈ Uð2NÞ ð4:5Þ

and the Witten index is given by

ΔW ¼ 0: ð4:6Þ

Γ can be taken to the diagonal form of Γ̃ ¼ σ3 ⊗ 1N by
an appropriate basis change such as

UB → ŨB ¼ Ṽ†UBṼ; ð4:7Þ

Γ → Γ̃ ¼ Ṽ†ΓṼ; ð4:8Þ

F⃗ðiÞ
n → Ṽ†F⃗ðiÞ

n ; ð4:9Þ

G⃗ðjÞ
m → Ṽ†G⃗ðjÞ

m ; Ṽ ∈ Uð2NÞ: ð4:10Þ

In this basis, ŨB is written as

ŨB ¼
�

0 uB
u†B 0

�
; uB ∈ UðNÞ ð4:11Þ

from Eq. (4.4) and the conditionsU2
B ¼ 12N and U†

B ¼ UB.
Therefore the parameter space of UB is specified by uB and
then the classifying space is

C1 ¼ UðNÞ: ð4:12Þ

3. Class AI

The class AI has the T þ symmetry and the additional
condition for UB is

TþUBT−1þ ¼ UB; Tþ ¼ K: ð4:13Þ

This requires that UB is a real matrix. Then UB can be
written as

UB ¼ R

�
12N−k 0

0 −1k

�
R⊤; R ∈ Oð2NÞ

ðk ¼ 0; 1;…; 2NÞ: ð4:14Þ

Therefore, the Witten index and the classifying space are
given by

ΔW ¼ N − k ðk ¼ 0; 1;…; 2NÞ; ð4:15Þ
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R0 ¼ ⋃
2N

k¼0

Oð2NÞ
Oð2N − kÞ ×OðkÞ ; ð4:16Þ

respectively. The difference between the class A and AI is
that UB is a real matrix in this class. Therefore the mode
functions can be taken to be real since the complex
conjugation of the mode functions also satisfy the boundary
condition and become solutions of Eqs. (2.12) and (2.13)
with the same mass eigenvalues.

4. Class BDI

The class BDI has the three symmetries T þ; Cþ, and
T þCþ. Then UB satisfies

TþUBT−1þ ¼ UB; Tþ ¼ K; ð4:17Þ

CþUBC−1þ ¼ −UB; Cþ ¼ ðiσ2 ⊗ 1N=2 ⊗ iσ2ÞK;

ð4:18Þ

ΓþUBΓ−1þ ¼ −UB; Γþ ¼ iσ2 ⊗ 1N=2 ⊗ iσ2: ð4:19Þ

From the same discussion in the class AIII, the degeneracy

of F⃗ðiÞ
0 and G⃗ðjÞ

0 are equal to each other due to Γþ and the
Witten index becomes

ΔW ¼ 0: ð4:20Þ
Then let us discuss the classifying space. Here we focus

on the operators Tþ and Γþ due to the relation
Γþ ¼ TþCþ. Since Γþ is the real symmetric matrix, this
can be diagonalized by a real orthogonal matrix. When we
consider a basis change such that

Γ̃þ ¼ Ṽ⊤ΓþṼ ¼ σ3 ⊗ 1N; ð4:21Þ

T̃þ ¼ Ṽ⊤TþṼ ¼ K ð4:22Þ

with the real orthogonal matrix Ṽ

Ṽ ¼ 1ffiffiffi
2

p
�

1N 1N=2 ⊗ σ1

−1N=2 ⊗ iσ2 1N=2 ⊗ σ3

�
: ð4:23Þ

ŨB ¼ Ṽ⊤UBṼ is given by a real matrix and restricted to the
form

ŨB ¼
�

0 uB
u⊤B 0

�
; uB ∈ OðNÞ ð4:24Þ

by the conditions (4.17), (4.19) and U†
B ¼ U⊤

B and
U†

B ¼ UB. Then we can see that the classifying space of
UB is given by

R1 ¼ OðNÞ: ð4:25Þ

5. Class D

Since the class D has the Cþ symmetry, the condition for
UB is

CþUBC−1þ ¼ −UB; Cþ ¼ ðiσ2 ⊗ 1N=2 ⊗ iσ2ÞK:

ð4:26Þ
First, let us diagonalize Cþ as

C̃þ ¼ Ṽ†CþṼ ¼ K; ð4:27Þ

where

Ṽ ¼ 1ffiffiffi
2

p
�

1N 1N=2 ⊗ iσ1
−1N=2 ⊗ iσ2 1N=2 ⊗ iσ3

�
: ð4:28Þ

In this basis, the condition U†
B ¼ UB and Eqs. (4.26) and

(4.27) imply that ŨB ¼ Ṽ†UBṼ can be of the form

ŨB ¼ iA; A⊤ ¼ −A; ð4:29Þ

where A is a 2N × 2N antisymmetric real matrix. Since any
pure imaginary antisymmetric matrix has the same number
of positive and negative eigenvalues, the Witten index is

ΔW ¼ 0: ð4:30Þ

Next, let us consider the classifying space in this class. In
general, using a real orthogonal matrix R, we can bring the
real antisymmetric matrix A into a block off-diagonal form:

A ¼ R

�
0 1N

−1N 0

�
R⊤; R ∈ Oð2NÞ: ð4:31Þ

If there is a matrix R0 which satisfies

R0
�

0 1N

−1N 0

�
R0⊤ ¼

�
0 1N

−1N 0

�
; R0 ∈ SOð2NÞ;

ð4:32Þ

the replacement R → RR0 does not change the matrix A.
Therefore the classifying space is given by the coset space,
which is Oð2NÞ divided by the parameter space of R0. We
mention that R0 should have the determinant detR0 ¼ þ1
since this matrix also belongs to the symplectic group.8

We can write R0 as

8From the properties of the Pfaffian, we obtain

Pf

�
R0
�

0 1N

−1N 0

�
R0⊤

�
¼ detðR0Þ · Pf

�
0 1N

−1N 0

�
:

Substituting Eq. (4.32) into the left-hand side of the above
equation, we see that detR0 ¼ þ1.
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R0 ¼ exp f12 ⊗ X0 þ σ2 ⊗ X2g; ð4:33Þ

where X0 is an antisymmetric real matrix and X2 is a
symmetric pure imaginary matrix. Since σ2 can be dia-
gonalized by the unitary matrix

G2 ¼
1ffiffiffi
2

p
�
1 −i
1 i

�
; G†

2G2 ¼ G2G
†
2 ¼ 12; ð4:34Þ

R0 is given by

R0 ¼ ðG†
2 ⊗ 1NÞ exp f12 ⊗ X0 þ σ3 ⊗ X2gðG2 ⊗ 1NÞ

¼ ðG†
2 ⊗ 1NÞ

�
expðX0 þ X2Þ 0

0 expðX0 − X2Þ

�
ðG2 ⊗ 1NÞ

≡ ðG†
2 ⊗ 1NÞ

�
r 0

0 r�

�
ðG2 ⊗ 1NÞ ðr≡ expðX0 þ X2ÞÞ: ð4:35Þ

Here r is a unitary matrix because it satisfies r†r ¼ 1N .
Therefore, it turns out that R0 is specified by an element of
UðNÞ. Then the classifying space of UB is

R2 ¼
Oð2NÞ
UðNÞ : ð4:36Þ

6. Class DIII

The class DIII has the three symmetries T −, Cþ, and
T −Cþ. Then UB satisfies

T−UBT−1
− ¼ UB; T− ¼ ðiσ2 ⊗ 1NÞK; ð4:37Þ

CþUBC−1þ ¼ −UB; Cþ ¼ ðiσ2 ⊗ 1N=2 ⊗ iσ2ÞK;

ð4:38Þ

Γ−UBΓ−1
− ¼ −UB; Γ− ¼ 1N ⊗ σ2: ð4:39Þ

Since the CS is present, the Witten index in this class
should be zero, i.e.

ΔW ¼ 0: ð4:40Þ

T− and Γ− are anticommutative and we can take the
basis

Γ̃− ¼ Ṽ†Γ−Ṽ ¼ σ3 ⊗ 1N; ð4:41Þ

T̃− ¼ Ṽ†T−Ṽ ¼ ðσ1 ⊗ iσ2 ⊗ 1N=2ÞK

¼
�

0 ðiσ2 ⊗ 1N=2ÞK
ðiσ2 ⊗ 1N=2ÞK 0

�
ð4:42Þ

by the unitary matrix Ṽ

Ṽ ¼ WN↔2

1ffiffiffi
2

p
�

1N 1N

i1N −i1N

�
: ð4:43Þ

Here we define the real orthogonal matrix Wna↔nb which
exchanges the order of the direct product of an na × na
matrix A and an nb × nb matrix B such that

W⊤
na↔nbðA ⊗ BÞWna↔nb ¼ B ⊗ A; ð4:44Þ

Wna↔nb ¼
X
i;α

ðe⃗i ⊗ E⃗αÞðE⃗⊤
α ⊗ e⃗⊤i Þ; ð4:45Þ

e⃗⊤i ¼ ð0;…; 0|fflfflffl{zfflfflffl}
i−1

; 1; 0;…; 0Þ⊤; ð4:46Þ

E⃗⊤
α ¼ ð0;…;0|fflfflffl{zfflfflffl}

α−1

;1;0;…;0Þ⊤ ði¼ 1;…;na; α¼ 1;…;nbÞ:

ð4:47Þ

In this basis, ŨB ¼ Ṽ†UBṼ is restricted to the block off-
diagonalized form

ŨB ¼
�

0 uB
u†B 0

�
; uBu

†
B ¼ 1N;

ðσ2 ⊗ 1N=2Þu⊤B ðσ2 ⊗ 1N=2Þ ¼ uB: ð4:48Þ

Since uB is a unitary matrix, it can be diagonalized as

uB¼v†udv; ud¼

0
B@
eiα1 0

. .
.

0 eiαN

1
CA; v∈UðNÞ;

αi∈R ði¼1;…;NÞ: ð4:49Þ

Substituting the first equation in (4.49) into the third
equation in (4.48) with Jy ≡ σ2 ⊗ 1N=2, we can get the
relation

ðvJyv⊤Þud ¼ udðvJyv⊤Þ; ð4:50Þ

or equivalently
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ðvJyv⊤ÞijðudÞjj ¼ ðudÞiiðvJyv⊤Þij ði; j ¼ 1;…; NÞ;
ð4:51Þ

where i, j denote the indices of the matrix elements and are
not summed up. This implies that ðudÞii ¼ ðudÞjj if
ðvJyv⊤Þij ≠ 0. Then, by dividing both sides of the above

equation by u1=2d , we can also obtain the following relation:

ðvJyv⊤Þij
ffiffiffiffiffiffiffiffiffiffiffiffi
ðudÞjj

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
ðudÞii

p
ðvJyv⊤Þij: ð4:52Þ

This relation is also trivially satisfied in the case of
ðvJyv⊤Þij ¼ 0. With this relation, uB can be rewritten as

uB ¼ w⊤JywJy; w≡ v⊤u1=2d v�: ð4:53Þ

By definition, w is an N × N unitary matrix. This w
specifies the parameter space of uB. We can find that uB
is invariant by the transformation

w → gw ðg†g ¼ 1N; g⊤Jyg ¼ JyÞ: ð4:54Þ

Since g is an element of the symplectic group Sp(N=2), the
classifying space of UB is given by

R3 ¼
UðNÞ

SpðN=2Þ : ð4:55Þ

7. Class AII

The class AII has the T − symmetry. The additional
condition for UB is

T−UBT−1
− ¼ UB; T− ¼ ðiσ2 ⊗ 1NÞK: ð4:56Þ

Let F⃗ðiÞ and G⃗ðjÞ ði; j ¼ 1; 2;…Þ are orthonormal eigen-
vectors with UB ¼ þ1 and UB ¼ −1, respectively. From
the above condition, the vectors F⃗ðiÞ and T−F⃗

ðiÞ (with the
same index i) have the same eigenvalues UB ¼ þ1, and
they are orthogonal to each other from the direct calcu-
lation. If we have a boundary vector F⃗ðjÞði ≠ jÞ which is
orthogonal with F⃗ðiÞ and T−F⃗

ðiÞ, T−F⃗
ðjÞ is also orthogonal

with them. Therefore, the number of the eigenvalue UB ¼
þ1 is even in this class. The same is true for the case of G⃗ðjÞ

and T−G⃗
ðjÞ, and the number of the eigenvalue UB ¼ −1 is

also even. Then, in the type ð2N − k; kÞ BC, the number k
should be even. It should be noted thatN is also even for the
Qy transformation in T − to be well defined. Thus, the
Witten index in this class is given by an even number:

ΔW ¼ N − k ðk ¼ 0; 2; 4;…; N; N∶evenÞ: ð4:57Þ

This corresponds to the topological number 2Z.
For the type ð2N − k; kÞ BC, we can rewrite UB as

UB ¼ V

0
BBBB@

1ð2N−kÞ=2 0

−1k=2
1ð2N−kÞ=2

0 −1k=2

1
CCCAV†;

ð4:58Þ

where the 2N × 2N matrix V is a unitary matrix defined by

V ¼
�
F⃗ð1Þ;…; F⃗ð2N−k

2
Þ; G⃗ð1Þ;…; G⃗ðk

2
Þ;−T−F⃗

ð1Þ;…;−T−F⃗
ð2N−k

2
Þ;−T−G⃗

ð1Þ;…;−T−G⃗
ðk
2
Þ
�
: ð4:59Þ

This matrix is of the form

V ¼
�
A −B�

B A�

�
ð4:60Þ

with N × N matrices A and B. Since V is a unitarity matrix,
A and B must satisfy

A†Aþ B†B ¼ 1N; ð4:61Þ

−B⊤Aþ A⊤B ¼ 0; ð4:62Þ

AA† þ B�B⊤ ¼ 1N; ð4:63Þ

BA† − A�B⊤ ¼ 0: ð4:64Þ

Then V satisfies

V⊤
�

0 1N

−1N 0

�
V ¼

�
0 1N

−1N 0

�
: ð4:65Þ

This implies that the matrix V is an element of the
symplectic group SpðNÞ. However there is redundancy
left in this V. Let

gi ¼
�
Ai −B�

i

Bi A�
i

�
ð4:66Þ

be an element of SpðiÞ and we consider the matrix g which
belongs to Spðð2N − kÞ=2Þ × Spðk=2Þ such as
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g ¼

0
BBBBBB@

Að2N−kÞ=2 0 −B�
ð2N−kÞ=2 0

0 Ak=2 0 −B�
k=2

Bð2N−kÞ=2 0 A�
ð2N−kÞ=2 0

0 Bk=2 0 A�
k=2

1
CCCCCCA
: ð4:67Þ

We find that UB is invariant by the replacement V → Vg.
Therefore, the classifying space of UB is given by the coset
space

R4¼ ∪
N

k¼0

SpðNÞ
Spðð2N−kÞ=2Þ×Spðk=2Þ ðN;k∶evenÞ: ð4:68Þ

8. Class CII

The class CII has the three symmetries, T −, C−, and
T −C−. Then UB satisfies

T−UBT−1
− ¼ UB; T− ¼ ðiσ2 ⊗ 1NÞK; ð4:69Þ

C−UBC−1
− ¼ −UB; C− ¼ ð1N ⊗ iσ2ÞK; ð4:70Þ

ΓþUBΓ−1þ ¼ −UB; Γþ ¼ iσ2 ⊗ 1N=2 ⊗ iσ2: ð4:71Þ

Since the CS is present, the Witten index in the class CII is

ΔW ¼ 0: ð4:72Þ

When we take the basis

Γ̃þ ¼ Ṽ⊤ΓþṼ ¼ σ3 ⊗ 1N; ð4:73Þ

T̃− ¼ Ṽ⊤T−Ṽ ¼ ð12 ⊗ iσ2 ⊗ 1N=2ÞK

¼
�
iσ2 ⊗ 1N=2 0

0 iσ2 ⊗ 1N=2

�
K; ð4:74Þ

Ṽ ¼ 1ffiffiffi
2

p
�
1N=2 ⊗ σ3 −1N=2 ⊗ iσ2
1N=2 ⊗ σ1 1N

�
ð12 ⊗ WN=2↔2Þ

ð4:75Þ

using the matrixWN=2↔2 defined by (4.45), ŨB ¼ Ṽ⊤UBṼ
is of the form

ŨB ¼
�

0 uB
u†B 0

�
ð4:76Þ

with the conditions

u†BuB ¼ 1N; u⊤B ðσ2 ⊗ 1N=2ÞuB ¼ σ2 ⊗ 1N=2: ð4:77Þ
This means that the matrix uB is an element of the
symplectic group SpðN=2Þ. Therefore, the classifying
space of UB is given by

R5 ¼ SpðN=2Þ: ð4:78Þ

9. Class C

The class C has the C− symmetry with the condition

C−UBC−1
− ¼ −UB; C− ¼ ð1N ⊗ iσ2ÞK: ð4:79Þ

Let F⃗ðiÞði ¼ 1; 2;…Þ are orthonormal eigenvectors with
UB ¼ þ1. Then we can find that C−F⃗

ðiÞ has the opposite
eigenvalue UB ¼ −1 from the above condition. Therefore
UB has the same number of positive and negative eigen-
values, and the Witten index in this class is given by

ΔW ¼ 0: ð4:80Þ

Let us consider the basis change such as

C̃− ¼ Ṽ⊤C−Ṽ ¼ ðiσ2 ⊗ 1NÞK; Ṽ ¼ WN↔2; ð4:81Þ

where WN↔2 is defined by (4.45). In this basis, we
diagonalize the matrix ŨBð¼ Ṽ⊤UBṼÞ as

ŨB ¼ V

�
1N 0

0 −1N

�
V†; ð4:82Þ

where V is a 2N × 2N unitary matrix which specifies the
parameter space of UB. By using the redundancy of V, the
matrix can be given as follows:

V¼ðṼF⃗ð1Þ;…;ṼF⃗ðNÞ;−C̃−ṼF⃗
ð1Þ;…;−C̃−ṼF⃗

ðNÞÞ: ð4:83Þ

From Eq. (4.81), V is of the form

V ¼
�
A −B�

B A�

�
ð4:84Þ

with N × N matrices A and B. Repeating the same argu-
ment in the class AII, the matrix V defined in this way is an
element of the symplectic group SpðNÞ. Furthermore,
Eq. (4.82) is invariant under the transformation

V → V

�
U 0

0 U�

�
; U ∈ UðNÞ: ð4:85Þ

Therefore, the classifying space of UB is given by

R6 ¼
SpðNÞ
UðNÞ : ð4:86Þ

10. Class CI

The class CI has the three symmetries, T þ, C−, and
T þC−. The additional conditions for UB are
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TþUBT−1þ ¼ UB; Tþ ¼ K; ð4:87Þ

C−UBC−1
− ¼ −UB; C− ¼ ð1N ⊗ iσ2ÞK; ð4:88Þ

Γ−UBΓ−1
− ¼ −UB; Γ− ¼ 1N ⊗ σ2: ð4:89Þ

Since the CS is present, the Witten index in the class CI is

ΔW ¼ 0: ð4:90Þ

When we take the basis

Γ̃− ¼ Ṽ†Γ−Ṽ ¼ σ3 ⊗ 1N; ð4:91Þ

T̃þ ¼ Ṽ†TþṼ ¼ ðσ1 ⊗ 1NÞK ¼
�

0 1N ·K

1N ·K 0

�

ð4:92Þ

with the unitary matrix Ṽ

Ṽ ¼ WN↔2

1ffiffiffi
2

p
�

1N 1N

i1N −i1N

�
; ð4:93Þ

the matrix ŨB ¼ Ṽ†UBṼ is given by

ŨB ¼
�

0 uB
u†B 0

�
u†BuB ¼ 1N; u⊤B ¼ uB: ð4:94Þ

Since uB is a unitary matrix, it can be diagonalized, using
the unitary matrix v, as

uB ¼ v†udv; ud ¼

0
B@

eiα1 0

. .
.

0 eiαN

1
CA;

v ∈ UðNÞ; αi ∈ R ði ¼ 1;…; NÞ: ð4:95Þ

From the relation u⊤B ¼ uB, we obtain

ðvv⊤Þud ¼ udðvv⊤Þ; ð4:96Þ

or equivalently

ðvv⊤ÞijðudÞjj ¼ ðudÞiiðvv⊤Þij; ð4:97Þ
where i, j denote the indices of the matrix elements and are
not summed up. If ðvv⊤Þij ≠ 0, the above relation implies
that ðudÞii ¼ ðudÞjj. Then, by dividing both sides of the

above equation by u1=2d , we can also obtain the following
relation:

ðvv⊤Þij
ffiffiffiffiffiffiffiffiffiffiffiffi
ðudÞjj

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
ðudÞii

p
ðvv⊤Þij: ð4:98Þ

This relation is also trivially satisfied in the case of
ðvv⊤Þij ¼ 0. Using this relation, uB can be rewritten as

uB ¼ w⊤w; w≡ v⊤u1=2d v�; ð4:99Þ

where w satisfies

ww† ¼ 1N: ð4:100Þ

This means the parameter space of uB is specified by the
unitary matrix w. However, Eq. (4.99) is invariant under the
replacement

w → gw; g ∈ OðNÞ: ð4:101Þ

Therefore, the classifying space of UB is given by

R7 ¼
UðNÞ
OðNÞ : ð4:102Þ

B. Z2 index

Finally, let us discuss the Z2 index, which is the number
of Dirac zero modes in module 2.
The topological property of this index results from the

degeneracy of massive mode functions due to the symmetry
Cþ. As we have seen in Sec. III E 2, by the Cþ, the mode
functions are transformed as follows:

fðiÞn ðyÞ⟶Cþ fCþðiÞn ðyÞ ¼ QyPyg
ðiÞ�
n ðyÞ; ð4:103Þ

gðiÞn ðyÞ⟶Cþ gCþðiÞn ðyÞ ¼ QyPyf
ðiÞ�
n ðyÞ: ð4:104Þ

Using Eqs. (2.10) and (2.11), we can show that the fðiÞn ðyÞ
and fCþðiÞn ðyÞ with the same index i are orthogonal with
each other for n ≠ 0. Furthermore, if we have a massive

mode fðjÞn ðyÞði ≠ jÞ which is orthogonal with fðiÞn ðyÞ and

fCþðiÞn ðyÞ, fCþðjÞn ðyÞ is also orthogonal with them. This is

also the same for gðiÞn ðyÞ. Therefore the degeneracy of the

massive mode functions fðiÞn ðyÞ and gðiÞn ðyÞðn ≠ 0Þ with the
symmetry Cþ is always multiple of two respectively, and
their mass eigenvalues move together by deformations of
the parameters. On the other hand, zero mode functions

fðiÞ0 ðyÞ and gðiÞ0 ðyÞ are not necessarily degenerate respec-
tively (although the number of independent zero mode

fðiÞ0 ðyÞ and that of gðiÞ0 ðyÞ are equal to each other by Cþ).
Then, the number of massless Dirac fields NDð≡ðNf0 þ
Ng0Þ=2Þ mod 2 is invariant by continuous deformations of
the parameters in the boundary conditions as described in
Fig. 8, and this index can be topologically nontrivial if the
symmetry Cþ is present.
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In the following subsection, we confirm that theZ2 index
becomes topologically nontrivial and take the Z2 values in
the class D and BDI depending on the discontinuity of their
classifying spaces, while it is topologically trivial in the
other classes.

1. Class D

First, let us consider the case of the class D. Since this
class has the Cþ symmetry, there is a possibility that the Z2

index becomes topologically nontrivial. In this class, from
the discussion in Sec. IVA 5, the matrix UB can be written
as follows:

UB ¼ ṼRð−σ2 ⊗ 1NÞR⊤Ṽ†; R ∈ Oð2NÞ; ð4:105Þ

where

Ṽ ¼ 1ffiffiffi
2

p
�

1N 1N=2 ⊗ iσ1
−1N=2 ⊗ iσ2 1N=2 ⊗ iσ3

�
: ð4:106Þ

The classifying space of this class is given by the
disconnected space Oð2NÞ=UðNÞ from the matrix R and
divided into two connected regions by detR ¼ þ1 and
detR ¼ −1. This determinant is related to the number of
Dirac zero modes ND. The result is

detR ¼ ð−1ÞND: ð4:107Þ

Therefore, ND ¼ 0 mod 2 for the parameter space with
detR ¼ þ1 andND ¼ 1mod 2 for the parameter spacewith
detR ¼ −1. This is the topological invariant as discussed in
the beginning of this subsection, and we can find that this
index corresponds to the topological number Z2 of the 0th
homotopy group of the classifying space.
To confirm this result, it is enough to see a simple example

since this index is invariant by continuous deformations of
parameters. Then, as an example, we take R as

R ¼

0
BBB@

1m ⊗ σ3

1N−2m

12m

1N−2m

1
CCCA

ðm ¼ 0;…; N=2Þ ð4:108Þ

with detR ¼ ð−1Þm. For this R, UB is given by

UB ¼

0
BBB@

02m 12m
1N=2−m ⊗ σ1 0N−2m

12m 02m
0N−2m 1N=2−m ⊗ σ1

1
CCCA.

ð4:109Þ

Then the boundary condition (2.16) and (2.17) for the zero
modes are written as

mn

0

f (i)n (y) g(i)n (y)
mn

0

f (i)n (y) g(i)n (y)
mn

0

f (i)n (y) g(i)n (y)

m1

m1

ND = 0 mod 2 ND = 0 mod 2 ND = 0 mod 2

mn

0

f (i)n (y) g(i)n (y)
mn

0

f (i)n (y) g(i)n (y)
mn

0

f (i)n (y) g(i)n (y)

m1

m1

ND = 1 mod 2 ND = 1 mod 2 ND = 1 mod 2

FIG. 8. The figures represent the change in the number of zero modes under continuous deformations of parameters with the symmetry
Cþ. Comparing the top three figures with the bottom three figures, we can see that the number of massless Dirac fields ND mod 2 is
invariant.
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0
BBB@

12m −12m
1N=2−m ⊗ ð12 − σ1Þ 0N−2m

−12m 12m
0N−2m 1N=2−m ⊗ ð12 − σ1Þ

1
CCCA

0
BBBBBB@

FðiÞ
1 e−MðL0þεÞ

FðiÞ
1 e−MðL1−εÞ

..

.

FðiÞ
N e−MðLN−1þεÞ

FðiÞ
N e−MðLN−εÞ

1
CCCCCCA

¼ 0; ð4:110Þ

0
BBB@

12m 12m
1N=2−m ⊗ ð12 þ σ1Þ 0N−2m

12m 12m
0N−2m 1N=2−m ⊗ ð12 þ σ1Þ

1
CCCA

0
BBBBBB@

GðjÞ
1 eMðL0þεÞ

−GðjÞ
1 eMðL1−εÞ

..

.

GðjÞ
N eMðLN−1þεÞ

−GðjÞ
N eMðLN−εÞ

1
CCCCCCA

¼ 0; ð4:111Þ

where theFðiÞ
a andGðjÞ

a ða ¼ 1;…; NÞ are the coefficients in Eqs. (2.27) and (2.28). Herewe assume that the bulkmassM ≠ 0.
Then the coefficients are given by

FðiÞ
1 ¼ FðiÞ

N=2þ1e
MðL0−LN=2Þ;…; FðiÞ

m ¼ FðiÞ
N=2þme

MðLm−1−LN=2þm−1Þ; ð4:112Þ

GðjÞ
1 ¼ −GðjÞ

N=2þ1e
−MðL0−LN=2Þ;…; GðjÞ

m ¼ −GðjÞ
N=2þme

−MðLm−1−LN=2þm−1Þ; ð4:113Þ

and the others vanish for the case of M ≠ 0. Therefore, the

independent coefficients are FðiÞ
1 ;…; FðiÞ

m and GðiÞ
1 ;…; GðiÞ

m ,
and the number of independent zero mode functions is m

for fðiÞ0 ði ¼ 1;…; mÞ and gðjÞ0 ðj ¼ 1;…; mÞ, respectively.
Thus ND ¼ m for the case of M ≠ 0 and we can find that
the relation (4.107) is satisfied. We also mention that we
obtain ND ¼ N −m Dirac zero modes for M ¼ 0 unlike
the case of M ≠ 0. But the result (4.107) does not change
since N is even in this class.

2. Class BDI

Next, we consider the class BDI. This class has the T þ
symmetry in addition to Cþ. From the discussion in
Sec. IVA 4, UB can be written as follows:

UB ¼ Ṽ

�
0 uB
u⊤B 0

�
Ṽ⊤; uB ∈ OðNÞ; ð4:114Þ

where

Ṽ ¼ 1ffiffiffi
2

p
�

1N 1N=2 ⊗ σ1

−1N=2 ⊗ iσ2 1N=2 ⊗ σ3

�
: ð4:115Þ

We mention that if we restrict the matrix R in (4.105) as

R ¼
�
uB 0

0 1N

�
; ð4:116Þ

Eq. (4.114) can be obtained.
The classifying space in this class is OðNÞ specified by

the matrix uB and divided into two spaces by det uB ¼ þ1
and det uB ¼ −1 disconnected with each other. By con-
sidering the same example in the class D, we obtain the
following relation between this determinant and the number
of Dirac zero modes ND:

det uB ¼ ð−1ÞND: ð4:117Þ

Therefore, we see that the Z2 index in this class corre-
sponds to the topological number Z2 of the 0th homotopy
group of this classifying space.

3. The other classes

In the class DIII, the T − symmetry is present in addition
to Cþ. Under the T − transformation, the mode functions are
transformed as

fðiÞn ðyÞ⟶T − fT −ðiÞ
n ðyÞ ¼ Qyf

ðiÞ�
n ðyÞ; ð4:118Þ

gðiÞn ðyÞ⟶T − gT −ðiÞ
n ðyÞ ¼ Qyg

ðiÞ�
n ðyÞ: ð4:119Þ
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Then we can show that the fðiÞn ðyÞðgðiÞn ðyÞÞ and

fT −ðiÞ
n ðyÞðgT −ðiÞ

n ðyÞÞ with the same index i are orthogonal
to each other for all n. Therefore this T − symmetry
leads to the twofold degeneracy of not only the massive
modes but also zero modes like the Kramers degeneracy.
Then the number of zero mode ND mod 2 is always
trivial in this class. Instead of the Z2 index, one may
consider a fourfold degeneracy of massive mode func-
tions by the combination of T − and Cþ and ND mod 4
to become topologically nontrivial, but this is not the
case since the fourfold degeneracy of massive modes
does not generally hold. Actually, when we consider the
boundary condition

UB ¼

0
BBBBBBBBB@

u1
. .
.

0

uN=2

u1
0 . .

.

uN=2

1
CCCCCCCCCA
; ð4:120Þ

ua ¼
�
cos θa sin θa
sin θa − cos θa

�
; θa ∈ ½0; 2πÞ

ða ¼ 1;…; N=2Þ; ð4:121Þ

two Dirac zero modes appear for each θa which satisfies
tanðθa=2Þ ¼ e−MðLa−La−1Þ. Then we find that the Dirac
zero modes vanish by continuous deformations of the
parameters θaða ¼ 1;…; N=2Þ, and thus it is topologi-
cally trivial.
We can also show that the Z2 index is trivial in the other

classes since they have no symmetries which leads to the
degeneracy only for massive modes.

V. SUMMARY AND DISCUSSION

In this paper, we studied 5D fermions of which extra
dimension is on quantum graphs. We showed that the
boundary conditions of the quantum graphs are classi-
fied into ten symmetry classes according to the presence
or absence of time-reversal, charge conjugation, and
extra-spatial symmetries of 5D fermions. The obtained
symmetry classes are identical to the AZ symmetry
classes of SPT phases of gapped free-fermion systems.
A Hermitian matrix UB specifying the boundary con-
ditions corresponds to a 0d Hamiltonian of gapped free
fermion systems. Furthermore, the constraints for UB
originating from symmetries of 5D fermions are the
same as those for the 0d Hamiltonian with AZ sym-
metries. Based on these results, we introduced topo-
logical numbers for the boundary conditions in the same
manner as those of 0d topological insulators and super-
conductors. Importantly, the topological numbers of the

boundary conditions coincide with the number of KK
4D chiral or Dirac fermions localized at the vertex of
quantum graphs, which would be a generalization of the
bulk-boundary correspondence for gapped free-fermion
systems.
Our classification implies that class A with no

symmetries or class AI with the time-reversal symmetry
is preferable for realizing the fermion flavor structure in
the standard model. The nontrivial topological number
Z in these classes may provide three generations of 4D
chiral fermions.9 To fully reproduce the standard model
in our quantum graph approach, we must investigate
gauge fields on quantum graphs. (Higgs bosons can be
obtained by five-dimensional gauge fields.) Although
Refs. [25–29] take into account gauge fields, they
consider the only simple boundary conditions such as
the Dirichlet and Neumann conditions. In general
graphs, more involved boundary conditions are possible
for gauge fields. The boundary conditions for gauge
fields are related to those of fermions by 5D gauge
symmetry since the 5D fermions after the gauge trans-
formation should satisfy the same boundary condition,
which restricts an allowed gauge parameter space. This
restriction affects the 4D spectra of the gauge fields and
can induce gauge symmetry breaking. We should also
take care of the gauge anomalies due to the 4D chiral
fermions, but our quantum graph approach is based on a
5D theory, so it should be anomaly free. The anomalies
of 4D chiral fermions at the vertex of quantum graphs
are canceled with the contributions of massive modes at
the edges of quantum graphs by the anomaly inflow
mechanism [41–43].
The key point in the classification of the boundary

conditions for the 5D fermions is the existence of chiral
spinors in four dimensions. The Hermiticity of the boun-
dary matrixUB originates from the independence of the left
and right-handed chiral fields under the 4D Lorentz
invariance. We expect that the same discussion works
for general odd D-dimensional cases since chiral spinors
exist in D − 1 dimensions. In contrast, for even D-dimen-
sions, we cannot apply the same discussions. In fact, the
matrix for the boundary conditions is not generally
Hermitian in even dimensions (See, e.g. [19]). We leave
the extension of our results to other spacetime dimensions
as a future problem. In particular, the investigations for
lower dimensions would be important from the viewpoint
of condensed matter physics.
We are also interested in the correspondence to SPT

phases in other dimensions. So far, we have discussed the

9For example, Refs. [25–29] discuss the realization of the mass
hierarchies and CP-violating phase by using the 1D extra space
consisting of three line segments with the Dirichlet boundary
conditions for fermions. This corresponds to the case with
jΔW j ¼ 3, and thus three generations of 4D chiral fermions
appear.
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relation between the boundary conditions for quantum
graphs and 1þ 0d SPT phases for gapped free fermion
systems, assuming that the 4D spacetime and the extra
dimension are factorized, and the boundary conditions on
the extra space do not have a 4D momentum dependence.
However, if we consider the boundary conditions depend-
ing on the 4D momentum (or equivalently the 4D deriva-
tive), the boundary condition matrix would be regarded as a
higher dimensional Hamiltonian, and thus we may obtain
the correspondence to SPT phases in other dimensions.
Another future direction is the effect of interactions. So

far, we have considered free fermions on quantum graphs.
However, by considering interactions and also quantum
corrections, the boundary conditions would be changed,
and breakdowns of the topological phases may occur,
which affects low-energy physics. For the topological
matter side, it has been known that SPT phases of gapped
free-fermion systems may break down by interactions
preserving symmetries (see, e.g. [44–51]). For example,

the Z classification of class BDI for 1D topological
superconductor reduces to the Z8 classification if quartic
interactions are present. We are interested in whether a
similar breakdown occurs in the topological classification
of boundary conditions. It is also known that interacting
SPT phases in bulk can be characterized by perturbative
and/or nonperturbative anomalies on boundary [42,52–55].
This is described by an anomaly inflow. Thus, it could be
interesting to consider the boundary conditions from the
viewpoint of anomalies. We hope to revisit these issues in
the near future.
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