

PDF issue: 2025-02-25

Ability of Left Atrial Distensibility After Radiofrequency Catheter Ablation to Predict Recurrence of Atrial Fibrillation

Shono, Ayu ; Matsumoto, Kensuke ; Ishii, Nao ; Kusunose, Kenya ; Suzuki, Makiko ; Shibata, Nao ; Suto, Makiko ; Dokuni, Kumiko ; Takami…

(Citation) The American Journal of Cardiology, 181:59-65

(Issue Date) 2022-10-15

(Resource Type) journal article

(Version) Accepted Manuscript

(Rights)

© 2022 Elsevier Inc. This manuscript version is made available under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.

(URL)

https://hdl.handle.net/20.500.14094/0100477796

1	Ability of Left Atrial Distensibility after Radiofrequency Catheter Ablation to Predict
2	Recurrence of Atrial Fibrillation
3	
4	Ayu Shono ^a , MD, PhD; Kensuke Matsumoto ^a *, MD, PhD; Nao Ishii ^b , MD, PhD;
5	Kenya Kusunose ^b , MD, PhD; Makiko Suzuki ^a , MD, PhD; Nao Shibata ^a , MD, PhD;
6	Makiko Suto ^a , MD, PhD; Kumiko Dokuni ^a , MD, PhD; Mitsuru Takami ^a , MD, PhD;
7	Kunihiko Kiuchi ^a , MD, PhD; Koji Fukuzawa ^a , MD, PhD; Hidekazu Tanaka ^a , MD,
8	PhD; Ken-ichi Hirata ^a , MD, PhD.
9	a) Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University
10	Graduate School of Medicine, Kobe, Japan
11	b) Division of Cardiovascular Medicine, Department of Internal Medicine, Tokushima
12	University Graduate School of Medicine, Tokushima, Japan
13	
14	*Corresponding author: Kensuke Matsumoto, MD, PhD
15	Division of Cardiovascular Medicine, Department of Internal Medicine
16	Kobe University Graduate School of Medicine
17	Address: 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
18	TEL: +81-78-382-5846, FAX: +81-78-382-5859 e-mail: <u>kenmatsu@med.kobe-u.ac.jp</u>
19	Running head: Left atrial distensibility

1	Abstract: This study sought to assess the left atrial (LA) functional recovery after
2	radiofrequency catheter ablation (RFCA) for atrial fibrillation (AF) and to evaluate the
3	determining factor of procedural success of RFCA using a novel preload stress
4	echocardiography. A total of 111 patients with AF were prospectively recruited. The
5	echocardiographic parameters were obtained during the leg-positive pressure (LPP) maneuver
6	both at baseline and mid-term after RFCA. As an index of LA distensibility, the LA expansion
7	index was calculated as (LAV _{max} - LAV _{min}) \times 100 / LAV _{min} . During a median follow-up period
8	of 14.2 months, AF recurrence was observed in 23 (20.7%) patients. In LA functional
9	parameters at baseline, only the Δ LA expansion index was significantly larger in the success
10	group (16 ± 11% vs. 4 ± 9%, P<0.05). At mid-term follow-up, the Δ LA expansion index
11	significantly increased to $32 \pm 19\%$ (P<0.05), together with structural LA reverse remodeling
12	only in the success group. Moreover, the Δ stroke volume index during the LPP stress test
13	significantly increased only in the success group (from 2.3 \pm 1.3 mL/m² to 3.1 \pm 4.8 mL/m²,
14	P < 0.05). In a multivariate analysis, left ventricular ejection fraction (hazard ratio 0.911,
15	<i>P</i> <0.05) and baseline Δ LA expansion index (hazard ratio 0.827; <i>P</i> <0.001) were independent
16	predictors of AF recurrence. In conclusion, the baseline Δ LA expansion index during LPP
17	stress is a reliable marker for predicting procedural success after RFCA. Moreover,
18	maintenance of sinus rhythm resulted in an improvement of the preload reserve after RFCA.
19	Keywords: leg-positive pressure stress, left atrial distensibility, left atrial fibrosis.

1	The principal role of the left atrium (LA) is to modulate left ventricular (LV)
2	diastolic filling and cardiac performance through reservoir, conduit, and booster pump
3	functions, ¹ without an elevation in LA pressure. In patients with atrial fibrillation (AF), these
4	essential functions are significantly impaired, leading to LA remodeling. Structural LA
5	remodeling progressively leads to myocardial dysfunction and subsequent electrical
6	alterations in the cardiomyocytes, ² creating an AF-prone fibrotic substrate, ³ which promotes
7	trigger driven paroxysmal to substrate dependent persistent AF. The purpose of this study was
8	to assess the relationship between maintenance of sinus rhythm and functional LA reverse
9	remodeling mid-term after radiofrequency catheter ablation (RFCA). Moreover, we also
10	investigated the determinant factor for predicting procedural success of RFCA by preload
11	stress echocardiography using a novel leg-positive pressure (LPP) maneuver.
12	Methods
13	This prospective study included 111 consecutive patients with AF who underwent
14	RFCA at the Kobe University Hospital and Tokushima University Hospital from October
15	2018 to March 2020. The exclusion criteria for this study were (1) a suboptimal quality of
16	echocardiographic images, (2) history of venous thrombosis or pulmonary embolism, (3)
17	severe orthopedic traumatic disease in the lower limbs, and (4) symptomatic decompensated
18	heart failure. Moreover, the patients with more than moderate valvular heart disease were
19	excluded from this study. Use of medications, including antihypertensive drugs, was kept

1	constant during the study period. This study was approved by the local ethics committee of
2	the involved institutions, and written informed consent was obtained from all participants.
3	As shown in the study protocol (Figure 1), all echocardiographic studies were
4	performed within three days after RFCA (baseline) and at 3-6 months postoperatively (mid-
5	term follow-up). Measurements were obtained in accordance with the current guidelines of
6	the European Association of Cardiovascular Imaging/the American Society of
7	Echocardiography. ⁴ LV ejection fraction (EF) and volumes were calculated by means of the
8	modified biplane Simpson's method. LA volumes were measured at two time phases: when
9	LA expanded to the maximum volume at end-systole (LAV $_{max}$) and when LA reduced its
10	volume just after the booster-pump phase (LAV $_{min}$). As shown in Figure 2, the LA expansion
11	index was calculated as $(LAV_{max} - LAV_{min}) \times 100/LAV_{min}$. ⁵ The transmitral early diastolic (E)
12	and atrial wave (A) velocities were measured using pulsed-wave Doppler recordings. ⁶ Early
13	diastolic (e') mitral annular velocity was measured using spectral tissue Doppler imaging with
14	a sample volume placed at the septal and lateral mitral annulus, and the averaged value was
15	calculated to estimate the LV filling pressure. ⁶ Stroke volume (SV) was measured at the LV
16	outflow tract.
17	Speckle-tracking analysis was performed using dedicated software (TOMTEC-
18	ARENA; TOMTEC Imaging Systems GmbH, Unterschleissheim, Germany). The average

19 values of the longitudinal strain from three LV apical views were calculated to obtain the LV

1	global longitudinal strain (LV-GLS). As for the speckle-tracking analysis of the LA
2	myocardium, LA-focused apical four- and two-chamber images were obtained. A
3	predominant positive wave that peaked at LV systole was expressed as LA-GLS. ⁷
4	For the preload stress test, commercially available LPP equipment (Dr Medomer
5	DM-5000EX, Medo Industries Co, Ltd, Tokyo, Japan) was used. The LPP stress maneuver
6	has been described previously in detail. ^{8,9} Briefly, it was designed to provide a continuous
7	external pressure around both lower limbs using dedicated airbags at 90 mmHg pressure,
8	which has been proven to safely provide an increase in cardiac preload. ⁹ Echocardiographic
9	measurements were obtained both at rest and during LPP stress, and the changes in the
10	measured parameters were calculated as the difference (Δ).
11	Electrical mapping and ablation were performed using the CARTO3 system
12	(Biosense Webster, Diamond Bar, CA, USA) as a guide after the integration of a three-
13	dimensional model of the anatomy of the LA and pulmonary veins obtained from pre-
14	interventional computed tomography. RFCA was performed in a "point-by-point" manner,
15	and the pulmonary veins were isolated by wide-area circumferential ablation. Patients were
16	followed closely after RFCA and evaluated for recurrence at 3, 6, and 12 months during
17	follow-up clinic visits. Procedural success was defined as freedom from documented AF
18	lasting more than 30 seconds after the 3-month blanking period. ¹⁰
19	Continuous variables were expressed as mean values and standard deviation for

1	normally distributed data and as median and interquartile range for non-normally distributed
2	data. Categorical variables were expressed as frequencies and percentages. Independent
3	sample t -test or Mann-Whitney U test was used to compare variables between groups. The
4	paired <i>t</i> -test or Wilcoxon signed-rank test was used to compare differences in parameters
5	between the two time-points, as appropriate. The initial univariate logistic regression analysis
6	to identify univariate factors for identifying AF recurrence was followed by a multivariate
7	analysis using a stepwise selection, with the P -value for entry into the model set at <0.10. All
8	tests were two-tailed, and a <i>P</i> -value<0.05 was considered statistically significant. All analyses
9	were performed using MedCalc version 16.5.0 (MedCalc Software; Ostend, Belgium).
10	Results
11	The baseline clinical characteristics of the 111 patients with AF are summarized in
12	Table1. Approximately 50% of the patients had paroxysmal AF, and the remaining half had
13	persistent or long-standing persistent AF. Hypertension was the most common comorbidity,
14	followed by diabetes, heart failure, and stroke. The mean CHA ₂ DS ₂ -VASc score was 2.4±1.5.
15	The baseline characteristics of the patients with paroxysmal and persistent AF are provided in
16	the Supplementary Table.
17	During a median follow-up period of 14.2 (12.2-18.4) months, AF recurrence was
18	observed in 23 patients, and the remaining 88 patients were allocated to the success group.

1	patients at the mid-term follow-up. For these cases, measurements were averaged from three
2	non-consecutive beats with a cycle length within 10%-20% of the average heart rate.
3	No significant differences were observed between the groups in terms of age,
4	CHA2DS2-VASc score, AF type, comorbidities, and laboratory data including brain natriuretic
5	peptide level at baseline (Table 1). With respect to the hemodynamic and echocardiographic
6	parameters, although the recurrence group was more likely to have larger LV volumes and
7	LAVI and lower LVEF, there were no significant differences in LA functional parameters,
8	including LA-GLS, LA stiffness index, and LA expansion index at baseline (Table 2).
9	During LPP stress, LV volume, LVEF, LAVI, E/e' ratio, and SVi significantly
10	increased in both groups as a result of the increased preload (Table 2). Of note was that,
11	although LA-GLS and LA expansion index significantly increased during LPP stress, these
12	responses were blunted in the recurrence group. Consequently, the Δ LA expansion index was
13	significantly larger in the success group at the baseline preload stress assessment (Table 2).
14	Follow-up echocardiography was performed at 6.1 (3.6-6.4) months after RFCA. As
15	for LA parameters, LA-GLS, LAVI, and LA stiffness index all significantly improved at the
16	mid-term follow-up after RFCA in the success group. Notably, the LA expansion index
17	increased only in the success group (Table 2 and Figure 3). Moreover, LV structural and
18	functional reverse remodeling was also observed at mid-term follow-up after RFCA, as
19	evidenced by the improvement in LV-GLS, increase in e' velocity, and decrease in E/e' ratio

1	only in the success group. Meanwhile, these beneficial effects of functional and structural
2	reverse remodeling were blunted in the recurrence group (Table 2).
3	At the mid-term follow-up, the LA expansion index significantly increased during
4	LPP stress in the success group, but not in the recurrence group (Table 2 and Figure 4).
5	Together with the improvement in LA distensibility, SVi significantly increased during LPP
6	stress without any elevation in LV filling pressure in the success group (Table 2 and Figure 4),
7	indicating a significant improvement in the preload reserve. In contrast, in the recurrence
8	group, the increased response of SVi was significantly blunted even at the expense of a
9	significant increase in E/e' ratio during the LPP stress test (Table 2 and Figure 4).
10	The hazard ratios (HRs) and 95% confidence intervals (CI) for each baseline clinical,
11	hemodynamic, and echocardiographic variables to predict AF recurrence are shown in Table
12	3. In a multivariate logistic regression analysis, although baseline LAVI and use of
13	antiarrhythmic drugs were not selected as independent predictors of AF recurrence, LVEF and
14	baseline Δ LA expansion index during LPP stress were selected as the independent
15	determinants of AF recurrence after RFCA.
16	A receiver operating characteristic curve analysis identified the optimal cut-off value
17	of LVEF to be 56.3%, and the Δ LA expansion index to be 13.7%, respectively (Figure 5).
18	Discussion
19	In the clinical course of AF, LA remodeling can be considered as time-dependent

1	structural, functional, and electrical alterations. ¹ These different types of LA remodeling are
2	closely interrelated and progressively interact with each other, ¹¹ resulting in alterations in the
3	tissue architecture, including microscopic fibrotic remodelling ³ and macroscopic atrial
4	dilatation. In these progressive pathological processes, LA fibrosis appears to play a central
5	role in the development and maintenance of AF, by causing the heterogeneity of electrical
6	conduction and a predisposition to re-entry. ^{2,3} Moreover, as the fibrotic burden increases, non-
7	compliant LA would no longer be able to exert sufficient reservoir function; ultimately, LA
8	acts as merely a passive conduit, that is LA fibrotic cardiomyopathy. ^{12,13} In this way, LA
9	distensibility progressively deteriorates in parallel with LA myocardial fibrosis; therefore, LA
10	reservoir function has recently gained attention for its clinical role in patients with AF.
11	Khurram et al. studied 219 patients with AF referred to RFCA by analyzing LA pressure-
12	volume loops and found that LA stiffness was a strong independent predictor of AF
13	recurrence in patients undergoing RFCA. ¹⁴ Moreover, Hsiao et al. prospectively studied a
14	total of 2,200 patients who complained of dyspnea and they clearly demonstrated that the
15	echocardiographic LA expansion index was associated exponentially with the incidence of
16	persistent AF. ⁵ These previous investigators underscored the importance that impaired resting
17	LA distensibility was attributed to the development or recurrence of AF. Nevertheless, from a
18	pathophysiological point of view, the stiffness characteristics of a chamber are not static, or
19	dynamic capacity to distend itself in response to increased blood volume without increasing

1	internal pressure. In this study, the baseline ΔLA expansion index could accurately predict AF
2	recurrence presumably because the dynamic property of chamber distensibility could reflect
3	the degree of LA myocardial fibrosis more accurately than static parameters.
4	In this study, not only a structural but a significant functional improvement in LA
5	was observed after maintaining a sinus rhythm. These results may imply that the restoration
6	of a sinus rhythm could not merely terminate the vicious cycle of electrical, structural, and
7	functional remodeling, but reverse it. During the LPP stress test at the mid-term follow-up, the
8	Δ LA expansion index dramatically improved in the success group, accompanied by an
9	increased SV in response to the increased preload. These beneficial hemodynamic responses
10	may suggest the restoration of the ability to reserve significant blood volume in the LA
11	chamber without an elevation in LA pressure during the reservoir phase, consequently
12	resulting in sufficient LV diastolic filling and increased SV. However, structural and
13	functional reverse remodeling was not observed in the recurrence group. In this subgroup, it is
14	speculated that the fibrotic burden of the LA myocardium might be too advanced to the extent
15	that LA myocardial damage was no longer reversible. Therefore, the increased cardiac preload
16	no longer properly reserved in the stiff LA. Instead, it merely led to an elevation in LA
17	pressure, diastolic LV underfilling, and eventually reduced preload reserve.
18	Although RFCA is an established therapy for AF, its recurrence rate is reported to be
19	10-40% for paroxysmal AF and as high as 60-80% for persistent AF; ¹⁵ therefore, appropriate

1	patient selection is a burning topic in this field. Theoretically, impaired LA distensibility
2	would be closely related to the fibrotic burden; thus, patients with AF may undergo RFCA
3	before the Δ LA expansion index is impaired for successful RFCA. The assessment of the
4	Δ LA expansion index may be helpful in predicting patient outcomes, providing an appropriate
5	strategy for RFCA, and making clinical decisions regarding post-procedural medical therapy.
6	This study has some limitations. First, because this study exclusively focused on the
7	LA reservoir function, we were unable to assess other atrial functional parameters, including
8	LA conduit and booster pump functions or right atrial function. Moreover, the pulmonary
9	veins and their variations were not anatomically assessed in this study. Second, the LPP
10	maneuver may not be available in all electrophysiological laboratories. Because passive leg-
11	lifting stress is reported to be able to provide significant cardiac preload and can be used for
12	the risk stratification of patients with heart failure, ¹⁶ further studies using this easy-to-use
13	preload stress are expected to validate our findings.
14	In conclusion, the baseline ΔLA expansion index during LPP stress
15	echocardiography was found to be a reliable marker to predict procedural success after
16	RFCA. Moreover, maintaining the sinus rhythm has been shown to induce a virtuous cycle of
17	LA reverse remodeling and improvement in preload reserve. These results may have
18	substantial implications in appropriate patient selection, emerging therapies after RFCA, risk
19	stratification, and postoperative follow-up.

References

2	1.	Toma Y, Matsuda Y, Moritani K, Ryoke T, Katayama K, Miura T, Ogawa H, Matsuda
3		M, Matsuzaki M, Kusukawa R. Left atrial conduit function for left ventricular filling
4		dynamics in patient with myocardial infarction. Cathet Cardiovasc Diagn
5		1989;18:85-89.
6	2.	Raitt MH, Kusumoto W, Giraud G, McAnulty JH. Reversal of electrical remodeling
7		after cardioversion of persistent atrial fibrillation. J Cardiovasc Electrophysiol
8		2004;15:507-512.
9	3.	Nguyen BL, Fishbein MC, Chen LS, Chen PS, Masroor S. Histopathological
10		substrate for chronic atrial fibrillation in humans. Heart Rhythm 2009;6:454-460.
11	4.	Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf
12		FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH,
13		Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for
14		cardiac chamber quantification by echocardiography in adults: an update from the
15		American Society of Echocardiography and the European Association of
16		Cardiovascular Imaging. J Am Soc Echocardiogr 2015;28:1-39 e14.
17	5.	Hsiao SH, Chiou KR. Left atrial expansion index predicts atrial fibrillation in
18		dyspnea. <i>Circ J</i> 2013;77:2712-2721.
19	6.	Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, 3rd, Dokainish H, Edvardsen T,

1		Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Popescu
2		BA, Waggoner AD. Recommendations for the Evaluation of Left Ventricular
3		Diastolic Function by Echocardiography: An Update from the American Society of
4		Echocardiography and the European Association of Cardiovascular Imaging. JAm
5		Soc Echocardiogr 2016;29:277-314.
6	7.	Voigt JU, Malaescu GG, Haugaa K, Badano L. How to do LA strain. Eur Heart J
7		Cardiovasc Imaging 2020;21:715-717.
8	8.	Matsumoto K, Onishi A, Yamada H, Kusunose K, Suto M, Hatani Y, Matsuzoe H,
9		Tatsumi K, Tanaka H, Hirata KI. Noninvasive Assessment of Preload Reserve
10		Enhances Risk Stratification of Patients With Heart Failure With Reduced Ejection
11		Fraction. Circ Cardiovasc Imaging 2018;11:e007160.
12	9.	Kusunose K, Yamada H, Nishio S, Tamai R, Niki T, Yamaguchi K, Taketani Y, Iwase
13		T, Soeki T, Wakatsuki T, Sata M. Interval from the onset of transmitral flow to
14		annular velocity is a marker of LV filling pressure. JACC Cardiovasc Imaging
15		2013;6:528-530.
16	10.	Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomstrom-Lundqvist C,
17		Boriani G, Castella M, Dan GA, Dilaveris PE, Fauchier L, Filippatos G, Kalman JM,
18		La Meir M, Lane DA, Lebeau JP, Lettino M, Lip GYH, Pinto FJ, Thomas GN,
19		Valgimigli M, Van Gelder IC, Van Putte BP, Watkins CL, Group ESCSD. 2020 ESC

1		Guidelines for the diagnosis and management of atrial fibrillation developed in
2		collaboration with the European Association for Cardio-Thoracic Surgery (EACTS):
3		The Task Force for the diagnosis and management of atrial fibrillation of the
4		European Society of Cardiology (ESC) Developed with the special contribution of
5		the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J
6		2021;42:373-498.
7	11.	Thomas L, Abhayaratna WP. Left Atrial Reverse Remodeling: Mechanisms,
8		Evaluation, and Clinical Significance. JACC Cardiovasc Imaging 2017;10:65-77.
9	12.	Lizewska-Springer A, Dabrowska-Kugacka A, Lewicka E, Krolak T, Drelich L,
10		Kozlowski D, Raczak G. Echocardiographic assessment in patients with atrial
11		fibrillation (AF) and normal systolic left ventricular function before and after
12		catheter ablation: If AF begets AF, does pulmonary vein isolation terminate the
13		vicious circle? <i>Cardiol J</i> 2020;27:126-135.
14	13.	Iwasaki YK, Nishida K, Kato T, Nattel S. Atrial fibrillation pathophysiology:
15		implications for management. Circulation 2011;124:2264-2274.
16	14.	Khurram IM, Maqbool F, Berger RD, Marine JE, Spragg DD, Ashikaga H,
17		Zipunnikov V, Kass DA, Calkins H, Nazarian S, Zimmerman SL. Association
18		Between Left Atrial Stiffness Index and Atrial Fibrillation Recurrence in Patients
19		Undergoing Left Atrial Ablation. Circ Arrhythm Electrophysiol 2016;9.

1	15.	Qin D, Mansour MC, Ruskin JN, Heist EK. Atrial Fibrillation-Mediated
2		Cardiomyopathy. Circ Arrhythm Electrophysiol 2019;12:e007809.
3	16.	Shibata N, Matsumoto K, Shono A, Suzuki M, Sumimoto K, Tanaka Y, Yamashita K,
4		Yokota S, Suto M, Dokuni K, Tanaka H, Hirata K-I. Easy-to-use preload stress
5		echocardiography by using combined dynamic postural stress can identify high-risk
6		patients with heart failure with reduced ejection fraction. ESC Heart
7		Fail 2021;8:2765-2775.
8		
9		

1 Figure legends

2	Figure 1. Study protocol
3	Transthoracic echocardiography and LPP stress echocardiography were performed within 3
4	days after RFCA (baseline) and at 3-6 months after RFCA (mid-term).
5	RFCA, radiofrequency catheter ablation; TTE, transthoracic echocardiography; LPP, leg-
6	positive pressure.
7	
8	Figure 2. Schematic presentation of the measurement of the LA expansion index
9	The LA expansion index was calculated as (LAV_max - LAV_min) \times 100 / LAV_min both at rest and
10	during LPP stress. Subsequently, the Δ LA expansion index was calculated by subtracing the
11	expansion index at rest from that obtained during LPP stress. Moreover, the Δ LA expansion
12	index was measured both at baseline and mid-term follow-up.
13	LA, left atrial; LAV, left atrial volume; LPP, leg-positive pressure.
14	
15	Figure 3. Changes in resting LA functional and structural parameters from baseline to
16	the mid-term follow-up after RFCA for both the success and recurrence groups
17	Each plot and bar represents mean and standard deviations.
18	LA, left atrium; RFCA, radiofrequency catheter ablation; GLS, global longitudinal strain;

19 LAVI, left atrial volume index.

-	
J	L

2	Figure 4. Changes in ΔLA expansion index and ΔSVi from baseline to the mid-term
3	follow-up after RFCA in both success and recurrence groups
4	In the success group, both the ΔLA expansion index and ΔSVi significantly increased from
5	baseline to the mid-term follow-up after RFCA, yet no significant changes were observed in
6	the recurrence group.
7	LA, left atrium; SVi, stroke volume index; RFCA, radiofrequency catheter ablation.
8	
9	Figure 5. ROC curve analysis for differentiating procedural success after RFCA
10	The baseline ΔLA expansion index was revealed to have a high discriminative potential for
11	predicting procedural success after RFCA.
12	ROC, receiver operating characteristic; RFCA, radiofrequency catheter ablation; LA, left
13	atrial.
14	

Figure 1

(A)

(B)

(C)

Catheter ablation

✓ Laboratory examination

Baseline

- Immediately after catheter ablation
- ✓ TTE : rest + LPP

Mid-term follow-up

- ✓ 3-6 months after catheter ablation
- ✓ TTE : rest + LPP

Figure 4 Δ SVi Δ LA expansion index *P* < 0.05 n.s (%) (mL/m²) *P* < 0.05 30 5 4 4.7 3.1 32 ±4.0 20 ±4.8 3 ±19 2.4 n.s 2 ±4.3 3 2.3 10 土.7 16 ±1.3 Δ Mid-term **Mid-term** 1 ±11 ± 9 **Baseline Baseline** 0 0 **Success** Recurrence **Success** Recurrence

	Cut-off	ACU (95% CI)	Sensitivity	Specificity	P value
LVEF (%)	56.3	0.663	52.2	88.6	<0.05
Baseline ΔLA expansion index	13.7	0.813	100	45.8	<0.001

	All patients	Success	Recurrence	
Variables	(N = 111)	(N = 88)	(N = 23)	<i>P</i> -value
Age (years)	67±9	67±10	67±8	0.97
Body mass index (Kg/m ²)	25±4	25±4	24±3	0.54
Body surface area, (m ²)	1.7 ± 0.2	$1.7{\pm}0.2$	$1.7{\pm}0.2$	0.69
CHA ₂ DS ₂ -VASc score	2.4±1.5	2.3±1.5	2.6±1.4	0.42
Types of Atrial Fibrillation				
Paroxysmal	58 (52%)	49 (56%)	9 (39%)	0.16
Persistent/Long-standing persistent	53 (48%)	39 (44%)	14 (61%)	0.18
Comorbidities				
Heart failure	12 (11%)	7 (8%)	5 (22%)	0.06
Hypertension	65 (59%)	55 (63%)	10 (43%)	0.10
Diabetes	29 (26%)	24 (27%)	5 (22%)	0.70
Stroke	12 (11%)	9 (10%)	3 (13%)	0.70
Laboratory data				
Hemoglobin (g/dL)	13±1	13±1	13±2	0.76
Creatinine (mg/dL)	$0.9{\pm}0.2$	$0.9{\pm}0.2$	$0.9{\pm}0.2$	0.37
Estimated glomerular filtration rate (mL/min/1.73m ²)	65±13	65±13	61±12	0.17
Brain natriuretic peptide (pg/mL)	76 (31-141)	58 (29-144)	108 (75-138)	0.22

Table1. Baseline clinical characteristics of the patients with atrial fibrillation

Data are presented as n, mean \pm SD, n (%), or median (interquartile range).

Table 2. Comparisons of haemodynamic and echocardiographic parameters during leg-positive pressure stress both at baselineand mid-term follow-up

		Suco	cess		Recurrence				
	Ba	seline	Mid-ter	m follow up	Ba	aseline	Mid-ter	m follow up	
Variable	Rest	Leg-positive pressure	Rest	Leg-positive pressure	Rest	Leg-positive pressure	Rest	Leg-positive pressure	
Hemodynamics									
Systolic blood pressure (mmHg)	126±18	129±19*	124±20	123±17	127±18	124±14	120±21	121±18	
Diastolic blood pressure (mmHg)	73±14	76±14*	67±16†	68±14	74±9	72±18	68±21	70±17	
Heart rate (bpm)	71±13	69±10*	67±10†	64±9*	71±15	69±12*	66±14	65±18	
Stroke volume index (mL/m ²)	39±11	42±12*	37±9†	41±10*	42±11	46±12*	36±7†	40±8*	
Δ Stroke Volume index (mL/m ²)	2.	2.3±1.3		3.1±4.8†		4.7 ± 4.0		2.4±4.3‡	
Echocardiographic indices									
Left ventricular volume index (mL/m ²)									
End-diastole	47±10	51±11*	47±12	54±14*	56±12‡	61±16*	52±15	59±15*	
End-systole	17±5	18±5	18±6	20±7*	24±10‡	25±12	21±8‡	22±10	
Left ventricular mass index (g/m ²)	8	6±27	82	2±21†	9	95±23	91	7±27‡	
Left ventricular ejection fraction (%)	63±6	65±5*	63±5	65±5*	58±9‡	61±11	60±8	65±8*	
Left atrial volume index (mL/m ²)	40±12	45±13*	34±9†	40±10*	47±16‡	52±17*	43±16†‡	48±18*	
	1.6	1.5	1.2	1.3	1.9	2.0	1.5	1.5	
E/A rano	(1.1-2.2)	(1.2-2.4)	(0.9-1.6)†	(1.0-1.6)*	(1.5-2.5)	(1.5-2.5)	(1.0-2.2)†	(1.2-1.8)	
e' velocity (cm/sec)	7.3±1.7	7.6±2.0*	7.4±1.7†	7.6±1.7	7.6±2.0	7.6±2.1	7.5±2.3	7.2±2.6	
E/e' ratio	11±3	13±5*	10±3†	11±4	12±5	13±5*	11±4	14±10*	

$\Delta E/e$ ' ratio	1.2 ± 2.1		1.0	$1.0{\pm}2.2$		1.5 ± 2.3		3.4±7.5‡	
Tricuspid regurgitation-pressure gradient	22+0	2/1+8	10+0+	<i>??</i> ⊥0*	25+7	24+8	21+10	22+10	
(mmHg)	2319	24±0	1 <i>9</i> ⊥9		2311	24±0	21±10	22-10	
Tricuspid annular plane systolic excursion (mm)	22±4	23±4	22±4	23±4*	23±4	24±5	22±4	24±5	
Inferior vena cava diameter (mm)	14±4	16±4*	12±4†	14±3*	14±4	15±3	12±3†	14±3*	
Left ventricular-global longitudinal strain (%)	13±4	13±4	15±4†	15±4	12±3	13±3	13±5	13±5	
Left atrial-global longitudinal strain (%)	17±6	19±5*	21±6†	23±7*	15±6	16±6*	16±6‡	17±5	
Left atrial expansion index (%)	40±27	56±28*	61±30†	93±34*	37±14	40±14*	34±17	36±18*	
Δ Left atrial expansion index (%)	16	±11	32=	±19†	3.7	± 9.0 ‡	2.6	±6.5‡	

**P*<0.05 vs. rest, †*P*<0.05 vs. baseline, ‡*P*<0.05 vs. success

Data are presented as n, mean \pm SD, n (%), or median (interquartile range).

	Un	ivariate analys	sis	Multivariate analysis			
Variables		95% CI	P value	HR	95% CI	P value	
Clinical variables							
Age (y)	0.999	0.952-1.049	0.97				
Gender (male)	0.857	0.314-2.340	0.76				
CHA ₂ DS ₂ -VASc score	1.120	0.821-1.528	0.47				
Type of atrial fibrillation (paroxysmal)	0.512	0.201-1.306	0.16				
Brain natriuretic peptide concentration, pg/mL	1.001	0.997-1.004	0.73				
Radiofrequency catheter ablation strategy	1 150	0 620 2 121	0.64				
(pulmonary vein isolation)	1.139	0.030-2.131	0.04				
Prescription of antiarrhythmic drugs	3.301	1.233-8.838	< 0.05				
Baseline echocardiographic variables							
Left ventricular ejection Fraction (%)	0.906	0.847-0.968	< 0.01	0.900	0.831-0.974	< 0.05	
Left atrial volume index (mL/m ²)	1.040	1.004-1.077	< 0.05				
E/e' ratio	1.022	0.899-1.161	0.74				
Left ventricular-global longitudinal strain (%)	0.928	0.814-1.058	0.26				
Left atrial-global longitudinal strain (%)	0.923	0.818-1.042	0.19				
Left atrial expansion index (%)	0.994	0.974-1.014	0.58				
Variables under leg-positive pressure stress							
Δ Left atrial expansion index (%)	0.831	0.754-0.915	< 0.001	0.900	0.753-0.931	< 0.001	

Table 3. Univariate and multivariate logistic regression analysis to predict AF recurrence

HR, hazard ratio; CI, confidential interval.

All other abbreviations as in Table 1 and 2.