Genome-wide identification and characterization of major latex-like protein genes responsible for crop contamination in Cucurbita pepo

Fujita, Kentaro ; Chitose, Natsumi ; Chujo, Maho ; Komura, Shoya ; Sonoda, Chihiro ; Yoshida, Minami ; Inui, Hideyuki
(Citation)
Molecular Biology Reports, 49(8):7773-7782

```
(Issue Date)
```

2022-08
(Resource Type)
journal article
(Version)
Accepted Manuscript
(Rights)
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:…
(URL)
https://hdl. handle. net/20.500. 14094/0100477755

Genome-wide identification and characterization of major latex-like protein genes responsible for crop contamination in Cucurbita pepo

Kentaro Fujita ${ }^{1}$ (kentaro.fujita1221@gmail.com) (https://orcid.org/0000-0002-8757-0094)
Natsumi Chitose ${ }^{2}$

Maho Chujo ${ }^{2}$

Shoya Komura ${ }^{1}$ (shoya.komura@gmail.com)

Chihiro Sonoda ${ }^{1}$

Minami Yoshida ${ }^{1}$

Hideyuki Inui ${ }^{1,3, *}$ (hinui@kobe-u.ac.jp) (https://orcid.org/0000-0002-0981-2641)
${ }^{1}$ Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
${ }^{2}$ Faculty of Agriculture, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan ${ }^{3}$ Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
*Corresponding Author

Hideyuki Inui, Biosignal Research Center, Kobe University,
1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan

E-mail: hinui@kobe-u.ac.jp, Phone: +81-78-803-5863

Abstract

Background

Zucchini plants (Cucurbita pepo) accumulate persistent organic pollutants (POPs) at high concentrations in their aerial parts, and major latex-like proteins (MLPs) play crucial roles in their accumulation. MLPs bind to POPs in root cells, MLP-POP complexes are then translocated into xylem vessels, and POPs are transported to the aerial parts. We previously identified three CpMLP genes (MLP-PG1, MLP-GR1, and MLP-GR3) as transporting factors for POPs; however, other studies have shown that the genomes of several plant species contain more than 10 MLP genes, thus, further MLP genes responsible for POP accumulation may have been overlooked.

Methods and Results

Here, we investigated the number of CpMLP genes by performing a hidden Markov model search against the C. pepo genome database and characterized their effects on POP accumulation by performing the expression analysis in the organs and in silico structural analysis. The C. pepo genome contained 21 CpMLP genes, and several CpMLP genes, including $M L P-P G 1$ and $M L P-G R 3$, were highly expressed in roots. 3D structural prediction showed that all examined CpMLPs contained a cavity with a hydrophobic region, which facilitated binding to POPs.

Conclusions

The present study provides insights regarding CpMLP genes responsible for POP accumulation.

Keywords

crop contamination; Cucurbita pepo; major latex-like protein; persistent organic pollutants

ABA, abscisic acid; HMM, Hidden Markov Model; JA, jasmonic acid; MLP, major latex-like protein; POPs, persistent organic pollutants; SA, salicylic acid.

Introduction

The family Cucurbitaceae belongs to the order Cucurbitales in the rosid group, and its members are annual herbaceous vines and perennial lianas [1]. The genus Cucurbita comprises three subspecies, i.e., ssp. fraterna, ssp. ovifera, and ssp. pepo [2]. C. pepo ssp. pepo shows high accumulation of persistent organic pollutants (POPs), whereas C. pepo ssp. ovifera show low accumulation of POPs [3]. POPs are globally distributed and contaminate the environment owing to their persistence [4]. POP insecticides (dieldrin and hexachlorocyclohexane) currently occur in agricultural fields of many countries because large amounts of POP insecticides have been applied until their prohibition [5, 6]. POPs are highly toxic to humans, with effects such as neurotoxicity [7]; thus, elucidating the mechanisms underlying the accumulation of POPs should be addressed for safer crop production.

Major latex-like proteins (MLPs) bind to POPs absorbed into root cells, and MLP-POP complexes are translocated into xylem vessels, after which POPs are transported to the upper plant parts [8]. To date, MLP genes have been observed mainly in dicots such as Arabidopsis thaliana [9], C. pepo [10], cotton (Gossypium hirsutum) [11], soybean (Glycine max) [12], peach (Prunus persica) [13], and grapevine (Vitis vinifera) [14]. MLPs play a key role in leaf differentiation [15], stress responses to pathogens and drought [9, 11, 16], and biosynthesis of secondary metabolites [17].

MLPs are members of the Bet v 1 family, including pathogenesis-related protein class 10 (PR-10) [18]. Amino acid identity among proteins of this family is low; however, they contain three α-helices and seven β-sheets as common secondary structures, and they show similar 3D structures. The most prominent characteristic of proteins in the Bet v 1 family is an internal hydrophobic cavity formed by $\beta 1-\beta 7$ wrapped around the long $\alpha 3$ [18] through which MLPs can bind to various hydrophobic compounds such as steroids [19] and POPs [8]. Furthermore, MLPs have been detected in xylem and in phloem sap [20-23], indicating that CpMLPs transport POPs by binding them through the hydrophobic cavity. However, the number of MLP genes in the C. pepo genome remains unknown.

We previously identified $M L P-P G 1, M L P-G R 1$, and $M L P-G R 3$ [20], and MLP-PG1 and MLP-GR3 showed binding affinity for POPs [8]. A previous genome-wide analysis identified more than ten MLP genes in the genomes of V. vinifera [14], Brassica rapa [24], and Malus domestica [25], suggesting that several CpMLPs are involved in the accumulation of POPs. Therefore, MLPs responsible for POP transport in C. pepo may have been overlooked previously.

In this study, we investigated the number of CpMLP genes and identified CpMLP genes in the C. pepo genome. We characterized phylogenetic relationships, subcellular localization, conserved domains, conserved motifs, gene structures, and cis-acting regulatory elements. We further evaluated the expression levels of CpMLP genes in the organs of C. pepo ssp. ovifera and C. pepo. Moreover, we predicted 3D structures and calculated cavity size to test whether the cavities were sufficiently large to bind POPs. Our study provides insights regarding further CpMLPs associated with crop contamination in terms of subcellular localization, gene expression, and protein structural aspects.

Materials \& Methods

Identification of CpMLP genes in the C. pepo genome

A Hidden Markov Model (HMM) of Bet v 1 (PF00407) was downloaded from Pfam (http://www. pfam.xfam.org/), and HMM Search (version 3.3.2) was performed against the C. pepo genome database (http://cucurbitgenomics.org/) with an E-value cutoff of 10^{-5}. A BlastP search (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was also performed as a query of amino acid sequences of 25 AtMLPs identified in a previous study [14] against the C. pepo genome database with an E-value cut-off of 10^{-5}. Domain analysis was performed using SMART (http://smart.embl-heidelberg.de/) and INTERPROSCAN (http://www.ebi.ac.uk/interpro/) to confirm that candidate proteins contained the Bet v 1 domain, and those without the Bet v 1 domain were omitted.

Prediction of the subcellular localization
The subcellular localization of each CpMLP was determined using WoLF PSORT (https://wolfpsort.hgc.jp/).

Gene and protein analysis

A phylogenetic tree based on the amino acid sequences of 25 AtMLPs and 21 CpMLPs was constructed using the neighbor-joining method in MEGA 7.0 (http://www.megasoftware.net/), and 50 bootstrap replications were applied. Amino acid sequences of 21 CpMLPs were analyzed using NCBI Conserved Domain Search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) to identify the location of Bet v 1 domain. Genes with introns and coding sequences were extracted from the C. pepo genome database and were visualized using the Gene Structure Display Server (version 2.0) (http://gsds.gao-lab.org/). The motifs in amino acid sequences of 21 CpMLPs were analyzed using MEME (version 5.4.1) (https://meme-suite.org/meme/tools/meme) with a maximum motif number of 10 and an optimum motif width of $6-50$ residues. The $1-\mathrm{kbp}$ regions upstream from the translation starting position in 21 CpMLP genes were extracted, and cis-acting regulatory elements related to plant hormones and root-specific expression were identified using the PLACE database [26].

$R N A$-sequencing (RNA-seq) analysis

Seeds of C. pepo ssp. ovifera cultivars ('Patty Green' [PG] and 'Starship' [ST]) and ssp. pepo cv. ('Gold Rush' [GR] and 'Magda' [MG]) were purchased from Johnny's Selected Seeds (Albion, ME, USA). The seed coat was peeled off, and seeds were incubated in tap water overnight at $4^{\circ} \mathrm{C}$ and were sown in sterilized soil (Hyponex Japan Corp., Ltd., Osaka, Japan). The seedlings were cultivated under a $16 / 8 \mathrm{~h} \mathrm{light/dark}$ cycle at $26^{\circ} \mathrm{C}$ for 40 days. The roots were collected and were ground in liquid nitrogen, and total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). A sequencing library was constructed according to the cDNA Rapid Library Preparation Method Manual, and RNA sequencing (GS-FLX+) (Roche, Basel, Switzerland) was performed by Takara Bio Inc. (Shiga, Japan).

Expression analysis

The seed coat of C. pepo ssp . ovifera cv . PG and ssp. pepo cv . GR was peeled off. The seedlings were cultivated under a $16 / 8 \mathrm{~h}$ light/dark cycle at $26^{\circ} \mathrm{C}$ as described above. After 13 days, the organs (leaves and roots) were collected and were ground in liquid nitrogen. Total RNA extraction and quantitative reverse-transcription PCR (qRT-PCR) were performed as previously described [27].

Construction of $3 D$ structures

The predicted structures of the CpMLPs were constructed using AlphaFold2 [28]. Cavity volume was calculated using CASTp (http://sts.bioe.uic.edu/castp/calculation.html).

Results

Identification of CpMLP genes in C. pepo genome

An HMM search was performed using the HMM profile of Bet v 1 (PF00407) as a query against the C. pepo genome database, and 26 candidate CpMLPs were detected. A BlastP search was performed using 25 AtMLPs as a query against the C. pepo genome database [14], and 22 candidate CpMLPs were detected. After removing overlapping proteins in the HMM and BlastP searches, 30 candidate CpMLPs were identified. The presence of the Bet v 1 domain in the amino acid sequences was determined using SMART and INTERPRO, and 21 putative CpMLPs were identified (Table 1, Suppl. table S1).

The amino acids and molecular weights of the 21 CpMLPs were assessed based on their DNA sequences (Table 1). The amino acids and molecular weights of the 15 CpMLPs were relatively similar, ranging from 142 to 205 amino acid sequences and from 15,392 to 23,552 Da, respectively. CpMLP6 and CpMLP10 showed few amino acids and low molecular weights. In contrast, CpMLP5, CpMLP11, CpMLP13, and CpMLP19 contained many amino acids and showed markedly higher molecular weights. CpMLP genes were located on chromosomes $0,1,2,3,12,14,16$, and 17 . Chromosome 1 harbored the most CpMLP genes (eight CpMLP genes), and seven of them were included in subfamily VI (Fig. 1a), however, their amino acid content and molecular weights varied widely. CpMLP genes located on chromosomes 2 and 3 were included in subfamily IV, and CpMLP genes located on chromosomes 14, 16, and 17 were included in subfamily I (Fig. 1a).

Phylogenetic tree of CpMLPs

To classify the 21 CpMLPs with 25 AtMLPs, a phylogenetic tree was constructed using the neighborjoining method (Fig. 1a). AtMLPs and CpMLPs were divided into seven subfamilies: I (8 CpMLPs), II (AtMLP and CpMLP), III (10 AtMLPs), IV (5 CpMLPs), V (2 AtMLPs), VI (7 CpMLP), and VII (12 AtMLPs). CpMLPs clustered in subfamilies I, IV, and VI, except for CpMLP3, which was grouped in subfamily II. The AtMLPs and CpMLPs were clustered, except for subfamily II.

Subcellular localization

The subcellular localization of CpMLPs was predicted using WoLF PSORT, and all CpMLPs, except for CpMLP5, CpMLP10, and CpMLP14, showed the highest scores in the cytosol (Fig. 1b); CpMLP5, CpMLP10, and CpMLP14 produced the highest scores in the plasma membrane, mitochondria, and nucleus, respectively. CpMLP5 did not produce a score in the cytosol. Most CpMLPs produced a score in the chloroplast, extracellular space, and nucleus, apart from the cytosol.

Gene structures and conserved motifs of CpMLPs
The exon-intron structures of CpMLP genes were determined, and all CpMLP genes contained at least two exons and one intron (Fig. 2a). Fifteen of the 21 CpMLP genes contained two exons divided by one exon. The CpMLP5, CpMLP11, and CpMLP13 contained at least seven exons and six introns and differed from other CpMLP genes. Although CpMLP5, CpMLP11, and CpMLP13 were distributed in subfamilies VI (CpMLP5) and IV (CpMLP11 and CpMLP13), these unique gene structures did not depend on the subfamily.

Domain and motif structures in CpMLPs

Eighteen of the 21 CpMLPs contained one Bet v 1 domain in their amino acid sequence (Fig. 2b). CpMLP11 and CpMLP19 contain three and two Bet v 1 domains, respectively. CpMLP13 contained seven Bet v 1 domains. MEME, a motif discovery tool, was used to investigate conserved motifs in the amino acid sequences of the CpMLPs. Motif 1 (GDLFEHFKVFKVVYKVVEKGPNSCJVVLTIEYEKLEEGAAN) was the most frequent in CpMLPs, and 13 CpMLPs contained this motif in their posterior sequences (Fig. 2c). Motifs 7 (FKERVEFDDEKFTIVLVGLE) and 9 (PYKYJDLMNKJTKDI) were the second most frequent, and 12 CpMLPs contained these in their posterior sequences. CpMLP4, CpMLP5, CpMLP7, CpMLP8, CpMLP9, CpMLP10, CpMLP14, and CpMLP15 contained these three motifs and were included in subfamilies IV (CpMLP4 and CpMLP5) and VI (CpMLP7, CpMLP8, CpMLP9, CpMLP10, CpMLP14, and CpMLP15) (Fig. 1a).

Cis-acting regulatory elements in the promoter region of CpMLP genes

The $1-\mathrm{kbp}$ region upstream of the translation initiation site of 21 CpMLP genes was analyzed using PLACE to identify potential cis-acting regulatory elements related to plant hormones and root-specific expression in the promoter region. PLACE identified seven cis-acting regulatory elements of plant hormones: abscic acid (ABA)-responsive, auxin-responsive, cytokinin-responsive, ethyleneresponsive, gibberellin-responsive, JA-responsive, and salicylic acid (SA)-responsive elements (Fig. 3a). All CpMLP genes, except for CpMLP4, contained ABA-responsive elements. All CpMLP genes contained gibberellin-responsive and SA-responsive elements. In contrast, the number of cis-acting regulatory elements related to other plant hormones (auxin-responsive, cytokinin-responsive, ethylene-responsive, and JA-responsive elements) was relatively low. All CpMLP genes contained root-specific expression elements.

Expression level of CpMLP genes in C. pepo subspecies

RNA-seq using roots of C. pepo ssp. ovifera and ssp. pepo cultivars was performed to identify CpMLP genes with high expression. MLP genes that showed the most homologous sequences with the 21 CpMLP genes were selected. CpMLP6 and CpMLP12 showed high read counts in C. pepo ssp. ovifera cultivars and a pattern similar to that of MLP-PG1 (Fig. 3b). In contrast, CpMLP8 showed high read counts in C. pepo ssp. pepo cultivars and a pattern similar to that of $M L P-G R 3$ (Fig. 3b). Sixteen of the 21 CpMLP genes produced <10 reads in C. pepo ssp. ovifera and ssp. pepo. The examined cultivars did not contain sequences matching $C P M L P 3$ and $C p M L P 11$.

As CpMLP4, CpMLP6, CpMLP8, CpMLP9, CpMLP12, and CpMLP21 showed >10 reads in the roots of at least one cultivar, the expression of these CpMLP genes and of $M L P-P G 1$ and $M L P-G R 3$ were investigated. $M L P-P G 1$ and $M L P-G R 3$ showed remarkably high expression in roots of C. pepo ssp. pepo cv. GR (Fig. 3c). CpMLP8 and CpMLP9 had higher expression in roots of C. pepo ssp. pepo cv. GR, compared with those of C. pepo ssp. ovifera cv . PG, which corresponded with the RNA-seq results.

However, CpMLP6 showed higher expression in roots of C. pepo ssp. pepo cv . GR compared with C. pepo ssp. ovifera cv . PG, in contrast to the RNA-seq results. CpMLP4, CpMLP12, and CpMLP21 were not highly expressed in roots. All examined MLP genes showed remarkably lower expression in leaves than in roots.

3D structures of CpMLPs

The predicted 3D structures of the CpMLPs were constructed using AlphaFold2 (Suppl. fig 1). CpMLPs of approximately 17 kDa showed canonical MLP secondary structures: three α-helices and seven β-sheets. CpMLPs in the same subfamily did not consistently show the same structure (Fig. 1a). All CpMLPs contained a hydrophobic region in their cavities (Suppl. fig 1). CpMLPs with molecular weights twice as high as 17 kDa tended to have a large cavity volume (Table 2). Several CpMLPs with similar molecular weights showed similar cavity volumes. CpMLP7, CpMLP8, and CpMLP9 in subfamily VI showed similar cavity volumes. However, several CpMLPs showed different cavity volumes, although their molecular weights and structures were similar; the cavity volume of CpMLP1 was four-fold smaller than that of CpMLP2. Because CpMLP13 had an uncharacterized structure, its structure was not assessed using AlphaFold2.

Discussion

The objective of the present study was to identify CpMLP genes in the C. pepo genome and to produce insights into their effects on the accumulation of POPs. C. pepo ssp. pepo accumulates POPs in its aerial parts at high concentrations [3]. We previously identified three CpMLPs as crucial factors for their accumulation [20]. Previous studies have shown that dicot plant genomes contain more than ten MLP genes [14]; however, the number of CpMLPs that can accumulate POPs remains elusive.

Therefore, we investigated the number of CpMLP genes in the C. pepo genome database and predicted their effects on POP accumulation.

HMM and BlastP searches showed that the C. pepo genome contained 21 CpMLP genes with single or several Bet v 1 domains (Table 1, Fig. 1b). Previous studies have shown that the genomes of B. rapa, M. domestica, and V. vinifera contain 31, 36, and 14 MLP genes, respectively [14, 24, 25]. The different number of MLP genes in plant species is presumably associated with genome size (B. rapa: 442.9 M, M. domestica: 687 M , and V. vinifera: 487 M) and the respective biological functions [14, 25, 29]. AtMLPs and CpMLPs were divided into seven subfamilies based on their amino acid sequences, and all subfamilies, except for subfamily II, were exclusive to either AtMLPs or CpMLPs (Fig. 1a). This suggested that MLP genes diversified after the speciation of A. thaliana and C. pepo. We predicted the subcellular localization of CpMLPs (Fig. 1b). Interestingly, most CpMLPs had the highest score in the cytosol. POPs absorbed into the roots are diffused in the plasma membrane and are transported to the endodermis and pericycle without being blocked by the Casparian strip, a diffusion barrier in the endodermis attaching to the intercellular walls [30, 31]. Therefore, CpMLPs localized in the cytosol bind to and solubilized POPs in the cytosol. As a result, their complexes reached xylem vessels and were transported to the aerial parts. Furthermore, CpMLPs localized in the extracellular region tended to produce similar scores in the endoplasmic reticulum and Golgi apparatus (Fig. 1b). CpMLP genes are highly expressed in the roots, and CpMLPs are detected in the xylem sap and roots [8]. This clearly shows that CpMLPs are secreted from root cells to the outside of the cells. The endoplasmic reticulum and Golgi apparatus play crucial roles in protein secretion in plants [32]. This suggests that CpMLPs are secreted from the endoplasmic reticulum and Golgi apparatus into the extracellular space. However, we did not show the the subcellular localization of CpMLPs in vivo, and future work will investigate their subcellular localization by the injection of $M L P: \because G F P$ constructs using the laser confocal microscopy.

All CpMLP genes contained cis-acting regulatory elements associated with plant hormone response in the promoter region, indicating that most CpMLP genes were regulated by plant hormones such as ABA, gibberellin, and SA (Fig. 3a). Previous studies have shown that MLPs confer drought tolerance through mediating the ABA signaling pathway. ABA downregulates MLP43 as negative feedback, and MLP43 functions as an ABA regulator through its interaction with SnRK2 and ABF1 [9]. ABA downregulates TaSTP, an MLP identified in wheat (Triticum aestivum), and TaSTP is thought to confer drought tolerance through its interaction with TaDIS1 [33]. Furthermore, ABA receptors show structural similarities to Bet v $1[34,35]$. Therefore, MLPs exhibit ABA responses in terms of gene expression and receptors. JA upregulates MLP genes in several plants, including C. pepo [16], mulberry (Morus multicaulis) [22], and tobacco (Nicotiana benthamiana) [36]. However, there are only few reports on upregulation of MLP genes by SA. Because CpMLP genes contained several SAresponsive elements, these results are unexpected, with respect to those of previous reports (Fig. 3a). PR-10 genes tend to be upregulated by SA [37], and CpMLP genes show upregulation mechanisms similar to those of PR-10 genes, rather those of typical MLP genes. MLP genes identified previously in C. pepo $[8,16]$ were highly expressed in roots, thus, the observed low expression levels of most of the 21 CpMLP genes were unexpected (Fig. 3b and c). However, the expression of each MLP gene differs between organs in several plants [14, 25]. For example, $V v M L P 5$ and $V v M L P 14$ were highly expressed in roots and leaves, respectively.

All examined CpMLPs showed an internal cavity with a hydrophobic region (Suppl. fig 1). The cavity volume differed remarkably among CpMLPs. MLPs, whose structures were previously identified, also revealed large differences in cavity volume. For example, the cavity volume of ginseng (Panax ginseng) MLP is six-fold smaller than that of MLP28 of A. thaliana [38]. This causes a kink in the long $\alpha 3$ toward the core β-sheets or the existence of a long loop [19, 39]. CpMLP17 and CpMLP18 contained a similar amino acid sequence but showed different cavity volumes (Table 2). The $\alpha 3$ in

CpMLP17 was more kinked than that in CpMLP18, leading to a difference in cavity volume (Suppl. fig 1). However, these events were not always observed in CpMLPs. CpMLP1 and CpMLP2, with similar amino acid sequences, did not show a kink of $\alpha 3$ and did not possess a long loop like MLP28, but showed remarkable cavity volume differences (Table 2). The loop between $\beta 2$ and $\beta 3$ of CpMLP2 stretches from the core β-sheets (Suppl. fig 1), indicating higher cavity volume in CpMLP2.

Only genes with a sequence similar to that of CpMLP8 were highly expressed in the roots of C. pepo ssp. pepo cultivars, whereas others were not expressed at high levels (Fig. 3b). The expression pattern of $C P M L P 8$ showed a similar tendency to that of $M L P-G R 3$, which is a crucial factor for the transport of POPs in C. pepo ssp. pepo. CpMLP8 was predicted to be mainly localized in the cytosol and secreted into the extracellular fluid (Fig. 1b). The cavity size of CpMLP8 was larger than that of MLPPG1, with the ability to bind POPs (Table 2) [8], indicating that CpMLP8 has a sufficiently large cavity to bind to POPs. Taken together, $C p M L P 8$ is expressed in roots, CpMLP8 binds to POPs in the cytosol of root cells, and their complexes are secreted into the extracellular fluid. Therefore, CpMLP8 played a crucial role in POP accumulation. To further our research we are planning to perform the cloning of CpMLP8 for in vitro assay of the binding to POPs and identify CpMLP8 in xylem sap of C. pepo by the amino acid sequence.

Conclusion

In the present study, we identified 21 CpMLP genes in the C. pepo genome and characterized their effect on transport of POPs in the subcellular localization, expression level, and 3D structure. CpMLP8 is another crucial factor in POP transport. Therefore, upregulation or downregulation of CpMLP8 leads to phytoremediation and safe crop production, respectively. However, we cannot say with certainty whether CpMLP8 transports POPs in C. pepo; thus, in vitro and in vivo studies on CpMLP8-mediated transport of POPs should be conducted in the future.

Author contribution

Conceptualization: Kentaro Fujita; Methodology: Kentaro Fujita, Chitose Natsumi. Maho Chujo, Shoya Komura, Chihiro Sonoda, Minami Yoshida, and Hideyuki Inui; Formal analysis and investigation: Kentaro Fujita, Chitose Natsumi. Maho Chujo, Shoya Komura, Chihiro Sonoda, Minami Yoshida, and Hideyuki Inui; Writing - original draft preparation: Kentaro Fujita and Hideyuki Inui; Writing - review and editing: Kentaro Fujita, Chitose Natsumi. Maho Chujo, Shoya Komura, Chihiro Sonoda, Minami Yoshida, and Hideyuki Inui; Funding acquisition: Kentaro Fujita and Hideyuki Inui; Resources: Kentaro Fujita and Hideyuki Inui; Supervision: Hideyuki Inui

Fundings

This study was supported in part by SPRING of Japan Science and Technology Agency to KF and a Grant-in-Aid for Scientific Research A from the Ministry of Education, Culture, Sports, and Technology of Japan (No. 23241028) to HI.

Acknowledgements

We are thankful to Dr. Kentaro Yoshida (Graduate School of Agricultural Science, Kyoto University) and Dr. Yoshihiro Matsuoka (Graduate School of Agricultural Science, Kobe University) for the fruitful discussions in which helped writing this manuscript.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors have no conflict of interests to declare.

References

1. Guo J, Xu W, Hu Y, et al (2020) Phylotranscriptomics in Cucurbitaceae Reveal Multiple WholeGenome Duplications and Key Morphological and Molecular Innovations. Mol Plant 13:11171133. https://doi.org/10.1016/j.molp.2020.05.011
2. Montero-Pau J, Blanca J, Bombarely A, et al (2018) De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J 16:1161-1171. https://doi.org/10.1111/pbi. 12860
3. Inui H, Wakai T, Gion K, et al (2008) Differential uptake for dioxin-like compounds by zucchini subspecies. Chemosphere 73:1602-1607. https://doi.org/10.1016/j.chemosphere.2008.08.013
4. Bartrons M, Catalan J, Penuelas J (2016) Spatial And Temporal Trends Of Organic Pollutants In Vegetation From Remote And Rural Areas. Sci Rep 6:25446. https://doi.org/10.1038/srep25446
5. Jorgenson JL (2001) Aldrin and Dieldrin: A Review of Research on Their Production, Environmental Deposition and Fate, Bioaccumulation, Toxicology, and Epidemiology in the United States. Environ Health Perspect 109:113. https://doi.org/10.2307/3434852
6. Vijgen J, Abhilash PC, Li YF, et al (2011) Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res 18:152-162. https://doi.org/10.1007/s11356-010-0417-9
7. Guo W, Pan B, Sakkiah S, et al (2019) Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int J Environ Res Public Health 16:4361. https://doi.org/https://doi.org/10.3390/ijerph16224361
8. Goto J, Iwabuchi A, Yoshihara R, et al (2019) Uptake mechanisms of polychlorinated biphenyls in Cucurbita pepo via xylem sap containing major latex-like proteins. Environ Exp Bot 162:399405. https://doi.org/10.1016/j.envexpbot.2019.03.019
9. Wang Y, Yang L, Chen X, et al (2016) Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana. J Exp Bot 67:421-434. https://doi.org/10.1093/jxb/erv477
10. Iwabuchi A, Katte N, Suwa M, et al (2020) Factors regulating the differential uptake of persistent organic pollutants in cucurbits and non-cucurbits. J Plant Physiol 245:153094. https://doi.org/10.1016/j.jplph.2019.153094
11. Yang CL, Liang S, Wang HY, et al (2015) Cotton major latex protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against Verticillium dahliae. Mol Plant 8:399-411. https://doi.org/10.1016/j.molp.2014.11.023
12. Guo D, Wong WS, Xu WZ, et al (2011) Cis-cinnamic acid-enhanced 1 gene plays a role in regulation of Arabidopsis bolting. Plant Mol Biol 75:481-495. https://doi.org/10.1007/s11103-011-9746-4
13. Ruperti B, Bonghi C, Ziliotto F, et al (2002) Characterization of a major latex protein (MLP) gene down-regulated by ethylene during peach fruitlet abscission. Plant Sci 163:265-272. https://doi.org/10.1016/S0168-9452(02)00094-8
14. Zhang N, Li R, Shen W, et al (2018) Genome-wide evolutionary characterization and expression analyses of major latex protein (MLP) family genes in Vitis vinifera. Mol Genet Genomics 293:1061-1075. https://doi.org/10.1007/s00438-018-1440-7
15. Litholdo CG, Parker BL, Eamens AL, et al (2016) Proteomic Identification of Putative MicroRNA394 Target Genes in Arabidopsis thaliana Identifies Major Latex Protein Family

Members Critical for Normal Development. Mol Cell Proteomics 15:2033-2047. https://doi.org/10.1074/mcp.M115.053124
16. Fujita K, Asuke S, Isono E, et al (2022) MLP-PG1, a major latex-like protein identified in Cucurbita pepo, confers resistance through the induction of pathogenesis-related genes. Planta 255:10. https://doi.org/10.1007/s00425-021-03795-x
17. Lichman BR, Godden GT, Hamilton JP, et al (2020) The evolutionary origins of the cat attractant nepetalactone in catnip. Sci Adv 6:20. https://doi.org/10.1126/sciadv.aba0721
18. Fernandes H, Michalska K, Sikorski M, Jaskolski M (2013) Structural and functional aspects of PR-10 proteins. FEBS J 280:1169-1199. https://doi.org/10.1111/febs. 12114
19. Lytle BL, Song J, de la Cruz NB, et al (2009) Structures of two Arabidopsis thaliana major latex proteins represent novel helix-grip folds. Proteins Struct Funct Bioinforma 76:237-243. https://doi.org/10.1002/prot. 22396
20. Inui H, Sawada M, Goto J, et al (2013) A Major Latex-Like Protein Is a Key Factor in Crop Contamination by Persistent Organic Pollutants. Plant Physiol 161:2128-2135. https://doi.org/10.1104/pp.112.213645
21. Carella P, Merl-Pham J, Wilson DC, et al (2016) Comparative Proteomics Analysis of Phloem Exudates Collected During the Induction of Systemic Acquired Resistance. Plant Physiol 171:1495-1510. https://doi.org/10.1104/pp.16.00269
22. Gai YP, Yuan SS, Liu ZY, et al (2018) Integrated phloem sap mRNA and protein expression analysis reveals phytoplasma-infection responses in mulberry. Mol Cell Proteomics 17:17021719. https://doi.org/10.1074/mcp.RA118.000670
23. Li P, Chen L, Zhou Y, et al (2013) Brassinosteroids-Induced Systemic Stress Tolerance was Associated with Increased Transcripts of Several Defence-Related Genes in the Phloem in Cucumis sativus. PLoS One 8:1-8. https://doi.org/10.1371/journal.pone. 0066582
24. Zeng J, Ruan Y, Liu B, et al (2020) Genome-wide identification and abiotic stress-responsive expression of MLP family genes in Brassica rapa. Gene Reports 21:100919. https://doi.org/10.1016/j.genrep.2020.100919
25. Yuan G, He S, Bian S, et al (2020) Genome-wide identification and expression analysis of major latex protein (MLP) family genes in the apple (Malus domestica Borkh.) genome. Gene 733:144275. https://doi.org/10.1016/j.gene.2019.144275
26. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297-300. https://doi.org/10.1093/nar/27.1.297
27. Inui H, Katte N, Goto J, Iwabuchi A (2020) High temperatures promote the uptake of hydrophobic pollutants by Cucurbita pepo via altered gene expression levels of major latex-like proteins. J Pestic Sci 45:75-80. https://doi.org/10.1584/jpestics.d19-065
28. Jumper J, Evans R, Pritzel A, et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583-589. https://doi.org/10.1038/s41586-021-03819-2
29. Zhang L, Cai X, Wu J, et al (2018) Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic Res 5:. https://doi.org/10.1038/s41438-018-0071-9
30. Roppolo D, De Rybel B, Tendon VD, et al (2011) A novel protein family mediates Casparian strip formation in the endodermis. Nature 473:381-384. https://doi.org/10.1038/nature10070
31. Yamazaki K, Tsuruta H, Inui H (2015) Different uptake pathways between hydrophilic and hydrophobic compounds in lateral roots of Cucurbita pepo. J Pestic Sci 40:99-105. https://doi.org/10.1584/jpestics.D14-081
32. Drakakaki G, Dandekar A (2013) Protein secretion: How many secretory routes does a plant cell have? Plant Sci 203-204:74-78. https://doi.org/10.1016/j.plantsci.2012.12.017
33. Lv Q, Zhang L, Zan T, et al (2020) Wheat RING E3 ubiquitin ligase TaDIS1 degrade TaSTP via the 26 S proteasome pathway. Plant Sci 296:110494.
https://doi.org/10.1016/j.plantsci.2020.110494
34. Melcher K, Ng LM, Zhou XE, et al (2009) A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462:602-608. https://doi.org/10.1038/nature08613
35. Ma Y, Szostkiewicz I, Korte A, et al (2009) Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science 324:1064-1068. https://doi.org/10.1126/science. 1172408
36. Song L, Wang J, Jia H, et al (2020) Identification and functional characterization of NbMLP28, a novel MLP- like protein 28 enhancing Potato virus Y resistance in Nicotiana benthamiana. BMC Microbiol 20:1-14. https://doi.org/10.1186/s12866-020-01725-7
37. Liu J-J, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3-13. https://doi.org/10.1016/j.pmpp.2006.06.004
38. Choi SH, Hong MK, Kim HJ, et al (2015) Structure of ginseng major latex-like protein 151 and its proposed lysophosphatidic acid-binding mechanism. Acta Crystallogr Sect D Biol Crystallogr 71:1039-1050. https://doi.org/10.1107/S139900471500259X
39. Pasternak O, Biesiadka J, Dolot R, et al (2005) Structure of a yellow lupin pathogenesis-related PR-10 protein belonging to a novel subclass. Acta Crystallogr Sect D Biol Crystallogr 61:99-107. https://doi.org/10.1107/S0907444904028173

Figure legends

Fig. 1. Identification of major latex-like proteins from Cucurbita pepo.
a. Phylogenetic tree of major latex-like proteins of Arabidopsis thaliana and Cucurbita pepo.

Amino acid sequences of 25 AtMLPs and 21 CpMLPs were aligned, and a phylogenetic tree was constructed by applying the neighbor-joining method using MEGA 7.0. Numbers show bootstrap confidence values from 50 replicates. AtMLPs and CpMLPs are divided into seven subfamilies. Red and green letters indicate AtMLPs and CpMLPs, respectively.
b. Subcellular localization of major latex-like proteins of Cucurbita pepo.

The subcellular localization of CpMLPs was investigated using PSORT. 'Not applicable' and low and high values are indicated by gray, white, and orange, respectively. Chlo, chloroplast; Cysk, cytoskeleton; Cysk nucl, cytoskeleton and nucleus; Cyto, cytoplasm; Cyto E. R., cytoplasmic endoplasmic reticulum; E. R., endoplasmic reticulum; Extr, extracellular; Golg, Golgi apparatus; Mito, mitochondrion; Nucl, nucleus; Pero, peroxisome; Plas, plasma membrane.

Fig. 2. Gene and protein structures of major latex-like proteins from Cucurbita pepo.
a. Exon-intron structures of MLP genes from C. pepo. Genes with introns and coding sequences were extracted from the C. pepo database and visualized using Gene Structure Display Server. CDS, coding sequence; UTR, untranslated region.
b. Conserved domains of MLPs from C. pepo. The domains in amino acid sequences of 21 CpMLPs were analyzed using NCBI Conserved Domain Search. Rounded green rectangles indicate the Bet v 1 domain.
c. Conserved motifs of MLPs from C. pepo. The motifs in amino acid sequences of 21 CpMLPs were analyzed using MEME version 5.4.1. Rectangles of each color show conserved motifs. The canonical motifs of MLPs with a low p-value were not detected in CpMLP17.

Fig. 3. Expression of CpMLP genes in organs of Cucurbita pepo subspecies ovifera and pepo.
a. Cis-acting regulatory elements in the promoter region of major latex-like protein genes from Cucurbita pepo.The 1 -kbp-region upstream of the translation starting position in 21 CpMLP genes was extracted, and cis-acting regulatory elements associated with plant hormones and root-specific expression were identified using the PLACE database. ABRE, abscisic acid-responsive element; AuxRE, auxin-responsive element; CKRE, cytokinin-responsive element; ETRE, ethylene-responsive element; GARE, gibberellin-responsive element; JARE, jasmonic acid-responsive element; SARE, salicylic acid-responsive element.
b. RNA sequencing analysis of major latex-like protein genes from Cucurbita pepo ssp. ovifera and pepo. The C. pepo ssp. ovifera cultivars ('Patty Green' [PG] and 'Starship' [ST]) and ssp. pepo cultivars ('Gold Rush' [GR] and 'Magda' [MG]) were cultivated under a 16/8 h light/dark cycle at $26^{\circ} \mathrm{C}$ for 40 days. The total RNA was extracted from roots, and RNA sequencing was performed. Low and high values are indicated as beige and orange, respectively. As there were no genes consistent with CpMLP3 and CpMLP11, these genes' columns are shown in gray.
c. Expression analysis of major latex-like protein genes from C. pepo ssp. ovifera and pepo. The C. pepo ssp. ovifera cultivar PG and ssp. pepo cultivar GR were cultivated under a $16 / 8 \mathrm{~h} \mathrm{light/dark} \mathrm{cycle}$ at $26^{\circ} \mathrm{C}$ for 13 days. Total RNA was extracted from leaves and roots, and qRT-PCR was performed. Primer sequences are listed in Suppl. table S2.

Supplementary fig. 1. 3D structures of major latex-like proteins from Cucurbita pepo.
Structures predicted from amino acid sequences of 21 CpMLPs were constructed using AlphaFold2. The internal cavity is shown as filled green circles, and blue and red parts indicate hydrophilicity and
hydrophobicity, respectively. Because CpMLP13 has an uncharacterized structure, the structure was not constructed by AlphaFold2.

Table 1. CpMLPs identified in the Cucurbita pepo genome.

Gene	Gene ID	Amino acid	Location	Molecular weight (Da)	Subfamily ${ }^{\text {a }}$
CpMLP1	Cp4.1LG00g07060.1	159	Chr00: 23796116 .. 23797001 (+)	17574.13	I
CpMLP2	Cp4.1LG00g11610.1	160	Chr00: 34667181 .. 34668029 (-)	17574.00	I
CpMLP3	Cp4.1LG01g04090.1	155	Chr01: 1465294 .. 1467541 (-)	17312.57	II
CpMLP4	Cp4.1LG01g05720.1	151	Chr01: 525051 .. 528639 (+)	17470.33	VI
CpMLP5	Cp4.1LG01g07720.1	629	Chr01: $5254154 . .5260803$ (-)	70387.44	VI
CpMLP6	Cp4.1LG01g07730.1	104	Chr01: 5246964 .. 5247823 (-)	11787.38	VI
CpMLP7	Cp4.1LG01g07740.1	151	Chr01: 5269144 .. 5269890 (-)	17489.10	VI
CpMLP8	Cp4.1LG01g07750.1	151	Chr01: 5263963 .. 5264687 (-)	17526.90	VI
CpMLP9	Cp4.1LG01g07760.1	151	Chr01: 5266793 .. 5267508 (-)	17492.97	VI
CpMLP10	Cp4.1LG01g07770.1	109	Chr01: 5249000 .. 5249462 (-)	12496.73	VI
CpMLP11	Cp4.1LG02g16760.1	445	Chr02: 12551609 .. $12566618(-)$	50292.12	IV
CpMLP12	Cp4.1LG03g05870.1	162	Chr03: 4436896 .. 4438387 (-)	18629.32	IV
CpMLP13	Cp4.1LG03g05890.1	842	Chr03: 4442904 .. 4474190 (-)	108182.63	IV
CpMLP14	Cp4.1LG03g05900.1	150	Chr03: 4433116 .. 4433645 (-)	17051.51	IV
CpMLP15	Cp4.1LG03g05930.1	205	Chr03: 4439463 .. 4442277 (+)	23552.10	IV
CpMLP16	Cp4.1LG12g02820.1	176	Chr12: 1980900 .. 1982416 (+)	19345.30	1
CpMLP17	Cp4.1LG14g00140.1	160	Chr14: 4587872 .. 4588422 (-)	18115.94	I
CpMLP18	Cp4.1LG16g01870.1	159	Chr16: 4037155 .. 4038040 (-)	17574.13	I
CpMLP19	Cp4.1LG16g01890.1	294	Chr16: 4081793 .. 4092287 (-)	32341.80	1
CpMLP20	Cp4.1LG16g01910.1	160	Chr16: 4077476 .. 4078324 (-)	17597.09	1
CpMLP21	Cp4.1LG17g00490.1	142	Chr17: 293620 .. 294354 (+)	15392.50	I

${ }^{\text {a }}$, Subfamily is described in Fig. 1a.

Table 2. Cavity volume of CpMLPs.

MLP	Volume $\left(\AA^{3}\right)$
CpMLP1	68.210
CpMLP2	407.627
CpMLP3	127.044
CpMLP4	64.615
CpMLP5	28575.611
CpMLP6	1057.709
CpMLP7	100.230
CpMLP8	74.714
CpMLP9	76.373
CpMLP10	224.345
CpMLP11	4854.621
CpMLP12	376.589
CpMLP14	77.109
CpMLP15	1446.632
CpMLP16	711.831
CpMLP17	239.963
CpMLP18	68.210
CpMLP19	678.856
CpMLP20	461.503
CpMLP21	1053.828
MLP-PG1	57.687
MLP-GR3	98.010

499

Figure 1
a
CpMLP1 -
CpMLP2 -
CpMLP3 - $-\infty$
CpMLP4 $\longrightarrow-0$
CpMLP5 •- - -
CpMLP6 0 H
CpMLP7
CpMLP8
CpMLP9
CpMLP10
CpMLP11
CpMLP12 !-
CpMLP13
CpMLP14
CpMLP15
CpMLP16 -
CpMLP17
CpMLP18 -
CpMLP19 - -
CpMLP20 -
CpMLP21 -

b
C

Figure 2
a

Figure 3

Supplementary figure 1

Supplementary table 1 . Amino acid sequences of CpMLPs.

MLP	Sequence
CpMLP1	MVTIISDQTEIPAPAAKVWALYGTIHFADFLQLHLPNIINNVELLEGDGGQG
	TLVLVTFAPDLGGMRYKEKFVKIDNEQRIKIAEMVEGGYLDLGFTVYRFCF
	EIIEKDEESCIVKSSVEYELKEEAAANVSLASVQPLIAIAQAAKSYFLNAQQ
	PTDA
	MLGQLSHEAAIQAPATVVWQLYGGLELARLIENRLPNLIKKIEVVEGDGGE
	GTVLNIIFPPGLGGAPGYKEKFTKIDNENRIKETEVVEGGFLDIGFTLYRVR
	LKIVENGDDSCIVESTIEYDIKEEDAANASLVTIQPLIDIAQAANDHLLHNKQ
	HKNV
	MASDGTLNVEVDVKSVVAPKFWNSMRDSTIIFPKAFPHDYKSIEVLEGDGK
	AVGSVRLITYSEGSSLVKDSKERIEAVDEEAMTVSYSVIEGDLLKYYKSFK
	GHIGVIPKEDGSGSKVKWSCEFEKASEEVPDPHVIKDFVVKNFLELDDYV
	LQQP
	MALAGKLVSEVKINVAAEKYYKIWKHEVSHVPKICPKYIQKVEVHEGDWD
	FHGATYKVVVPKKGPNHCLVVMILKYEKLRADCPSPYYKYIDLMNDLTKSLESYL
	Q
	MGASHQWSSSLQTAPIKLKSSIPLTSPSNFIFYYCKRSRVNYSSTSRCAVC
	AHNSNLPRPKSTNSDARISKSVVLGDCQGHELVRISSTSIRRRKSVILSLV
	SLFDKRSLWRRIFFASKKVRSIILLNIVTIVYASSIPVVKEVEELVDPATFNAV
	RFAITAIPFVPLVLYKWDDVETRNAGIELGFWVSLGYLMQAFGLLTSDAGR

CpMLP7	MSLVGKLVSELEINIPAEKYYKVFKDQCFHVPKITPKIIQHVEIHDGDWDSH
	DHGSIKTWHYTVDGKSEVFKERVEFHDEKFMVVLVGLEGDLFNHYKTFK
	PVCQVVPKGPSHCLAVLTIEYEKLDDGSPYPFKYIDLMNGITKDIESHLK
CpMLP8	MSLVGKLVSELEINAPAEKYYKVFKDQCFHVPNITPKFIQHVEIHEGDWDS
	HDHGSIKTWHYTVDGKSEVFKERVEFHDEKFTIVLVGLEGDVFNHYKTFK
	PVYQVVPKGPSHCLAVLTIEYEKLDDGSPYPYQYIDLMNGITKDIESHLK
CpMLP9	MSLVGKLVSELEINAPAEKYYKVFKDQCFHVPKITPKIIQHVEIHDGDWDS
	HDHGSIKTWHYTVDGKSEIFKERVEFHDEKFTVVLVGLEGDVFNHYKTFK
	PVYQVVPKGPSHCLAVLTIEYEKLDDGSPYPYKYIDLMNGITKDIESHLK
CpMLP10	MSLKFITATGRIIVMARSKSGITLLAEELKERVEFDDKNLVVCMIGLEGDVF
	EHYKVFKAIFKFVPKGPNRSAVILILEYEKLHDGPPYPHKYHDAMHKLAKDI
	ESHLK
CpMLP11	MSQTDSIWAKLPLKSPPDTFYGFFKNQVGDFVDMFPEYISSIQLAEGENF
	APDSVMQFKYSLEKYYGFFRNHMGDMVNLLPQYFSSIQLVEGANFSPDC
	IIQFKYSLGGGSLSAKVKIKAVDDAKKLLAYNVIEGDVLKHYKVFEVRMEVV
	NGGTSKGGGGSFAKWSVVFEKANENVAAPEDYLEWFVKISKGFPVKSPP
	DKFYGFYRNHVGDLIDLFPQYFSSIQFVEGEKYSPDSVIRFNYRFANIKIKA
	VDDVKKSLVYKVIEGDILKHYKVFELRIEAVNGGISKGGGGSFAKWSIVFE
	KANENVGAPQGYLEWHKMHHLPQIFSKNLHSFEFLEGNDFTPGSLMHW
	SYDIVGPAKMKAKVADVDEENKSITYEAVEGDILSQYTLLRSKFRAYDDVE
	NGGAIVNWSFEFEKANENIPSPEAYLEFVSKISIGLDAYLAVN
CpMLP12	MDEHILKYLKMAQISNISHQLQLKCSGEQFYEFYRNKMDRLTQMFPKKLL
	GYKIVEGNGFAHGSVVYWKYELGCILEAKQKLHMDDKNKAITLEFIEGDLF
	KEYEMIAVKGEVSDGGSNGISSVKWSVEYVKANEDVDPPHNYLQFALEL
	AKGVDAYLCNNN
CpMLP13	MSQIESIWGKVQLKSSPEKFFGFFRNHMGDLVHMFPDHFQSFHFVEGQN
	FDDGSVVHWKYHLGIPEAVKIKMKNRDEARTIIYEVVEGDALKHYKVFRAK
	LETVSGGLNKVGGSFAKWTIEYEKAHENVPSPETYMELALKLKSSPEKFY
	GFFRNHMGELVHMFPDHFQSFHFLEGQNFDDGSVVQWKYHLGFPEAAK
	VRMRVMDEARTIIYEVVEGDALKHYKAFRVKLETVSGDLNKVGANFAKWT
	IEYEKAHQNVASPETYLELALQLKSSPEKFYGFFRNHMGELVHMFPDHFQ
	SFHFLEGQNFDDGSVVQWKYHLGFPEAAKVRMRVMDEARTIIYEVVEGD
	ALKHYKAFRVKLETVSGDLNKVGANFAKWTIEYEKAHQNVASPETYLELA
	LQVTKGFPEAAKVRMRVMDEARTIIYEVVEGDALKHYKAFRVKLETVSGD
	LNKVGANFAKWTIEYEKAHQNVASPETYLELALQKMGKSDSIWAKIDLKS
	SPEKFYGFFRNHLGDLVDLFPENYKSIQLVEGQHFSGGNVVLFKFQFGFG

HQLRVEKWAIRAVDDVKKYIIYEAVEGDVLKQFKVLRVKVEAVHGGSTKV GGGNFTKWTVEFEKANQNVASPQNYLELFVKISKGTMGKSDSIWAKVDL KSSHEKFYGFFRNHLGDLVDLFPENFNSIQLVEGQHFDRGSLVLRHEHRV EKWVIRAVDDVKKYIVYEAVEGEALKQFKVLRAKVEAVHGGSTKVGGGNF TKLTIEFEKANENVASPEIYLELFVKIAKGKMVQTDSIWVKVDLKSSPEKVY GFFRNHLGDLVDLFPETYQSIQLVEGQHFSSGSVVQFKFQFGDELRAEK WAIRVVDDVKKYIIYEAVEGDPLKEFKVLRAKFEVVNGGLSKVRRGNFTK WTVEFEKANQNVASPQNYLELFVKISKGILVDVESVQKLCGYNVT

CpMLP14

CpMLP15

CpMLP16 ISFSLFLLLKLPSCEIAMGVFTYENEVTTVIPPAKFFKAFILDADRLYPKIVPH QPKTEVVEGDGGPGTIKIITFSHGGQVKSIKHRLDVVDEKSLTYKYTVLEG ELLSDNIDQISKELKVTAGPDGGSILKSVSIYHTKGDHQIDEQKLKIGEEKG LGLLKAAEAYLLANPAEYN

CpMLP17 MVTKEAKAEAKLGVEIETLWKALAKDLRFIIPQLMPDTVEKIELLHGDGGV GSILLFHLVHKEEAMRSQKERIVEVDETRHELVIQVLEGNVLKRGFSSFKT TFKLSSLSEKESLVDIKVAYETEKDGEDEQARMDAIATAPPLYFFQLLEKFL LPTSNT

CpMLP18 MVTIISDQTEIPAPAAKVWALYGTIHFADFLQLHLPNIINNVELLEGDGGQG TLVLVTFAPDLGGMRYKEKFVKIDNEQRIKIAEMVEGGYLDLGFTVYRFCF EIIEKDEESCIVKSSVEYELKEEAAANVSLASVQPLIAIAQAAKSYFLNAQQ PTDA

CpMLP19 MLGKLSHETVIQAPATVAWQLYGGLELARLVENRFSNLIQKIEVVEGDGGE GTVLNLIFPPGVGRFSSFKEKFTRIDNENRIKETEIVEGGFLDIGFTLYRVC LKIVENGDDSCIVESTIEYEIKEEAAANASLMLGQLSHEAAIQAPATVAWQL YGGLELARLVENRLSNLIQKIEVVEGNGGEGTVLNLIFLPGLGGAPSYKEK FTKIDNENRIKETEVVEGGFLDIGFTLYRVRLKIVENGDDSCIVESTIEYEIK EEAAANASLVTLQPLIDIAQAANDHLLHYKQLKDA
CpMLP20 MAQIAKVSQKVQLRSSGHKFYELLKNKMDFVFQMFPEVYKSWKVLEGN GLAHGSIIYLKYDVDGLSEAKERLAIDDANKSITFECLEGDLFRDFEVFKLK IEVVENGSNGCSSNWSIEYVKKANEDVAPPHNYLIIAAKISKGIDDYLCKN EFAHVRVIHVKYVVSQEVQLRSSAPKFYEFLKNKMDFVFQMFPEIYKSWK VVEGNGYAHGSVIQLKYNVDGPSEVKERLTIDDANKSLTFECVEGDLLRD FEVFKMKIEVVENGSNGSSANWSIEFVKANEDVATPHNYLLCVAKVSKGI DDYLCKN

CpMLP16

	GSILLFHLVHKEEAMRSQKERIVEVDETRHELVIQVLEGNVLKRGFSSFKT
	TFKLSSLSEKESLVDIKVAYETEKDGEDEQARMDAIATAPPLYFFQLLEKFL
CpMLP18	LPTSNT
	MVTIISDQTEIPAPAAKVWALYGTIHFADFLQLHLPNIINNVELLEGDGGQG
	TLVLVTFAPDLGGMRYKEKFVKIDNEQRIKIAEMVEGGYLDLGFTVYRFCF
	EIIEKDEESCIVKSSVEYELKEEAAANVSLASVQPLIAIAQAAKSYFLNAQQ
	PTDA
	MLGKLSHETVIQAPATVAWQLYGGLELARLVENRFSNLIQKIEVVEGDGGE
	GTVLNLIFPPGVGRFSSFKEKFTRIDNENRIKETEIVEGGFLDIGFTLYRVC
	LKIVENGDDSCIVESTIEYEIKEEAAANASLMLGQLSHEAAIQAPATVAWQL
	YGGLELARLVENRLSNLIQKIEVVEGNGGEGTVLNLIFLPGLGGAPSYKEK
	FTKIDNENRIKETEVVEGGFLDIGFTLYRVRLKIVENGDDSCIVESTIEYEIK

LKIVENGDDSCIVESTIEYDIKEEDAANASLVTIQPLIDIAQAANDHLLHNKQ HKNV

CpMLP21 MGVFTYENEVASVIPPEKFFKAFILGADQLYPKIVPNQPQSVLEGDGGPG TIKTISFSVASRTYKYTVLEGELLSDAIDKISKEIKVVEGPSGGSILKSTSVY HTKGDHQIDEEKLKSGEQKGLALLKAAEAYLLANPNEFN

Supplementary table 2. List of primers used for qRT-PCR.

Primer	Sequence
CpActin-s	5'-TCCAGGCCGTTTTATCTC-3'
CpActin-as	5'-CAGAATCCAACACAATACCTGT-3'
CpMLP4-s	5'-TGGCCATGGCTCAGTCAAGA-3'
CpMLP4-as	5'-CCAATCCAACCAAAAGCATTGCC-3'
CpMLP6-s	5'-TGGTCGGGAAACTGGTGAGC-3'
CpMLP6-as	5'-TGAATCTCAACGTGCTGGATGA-3'
CpMLP8-s	5'-AGCGAGTGGAATTTCACGACG-3'
CpMLP8-as	5'-ATGGCTAGGACCCTTTGGCA-3'
CpMLP9-s	5'-CCTGGCATTACACAGTTGATGGG-3'
CpMLP9-as	5'-GGCACAACCTGATATACCGGC-3'
CpMLP12-s	5'-TCGGGTGCATACTAGAGGCA-3'
CpMLP12-as	5'-TGCCATTGCTCCCACCATCA-3'
CpMLP21-s	5'-ACGAAAACGAAGTGGCGTCG-3'
CpMLP21-as	5'-ACGGATTGAGGCTGATTTGGC-3'
MLP-PG1-s	5'-ATTCAAAGTGCTAAGAGCAAAAT-3'
MLP-PG1 -as	5'-CCTTTTCAAACTCAACAGTCCA-3'
MLP-GR3-s	5'-AATTCAAAGTGCTTAGAGCAAAGG-3'
MLP-GR3 -as	5'-TGCCTTTTCAAACTCAATAGTCAA-3'

