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I. INTRODUCTION 

SPIRATION pneumonia has been the seventh main cause 
of death in Japan for the past two years. 99% of the deaths 

from aspiration pneumonia occur in elderly individuals over 65 
years of age [1], [2]. This condition is caused by pulmonary 
aspiration resulting from poor swallowing function [3], [4]. As 
society ages in Japan, the number of patients with aspiration 
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pneumonia is increasing, presenting a serious problem for the 
medical community. 
 Training the muscles used for swallowing is an effective way 
for the elderly to reduce their risk of aspiration. One such 
swallowing rehabilitation technique is the Mendelsohn 
maneuver, in which the trainee voluntarily prolongs laryngeal 
elevation [5]. This method enhances the hyoid bone and the 
larynx, and strengthens the musculus constrictor pharyngis. 
Surveys in United States and Australia reported that the 
Mendelsohn maneuver was successfully implemented in the 
rehabilitation of dysphagia [6], [7]. Further, several studies 
have shown that this technique improves swallowing function 
and is effective for swallowing rehabilitation [8]-[12]. 

 Recently, the use of biofeedback devices, utilizing surface 
electromyogram (sEMG), reflective photosensors, or 
accelerometers, has been proposed as a means of increasing the 
efficacy of the Mendelsohn maneuver. sEMG was found to be 
effective for training individuals in the maneuver by detecting 
the group of suprahyoid muscles involved in swallowing 
motions [13]. Ding et al. reported that sEMG data could be used 
to show the initiation and termination of muscle activity during 
both normal swallowing and the Mendelsohn maneuver [14]. 
However, sEMG requires treatment of the skin in advance, and 
it can be difficult for trainees to attach the sEMG electrodes 
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Fig. 1.  The sequential motions of the neck and throat during 
swallowing. 

 

Fig. 2. Main components and sizes of the band-shaped device.  

 

Fig. 3. Band-shaped device worn around the neck. 

themselves. Hayashi et al. proposed a wearable device with a 
photo-reflective sensor array [15], [16]. The sensor array was 
mounted on the anterior region of the neck using a flexion belt 
and measured the distance between the sensor array and the 
neck skin surface. The device could pinpoint the laryngeal 
position from the measured data, and trainees could observe the 
measurements using a visual feedback system with the 
wearable device. However, the photo-reflective sensor requires 
an air gap between the sensor and the neck skin, resulting in a 
thicker device that might inhibit voluntary neck motion in 
trainees. Accelerometer-based feedback systems have been 
used to measure the acceleration of the neck motion during the 
laryngeal elevation. Using this technique, the relationship 
between the accelerometry signals and a video feed from 
videofluoroscopy could be determined [17]. Indeed, a 
biofeedback system was used to show the acceleration signals 
to a patient on a computer screen [18], [19]. However, because 
the accelerometer chip was soldered to a solid substrate, the 
device would require custom fitting to individuals’ neck size. 
Therefore, patients being trained in the Mendelsohn maneuver 
have not yet used these devices. Instead, these patients require a 
biofeedback device that is thin, lightweight, and easy to wear 
and use. 

In this study, we report a wearable device with stretchable 
strain sensors for use in the Mendelsohn maneuver. The strain 
sensor is thin, stretchable, lightweight, and fits a curved surface, 
such as the neck. We embedded the strain sensor into a 
band-shaped device that can be worn around the neck. The 
device measures the change in the circumferential length of the 
neck. In addition, we developed an algorithm that can detect a 
laryngeal elevation based on these measurements. The 
algorithm uses dynamic time warping, and detects the onset and 
offset timings of the elevation in real-time. An experiment with 
elderly subjects revealed the effectiveness of the band-shaped 
device and algorithm.  

II. METHODS 

A. Device 

The sequential motions that occur during swallowing are 
shown in Fig. 1. The larynx begins moving upward at the onset 
time of the swallow and returns to its original position at the 
offset time, after the laryngeal elevation. The swallowing 
motion shortens the circumferential length of the neck during 
the laryngeal elevation. Speech-language-hearing therapists 
(STs) identify these changes in laryngeal elevation using visual 
inspection and palpation as evidence for the Mendelsohn 
maneuver. Hence, we focused on the measurement of the 
circumference-length change of the neck. 

To measure the circumference-length change of the neck, we 
used a stretchable strain sensor [20]. The strain sensor was 
composed of three elastomer sheets and two electrodes, which 
were alternately layered. The electrodes were made of 
conductive particles. The elastomer sheets were highly flexible, 
stretchable, and exhibited a low stress of 0.83 MPa at 100% 
strain. Hence, the strain sensor could be easily stretched by 
hand. The thickness and density of the strain sensor were 

approximately 150 μm and 1.1 g/cm3, respectively. These 
characteristics of the strain sensor made the sensor suitable as a 
wearable device. The capacitance of the strain sensor changed 
in concert with its change in length. 

We incorporated the stretchable strain sensor into a 
band-shaped wearable device as shown in Fig. 2. The device 
was composed of a neckband and two strain sensors. The 
neckband was made of a stretchable fabric with hook-and-loop 
fasteners. The width and length of the neckband were 50 mm 
and 410 mm, respectively. Trainees could adjust the length of 
the neckband by tightening the band with the hook-and-loop 
fasteners. The length and width of the strain sensors were 50 
mm and 5 mm, respectively, and the gap between the sensors 
was 5 mm. The strain sensors were covered with a white 
stretchable fabric. Both ends of the strain sensors were attached 
to the neckband using the hook-and-loop fasteners. The weight 
of the wearable device with the strain sensors was 35 g. To 
measure the length of the strain sensor, we developed a wireless 
communication unit. The strain sensors attached to the 
neckband were connected to the wireless communication unit, 
which included a capacitance-to-voltage converter, an 
analog-to-digital converter, and a wireless circuit. The wireless 
communication unit converted the capacitance of the strain 
sensors to voltage and sent the voltage data to a commercially 
available tablet computer by wireless. The size of the wireless 
communication unit was 80×65 and 15 mm in area and 
thickness. Its weight was 41 g.   The sampling frequency was 10 
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Fig. 5. Absolute first-order difference calculated from measured data. 

 

(a) Bathtub shape.       (b) Long-V shape. 

Fig. 4. Typical waveform of measured data during the Mendelsohn
maneuver. 

Hz. Fig. 3 shows a trainee wearing the band-shaped device. The 
lower strain sensor was positioned over the larynx. In this case, 
the voltage in the lower sensor decreases during the laryngeal 
elevation. Then, the voltage returns to the initial level after the 
laryngeal elevation, as shown in Fig. 1. 

B. Algorithm 

We developed an algorithm that would allow users wearing 
the band-shaped device to observe the onset and offset times of 
the laryngeal elevation for the Mendelsohn maneuver in 
real-time. Before developing the algorithm, we obtained 
sample data in a preliminary experiment. The two typical 
time-series wave shapes are shown in Fig. 4(a) and (b). One is a 
bathtub shape, which resulted from trainees keeping their 
larynx at the highest position during the Mendelsohn maneuver. 
The other is a long-V shape. Although trainees tried to maintain 
the heightened position of their larynx, the larynx gradually 
lowered. In this case, the voltage of the strain sensor gradually 
increased, as in Fig. 4(b). A point in common between the 
bathtub and long-V shapes is a sharp drop of the voltage at the 
onset time. However, the changes in the data at the offset time 
exhibit distinct differences. Hence, we designed an algorithm 
that detects the onset and offset times using a common method 
and different methods for the two typical data types. 
1) Detection of onset time 

To detect the onset time, we developed a common algorithm 
for the bathtub and long-V shaped data. The algorithm 
calculates the absolute first-order difference of the 
measurements by: 
 

dv[t] = |v[t] – v[t - 1]|        (1) 
 
where dv[t] and v[t] are the absolute first-order difference and 
the voltage at time t, respectively. Fig. 5 illustrates the 
time-series difference calculated from the measurement data. 
The time-series difference shows a sharp change at the onset 
time. The algorithm detects this change using a threshold of 
, where  is the average value of the time-series 
difference at rest and  is the difference between the maximum 
and minimum differences at rest. The coefficient 1.2 of  is 
determined by trial and error. If dv[t] is higher than the 
threshold, the algorithm determines its time as the onset time. 
2) Detection of offset time 

After the detection of the onset time, the algorithm detects 
the offset time by dynamic time warping (DTW), which is one 
of the algorithms used for quantifying similarity between two 
sequential data sets [21], [22]. DTW allows partial expansion 
and contraction of sequential data and determines an optimal 
match and a DTW distance. In addition, DTW can add a 
constraint to the expansion and contraction in matching. The 
smaller DTW distance means a more similar relationship 
between two sequential data points. In this study, we created 
template data for the bathtub and long-V shapes to calculate 
similarities with the data measured using the strain sensor. The 
algorithm has different conditions for the offset time detection 
for the bathtub and long-V shapes as follows. 
 For the bathtub shape: 

If the following conditions hold simultaneously, the 
algorithm detects the time as the offset time. 

(a1) The DTW distance is small: 

   D(X[ton : t], Y) ≦ 
(a2) The DTW distance decreases rapidly: 

D(X[ton : t - tint], Y) - D(X[ton : t], Y) > 
X[ton : t] and Y are the measurement data from the onset time ton  
to the current time t and the template data, respectively. 
D(X[ton : t], Y) is the DTW distance between X[ton : t] and Y.  
and  are the thresholds of the two conditions. tint is an interval 
time. The condition (a1) evaluates the similarity between the 
measurement data and the template data. In the case of the 
bathtub shape, the DTW distance decreases rapidly after the 
right slope of the bathtub. The condition (a2) evaluates the 
rapid decrease in the DTW distance. 
 For the long-V shape: 

If the following conditions hold simultaneously, the 
algorithm detects the time as the offset time. 

(b1) The DTW distance is small: 

   D(X[ton : t], Y) ≦ 
(b2) SPRING finds the optimal subsequence. 

The condition (b1) is the same as (a1). The algorithm uses 
SPRING [23], [24], which detects the optimal subsequence in 
data streams based on the minimum DTW distance matrix. The 
DTW distance decreases gradually in the right slope of the 
long-V shape. In this case, even if the DTW distance at time t is 
smaller than the threshold, the DTW distance at time t+1 may 
be smaller than the DTW distance at time t. Hence, the 
algorithm has to find the terminal of the right slope of the 
long-V shape. SPRING finds the optimal subsequence from the 
measurement data and the algorithm detects the terminal time 
as the offset time. 

At the time when the onset time is detected, the algorithm is 
not able to discriminate whether the measurement data is the 
bathtub shape or the long-V shape. The algorithm calculates the 
DTW distances, along with the conditions for both the bathtub 
and long-V shapes, for every new measured data point, with 
multiple template data for the shapes. Hence, when the offset 
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(a) Bathtub shape. 

 

(b) Long-V shape. 

Fig. 7. Two groups of measured data separated by cluster analysis. The
bold line shows the averaged data.  

 

Fig. 6. Cluster dendrogram of measurement data in the Mendelsohn
maneuver. The horizontal axis shows the index number from 0 to 53 of 
measurement data. 

 

(a) Bathtub shape.       (b) Long-V shape. 

Fig. 8. Schemas of template data. 

time is detected, the shape of the measurement data is also 
determined. 

III. EXPERIMENT 

All procedures were in accordance with the ethical standards 
of the institutional and/or national research committee and with 
the 1964 Helsinki declaration and its later amendments. This 
study was approved by the Ethical Committee of Graduate 
School of System Informatics, Kobe University (Permission 
number: 30-02), the ethical standards of the Committee on 
Human Experimentation at the Graduate School of Health 
Sciences, Kobe University (Permission number: 805) and the 
Ethical Committee of Mie Central Medical Center (Permission 
number: MCERB-201832). 

The main target of the wearable device is the elderly. Hence, 
we obtained measurement data from subjects 60 years or older. 
The subjects did not have a respiratory disease or heart failure, 
which is a contraindication for the Mendelsohn maneuver. In 
the experiment, subjects wore the band-shaped device with one 
of the strain sensors on the laryngeal prominence as shown in 
Fig. 3. The subjects sat and rested for 3 s before the laryngeal 
elevation. Then, they started swallowing with 3 ml of water and 
kept their larynx at the highest position as long as possible. The 
wearable device measured the circumference-length change of 
the neck during the experiment. Simultaneously, an ST 
detected the onset and offset of the laryngeal elevation by 
palpation and sent their times to the tablet PC using a wireless 
push button. The tablet PC connected to the band-shaped 
device and the push button recorded the data from them. We 
checked that the human subjects were able to perform the 
Mendelsohn maneuver in advance. The human subjects were 
28 healthy volunteers of average characteristics: female:male = 
10:18 and mean age: 70.9 ± 6.2 years. The subjects comfortably 
wore the neckband without the feeling of suffocation during the 
experiment. We obtained 54 data sets from the subjects. 
Hereafter, we use only the data measured from the strain sensor 
on the laryngeal prominence. The measurement data were 
normalized to fall within a range between 0 and 1. 

A. Cluster analysis 

To check the tendency of the measured data, Ward's method 
in hierarchical cluster analysis was used to separate the data 
[25]. In the analysis, the data were cut between the onset and 
offset times detected by the ST and were expanded or 
contracted to the time interval of 4.5 s. Fig. 6 shows a cluster 
dendrogram of the measured data, where the horizontal axis 
shows the index numbers of the data. The measured data were 
mainly separated into two groups. The left and right groups in 
Fig. 6 are shown in Fig. 7(a) and 7(b), respectively. Fig. 7(a) 
shows the larynx kept at the highest position before falling. On 
the other hand, Fig. 7(b) shows that the larynx fell gradually to 
the original position. We verified that the measured data from 
the elderly subjects exhibit both the bathtub and long-V shapes. 

B. Template data 

The algorithm in section B requires template data to detect 
the onset and offset times. Next, we created the template data. 
To avoid the template data depending on a particular set of 
measured data, the template data were randomly determined 
based on the waveforms of the measured data. 
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(a) Bathtub shape.       (b) Long-V shape. 

Fig. 9. Template data for the bathtub and long-V shapes. 

 The analysis showed that the measured data were separated 
into bathtub or long-V shapes. Hence, the schemas are shown in 
Fig. 8(a) and 8(b). Because DTW in the algorithm determines 
the DTW distance between the measurement data and the 
template data by expansion and contraction, the parameters of 
the time were constant as follows: tb1=0.5, tb2=6.5, tb3=13, 
tv1=0.5 and tv2= tv3=6.5 s. In this case, tb1 and tv1 are the onset 
timings, and tb2 and tv2 are the offset timings. The time interval 
between the onset and offset times is 6 s. DTW in the algorithm 
uses a slope constraint [21], which limits the expansion and 
contraction of the data from 1/3 to 3 times. Thus, the template 
data can be used with the measured data in the time interval 
from 2 to 18 s. The six normalized voltages from vb1 to vv3 were 
randomly determined. The ranges of the random values are 
shown in Table I. Fig. 9(a) and Fig. 9(b) show the template data 
for the bathtub and long-V shapes, respectively. Each shape has 
ten templates. In the following experiment, if 3 of 10 templates 
met the condition described in section II-B, the algorithm 
determined the offset time by averaging the offset times. 

C. Detection of onset and offset times 

The algorithm determined the onset and offset times of the 
laryngeal elevation based on 54 measured data sets. The onset 
times were detected in all 54 data sets. The offset times were 
detected in 27 data sets with the bathtub shape and 26 data sets 
with the long-V shape. The algorithm could not detect only one 
offset time. Typical examples of bathtub and long-V shapes are 
shown in Fig. 10(a) and Fig. 10(b). The upper plots show the 
measured data detection times. The lower plots show the DTW 
distances between the measured data and the template data. The 
algorithm determined the DTW distance after 2 s from the onset 
time due to the slope constraint. When the DTW distances 
decreased, the algorithm detected the offset times. Fig. 10(c) 
shows an example of a detection failure of the offset time. In 
this figure, the measured data had a high peak after the 

detection of the onset time. Because the measured data was not 
similar to the template data, the DTW distances did not 
decrease in comparison with Fig. 10(a) and Fig. 10(b). 

Table II shows mean absolute errors (MAEs) and standard 
deviations of the onset and offset times and their interval times 
detected using the algorithm and the ST, with the exception of 
the failed offset detection. The MAEs of the interval times were 
within 1 s. 

IV. DISCUSSION 

The hierarchical cluster analysis determined the distances 
between the measured data. The dendrogram in Fig. 6 
visualizes their relationship. The measured data were mainly 
separated into two groups. The group with the bathtub shape 
corresponded to subjects who kept their larynx at the highest 
position during the Mendelsohn maneuver. The group with the 
long-V shape corresponded to subjects whose larynx fell 
gradually during the Mendelsohn maneuver. The difference 
between the groups might distinguish the quality of the 
Mendelsohn maneuver. 

A failed case of offset time detection using the algorithm is 
shown in Fig. 10(c). The voltage rose after the onset time and 
changed in a manner mimicking the bathtub shape. Because the 
subject had a muscle disease, the circumferential length of the 
subject’s neck may have changed before and after the maneuver. 
When we normalized the data, the normalized data had low 
values at rest before and after the Mendelsohn maneuver, which 
resulted in differences from the bathtub shape template data. 
Hence, the algorithm missed the detection of the offset time. 
The normalization process is necessary to reduce the difference 
between the maximum and minimum in the measured data. 
However, additional processes are required in some cases, such 
as Fig. 10(c), to detect the offset time. 

The algorithm detected the onset and offset times from 53 
data sets out of 54 in 28 elderly subjects. The onset times were 
detected using the threshold for the first-order difference. The 
MAEs between them and the times detected by the ST were 
within 1 s. Regarding the offset times in Fig. 10(a), the 
algorithm detected the offset times for the bathtub shape 
without a large error because the DTW distances rapidly fell 
near the offset time determined by the ST. In the case of the 
long-V shape, the algorithm detected the offset times based on 
the optimal match determined using SPRING. The algorithm 
using multiple conditions for detection worked effectively. 
Hence, the MAEs between the interval times for the algorithm 
and the ST were within 1 s. This result means that a 
biofeedback system using this algorithm has a 1-s delay at most. 
Although the other devices mentioned in section I were 
successful in some ways, their accuracy was not validated using 
a method like MAE, determined by combining the device and 
an algorithm. In contrast, we validated the accuracy of onset 
and offset times using the wearable device and the algorithm 
described in this paper. We do not consider the 1-s delay to be a 
serious problem for assessing the Mendelsohn maneuver with a 
biofeedback system. 

The wearable device and the algorithm in this study have 
some limitations. A trainee is required to sit without moving the 
head and body during the Mendelsohn maneuver. Although the  

TABLE II 
MEAN ABSOLUTE ERROR OF DETECTED ONSET, OFFSET AND INTERVAL 

TIMES OF LARYNGEAL ELEVATION AND THEIR STANDARD DEVIATION 

 
Bathtub shape Long-V shape 

Onset Offset Interval Onset Offset Interval 
MAE [s] 0.37 0.29 0.41 0.54 0.70 0.77 

SD [s] 0.30 0.63 0.59 0.41 0.60 0.49 

TABLE I 
RANGE OF PARAMETERS IN NORMALIZED VOLTAGE FOR DETERMINATION OF 

TEMPLATE DATA 

vb1 vb2 vb3 vv1 vv2 vv3 

0.75–1.0 0.0–0.3 0.5–1.0 0.75–1.0 0.0–0.2 0.75–1.0 
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(a) Bathtub shape. The offset time detected by the algorithm was almost 

coincident with that of the ST. 

 

(b) Long-V shape. 

 

(c) A case of failed offset time detection. 

Fig. 10. Typical examples of the detection of the onset and offset times.
The upper plots show the measurement data and the detection times by
the proposed method and ST. The lower plots show the DTW distances
calculated with all bathtub and long-V template data.  

 

algorithm detected the onset and offset times of the laryngeal 
elevation without a large error in the experiment, this method 
may prove difficult for subjects who exhibit frequent motion of 
the head or body. The DTW uses the slope constraint and can 
detect the interval time from within 2 to 18 s of the laryngeal 
elevation; thus, the interval time is a limitation of the algorithm. 
However, in medical sites, the ST does not recommend that the 
trainee stop his breathing for more than 18 s during the 
maneuver. Hence, this limitation is not important in practical 
use. The measured data in Fig. 10(c) was designated as having 
the bathtub shape. However, if additional data is collected from 
more subjects, a third group may emerge. Thus, more 
experimental data must be obtained to reduce errors. 

V. CONCLUSION 

This study describes a wearable device for training in the 
Mendelsohn maneuver. The wearable device was designed to 
be comfortable for the wearer, as it contained thin, stretchable, 
and lightweight strain sensors. We also developed an algorithm 
to detect the onset and offset times of the laryngeal elevation. 
The algorithm detected the onset time based on the first-order 
difference and the offset time based on the DTW distance. 
From 54 measured data sets from 28 elderly subjects, the 
algorithm was able to detect the onset and offset times for 53 
out of 54 data sets. The MAE of the interval time of the 
laryngeal elevation between the algorithm and the ST was 
within 1 s. We believe that the biofeedback system for the 
Mendelsohn maneuver tolerates the 1-s delay present in this 
system. 

Future work will focus on performing additional 
experimental trials with elderly subjects and verifying the data 
shape clusters to heighten the accuracy of the detection of the 
onset and offset times. The efficacy of the biofeedback system 
will then be confirmed in a clinical study of dysphagia patients. 
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