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CHAPTER 1

Introduction

Many systems in the real world can be modeled as temporal networks1–4 due to their complex

architecture that change as they interact with and adapt to the wider environment. Networks are

generally used as a convenient way of representing complex patterns of connection between the

constituents (i.e., nodes) that are linked by relational ties (i.e., edges).5 Traditionally, networks

depict these relationships as static representations by considering either a single snapshot in time or

an aggregation of the relationships over a time window. Despite their usefulness in simplifying some

aspects of the network architecture for real systems, static representations can ignore other realistic

features that characterize complex systems.6–15 Modeling complex systems as temporal networks,

preserves the time dimension of the underlying data; therefore providing much richer information

on the time-varying behavior of nodes and the dynamics of the edges between them.16,17 Two

well-known networks that constitute a considerable part of our daily lives fall into this category of

systems with a time-varying structure: social networks and financial systems. The network science

literature has seen an explosion of studies on financial and social networks; however, the application

of temporal network models is considerably advanced in the latter while still relatively nascent for

financial systems.

Over the last decade and a half, the world has experienced substantial disruptions to the global

financial system and to the way we interact with each other in common social settings (e.g. schools,

workplaces) due to pandemics. The danger lies in the tendency for breakdowns in these systems

to permeate other aspects of our lives and other systems that rely on them to function; thus

signaling their importance. System malfunctions of this kind are, therefore, constant reminders of

why we study financial and social complexity exhibited, respectively, in the behavior of humans and

financial institutions. The overall objective of studying any system is to understand it well enough

to prevent or mitigate collapse due to threats, and to enable greater control over them. By using

temporal networks, we can fully consider the realistic structure of the time-varying dependencies

at a microscale which is key to uncovering how social and financial systems operate at the core.15
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This, therefore, enables us in answering questions such as: How do node level interactions lead to

global effects. Moreover, the richness of temporal data also presents the opportunity to go beyond

the microlevel to uncover informative details about the source of changes in the network as a whole.

It is against this background that we establish the purpose of this work as being twofold. First, we

investigate how the dynamical local interactions and properties of banks generate systemic risk in

an empirical financial network. Second, we explore the source of dynamical changes in the global

properties of social systems using empirical data on human interaction in face-to-face networks.

Our study of financial systemic risk is conducted within the context of an interbank market that

facilitates banks in managing liquidity through bilateral exchange of loans. The novel feature of this

work is that we use timestamped data on unsecured overnight interbank loans which we rely on to

measure systemic risk by aggregating the trades over a quarter-hourly timescale. The use of such a

small timescale enables us to observe the evolution of systemic risk via the interbank linkages as the

day progresses. At best, previous empirical studies aggregate trades over an entire day;18–20 however

most consider much coarser timescales21–24 (e.g. monthly, quarterly or yearly), which discounts the

possibility that systemic risk has its own diurnal dynamical pattern. Furthermore, we study the

systemic risk patterns in close to 4,000 days that span relatively calm and turbulent periods alike;

thus contextualizing and differentiating the findings based on economic conditions. The existence

of intraday fluctuations in systemic risk may imply that the timing of certain activities in interbank

markets needs closer monitoring. Moreover, it may signal that the study of financial systemic risk

in other layers of the system should respect the inherent timescale of the given layer.

We adopt the broad definition of systemic risk as seen in the financial network literature which

defines it as the possibility that an initially localized shock triggers global instability via a cas-

cading effect.25–30 Due to the existence of various transmission channels that can propagate risk,

different financial network models are often used to represent and study each channel separately.

For example, models of interbank networks define banks as nodes that are linked by bilateral claims

and obligations; however, when the portfolios of institutions overlap, one could also define nodes as

financial institutions in general with edges between those that have common assets in their portfo-
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lios. Interbank markets feature extensively in the study of financial systemic risk for a few reasons

that include the interest generated by the 2007-2008 global financial crisis which witnessed a partial

collapse of interbank markets globally.20 Moreover, interbank markets reflect many general features

of financial systems such as their ability to: capture complexity of exposures among banks,31–33 in-

corporate banks’ balance sheets,33 consider uncertainties surrounding financial contracts (as banks

depend on promises regarding future payments).31,32

Early studies of interbank obligations assumed stylized random network structures that are static;27,34–36

however, other works employ the use of empirical data to examine the role played by real interbank

network structures.18–24,37–40 The empirical findings highlight that systemic risk is overestimated

in financial networks with random structures that characterize banks as having homogeneous sizes

and/or degrees.20,38,41 To motivate our departure from static representations of financial networks

and random network structures, we highlight findings from studies on social networks indicating that

the time-varying activity of nodes can influence spreading phenomena such as infectious diseases,

opinions and rumors.2,3, 42,43 More specifically, the work on epidemic spreading in temporal net-

works show that contagion can be altered fundamentally by the burstiness of human contacts,44,45

either mitigating spread46–48 or causing it to accelerate.42,49 It is also shown that coarser resolu-

tions i.e., aggregating contacts over long time scales, can average out material temporal information

by treating old contacts and new contacts in the same way, and also by considering neither the

possibility that temporal correlations may exist between consecutive contacts nor the impact that

one contact can have on multiple edges.50–54 A temporal network analysis of the Italian interbank

market, i.e., the data set that is used in our investigation, indicates that the daily interbank trans-

actions exhibit interaction patterns that are essentially the same as those that characterize human

social communication;55 this means, banks trade with counterparties in much the same way as

friends interact via phone calls and face-to-face communications.8,56 Our review of the works on

financial systemic risk highlights only a few studies that investigate contagion in interbank markets

at the daily scale.18–20 We, therefore, recognize a gap that exists in the financial network literature

that has not accounted sufficiently for the possibility of a build-up of contagious risk in interbank

networks. Early identification of such build-ups could be useful in formulating timely responses to
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mitigate systemic risk.

In our study of social systems, we contribute to the network science literature that explores global

properties of complex systems. By using four face-to-face empirical human contact data sets from

the Sociopatterns project, we investigate the source of dynamical changes often observed in the size

of networks — defined in terms of the number of active individuals (i.e., nodes) and the number of

connections between them (i.e., edges) at a given point in time. These are two of the most basic

metrics common to any system, since all networks consist fundamentally of nodes and edges. To

explore the mechanisms behind network expansion and shrinkage, we introduce a new estimation

method (i.e., numerical maximum likelihood) to estimate the parameters of a model that takes the

aggregate number of nodes and edges at a given time as inputs. The novelty of our estimation

method is its ability to estimate simultaneously, the parameters that represent each mechanism.

Estimating both parameters in parallel, therefore allows us to identify the origins of the systems’

size fluctuations by deconstructing the contribution that each makes and by also observing the

interplay between them. Furthermore, since we are relying solely on the aggregate metrics of total

nodes and edges, we can apply the method to understand the dynamical changes in practically any

system. We highlight previous studies that develop methods to classify the source of such time-

varying dynamics in temporal networks57,58 also employed these basic aggregate metrics; hence, our

proposed method serves as an extension of their work.

Existing studies on temporal social networks are interested in the time-varying tendency of inter-

actions between nodes; however, these local interactions represent just one aspect of dynamics in

system — the other consists of changes in the properties at the aggregate level. One such global

property is the size of networks which has been shown to fluctuate quite often in temporal net-

works. More specifically, aggregate nodes and edges have a scaling relationship that is referred to

as the densification power-law.57–60 However, this relationship that describes the way aggregate

network connections at a given time changes with the number of nodes, has been found to exhibit

two distinct patterns. First, the conventional densification scaling shows a constant growth59,60

in network edges; but in the second case, total edges expands at a rate that is not constant.57,58
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In both instances, any fluctuations in the aggregate metrics can be traced back to changes in two

mechanisms: the system’s population, and/or the probability of two nodes connecting (i.e., overall

activity level). For a social network with fixed probability of connection, total interacting individu-

als and total edges (i.e., the total pairs of individuals in contact) will both increase if the population

of the network expands. This is because as more persons join, an increasing number of individuals

will find partners to maintain the fixed probability of connection in the system. For a network that

has a fixed population, however, increasing the connection probability will not only raise the total

number of edges between individuals but — if non-interacting persons exist — an increasing prob-

ability implies that more of them will become engaged with others which then leads to an increase

in the total number of active individuals.

Changes in the system’s population and overall activity level precipitate changes not only in the size

over time but also the type of densification scaling pattern57 that emerges. To understand complex

systems well enough to control and manipulate them, it is important that we explore the existence

of any time-dependent contributions of the mechanisms behind fluctuating network size. In theory,

the conventional scaling relationship (i.e., where aggregate edges grow at a constant rate with

aggregate nodes) is due to a network population that is changing.57–60 However, the non-constant

growth rate of edges (as number of nodes increases) is due to variations in the overall activity level

which modulates the generation of edges.57,58 Empirical data on social networks and other systems

show that, in reality, the relative importance of each mechanism can be changing from time to

time. In fact, they showed that neither of the mechanisms was the sole factor affecting the network

size in the investigated temporal social networks.58 Besides this tendency for population size and

overall activity level to switch between themselves as the dominant mechanism driving time-varying

changes in system size, there also exists the possibility that both mechanism are acting at the same

time. To explore such a possibility, the models proposed in these studies would need to be extended

to facilitate an estimation of the parameters simultaneously. Our study proposes a method to this

end.

The outline of this dissertation is as follows. In chapter two, we survey the literature on two
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complex networks that are quite familiar to our daily lives: financial and social networks, which we

study closely in chapters three and four, respectively. The purpose of this survey is to establish a

concordance between these two areas of study, highlighting the relatively advanced nature of the

work on social systems, and precisely how the tools and methods employed in social network analysis

can be applied to gain much needed insights about financial systems. To the best of our knowledge,

the two areas have been reviewed largely in a disparate manner. Therefore, this survey takes a

systematic approach in connecting the two areas with the hope of identifying: how the existing gaps

in the financial network literature can be supplemented by highlighting tools and methods in social

network analysis that have provided useful insights for social policy design.

In chapter three, we study how local dynamics can precipitate macrolevel changes in financial

networks. Although financial interlinkages have been identified as the factor underlying the various

types of risks that threaten financial stability via aggregate network effects,61 heterogeneity among

the institutions themselves is also important. We, therefore, employ temporal network analysis

to the interbank network to highlight time-variation in bank trades as an important source of

heterogeneity with implications for how we detect changes in systemic risk. Our investigation

quantifies systemic risk (i.e., fraction of banks to default) due to an initially localized shock that

propagates throughout the network. We also explore some possible factors that may be influencing

dynamical changes in the level of risk in the system during respective trading days. Finally, we

leverage the temporal richness of the data to highlight how differences in structure at a point in

time should be considered when quantifying threat levels in the system.

In chapter four, we go beyond the dynamical behavior of nodes (i.e., at the microlevel) to investigate

the source of dynamical changes in social network at the aggregate level. In particular, we explore

the question of: why do networks expand or shrink at different times? We extend existing works on

the topic to develop a numerical maximum likelihood approach that enables us to deconstruct the

individual contribution of each mechanism as well as the interplay between them. We conclude our

discussion in chapter five.
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CHAPTER 2

Social and financial networks as complex adaptive systems

Shaunette T. Ferguson, Graduate School of Economics, Kobe University, Japan

2.1. Introduction

We encounter complex systems almost everywhere:62–65 from our own immune system which we

depend on to survive to those that are man-made such as communication,66–68 transportation,69

financial and other65,70 networks that have enabled greater convenience. Understanding these sys-

tems enables us in preventing or mitigating their failure,71–77 while taking advantage of how we

can obtain the maximum benefit from them.78–80 Social networks have been paramount in under-

standing and anticipating the spread of social phenomena (e.g. ideas, innovations, fads, diseases

and computer viruses) while providing the tools to measure the social standing81–84 of the individ-

uals participating in them. Much of what we know about the diffusion and persistence of certain

epidemics is due to studies about the behavior of social systems as they evolve, and how dynamic

processes occur on them. Furthermore, understanding human mobility85,86 patterns have the poten-

tial to help us mitigate the spread of epidemics,87 enhance crisis responses88 among other things.89

Similar to social networks that link individuals according to their social relationships, financial sys-

tems are also modeled as networks of financial institutions with links that symbolize the nature

of their financial relationship.35,90 By viewing financial systems in this way we can make sense of

financial meltdowns provoked by the failure of institutions that cascade over a highly interconnected

and interdependent system.36,91 Both social and financial systems have a complex architecture due

to a non-randomness in their origins and evolution, and this similarity between them has enabled

many approaches in social network analysis to be applied in the study of financial systems.

Social network analysis stands as one of the key streams of the network science research most

applicable to the study of financial systems, another includes the field of statistical physics.92,93

7



Early developments in social network analysis, particularly in sociology during the mid-20th century,

led to findings that provided a pivotal foundation for our understanding of diffusive phenomena (e.g.

ideas, habits, behaviors etc.), and the notion that some individuals or group of individuals are more

important (central) than others. Formalizing how we investigate these systems and phenomena

was due largely to contributions in the field of statistical physics, which began with questions

about the design principles of real systems. At first, complex systems were thought to be random,

emerging from pairs of individual units connecting with a certain probability p to generate a total

of pN(N − 1)/2 edges between the nodes.94 However, increasing interest in the workings of real

systems, particularly the resilience of their topology, motivated further research and brought into

question the realistic nature of empirical systems having a random network structure. Several of

these studies that challenge the paradigm of a random network topology in real systems, relied

on networks in the natural environment to find that many systems around us are encoded with

self-organizing patterns that are anything but random. The advancement of our knowledge about

real complex systems have resulted from several factors working in tandem ;92 namely: 1) greater

availability of large-scale computerized data sets in different fields of study, 2) increased computing

power and capacity that enable networks with millions of nodes to be studied; thus expanding the

research possibilities, 3) increased collaboration between different disciplines which allows access to

diverse databases.

Subsequent works pursue the development of tools and metrics to contrive meaning from this wealth

of data by quantifying the commonalities and uniqueness of empirical systems. Three fundamental

properties became known about complex networks. First, the small world95 property describes the

relatively short distance between any two nodes, where distance is the number of edges connecting

the pair via the shortest possible path. Second is the tendency for nodes to form clusters (e.g. a

clique of friends in social networks) in which everyone in the cluster is acquainted with the other.

The presence of such cliques, given by the clustering coefficient96 metric, tends to be greater for

real systems than for random networks. Third, is the non-Poissonian degree distribution that shows

few nodes having many edges (or degrees) while a larger number of nodes have relatively fewer

edges.67,92 Studies on the World Wide Web,66 Internet,68 metabolic networks97 and others67,98,99
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indicate that they belong to a class of scale-free networks67,100 with degree distributions that are

significantly different from that of random networks. Establishing this foundation paved the way

for subsequent investigations aimed at identifying tipping points (i.e., where small shocks make

considerable differences in outcomes36), and how statistical properties lead to a more or less resilient

network. Some networks are quite robust to drastic attacks with the malfunction of key components

leading infrequently to system-wide breakdown.97,101 However, this robustness is sometimes due

to the presence of redundancies built into the underlying network structure (e.g. communication

networks102). The main question of concern in this aspect of the literature considers the extent of

the contribution of network topology, in the absence of redundancies, in maintaining the system’s

stability.

Although the fields of economics and finance are inherently transdisciplinary93 and the parallels

between financial and complex systems36,91,103,104 are quite discernible, the extension of network

concepts and techniques to the financial system followed much later.61,93 One explanation for this

is the absence of behavioral considerations36 in some studies which model individual entities (e.g.

banks) as passive. Furthermore, the network structure in early studies that applied network tech-

niques, implicitly assumed that nodes (e.g. banks) are either isolated or completely connected105

(i.e., every node is connected to the other),61,93 without adequate investigations into the implica-

tions of assuming these structures. In fact, financial supervision once considered the balance sheet of

individual institutions while ignoring in large part, potentially important information about the re-

lationship between them.61 In other words, two institutions that lend (or borrow) the same amount

may have different effects on the network as a whole; hence, at the very least, nodes should be

differentiated on the basis of the number of edges connecting them to others. We also highlight the

role played by data unavailability or inaccessibility on relationships between institutions in financial

systems. This limitation has been cited in several studies as a debilitating factor to more in-depth

investigations using network techniques. Limited availability of data on bilateral exposure of banks

and/or balance sheet data, at the appropriate level of granularity, can limit the use of specialized

models that exist for simulating systemic risk;106 thus having negative implications for policy de-

sign.33 For example, the evidence on whether real interbank networks belong to the category of
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scale-free networks is mixed: some studies of empirical interbank networks find a power-law degree

distribution among banks107–110 while others111–113 find degree distributions that have a heavier

tail than random networks, but not necessarily scale-free. Since scale-free networks are robust to

random failures but more susceptible to the removal of specific nodes that are well connected,114

it begs the question: what does it mean for financial network stability when the system has an

alternative degree distribution112,113 to the scale-free distribution?

Notwithstanding, the applications of techniques in statistical physics and social network analysis

are becoming increasingly present in the work on financial systems. Due to a general urgency

to capture complexity and connectivity between institutions and financial markets, more detailed

data collection has become the focus of regulators, asset managers and risk managers who are con-

cerned, respectively, with macro prudential supervision, the complex dynamics of financial market

interdependencies and early warning signals that can identify emerging systemic risks. By viewing

financial systems from a network perspective we have access to the most holistic and straight-

forward representation of a host of financial relationships115 where each relationship type can be

modeled as separate layers.116–118 Furthermore, network models can aptly handle heterogeneity of

institutions i.e., with all their interconnections, while offering a way to simulate dynamic spread

of shocks to identify non-linearities that are typical of systemic instabilities.36 Existing studies on

financial networks highlight similarities in the structure of interbank networks with that of other

complex real-world systems; more specifically, financial networks exhibit small-world property, high

clustering coefficients, and a non-Poissonian degree distribution.

While structural configuration is a key component of understanding complexity in social and finan-

cial networks,114,119–121 the self-organizing tendency of these systems often leads to new patterns of

interaction emerging over time. This means network structure is also evolving, and the dynamism

forms part of the system’s complexity. Temporal network models capture these changes as nodes

and edges switch between the states of being active and inactive;3,16,122,123 thus encapsulating

the inherent time dimension that is evident in the real interaction between the most fundamen-

tal network components.The use of temporal network models is well advanced in social network
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analysis;3,16,46,47,122–125 however, their extension to the study of financial systems remains in its

infancy.126 Studies on temporal social networks highlight that non-linear effects can emerge from

time-varying behavior at the local level; thus having implications for how the wider system responds

to small disturbances.42,43,46,127,128 Despite the low penetration of temporal models in the study

of financial networks, their application is highly relevant especially for financial systemic risk anal-

ysis because of the sheer nature of how these systems operate. Several processes are occurring on

them, sometimes concurrently, in which the properties of institutions and/or their relationship with

others in the system are dynamic. Therefore, the time-varying aspect of the interaction between in-

stitutions should not be neglected, and observing these behaviors over extended periods can uncover

many hidden properties about them. Furthermore, one of the primary objectives of financial regula-

tion and supervision is to manage financial systemic risk which manifests as non-linear macroscopic

effects that emerge when dynamical changes at the institutional level are aggregated. Hence, any

meaningful headway on the study of systemic risk hinges on knowledge of the temporal structural

dynamics of the financial system under investigation.

In this review, we aim to provide a systematic overview of the existing works on social networks and

financial systems. We highlight the parallel between them, and how the tools from social network

analysis have been leveraged to better understand financial systems outside of the conventional

space of economics and finance. The body of work that has already reviewed the financial network

literature increased steadily in the aftermath of the global financial crisis of 2008—2009, signaling

an expansion in the use of network concepts and techniques. One of the earliest reviews discussed

methodologies and also motivated the use of network representations to study financial systems.129

Others focused mainly on surveying theoretical studies that investigate the narrow strand that links

connectivity and financial stability130 or the broader range of studies on interbank networks that

differentiates on the basis of the type of financial links, shocks, loss propagation, network formation

process and structure.33 The reviews by De Bandt et al.31 and Benoit et al.131 surveyed studies

that use financial network models and also those that used conventional approaches in economics

and finance. Another strand includes studies on simulation methods115,132 and simulated empirical

financial networks.115,132–134 Recent surveys, however, are more integrated in reviewing works
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that employ network models of financial markets to investigate the relationship with systemic risk

.93,135,136 Bardoscia et al93 specifically highlighted the contribution of the field of statistical physics

to that of financial network studies. Here, we take a novel approach to fill the gap in the network

science literature by establishing a bridge between social network analysis and financial network

studies. We focus particularly on the relevant theoretical frameworks, the empirical applications

and their policy implications.

In section 2.2, we provide an overview of temporal networks and the various ways in which empirical

data can be simplified to incorporate dynamical properties that are crucial in our understanding

of real systems. We follow by highlighting the similarities between social and financial systems in

section 2.3. In section 2.4, we discuss the different applications of network analysis to static and

time-varying social systems. Finally in section 2.5, we review studies that employ network analysis

in the study of financial systems.

2.2. Constructing temporal networks from empirical data

To capture inherent properties that are time-varying in real complex systems, a temporal network

representation is frequently employed; hence their widespread use span various fields of social and

natural science.137–140 Similar to their static counterparts, temporal networks consist essentially

of nodes with links (formally known as edges) between them. However, active nodes (or even

edges) a given time can be different from those at another time. Therefore, temporal networks are

more detailed in their representation of when nodes and edges become active and when they go

offline;141 thus encoding the inherent dynamism of the system’s structure. In addition to network

structure, the dimension of time is particularly relevant in exploring and understanding spreading

processes because each edge and the time that they become active, provides an opportunity for

propagation.43,141 Here, we discuss key considerations when constructing temporal networks from

empirical data.

2.2.1. General network representation

A network representation can simplify the many complex systems (e.g., world wide web, power grids,

transportation systems etc.) that form part of our daily lives. At the foundation of these systems
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Figure 2.1: Visualizing and representing networks. In the upper panel, networks are visualized as
graphs with nodes (blue circles) and edges (black line connecting them), and the lower panel shows
the respective adjacency matrices. Each row and column identifies the a particular node as the
source and target, respectively. (a) The interaction between nodes can be bidirectional which is
represented as an undirected network. (b) Network representations can also track the number of
bilateral contacts (i.e., pairwise interactions) or whether nodes have made contact with themselves
by including multi-edges and self-edges, respectively. (c) In directed networks, edges go from source
(initiating) node to target nodes, and this is denoted by unidirectional edges.

are units that are relating among themselves via edges, and we can visualize these fundamental

constructs graphically (Fig. 2.1, upper panel) or as elements in a matrix (Fig. 2.1, lower panel).

The latter representation is referred to as an adjacency matrix in which the row and column indexes

are node identifiers (or node indexes). In the adjacency matrix, a non-zero value means that the

nodes identified by the row and column indexes, respectively, have been in contact while nodes

with no contact between them have a zero value in place. When the focus is solely on whether two

nodes have interacted, a binary adjacency matrix (i.e., entries can be 1 if nodes have interacted

and 0 otherwise) may be more appropriate. However, additional information on the nature and

diversity of the edges in the networks are sometimes important and therefore, better represented as

a weighted graph or adjacency matrix. Finally, if no importance is assigned to the direction of the
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contact between nodes, then a symmetrical adjacency matrix, in which all the edges are bidirectional,

may suffice (Fig. 2.1a). On the contrary, an asymmetric adjacency matrix takes note of the exact

direction of the contact (Fig. 2.1c); hence values contained in the upper triangle and lower triangle

of the matrix do not mirror each other (i.e., Aij ̸= Aji). In networks where individual nodes are

not connected themselves (i.e., self-loop), the corresponding adjacency matrix has a diagonal with

only zero elements (Fig. 2.1a and Fig. 2.1c, lower panels) while where self-loops exist, the entries

on the diagonal can be non-zero (Fig. 2.1b, lower panel).

So far, we have described the basic elements that underlie the topology of complex systems. Such

systems are, however, comprised of intricate hierarchical structures with a prominent feature emerg-

ing in them: most nodes have only a few edges while a few nodes have a large number of edges

linking them to others. This property puts such systems in a class known as scale-free networks

where the frequency of highly connected nodes decays as a power-law. Scale-free networks con-

trast with exponential networks in which nodes have the same number of edges on average, and an

exponential decline is exhibited by the number of highly connected nodes.2 Heterogeneity in the

number of edges that emanate from individual nodes (i.e., node degrees) in scale-free networks is

an extremely relevant feature because of its strong impact on the robustness and vulnerability of

networks.114,120,142,143 We also note that, in some networks, nodes become active and form connec-

tions with others at different times, thus the transient nature of node activity gives rise to a dynamic

network structure that requires us to consider the time dimension. Temporal networks enable the

reconstruction of a simplified version of systems that can be enriched by incorporating timestamp

data that identify when events occur. Different approaches have been employed in the construction

of temporal networks from real data, some retain as much information as possible while others focus

only on a few temporal features.

2.2.2. Temporal network representations

Series of static networks

A straightforward way to simplify temporal data is by representing the data as a series of static

snapshots.2 The allure of this approach is the many methods available for static-network analysis.2
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Figure 2.2: Timeline of contacts that involve edges in a network of six nodes. Panel (a) is a sample
contact sequence indicating the time of contact between nodes i and j. We show edge activity at
consecutive times in panel (b) with each dot representing a contact between a given pair of nodes.
The contact duration is the time between the first and the final contact events for an edge. In panel
(c), the interaction of each node is shown explicitly. From (b) and (c), the inter-event time is the
time between events that involve edges and nodes, respectively.

To construct temporal networks in this way, we define a time-window length ℓ which is used to

segment the data into different snapshots. Essentially, a snapshot is an aggregation of the events

that occurred within a time-window, beginning at a ti and ending at tj where j > i and ℓ = tj − ti.
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In Fig. 2.2a, each time point is essentially a snapshot with a time-window length of 1. Of course,

larger time-windows that are not necessarily of equal length can also be defined. If the time-

windows for consecutive snapshots are non-overlapping it means that the end of one time-window

is the beginning of the subsequent one. Formulating snapshots in this way implies that the events

in each time-window are being treated as being independent of each other. However, in another

context, nodes can be influenced by contacts that they had some time in the past42,43 and in the

case of information spread some nodes may be more receptive to the same information coming

from multiple contacts than they are to information obtained repeatedly from the same contact.

Modeling such scenarios as overlapping snapshots is one way of capturing and investigating the

effect of this contact history-dependency or memory effect.

In choosing the appropriate timescale, the objective is to ensure that the resulting network is as

representative and as informative as possible.122 This has been the focus of many studies,50,144–146

several of which show that time-window size should be considered carefully in modeling dynamical

systems on networks. Liljeros et al.144 explained that the parameter values used to simulate disease

spreading in proximity data were related to the size of the time-windows. In [50] and [146], they went

further in specifying how time-windows should be selected in proximity data. Another consideration

when choosing the length of time-windows is their interpretation and meaning within the context

of the data. In [59], the authors use HEP-TH (high energy physic theory)147 data to investigate

growth patterns exhibited in real networks over long periods. This citation network was constructed

from data on papers published during January 1993 to April 2003. Each paper was represented by

a node i, and if i cites another paper j, then, a direct edge is established from i to j. Given the

objective of their study, i.e., to investigate how real networks evolve over time, the authors focused

on annual temporal snapshots in which citations were aggregated over each year (i.e., ℓ = 1 year).

In financial systems, investigation into the long-term lending relation between banks may employ

a similar approach of establishing temporal networks by aggregating bilateral trade data over long

periods (e.g., month or year). However, if the aim is to understand the spread of risk given the

extent of interconnections in the financial system, then, a shorter aggregation period (e.g., a day in

the overnight lending data) may reflect more accurately, the loan duration which lasts a maximum
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period of one day.

In addition to identifying an appropriate time window length when projecting temporal data to static

network snapshots, is the matter of reducing the extent of information loss .2 To demonstrate, we

consider the adjacency matrices for a series of temporal snapshots, in which interactions between

node pairs are denoted by 1 and 0 otherwise. Although we can decipher which connections are

established at a given time, key information on the frequency of the interaction between each pair,

at a given time, is not obvious. To incorporate this information, we would include the number of

times a particular pair has been in contact during a time window as edge weight wij,t (denoting

the number of times node i and j have interacted with each other at time t), thus giving some

insight into the diversity of the relationship in the networks. In the Worldwide Airport Network

(WAN), seat capacity between airports (nodes) that are connected if a direct flight between them

exists148 or aggregate call duration between individuals139,149). At the same time, retaining all the

data on the connections between nodes is not always necessary, hence the edges can be filtered to

extract the set of relevant connections.140,150 In [140], a filtering method was developed to extract

this backbone from temporal networks by identifying significant ties — node pairs that have higher

than expected interactions given their activities. In [150], the network backbone is explored within

the context of information diffusion, and the extracted ties are pairs of nodes that have a higher

chance of appearing in the ‘diffusion trajectory’, thus making it more likely for them to infect each

other.

Contact dynamics and edge duration

Degree sequences contain information about links between constituents, and this essential in access-

ing details about the topological features of the network in general. Time-resolved data that records

events (i.e., contact between nodes at a given time2) provides an extra layer of detail and complexity

from which we can extract inherent temporal features of the network. Given the increased complex-

ity of time-stamped data, we may elect to extract select temporal features of the network rather

than all of them. This means that depending on how we construct temporal networks we may some

important time-related information from the data.1,151 One prominent temporal feature of dynamic
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systems is the time interval between two consecutive events i.e., inter-event time (IET) which can

be defined for either nodes or edges.152,153

Empirical studies, have shown that IETs are bursty44,154,155 (i.e., events occurring rapidly between

short time periods, alternating with long periods of inactivity), having a heavy-tailed distribu-

tion.156,157 This heterogeneous characteristic of IETs, seen in various contexts,96,99,158–160 has been

described by a power-law IET distribution:

P (τ) ∼ τ−γ , (2.1)

where γ is the power-law exponent and τ denotes IET.161 Furthermore, we can also quantify the

level of bustiness with the burstiness parameter162 defined as:

B ≡ (δ/⟨τ⟩ − 1)

(δ/⟨τ⟩+ 1)
=
δ − ⟨τ⟩
δ + ⟨τ⟩

, (2.2)

where δ and ⟨τ⟩ denote the standard deviation and mean of IET, respectively. The values of B span

the range of (-1,1) with: B ≡ −1 indicating regular bustiness, B ≡ 0 for neutral since δ = ⟨τ⟩, and

B ≡ 1 is as being an extremely bursty signal.162

Studies that simulate spreading on bursty networks find that, propagation is generally slower than

it is in network with burstiness removed.46,47 Even in instances where the network is static, as

long as the heavy-tailed feature of IETs exists in the dynamical process, spreading slows down.163

However, other studies49,164,165 find that, burstiness can also accelerate spreading. This complex

effect of bursty IETs on spreading was highlighted by Unicomb et al. who showed numerically

and analytically that burstiness can create two distinct phases of slow or accelerated dynamics for

epidemic and threshold models of information diffusion, and that diffusion processes are, in fact,

sensitive to the IET distribution.166

2.3. Analogy between social networks and financial systems

2.3.1. Spreading behavior as a common concern

A primary concern in financial systems is the threat of systemic risk i.e., the chance that a financial

system’s ability to perform its core functions becomes severely impeded. Therefore, the need for
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tools to quantify, signal and control financial systemic risk has been highlighted as urgent challenges

among researchers across various disciplines.73,103,126,167 Since the timescale of interaction between

institutions spans a wide range with temporal resolution as high as one day a, this has implica-

tions for the dynamics of how systemic risk emerges and unfolds in financial networks. In social

networks, however, there are two distinct types of spreading dynamics that are studied extensively.

First, epidemic spreading which shares the similarity with financial systemic risk in that the social

and economic costs can be quite substantial.168,169 Epidemics are dynamic processes in which a

contagious phenomenon is transmitted from an infected to a susceptible unit; therefore, epidemic

outbreaks pose significant health, social and economic risks. One may reason that as long as there

is life, there is always an ongoing threat of such events and by nature of being highly pernicious, it is

important to study these processes to understand them better. Studies that use epidemic models to

simulate spread on social networks are focused on the objective of minimizing contagion.170–172 In

contrast, another spreading phenomenon widely studied in social networks is influence maximization.

The objective of social influence maximization is to obtain the highest number of activated nodes

at the end of a diffusive process.79 Its application has been relevant to studies on recommendation

systems,173,174 viral marketing,175 social media analytics176 and rumors.177

As early as the 19th century, various analogies were being drawn between epidemic spreading among

humans and the spread of sentiments in financial systems as a means of explaining financial conta-

gion. Different sources of contagion, it was argued, gave rise to different manifestations of financial

instability; for example, contagion generated by the spread of irrational fear precipitated bank runs

during the crisis of 1797178 while the spread of excitement (i.e., “over-confidence and unreasoning”)

on the part of speculators and creditors who extend credit recklessly, eventually led to widespread

panic. The spread of irrational fear and/or speculative excitement were later categorized as mental

contagion. The idea is that, given a closer physical proximity to other market participants (e.g. on

exchange’s trading floors/online), this ‘contagion of the mind’ or collective psychology179,180 may

amplify financial crises.181 In the aftermath of the global financial crisis of 2007–2009, the corre-
aIn interbank networks, banks trade overnight loans that have a maximum duration of one day, which can be less

depending on the exact time that the contract was established.
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spondence between social and financial networks have elucidated previously unknown stylised facts

that characterize financial systems, thus creating the possibility of improving our understanding of

how systemic risk emerges.55 In the following, we discuss briefly some principles from studies of

human interaction, and their early extensions to financial phenomena as a means of understanding

financial instability.

Crowd psychology and physical proximity

Early studies on the spread of sentiments included that of Boris Sidis182 who argued that as social

beings, individuals are naturally susceptible to the suggestions (i.e. idea, image or movement)

of others (‘suggestibility’), whether voluntarily or involuntarily. An increase in the intensity of

suggestibility implies that individuals tend to have a reduced sense of independent thinking which,

when combined with limited movement or greater proximity to others (e.g., in crowd), may incite

irrational actions such as a mob or stampede. This effect of proximity on how easily individuals

are influenced in social settings, was also observe among people in urban spaces who were found to

be more likely to imitate each other when they were physically close and had multiple interactions

among themselves — a phenomenon known as Tarde’s Law of Close Contact .183 The findings from

these early studies were extended to individuals in financial markets by Edward David Jones who

argued that, hopes and beliefs propagate easily and fallacious beliefs are transmitted much further

than in settings where individuals developed their ideas independently.181 To Jones, exchanges (i.e.,

marketplaces for the trade of financial instruments) are essentially concentrated versions of Tarde’s

urban spaces; hence the conditions of transacting business in financial markets (e.g., stock exchanges

or commodities exchanges) are ideal for the spread of collective thinking or mental contagion in the

minds of market participants.

The idea long held by many economists and financial market analysts about contagion is that it

emerges from irrational sentiments, and this behavior can spread even among those market par-

ticipants with the most sound business judgment. Such behaviour usually arises when the data

that is necessary for making independent conclusions are unavailable or inaccessible;184–187 thus

participants are more susceptible to suggestions, tips and rumors from others. In financial systems,
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institutions are controlled by individuals; therefore, the interaction between institutions occur es-

sentially among the individuals in them. This means, similar to participants in a conventional social

setting, the individuals who manage financial institutions are themselves susceptible to the diffusion

of market sentiments (i.e., beliefs, news, opinions etc) from one to the other. Given the inherent

social underpinnings of financial systems, we can capture and investigate — via social network ap-

plications — aspects of financial systems that are not necessarily captured by conventional economic

methods and models.188

Outside of the relationship between individuals that control financial institutions, a more conven-

tional approach to modeling financial relationships is via graphical representation in which nodes

are connected by link (or edges) that recognize the dependency between them. In contrast to

face-to-face social networks, such dependencies can connect an institution (e.g. investment funds,

commercial bank, central banks etc) to others without regard for geographical proximity. Although

geographic proximity may not be applicable in the study of financial networks, it has been shown

that, for networks in general, topological distance107,110,112,117,189 is consequential in how instabil-

ity spreads in the system. Topological distance quantifies the proximity of a node to others, and

it is this measure that allows us to compare nodes in terms of their centrality or network posi-

tion.67,190 In social and financial systems, topological distance is measured along the edges formed

by the dependencies between the nodes. However, the interpretation of distance is dependent on

the nature of relationships; for example, in financial systems, institutions can be connected by pay-

ments or commonality in holdings of assets. In the former, the distance from node i and j could

be interpreted as the extent of the interconnections that exposes j to counterparty risk from i.

For studies on financial systems, a crucial point of concern, therefore, often lies in determining the

institution’s role in risk transmission while for social networks, one may be interested in enhancing

the effectiveness of transmission (e.g. information) or reducing it (e.g. disease).
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2.4. Network analysis of social systems

2.4.1. Modeling proximity relations in social networks

Proximity in face-to-face social networks

Thanks to the advanced use of communication technology in social and epidemiological research, our

understanding of the link between spatial proximity and transmissibility has improved substantially.

Several studies support that the transmission of pathogens via respiratory droplets, expelled during

social interaction and normal bodily functions, are more likely when individuals are close to each

other.191–195 Early research on proximity networks were based on self reports192,196 or observations

in laboratories197 that were monitored closely. In recent times, however, the collection of proximity

data relies on digital technology138,198–203 such as Bluetooth, Wi-Fi networks, and Radio Frequency

Identification (RFIDs). In fact, this approach has been quite useful in approximating pairwise

contact between individuals in different social settings (e.g. conferences, hospitals, households,

schools/university and workplaces), with a direct link between individuals signifying that they are

with a few metres b of each other.138 This is the most straightforward way of visualizing social

relationships because the degree of distance between individuals tend to reflect the closeness of

their relationship.203 In other words, smaller physical distance typically indicates greater familiarity,

while for persons with whom we are unfamiliar, interactions tend to occur at larger distances.203

Proximity in social communication networks

Social networks are also based on online communities and digital communication, with interactions

occurring in a virtual space. Here, direct links between pairs of individuals (e.g. bidirectional wall

posts on Facebook and Twitter,204 mobile calls,139,205–208 email exchange209) represent existing

relationships, despite the absence of physical proximity. Although the physical distance between

individuals are not featured in this type of social tie, individuals can be influenced nonetheless

via non-physical contact. In fact, an early proposition of an existing relationship between physical

disorder (e.g. vacant buildings, abandoned vehicles, broken windows etc.) and crime is the broken
bFor data collected using Radio Frequency Identification technology, in addition to being with range, a link only

exists if individuals are facing each other.
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window theory which explains that visible signs of incivility in neighborhoods can perpetuate disor-

derly and criminal behavior in others.210 The widespread use of online communication and virtual

communities have, therefore, added a whole new dimension to how we study social systems which,

for a long time, was based largely on physical closeness. Due to improvements in tools of social

communication, individuals can now establish and maintain friendships at much larger distances.

This is important because it means that while individuals remain susceptible to infectious diseases,

they are also more exposed than before to the efficient spread of social phenomena; thus having

implications ranging from the effectiveness of business advertisement to the possibility of political

instability due to the efficient spread of misinformation.

2.4.2. Dynamics in social networks

At the base of social networks are human beings whose engagement with each other can change

quickly and frequently on timescales ranging from seconds to several years. When aggregated, these

interactions cause the structure of social systems to also change rapidly and regularly. In fact, a host

of systems in biology, technology and the social world exhibit this dynamical property.211–215 While

dyadic data allow us to construct social networks based on direct relationships, for any given node,

we can gain insight into more complex structures by tracing the indirect ties to the neighbours of

its direct neighbours.216–219 However, without the time dimension of such connections, we remain

blind to the dynamic nature of nodes and edges appearing and/or disappearing. The temporal

aspects of social networks reflect the reality that individuals, and by extension the edges they form

with others, are not always available as agents of transmission. This means that we can observe

a rather different outcome when certain nodes and edges are present. This is one application that

has motivated studies that investigate the evolution of systems to uncover the dynamical forces at

play locally67,220 and/or globally.57,58 Other applications include enhancing our ability to predict

future evolution, and to explain historical developments and/or the mechanistic understanding of

network dynamics.

One of the early studies on the evolution of social networks was by Barabási and Albert who

introduced the Barabási-Albert (BA) model to explain the scale-free property, seen in many real
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systems,66–68,98 and network evolution via two fundamental mechanisms: i) network expansion and

ii) preferential attachment. They reason that, networks expand because new nodes join the system

via links to existing nodes, and new nodes attach themselves with high probability to those that

are already well connected .67 The role of preferential attachment in the evolution of real systems

are featured heavily in the literature.221–226 However, most of these studies either assume time

independence or downplay the time dependence when measuring attachment kernel.220 To explore

the validity of the time independent assumption in the rules governing how growing networks evolve,

and to highlight the risk of assuming that a node’s attractiveness is determined by its degree, a

simple variation of the BA model (ie. k-2 model) was employed. In the k-2 model, new nodes attach

to pre-existing ones in proportion to the total nodes within two steps of the target node220 rather

than proportionally to total direct neighbors. Using citation networks, Falkenberg et al. show that,

although the time independent assumption is justified over short timescales, attachment kernels

over longer timescales were found to be time dependent.220 Bazzi et al. explored an alternative way

to capture the relationship between network structure and temporality by considering a generative

model that employs a multilayer system with interlayer dependencies. In essence, their method

incorporates a memory effect by establishing dependency between current and subsequent layers in

time.227 By doing this, they highlighted that connectivity patterns may be related to the state of

the network in another period.

The dynamic hidden-variable model has also been proposed as a more general framework for under-

standing network growth. In this model, each node has at a given time, a node-intrinsic property

(i.e. fitness) which is modeled as a hidden variable. A node’s fitness reflects its tendency to attract

or compete for edges.221,228 In reality, some individuals may be more skilled in socializing than

others, which can have an impact on how quickly that individual makes and maintains connections

with others. On the contrary, another individual may not be as sociable and, therefore, struggles

with forming similar relationships. Node fitness captures such differences among persons in a social

network context who are assumed to be competing for edges. Unlike a preferential attachment model

in which the most connected are the most attractive, in fitness models, fitter nodes succeed those

that are not as fit. The dynamic-hidden variable model has been employed in empirical systems to
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understand the global dynamics of social networks.108,229–231 Originally, the fitness model makes

no distinction between total active nodes and the population of nodes in the network because it is

assumed that the size of population is sufficiently large; thus making all nodes active.55 However,

if this assumption breaks down then, some nodes may exist at a given time but not active55 which

then leads to variations in population size that will ultimately impact the rate of edge formation as

total active nodes increases. Recent investigations examined how the number of active nodes N and

the number of edges M — as primary components with implication on global network properties —

evolve over time.57,58 In their baseline models (based on the dynamic hidden-variable model), node

fitness was assumed to be uniformly distributed on the interval [0, 1] because of the relative simplic-

ity in obtaining an analytical solution.57,58 They found that the scaling relationship M ∝ Nγ can

have a constant exponent (1 ≤ γ ≤ 2), conventionally known as the densification power law59,232,233

or an exponent γ that is changing with N . Both patterns emerge differently on a log-log plot of

total edges against total active nodes: for a constant γ, the number of edges grows with the number

of active nodes in a linear pattern; while, an increasing γ manifests as an accelerating growth in

total edges.57,58 The accelerating growth pattern emerges because of changing overall activity of

nodes in the network while the conventional scaling behaviour is due to fluctuations in network

population. In some networks, they observed a ‘mixed-scaling’ behaviour in which both patterns

appear simultaneously, and the dominance of each mechanism behind the different scaling patterns

was found to be switching in time.58

2.4.3. Contagion in social networks

Models of dynamical processes that propagate in social networks belong to one of two broad cate-

gories, either a simple143,163,170,172,234–236 or complex237,238 mechanism122,239,240 (Table 2.1). The

primary difference between them is that a transmission event occurs in complex contagion if there

are multiple exposures. For simple contagion, however, nodes get adopted (or infected) with

a fixed probability (i.e. the probability is independent of the number of exposures) once they

are exposed.240,241 Compartmental epidemic models, which categorize individuals based on their

health status, belong to the class of simple contagion. Examples of these epidemic models include:

susceptible-infected (SI),143,163,170,234,242 susceptible-infected-susceptible (SIS),234,242 susceptible-
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Table 2.1: Spreading processes on social networks

Model Class of contagion Phenomenon Interdependency
level of contacts

Compartmental/Epidemiological
model46,49,143,172,234,252–255

Simple Infectious diseases None

Generalized contagion model42,245,256 Complex Infectious diseases with
memory or requiring multiple
exposure

Intermediate
and/or variable

Threshold model43,128,237,238,244,257–261 Complex Fad, rumors, influence,
behavior etc.

Strong

infected-recovered (SIR).143,234 In contrast, models of complex contagion (e.g. linear threshold

model,243–245 voter model,246,247 generalized epidemic model248–250) are often used to study the

propagation of behavior, ideas, and new technologies in a social context because the content en-

tailed in these phenomena is expected to affect the nature of spreading since an individual needs to

be exposed multiple times (i.e. social reinforcement) before adopting it.43,122 A threshold model is

one of the simplest types of complex contagion models122 used to capture the social reinforcement

mechanism at play in humans as they become exposed to opinions, ideas and knowledge which they

may adopt.238,251 In a threshold model for example, a node changes state (e.g. non-adopter to

adopter) if the number43,243,244 (or fraction43) of adopted neighbors exceeds a particular threshold.

2.4.4. Linear threshold model for contagion in temporal social networks

Model of social contagion are constructed with the main objective of understanding the emergence

of social influence i.e. how susceptible individuals are encouraged to become an adopter via influ-

ence from their neighbours. Other non-social processes are also studied on social networks such

as epidemic spreading for which rely generally on the use of conventional compartmental models

discussed earlier (see Section 2.4.3). With conventional models of social contagion comparing social

processes to that of epidemics, the similarity in certain hypotheses and assumptions across the two

fields of study is quite understandable. A general assumption in these models is that the probabil-

ity of an individual going from susceptible to converted grows monotonically with the number of

converted neighbours.243–245,262
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Consider an undirected network G with nodes representing individuals in a social network, each

becoming active if it adopts an opinion and inactive otherwise; hence a node is in one of two

binary states denoted by 1 and 0, respectively. An edge transmits influence between nodes j and

i. For an individual i to move to an adopted state, the fraction of its neighbours must exceed its

individual threshold.243 Duncan J. Watts generalized this idea to static random networks94 as a first

approximation of the nature of cascades in real systems. In Watts classic linear threshold model on

a static network, node i has a threshold 0 ≤ ϕ ≤ 1 its state si changes according to the adoption

condition:

si =


1 if

∑
j∈N sj
k ≥ ϕi

0 otherwise
, (2.3)

meaning that i becomes active (si = 1) if a certain fraction of its neighbors are active and it remains

inactive (si = 0) otherwise. A non-adopter263 is faced with a binary decision with externalities262

because it has to choose one of two alternative actions and its decision is assumed to depend

explicitly on that of its neighbours. In reality, an individual may have insufficient information to

make a decision or ability to evaluate the available data to make an informed decision. Of primary

concern were the expected size of global cascades and the probability of such global events occurring

given relatively small exogenous shocks. The main finding in this early study is that in random

networks, even an infinitesimal fraction of initial adopters (seed) can lead to global cascades i.e., a

large fraction of non-adopters are influenced. Furthermore, global cascades are relatively rare, and

shocks that precipitate large cascades are often similar to those that fail to lead to global cascades.

The original version of Watts model provides a useful theoretical basis for further investigation

into social influence which can be extended to treat more realistic features of human interaction.

Such features include heterogeneous individual activity level139,264–267 and the possibility of contact

timings in a social setting displaying strong correlations.43,128 Extending the classic linear threshold

model to temporal social networks is, therefore, natural and this enables an investigation into the

effect of certain dynamic aspects of human interaction on social contagion. In this section, we

explain how the classic threshold model is adapted to empirical temporal networks in which certain
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effects decline in time. While Watts considered a static network of individuals who are constantly

exposed to the influence of others; in real social systems, individuals are influenced more by current

exposure than older exposure because one may forget communications from the past or they may

even grow irrelevant over time. Therefore, it is necessary to decide how to weight the lifetime of the

interactions of an individuals.

Karimi and Holme43 considered down-weighing the influence emanating from older contacts by

integrating the contacts over a time window. In other words, they ordered the events chronologically

and defined the period of influence over which an individual is susceptible to influence as a sliding

window i.e., [t − θ, t) where θ is the distance into the past and the current time is denoted by t.

Interactions outside of the current window [t− θ, t) are ignored and considered to have no effect on

current outcomes. They simulated the spread of influence on six empirical networks: self-reported

sexual contacts in a Brazilian online forum,160 email exchange at a university,268 face-to-face contact

at a conference,255 contacts on a Swedish dating site,156 contact on Swedish forum for rating and

discussing films.269

Fractional-threshold model

At a given point in time, a non-adopter converts based on the fraction fi of its neighbors that are

already adopters and this fraction is computed as:

fi =

∑
j∈ci sj

ci
, (2.4)

where sj is binary (i.e., 1 for adopted and 0 otherwise) and denotes the state of i’s neighbors while

ci represents number of nodes connected to i (or total neighbors). The state, si, of the non-adopted

node is determined by the adoption condition defined as:

si =


1 if fi ≥ ϕi

0 otherwise.
, (2.5)

where i becomes an adopter (si = 1) if the fraction of adopted neighbors exceeds a given fraction

ϕ (i.e., the fractional-threshold). At the beginning of the process, the population of individuals are

all in a non-adopted state (denoted by 0) with the exception of a randomly selected node which is
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in an adopted state (denoted by 1). To remain consistent with Watts’ model, Karimi and Holme43

asserted the following specifications: i) fixed length of each time window of influence, ii) newly

adopted nodes remain in state 1 for the remainder of the process, iii) cascade size Ω is the fraction

of adopters in the entire population at the end of the process. However, a key difference exists

in how nodes can be influenced by contacts. In the fractional-threshold model (Eq. 2.5), ci is the

number of neighbors associated with a node i for a given time window; therefore, ci varies with

each snapshot. Consequently, nodes can only be influenced by contacts within the time-window

while contacts outside are irrelevant. In contrast, the static network setup gives relevance to all the

contacts of a given node.

By varying the fractional-threshold ϕ for fixed time-windows, Karimi and Holme observe the effects

of final cascade size. An increase in ϕ makes it is more difficult for a node to become an adopter.

While the result by Watts’244 showed that a cascade cannot be triggered for larger threshold values

by a single seed, Karimi and Holme showed that including time-windows creates the possibility of

a cascade to propagate for larger threshold values ϕ: in small time windows, total contacts can

be small which makes it easier to attain the threshold value. In fact, for particularly small time

windows in which an individual has no more than a single contact, the model is analogous to a

simple spreading mechanism with a transmission event occurring with certainty if a non-adopter’s

only contact is with an adopter. Conversely for large enough time windows (θ), cascades are

practically non-existent because an individual will have more contacts; hence a greater fraction of

those contacts are necessary to attain the threshold value such that fi ≥ ϕ (i.e. effectively increasing

the fractional-threshold ϕ). In such instances, the result resembles that of the original static network

with no cascades for large thresholds.

Another key finding is that, in some temporal networks, burstiness can increase cascades when

considering a threshold model. This result contrasts with findings based on disease-spreading models

that showed that bursty activity slows the pace of propagation.46 In one of the six data sets that

Karimi and Holme analyzed, cascade size was higher c in the network that maintained the original
cThe assumption is that a larger cascade size implied faster pace of propagation.
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temporal features compared with its counterpart that was obtained by shuffling the order of contacts;

thus removing burstiness. This was the conference data set for which activities are scheduled; hence,

burstiness is orchestrated unlike the other data sets in which burstiness appeared more organically.

The coordination of activities at conferences enables an individual to be in contact with multiple

persons during a single unit of time (e.g. during lunch or coffee break). The fraction of contacts

that are adopted fi will, therefore, vary over time and this can facilitate larger cascades, particularly

when the number of state 1 nodes in the system is already high.

Absolute-threshold model

Karimi and Holme introduced the absolute-threshold model as an alternative to the fractional-

threshold model. For the absolute-threshold model, the number of interactions that individuals

have with state 1 neighbors, defined as Fi, is the basis on which node i changes from non-adopted

to adopted. The adoption condition is, therefore, simply expressed as:

si =


1 if Fi ≥ Φi

0 otherwise.
, (2.6)

which means that if the absolute number of converted neighbors Fi exceeds an absolute-threshold

value Φ, then i changes to state 1, but remains as a non-adopter otherwise. The results from

the absolute-threshold model indicate that the size of cascade increases with the time window

size whereas the opposite effect was observed in the fractional-threshold model. In the absolute-

threshold model, cascade size increases with a larger time windows because a longer window allows

an individual to meet more neighbors. In the fractional-threshold model, an expanded time window

lowers the fraction of neighbors that are converted via the denominator in Eq. (2.4); however, this

is not the case in the absolute-threshold model. Furthermore, temporal correlations in the data sets

(excluding the conference data) constrained cascade size in fractional-threshold model relative to

the null models that destroyed certain temporal features. However, in the absolute-threshold model,

temporal correlations enhance individuals’ chances of meeting adopters; hence cascade sizes were

larger than in networks with reshuffled contacts. Recall that in the fractional-threshold model, only

the conference data set exhibited larger cascade sizes relative to the null models; thus highlighting
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that strong temporal correlations in contact patterns can amplify spread.

2.4.5. Systemic importance in social networks

Investigations into the specific contribution of nodes and edges,80,270,271 as processes unfold on

networks, provide meaningful insights into how we can manipulate propagation based on our specific

objective i.e., whether to reduce or proliferate spread. In social networks, some individuals are known

to be superspreaders — those who are vastly more effective in influence maximization than others in

the network; conversely, those who mitigate spread often constitute a completely different set known

as superblockers .80 Many studies on the spread of diseases use contact rates of hosts as a proxy

for individual infectiousness,272–274 and their findings support the existence of a group of high-risk

nodes273 and that 20% of cases are usually responsible for 80% of transmissions.272,273 With the

assertion that superspreading is a characteristic feature of disease propagation,275 and an urgent

need to control spread among human population, some natural questions arise: How effective is

targeted vaccination in curtailing epidemics? How can intervention strategies be better formulated

to manage the system as a whole?

Early studies of superspreaders include the work of Kempe et al.79 in which the influence maximizing

problem was presented as computationally difficult. Nonetheless, they introduce a greedy algorithm

that yields a sub-optimal solution for a broad class of sub-modular dynamics. Subsequent works

have contributed improvements with the use of tools from statistical physics.276,277 Radicchi and

Castellano80 use an independent cascade model to find optimal multiple spreaders which they defined

as the node set that maximizes spreading when the propagation process is initiated by all the nodes

at the same time. Conversely, other studies focus on finding optimal single spreaders278,279 which

constitute the nodes that are most capable of maximizing spread when the process is initiated

in one node at a time. Radicchi and Castellano highlight that both are different problems in

that, good single influencers often share a considerable portion of the circle of influence. Initiating

an outbreak in these nodes simultaneously, may lead to a final cascade size that is only vaguely

larger than the sizes when each influencer is considered separately. From a regulatory perspective,

optimal multiple spreaders is analogous to considering the set of banks when combined, pose a
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systemic risk to the entire financial network. In fact central banks perform stress-testing by using

a default cascade approach as a straightforward way to rank banks according to their systemic

importance. The objective is to measure the capacity of individual banks to generate contagious

effects on the system.33 Essentially, they compute the size of the cascade of defaults when the

bank in consideration is set to be the initial defaulter.41,280 In the following section, we consider

alternative approaches.

2.5. Network analysis of financial systems

2.5.1. Modeling proximity relations in financial networks

The tools of network science have proven rather advantageous in the study of financial systems

evidenced by the broad range of studies that highlight how various aspects of the system can be

easily represented, whether as an individual network layer or as multiple layers of interacting nodes.

Here, we consider two broad types of relations categorized as direct exposures to lending and funding

risks,281 and indirect exposures via common exposures and spillovers.281–283

Financial network of liabilities and claims

We will provide a brief overview of a few basic concepts on the way banksd behave and our reliance

on a basic accounting identity to assess their health (Eq. 2.7). A primary objective of banks

is to maintain solvency — essentially a measure of ‘good-standing’ which, to some extent, can be

determined from their balance sheet (Fig. 2.3). In general, the balance sheet is comprised of different

assets and the quantity of each being held by the bank. Each bank makes its own decisions on the

amount or type of assets, and liabilities in its portfolio; hence there is an inherent heterogeneity

among banks simply on the basis of the detailed compositions of their respective balance sheets.

In good times, banks are solvent i.e. having an adequate amount of assets to cover outstanding

liabilities27,34,284 and ideally, the different types of assets are funded by the appropriate type of

liabilities. Many studies on solvency contagion in interbank networks consider a stylised balance
dFinancial systems consist of banks and non-banks; however, for the sake of simplicity, we will refer broadly to

institutions in the financial system whose actions affect others as banks.
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sheet from which the following accounting identity is taken:

C = (AEX +AIB) − (D + LEX + LIB) (2.7)

C = ATotal − LTotal.

Here, a bank’s capital, C is the difference between total assets (ATotal) and total liabilities (LTotal),

with C > 0 signifying that the bank is solvent. Total assets is the sum of external assets (AEX) and

interbank assets (AIB) while total liabilities is the sum of deposits (D), external liabilities (LEX)

and interbank liabilities (LIB).

Interbank credit networks represent an early application of certain elements of social network anal-

ysis to financial systems. In interbank networks, banks are linked by credit contracts in which

borrowers (debtors) have outstanding obligations (loans) that become payable with interest, to the

respective lenders (creditors) at a certain date (maturity date). In addition to being a benchmark

for short-term lending rates and a channel for monetary policy transmission, the interbank market is

a source of unsecured funding that enables banks to address liquidity shortages in relation to reserve

requirements stipulated by central banks. Other funding sources include repurchasing agreements

that are essentially collateralized e loans on which interest is paid at maturity. Some studies model

bilateral relationships based on unsecured20 interbank contracts and others including Battiston et

al. and Roukny et al. consider secured interbank contracts.30,285 In the literature on financial

networks, these bilateral relationships between banks are somewhat analogous to that of: sender

and receiver in digital communication (e.g. online,286 mobile,287,288 email59,289–291 etc.) or source

(contact initiator) and target in face-to-face social networks (e.g., hospital, school, workplace etc.).

Following the lending flows from one bank to the next, we recognize a sequence of balance sheets

that are essentially interlocked and reflects a weighted interdependence — even in the absence of a

direct connection between a given bank pair (Fig. 2.3).

The confidential nature of interbank data makes it accessible in large part only to supervisory

and other authorized institutions; hence, several empirical analyses on interbank networks have

been conducted based on national banking systems including Austria,107 Brazil,292,293 Belgium,294

eBanks are required to post a collateral prior to receiving a loan.
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Table 2.2: Empirical studies simulating contagious failures in banking networks. While interbank bilateral transactions are directly
observed from e-MID or from some large value exposures outlined in financial authority’s supervisory reports (SR), they are often
estimated from aggregate level data provided in banks’ balance sheets (BS). Bilateral interbank loans can also be extracted from
settlements and transfers between banks (settlement data) by using a search algorithm that match the start of a transactions with
a follow-up inclusive of interest payments in the next day.

Paper Data period Data type Method Resolution Data source
Sheldon and Maurer21 1987–1995 BS Maximum entropy Yearly Swiss Nat. Bank
Furfine37 Feb 1998–Mar 1998 Settlement data Search algorithms Daily FedWire
Upper and Worms300 Dec 1998 BS Maximum entropy Yearly Bundesbank
Wells22 Oct 2000–Dec 2000 BS/SR Maximum entropy Quarterly Bank of England
Amundsen and Arnt18 Jan 2004 Settlement data Search algorithm Daily Denmark Nat. Bank
Lublóy19 2003 (50 days) SR n.a. Daily Bank of Hungary
Elsinger et al.39 Sep 2002 BS Maximum entropy Monthly Austrian Central Bank
Elsinger et al.40 Oct 2003–Dec 2003 BS Maximum entropy Quarterly Bank of England
Van Lelyveld23 Dec 2002 BS/SR Maximum entropy/n.a. Yearly De Nederlandsche Bank
Degryse and Nguyen294 Dec 1993–Dec 2002 BS/SR. Maximum entropy/n.a. Bi-Annually Bank of Belgium
Mistrulli38 Jan 1989–Dec 2003 SR n.a. Quarterly Bank of Italy
Imakubo and Soejima24 Dec 1997–Dec 2005 Settlement data Search algorithm Monthly Bank of Japan-NET
Karimi and Raddant20 2006 and 2011 Interbank transaction n.a. Daily e-MID
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Colombia,109 Germany,295 Italy,108,111,296 Japan,24 Mexico,297 Switzerland298 and the United States

of America110,112,299 (Table 2.2). The findings in these studies that are based on bilateral relation-

ships in financial systems, highlight some stylised facts about: the sparsity, heavy-tailed degree

distributions, high-clustering, short average path length and disassortativity (i.e., the tendency for

large banks to be linked to small banks). Many of these early works investigate the underlying

topology, with some finding a core-periphery structure in which a subset of tightly linked banks

(referred to as the core) exists along with a loosely connected subset of banks (referred to as the

periphery) that is also linked to the core.

In addition to the actual relationships in the interbank market, the infrastructure surrounding

transaction settlement have also been noted as a source of complexity in the system. Interbank

loans are often cleared and settled bilaterally, and this may lead to a proliferation of redundant

contracts that are overlapping.301 In contrast to a central clearing system that performs a mutilateral

netting of exposures, bilateral settlement of contracts can exacerbate counterparty risk (i.e., the risk

that one party defaults on its obligation to the other); thus increasing the complexity and opacity

of interconnections in financial systems.301 In the aftermath of the global financial crisis, about

one-fifth of over-the-counter (OTC) derivative contracts were being processed via central clearing

counterparties (CCPs). Ten years on, about two-thirds302 of these contracts were being cleared

by CCPs due partly to their relative resilience during the Lehman crisis as bilateral markets dried

up.303 Given the rapid rise in usage, more research focused on the possible effects of central clearing

on counterparty risk in interbank system; here we highlight two notable studies.304,305 First, Duffie

and Zhu304 showed that average exposure to counterparty default can increase when one asset

class adopts central clearing because of fewer netting opportunities across counterparties. Garrat

and Zimmerman305 extended this work by considering more realistic financial network structure,

specifically large scale-free networks, to find that CCP will almost always increase expected net

counterparty exposure in such systems.
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Figure 2.4: Overlapping portfolios among banks due to investing in common assets. (a) Bipartite
graph of banks (purple nodes) that are linked only to the assets (blue nodes) in their investment
portfolios. Multiple edges to a single asset means multiple banks have that asset in common i.e.,
asset commonality. (b) One-mode projection of the bipartite network in (a). Links exist between
banks that have assets in common (i.e, common exposure to assets).

Financial network of overlapping asset portfolios and other spillovers

Banks invest surplus funds to obtain positive returns on their purchase of assets. At the same

time, asset purchasing is also a means of risk diversification, with each bank’s portfolio usually

reflecting its appetite for risk. An overlap exists between two portfolios when banks have one or

more assets in common, also referred to as common asset holding. In fact, many banks tend to

formulate strategies which lead them to share ownership of similar assets due to various factors

including, shared geography, risk appetite etc. Commonality in exposure via shared investment or

ownership of assets306 is, therefore, an indirect source of interconnectedness. It has become more

evident that the ownership structure of assets is a possible source of non-fundamental risk such

that it can be used to forecast fluctuations in stock price that are unrelated to fundamentals.307,308

Furthermore, institutions with strong commonalities in investments can trigger fire sales (i.e., the
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disposal of assets at heavily discounted prices) when the market encounters unexpected financial

distress, often resulting in losses of a magnitude that exceeds those due to direct exposures.39

To capture this indirect relationship among banks, a bipartite network representation is utilized in

which banks are presented as one node type and assets as another (Fig. 2.4). Generally, links between

the banks are established indirectly via common exposures to asset classes (e.g. corporate loans or

commercial real estate loans), and the link weights are approximated based on bank exposures.309,310

Huang et al.72 employ this approach in a case study of US commercial banks during the subprime

crisis. The ownership fraction si,m held by a bank i of an asset m is defined as the amount being

held by bank i (i.e. Bi,m) as a fraction of m’s total market value Am. The proportion of m in

bank i’s portfolio may also be computed as wi,m = Bi,m/Bi i.e. the amount of m held by i as

a fraction of i’s overall asset portfolio. Another study by Gualdi et al.311 assessed the statistical

significance of an overlap between heterogeneously diversified portfolios based on similar patterns

of investment. Based on this method, they constructed a validated network of financial institutions

where links indicate significant overlap; hence, potential channels for contagion. They implemented

this method on a historical database of institutional holdings for the period 1999—2013. They
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Figure 2.5: Schematic of multiple relationships between banks in different segments of a financial
network. Individual layers differentiate markets for a particular type of asset and nodes represent a
single bank that is acting in a particular role given a layer.

38



developed an algorithm which they could use to identify portfolios that amplify market trends,

thus highlighting the institutions likely to experience significant losses or gains. Many other studies

have also relied on a bipartite network model312–316 which essentially provide insight into how well-

balanced portfolios, in relation to other banks, can enhance the stability of the bank itself as well

as the banking system as a whole.

Other indirect financial relationships can also emerge in a far more complex manner, particularly

when the system is interconnected through different categories of interactions. In other words,

banks interact across the various segments of the financial systems, and how they connect with

other banks may be dependent on the specific segment. To elucidate the point, we draw an analogy

to social networks. Our daily social interactions are multi-relational in nature, which makes it more

appropriate to model them as a multi-layer network317 if we are truly interested in the different

kinds of engagements between individuals (e.g. friendship, co-worker relationship, cultural group

membership etc). The types of engagement can be on the basis of relationship, activity or category,

each of which can be represented as a layer. In the respective layers, the connections between nodes

may differ; hence a node may not have the same neighbors given a layer that is associated with an

activity, relationship type or category. Similar to social systems, banks interact and/or connect in

a multi-relational financial system i.e., across different layers often in different capacities, and this

engenders interdependency and inter-connectivity between otherwise disparate layers.318,319 Layers

can be differentiated in the financial system on the basis of seniority levels,320,321 maturity,322

asset class323 (Fig. 2.5). Therefore, modeling financial relationship as multi-layer systems has the

advantage of defining the bank-bank interaction and parallel functioning of the systems holistically

and realistically.317 A few studies33,109,117,118,297,324–326 in the financial network literature utilize

the multi-layer approach to show that some important crisis amplification effects can emerge from

multi-relational linkages, and most times these effects cannot be detected or understood when

restricting attention to a single layer.
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2.5.2. Dynamics in banking networks

Many studies that consider the temporal aspects of financial systems have focused on understanding

the dynamic structures of interbank networks.55,113,327–329 To explore dynamical structural prop-

erties, it is essential to have access to the data on time of activity; however, such details are not

always available. Based on the bilateral transaction data from e-MID, some important properties

have been uncovered about the Italian interbank networks at a daily resolution. One study employed

a stochastic block model to investigate which two-block organization characterized the structure of

the e-MID interbank market for 2010–2014.327,328 Their findings reveal that for most of the period,

it was more likely for the network structure to be bipartite or a single-block structure. In fact,

the least likely structure was a core-periphery while a modular structure was observed only a few

times. An increasing bipartivity was also observed in the daily networks during 2000–2015 which

was encouraged by a concurrent decline in the number of banks and edges on the daily scale,55,327

and a strategic shift from borrower to lender by a few small banks.327 The dynamical activity

patterns that characterize the daily evolution of the e-MID interbank market are similar to that of

social networks. In particular, transaction duration f was found to follow a power-law distribution,

while the distribution interval time displayed a long-tailed pattern.55,330 Raddant also showed daily

patterns in trading activity for data between 1999 and 2010. He found that strong peaks emerged

at 9:00 a.m. and 3:00 p.m. along with a relatively smaller peak at 12:30 p.m.331 His observations

were inline with previous work by Iori et al.,111 where the daily trading patterns reflected office

hours and the consistent in- and outflow of liquidity as trades are settled from the day before.

2.5.3. Contagion in financial systems

Origination of complexity in financial systems

The commoditization of financial risk has made it increasingly possible to redistribute it throughout

financial markets to those (including banks) with the ability to bear it, and in exchange for higher

yields. Put simply, restructuring risk by packaging, slicing and re-bundling it for sale has granted

financial market participants access to new exchangeable instruments. Although the reallocation of
fDefined as the number of consecutive business days on which a lender and a borrower performs at least one

transaction.
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risk among participants presents the benefit of reducing the risk-obligation on any one participant,

it also expands the chain of interconnected banks, exposing them to any repercussions from a de-

fault.27,29,332 Based on this singular case, it is evident that financial interconnections can provide

mutual insurance against risk; however, because each bank exists and operates within a network

of other banks, initially localized distress can propagate to the rest of the system.35,91,333–336 The

extent of interconnectedness in financial systems makes it possible that even bad news of a mod-

erate degree27,337–339 can tip the system into a state of instability due to sell-offs as discussed in

Section 2.5.1 combined with other reactions by banks. It should be noted that an added layer of

complexity emanates from the responses of individual banks in distress situations. Despite history

suggesting it is unlikely that banks will be passive during times of distress, much of the existing

literature assume that banks are passive during these times. In reality, when banks have informa-

tion about threats to their viability, they may strategically position themselves to improve their

chances of a bailout or to acquire market share at the expense of their competitors.340 A few stud-

ies considered bank behaviour during times of distress by incorporating responses such as liquidity

hoarding by those that decline to roll over interbank loans from fear of counterparty risk340 or those

banks that shorten interbank loan duration.341 Others also considered the behaviour of banks after

distress where they may want to re-establish connections previously broken.340

In the lead up to the 2008 global financial crisis, banks grew in size and became increasingly inter-

connected at various levels within the system;91 this engendered greater complexity as optimizing

banks adapted to their environment in order to remain competitive. Complexity in financial systems

refers to the increasing challenge to trace the source and location of claims and essentially risk;91

naturally, as more banks become unable to trace risk, this can give rise to system-wide uncertainty.

In social networks, complexity is due partly to the diversity of individuals and the heterogeneous

responses that can be observed from exposing each individual to the same stimulus. We use another

analogy in social networks where a recent study investigated the network effect among individuals

given uncertainty about a disaster.342 They found that individuals in a network setting are less

inclined to make independent decisions than those who are isolated (i.e., no network effect).342

Therefore, network effect can result in individual strategies being more alike than dissimilar in some
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Table 2.3: Main channels of contagion in financial systems

Channel Type Source Relationship

Solvency contagion27,34,35,39,40,280,345 Direct Weak equity: low market
asset value vs. debt

Interlocked balance sheets via
loans, repos, derivatives etc.

Funding liquidity contagion26,36,298,346–348 Direct Weak liquid reserves
vs. current liabilities

Interlocked balance sheets via
loans, repos, derivatives etc.

Asset fire sales310–314,349–354 Indirect Mark-to-market losses
on overlapping portfolios

Common assets or overlapping
portfolios

systems. It is this type of dynamical complexity and absence of diversity that Haldane91 suggests

engendered the fragility that surrounded the 2008 global financial crisis.

Against this background, studies on financial systems address some crucial points in the policy dis-

cussion. First, the need for an adequate framework to identify institutions with considerable impli-

cations on the stability of the system i.e., “too-big-to-fail” and/or “too-interconnected-to-fail”.104,285

Second, the extent of data, to be disclosed by banks, that regulators deem sufficient to properly

assess systemic risk.343 Third, the appropriate actions to be undertaken by regulators given multiple

equilibria. Multiple equilibria for bank values exist if the solvency of one depends on its predecessor

in a cycle of sufficiently interconnected banks,285,344 and the emergence of such a phenomenon tends

to be driven by uncertainty which leads banks to lose trust in counterparties.136 Based on conven-

tional tools of finance and economics, it may not be immediately clear how to tackle these systemic

challenges. In this section we employ the lessons from social network analysis about the effects of

complexity and diversity on stability to gain insight into the dynamics of financial contagion.

Solvency contagion due to interbank linkages

Section 2.5.1 explains that in network models, a bank’s solvency is determined from its capital

level, if negative, the bank is assumed to be insolvent (Eq. 2.7). A bank’s capital level is negatively

affected when the current market price of an asset falls as it adjusts in a mark-to-market framework,

or when the bank’s investments fail.284,355 From the stylised balance sheet identity in Eq. (2.7),

an insolvent bank is no longer able to cover liabilities and in the absence of any intervention (e.g.

government bailout), it is expected that the bank will cease operation following the necessary
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insolvency proceedings. Solvency contagion is studied extensively in the financial systemic risk

literature (Table 2.3) due to some highly influential works that include the pioneering study by

Eisenberg and Noe,34 later followed by Nier et al. who provided early references to techniques in

network theory.35 Since then, the work by Gai and Kapadia,27 in which they formalized the network

model of financial interdependencies based on interbank linkages, forged a new path for studying

insolvency cascades in financial systems.

Eisenberg and Noe34 were among the first to study this decades-old problem of solvency contagion;

they found that the structure of financial networks play a consequential role in engendering failure

among banks. This observation was consistent with findings about the dynamics of contagious phe-

nomena on social networks.237,238,251,257,262,356,357 Their model served as a basic characterization

of solvency cascades in banking networks based on a stylised balance sheet; it therefore provided

a foundation for other works on financial systemic risk.29,332,358 The Eisenberg and Noe model

simulates solvency contagion in a static financial network with banks holding nonnegative amounts

of liabilities for each other, and each bank having its own operational cashflow (nonnegative). The

operational cashflow and payments that a given bank receives, from its counterparties, have impli-

cations for whether the bank will default; this reflects an interdependency of liability repayments.

Eisenberg and Noe reasoned that the borrowing counterparty of a given bank makes a full or par-

tial repayment that represents an income to the lending bank; hence, the obligations of all banks

should be resolved simultaneously giving due consideration to debt priority and limited liability of

equity.34 This establishes a clearing vector which contains the value of the respective interbank

contracts. They proved that a unique clearing vector exists under mild regularityg condition, and

they introduced an algorithm to compute this vector of equilibrium payments (i.e., a self-consistent

solution when all payments are settled in the final state). Subsequent works extend the Eisenberg

and Noe model to reflect more realistic aspects of real financial systems by including liquidity con-

sideration,314 cost of default,359 multi-period payment system,360 and testing the sensitivity of the

original clearing vector to estimation errors.323

gA network is regular if the risk orbit (i.e., the set of nodes that are accessible from a given node i) has at least a
single node with non-zero liabilities.34
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A simpler model was introduced by Gai and Kapadia27 in which banks are depicted as nodes and

the claims and obligations between them as edges. The original model assumes a random network

structure for the interbank system.27 Investigations into the structure of real interbank systems

show that they are, in fact, very different from random networks. First, studies based on the U.S.

Fedwire indicate that a few big banks exist that are linked to several small ones, and small banks are

themselves unlikely to connect with others of their own size; hence, real interbank networks appear

to be disassortative.361,362 Furthermore, the size of banks has also been shown to be heterogeneous,

more specifically, that the ratio of bank capital to total assets was relatively smaller for large banks;

thus presenting a threat to stability.362 Nevertheless, Gai and Kapadia27 assumed an Erdos-Renyi

network consisting of N banks that randomly link to each other as borrower-lender with probability

p; such that, the average number of edges is computed as z = p(N − 1). The network is directed,

therefore, total outgoing (incoming) edges for a given bank i represents the number of loans granted

to (taken from) counterparties. Bank i’s capital Ci is defined as a fixed fraction of its total assets

ATotal
i , and i grants only a fraction θi of its total assets as interbank loans AIB

i . Bank i distributes

total interbank loans evenly among its borrowers such that wi, the value of a loan to an individual

borrower is:

wi =
θi ×ATotal

i

z
(out)
i

(2.8)

= ATotal
i × AIB

i

ATotal
i

× 1

z
(out)
i

=
AIB

i

zout
i

.

Given that total assets ATotal
i = 1 and the interbank loan fraction θi is common to all banks in the

Gai-Kapadia model, Eq. (2.8) implies that i’s loan amount to each of its borrowers wi will vary,

among all i’s, proportional to 1/z
(out)
i . Note also that given ATotal

i = 1, all banks are also assumed

to have the same level of capital Ci. Finally, they simulate defaults due to insolvency based on the

default condition defined as:

Ci ≡ θiA
Total
i + (1− θ)ATotal

i − LIB
i −Di < 0 (2.9)

= AIB
i +AEX

i − LIB
i −Di < 0.
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The Gai-Kapadia model of solvency cascades is a direct extension of Watts global cascades model,244

which is a fundamental theory of information cascades in random social networks. In Watts’ model,

a non-adopted node with k degrees and m active neighbors, will become an adopter if the fraction

of active neighbors m/k exceeds a fractional threshold value ϕ ∈ [0, 1] (see Section 2.4.4). The

iteration of cascade dynamics begins with a small fraction ρ0 of “seeds” (or initially active nodes).

Then, at the end of the iteration, we observe the fraction of activated nodes of the entire population.

This fraction is formally referred to as the cascade size denoted by ρ. Given the complex nature

of bank interactions, it is more appropriate to employ a threshold model (or similar approaches

that reflect complex contagion) in which nodes change state only after multiple exposure to a

contagious entity. The social relationships modeled by Watts are depicted as undirected edges;

however, the primary difference to be observed in modeling interbank financial relationships is the

need to represent explicitly the direction in which funds flow (i.e., from lender to borrower while

risk flows from borrower to lender). In other words, edge direction makes it clear that claims (i.e.

assets) and obligations (i.e. liabilities) affect the balance sheet of a bank differently. Caccioli et

al.135 highlight the parallel between the threshold of Watts social contagion model and that of

Gai-Kapadia when the default condition in Eq. (2.9) is rewritten as:

(1− ϕ)AIB
i +AEX

i − LIB
i −Di < 0 (2.10)

AIB
i − ϕAIB

i +AEX
i − LIB

i −Di < 0

Ci < ϕAIB
i

Ci

AIB
i

< ϕ,

where ϕ is the fraction of defaulted borrowers of bank i. It is assumed that there is zero recovery

on interbank loans to such borrowers — a fairly realistic response during a crisis — because of the

high degree of uncertainty around recovery rates and timings which may lead lenders to adopt the

worst-case scenario. Note also in Eq. (2.10), the coefficient of AEX
i is 1 which assumes that there is

no sale of illiquid external assets by distressed banks.27,362 Therefore, by varying the coefficient of

AEX
i , the model enables an assessment of amplification effects due to asset price interaction. Despite

being simple, the model adequately reflects key elements of the complexity of bank relationships;
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thus facilitating investigations into several sources of vulnerability simultaneously (e.g., sufficiency

of capital buffer,20,362 degree of network connectivity,20,362 illiquidity of the market for failed assets,

link failure instead of individual node failure363). Some studies have also generalized the threshold

model to temporal networks43 and to multiplex networks .324,364,365

The results of Gai and Kapadia’s work highlight a robust-yet-fragile property of financial networks

which means that, although contagion probability may be small, the system can realize catastrophic

and widespread effects in the event of a problem. Subsequent studies that are consistent with this

model indicate that, global cascades244,366 can occur for a wide spectrum of network densities and

threshold distributions. In the literature, global cascade refers to an event in which a small fraction

of initial adopters can convert (from non-adopted to adopted) a finite fraction of an infinite-sized

network (i.e, very large cascades).244,365 We note that, while real networks are investigated quite

extensively,107,110,111 it remains unclear how the system can leverage greater connectivity to benefit

from risk-sharing while reducing the adverse effects of creating more pathways to risk exposure.

Funding liquidity contagion due to interbank linkages

Similar to solvency contagion, liquidity shortage that is initially localized in one bank can spread to

others across the financial network, causing a systemic liquidity problem when the bank in shortage

responds by recalling its loans (or declining to renew loans) to its counterparties. One of the

primary functions of the interbank market is to enable banks to manage fluctuations in liquidity

by providing access to funding via interbank lending.296,335,367 Banks use these funds to meet

reserve requirements without the need to dispose of their illiquid assets. In the overnight market,

borrowed funds are repaid at the beginning of the following business day; however, a bank that is

facing liquidity problems may roll over their borrowings. Funding liquidity problem occurs when

a bank is unable to raise funds at short notice by selling assets or accessing new loans.26,368,369

Fear, lack of trust or anticipation of challenges in renewing their own short-term borrowings (i.e.,

rollover risk) may lead other banks to halt lending or renew loans to their own borrowers.284 These

various responses aggregate to engender chains of liquidity shortages as the initial shock reverberates

through the system,340 ultimately lowering funding supply on the interbank market. Furthermore,
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Table 2.4: Theoretical studies of funding liquidity contagion in interbank networks.

Paper Network structure Edge generating method No. of
banks

Loss distribution Finding

Lietner346 Complete Exogenous parameters N Default cascade Highly connected network structure as
optimal ex-ante: Links provide mutual in-
surance to banks, despite it being impossi-
ble to commit formally to providing private
bailouts. Banks are willing to offer bailouts
if it prevents the system from breakdown.

Gai et al.36 Poisson, Geometric
(Fat-tail)

Random 250 Liquidity hoarding System’s fragility amplified by increases
complexity and concentration. Different
measures can be undertaken (e.g. macro-
prudential policy, more stringent liquidity
regulations, surcharge on banks with systemic
importance) to enhance resilience.

Lenzu & Tedeschi348 Scale-free Preferential attachment 150 Default cascades Scale-free financial networks (with
heterogeneity in banks’ size) are more
vulnerable than financial networks that have
a random structure.

Lee371 Complete, Disconnected,
Circular, Core-periphery

Exogenous parameters: reserve
ratio, deposit shares, surplus funds
& cross holdings

N Liquidity shortages Systemic liquidity shortage is highest in the
core-periphery network with deficit money
centre. Also, the more ill-matched h inter-
bank networks have higher vulnerability to
liquidity shocks.

Lux372 Core-periphery Preferential attachment 50, 250 No contagion Heterogeneous interest rates that are based
on the strength of established relationships
between banks may prevent the system from
becoming extortionary and may also ensure
that small peripheral banks survive.
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spillovers could also occur as distressed banks offload large volumes of illiquid assets through fire

sales; thus amplifying losses as asset prices enter a downward spiral.313,370 While default risk in

solvency contagion flow from debtors to lenders, in funding contagion, risk flows in the opposite

direction via the liability side of the balance sheet i.e., from lending banks to the borrowers. In

solvency contagion, knock-on defaults occur if the shock that banks encounter exceeds capital and

the process stops when no additional banks default. However, with funding liquidity contagion,

the shock can continue propagating until the initial liquidity need is satisfied, often via the sale of

external assets.347

These dynamics are captured by a few theoretical frameworks shown in Table 2.4. Here we review

the models used in the studies by Gai et al.36 and Lee371 (hereon referred to as GHM and LLM),

respectively) for which an initial liquidity shock (e.g. haircuti or massive withdrawal by a depos-

itor371) induces liquidity hoarding behavior or shortage among other banks in the system. The

initially affected institution responds by hoarding liquidity via recall of short-term debt to counter-

parties, and this begins the liquidity contagion mechanism. Essentially, liquidity contagion models

provide a mechanism to study the financial network as the system contends with illiquid banks.

Both studies focus primarily on how liquidity contagion is influenced by structural characteristics of

interbank networks; however, a key difference between the two approaches relates to the allowable

responses by banks as they face liquidity shocks.

Liquidity hoarding in GHM. A bank that encounters liquidity shortage in the GHM, can access

liquidity through repurchase agreements (or ‘repo’ transactions) in which banks access funding by

offering collateral AC or liquid assets AL as security (Table 2.5). An aggregate discount (referred to

as a haircut) h ∈ [0, 1] is associated with the use of collateral assets to access liquidity funding. The

haircut reflects the perception about the underlying risk of the asset; and enables lenders to hedge

against complete losses if a borrower defaults. In the event that the collateral is sold, the lender

may be forced to sell at a discount depending on the state of the market — for example with respect

to market liquidity, information asymmetry and/or extent of default amount banks.36 In addition
iGai et al. refer to haircut as the difference between the loan received against a security, used as collateral, and

the actual market value of the security.
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Table 2.5: Stylised Balance Sheet in GHM of liquidity hoarding

Assets Liabilities

Fixed Assets, Afixed Deposit, D

‘Collateral’ Assets, AC

Reverse Repo, ARR

Repo, LR

Unsecured Interbank Assets, AIB

Unsecured Interbank Liabilities, LIB

Liquid Assets, AL

Capital, C

to this aggregate haircut on collateral assets AC, individual banks may be perceived differently by

lenders about a borrowing bank’s ability to meet its obligation, therefore, hi represents this bank-

specific haircut. Where a lender perceives a borrower to have a higher probability of default, the

borrower may be offered a lower amount of funding despite a higher current market price for the

collateral. Other assets which may be use by a bank that is facing a liquidity shortage includes,

its reverse repo assets (ARR) which are the collateralized loans to borrowing banks. Similar to the

collateral assets, reverse repo assets are also subject to haircuts. Therefore, in this framework, the

only assets exempted from any haircuts are liquid assets (e.g. cash and government bonds) which

banks can also use as security for repo funding. Finally, banks may also rely on counterparties to

provide new unsecured interbank loans LN. Note that, the stylised balance sheet also consists of

fixed assets Afixed and interbank assets AIB; however, it is assumed that banks are not able to use

them to respond to liquidity shocks.

The GHM defines the liquidity condition of a given bank in the system based on a bank i that has

a fraction µi of its counterparties withdrawing a proportion of their funding λi. The withdrawal

by i’s counterparties reflects liquidity hoarding which reduces how easily banks access funding from

others. Bank i reassesses its liquidity position to find that it has lost λiµiLIB
i in unsecured interbank

liabilities LIB
i . Given this loss, the liquidity condition of i is computed as:

AL
i + (1− h− hi)A

C
i +

(1− h− hi)

(1− h)
ARR

i + LN
i − LR

i − λµLIB
i − ϵi > 0, (2.11)
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where bank i is liquid if the total available liquidity is sufficient to cover the liquidity losses and

existing liability. Total available liquidity is determined by the available collateral to secure repo

funding plus any new borrowing (i.e., the sum of existing liquid assets AL
i , collateral assets AC

i and

reverse repo (ARR
i ) which are both discounted, and new interbank borrowings LN). This is matched

against the sum of liquidity losses λµLIB
i , existing repo liabilities LRR

i and idiosyncratic shock −ϵi.

To investigate the role that network structure plays in funding liquidity contagion, Gai et al.36 began

with a baseline structure defined by a Poissonian edge distribution, i.e., edges connecting banks are

distributed approximately uniformly. The results from the baseline network were then assessed

against that of a fat-tail (geometric) network configuration, in which concentration is expressed as a

few banks being highly connected based on the number and overall value of their relationships with

counterparties.36 It is quite reasonable to compare a stylised form of the network to one that reflects

the scale-free degree distribution that is often reported in several studies on interbank systems in

Austria,107 Italy,108 US,110 Colombia.109 Their comparative analysis of the two network structures

indicate that, the probability of a contagion is smaller and less severe given low average degrees

for the concentrated (geometric) network structure. This result is consistent with findings that

under random attacks, fat-tailed networks are more robust.114,252 They also investigated further

to ascertain the existence of any key differences in how the system responds to a random initial

disturbance versus a targeted one. They find that a targeted shock on the most connected lender (

i.e., with largest number of lending relationships) results in contagion occurring more frequently in

both network configurations.36,348 However, the frequency of such events is only slightly different

from the original results in the baseline network. In contrast, contagion occurs almost with certainty

in the concentrated network for a broad array of average degrees. This difference is explained by

the similarity in how banks are connected under the Poisson distribution: there is relatively little

difference between the most connected bank and an average bank in this network. However, in

the concentrated network, banks that are highly connected are linked to a considerable fraction of

others in the network.

Systemic liquidity shortage in LLM. In the LLM, Lee347 focuses on measuring systemic liquidity
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Table 2.6: Stylised Balance Sheet to model liquidity shortage in LLM347

Assets Liabilities

Interbank Assets, AIB

Interbank Liabilities, LIB

Liquid External Assets, AQEX

External (non-bank) Liabilities
(e.g. Deposits), d

Illiquid External Assets, AZEX

Capital, C

shortage by taking account of direct and indirect liquidity shortfall in individual banks. A bank

faces a direct hit to liquidity if there is a deposit withdrawal from external non-bank liabilties d.

However, the links to other banks in the interbank network allow indirect or knock-on effects to

be transmitted between counterparties. In contrast to the GHM, a bank that is facing liquidity

shortage in LLM is restricted from borrowing new interbank loans to cope with the shock. Instead,

the bank can sell available external assets starting with the most liquid assets AQEX, followed by

illiquid assets AZEX only if the bank is still experiencing a shortage (Table 2.6). To begin the

simulation, an initial bank i is exposed to a liquidity shock to its funding that emanates from

deposit withdrawals ∆di. Bank i responds by recalling claims on counterparties and selling external

liquid assets proportionally. Other assumptions about bank i’s response include: (i) no short-sale of

its liquid assets, (ii) liquid assets must be exhausted before liquidating illiquid assets, and (iii) new

stock cannot be issued nor can the bank borrow new funds from external investor as a response to

liquidity withdrawals. The second assumption follows from the notion that offloading illiquid assets

prematurely is costly; while, the third assumption ensures that systemic liquidity shortage given an

initial squeeze is isolated completely from effects when banks can access help from sources that are

external to the system.

For a single bank i, the condition of its liquidity is determined by two components, its need for

liquidity which is computed as:

lni =
∑
j∈N

LIB
ji + ∆di, (2.12)
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and the total of its liquid assets computed as:

li = AQEX
i + AIB

i . (2.13)

When bank i recalls interbank loans as a response to its depositors withdrawing deposits ∆di, this

action will increase the liquidity needs of other banks. Lee explains that the rippling effects are

expected to continue throughout the system until external assets in the entire network falls by an

amount that is commensurate with the initial withdrawals of liquidity in the system; that is:∑
i

∆di =
∑
j∈N

AQEX
i + AZEX

i . (2.14)

The liquidity shortfall of any given bank is:

lsi ≡ max(0, lni − li), (2.15)

which occurs when the bank’s liquidity need exceeds its available assets. Lee aggregates the indi-

vidual liquidity needs of banks based on Eq. 2.12 to obtain aggregate liquidity shortfall being faced

by the system, that is:∑
i∈N

lni =
∑
i∈N

(∑
j∈N

∆LIB
ji + ∆di

)
(2.16)

=
∑
i∈N

∑
j∈N

∆LIB
ji +

∑
i∈N

∆AQEX
i +

∑
i∈N

∆AZEX
i .

Lee shows that by comparing initial withdrawals (
∑

i∆di) to aggregate liquidity need (Eq. 2.16) it

can be seen that the system can, in fact, have needs that are in excess of initial withdrawals.347

Essentially, the LLM recursively adjusts the liquidity need of each bank as a given i cancels interbank

loans to cope with its own shortfall. The recursive nature of the process is due to liquidity needs

of each bank increasing as other banks are liquidating interbank assets (which reduces liquidity for

neighbors). This process continues until the liquidity needs of all banks are fulfilled or until banks

exhaust their liquid assets. Lee introduced an algorithm to compute the overall change in liquid

assets (∆li) exactly and efficiently by adopting a mechanism similar to that of Eisenberg and Noe34

to solve the following fixed point equation:

∆li = min

[
li,
∑
j∈N

ϕij∆lj + ∆di

]
, ∀i ∈ N . (2.17)
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To examine the possible determinants underlying the dynamics of liquidity shortages, Lee con-

structed a variety of network configurations by tuning: reserve ratio, deposit shares, surplus funds,

and cross holdings. A total of six network configurations were examined; namely: complete, dis-

connected, circular and core-periphery. Alternative network structures were also explored in other

studies,348,372 particularly by allowing random edge formation based on the trust level that banks

have in their counterparties348 or based on some banks simply being more willing to engage in

lending372 (Table 2.4). The results from the LLM indicate that liquidity shortages of deficit banks

can be mitigated by holding more asset claims on a surplus bank. The comparative analysis of the

different network configurations indicates that a core-periphery structure, characterized by a deficit

money center j, engenders the highest systemic liquidity shortages. Finally, interbank networks in

which banks are ill-matched exhibit greater vulnerability to liquidity shocks relative to well-matched

systems. In the ill-matched scenario, deficit banks borrower only from other banks in deficit; while,

two connected banks are considered to be well-matched when one is in surplus and the other in

deficit.

Empirical data to study funding liquidity contagion. We highlight a few studies that ex-

tended beyond random networks or overly simplified structures of the financial system to investigate

the dynamics of funding liqudity contagion.37,298,369 Studies by Furfine37 and Müller298 relied, re-

spectively, on payments data from the United States and supervisory reports on banks in Switzerland

for information on bilateral exposure between banks. Both studies considered an idiosyncratic ex-

ogenous shock (i.e., the initial failure is due to some factor that is external to the system). Furfine

takes the largest lender in the federal funds market as the first to fail ;37 however Müller begins

with the failure of 20% of banks that are unable to repay outstanding obligations immediately.298

Another study used data on the banking system in France also obtained from supervisory reports on

bilateral exposure.369 Their approach differed to Furfine and Müller on the use of a common market

shock, that represents correlated losses on mark-to-market assets, to analyze how the decision by

banks to hoard liquidity leads to systemic liquidity shortage. For the 300 banks in the Swiss bank-

ing system, supervisory reports cover the 10 largest interbank exposures (20 for big banks).298 The
jHub banks that are connected with all other banks in the system
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data set on the French banking system also consists of about 300 institutions; however, Fourel et al.

consider groups at the consolidated level, ultimately examining 11 banking groups for December 31,

2011.369 The U.S. FedWire payment data spanned the period February–March 1998. We note that,

most of the empirical literature on direct contagion (i.e., solvency and funding liquidity channels)

in financial networks employ an iterative (sequential) default cascade mechanism;37,369 however a

few298,347 rely on the approach taken by Eisenberg and Noe.34

The simulated results from these studies agree that funding liquidity contagion is capable of inflicting

considerable damage to banking systems. By overlooking distress propagation via funding liqudity

shortage, systemic risk can be underestimated because losses in both solvency and liquidity channels

have been shown to be of similar size.369 In fact, illiquidity poses a greater threat in some instances

relative to solvency contagion,37 propagating to affect up to 9% of the U.S banking system if the

largest federal funds borrower is no longer able to borrow. For the Swiss banking system, Múller

finds that almost 90% of total assets would be affected.298 Notwithstanding, Fourel et al. highlights

ambiguous effects of liquidity hoarding by banks as a crisis response: increasing the probability of

default given liquidity shortage; however the loss given a default may decrease because liquidity

hoarding itself lowers a banks exposure.369

Contagion via external assets and fire sales

Apart from capturing banks’ direct counterparty exposures, network models of financial systems

also enable us to represent and study the impact of indirect connections such as common holdings

of assets,312 overlapping portfolios,310 and linked return between portfolios373 on stability. Shocks

that propagate via the indirect channel, manifest mainly as asset fire sales350 — meaning that a

bank experiencing negative shock may sell assets as a way of returning to a leverage target.316 In

an illiquid asset market, the sale by this bank may depress prices; thus forcing others with common

exposures to the asset, to deleverage as a loss response313,316,374

Most studies on the common exposure between banks use a bipartite network structure consisting of

two node categories: banks and the assets that they invest in, and an edge can connect only nodes

from different categories (Table 2.7). Empirical studies by Greenwood et al.312 considers 90 banks
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Table 2.7: Studies of overlapping portfolio as an indirect channel for financial systemic risk

Paper Bank objective Analysis Data Findings
Greenwood et al.312 Leverage targeting Empirical 90 banks in E.U. When the most leveraged banks are in possession of large values of asset

classes, the banking system exhibits greater susceptibility to contagion. Dis-
persing volatile and illiquid assets more widely across banks can reduce fire
sale spillovers.

Cont & Schaanning375 B/w passive & leverage
targeting

Empirical 51 European
banks

Spillover effects from portfolio overlap may affect the result of stress tests on
banks, and also lead to heterogeneous losses on individual banks; hence such
indirect effects cannot necessarily be reproduced in single-bank stress tests.

Huang et al.72 Passive to price changes Empirical U.S. banks Their model prediction of failed banks performs well in recovering banks that
FDIC reported as actual failed banks after 2007. Commercial real estate assets
were identified by their model as the major culprits of 350 US bank failures
between 2008 and 2011, not residential real estate.

Cifuentes et al.314 Risk-based capital req. Theoretical - Allowing endogenous changes in prices of fire sold assets may cause an initial
shock to inflict considerable damage.

Caccioli et al.310 Passive to price changes Theoretical - The financial system experiences multiple phase transitions when there is in-
creased diversification in the portfolios of banks: shocks do not propagate below
the first due to the network being sparse; however, banks are particularly vul-
nerable to asset price shocks and these shocks tend to propagate between the
first and second transitions. Beyond the second transition, banks are relatively
more robust to devaluation of select assets.

Caccioli et al.315 Passive to price changes Theoretical - Strong amplification of contagion, evidenced by larger number of knock-on fail-
ures, when consideration is given to counterparty risk and overlapping portfolio
risk.

Caccioli et al.316 Passive to price changes Empirical U.K. banks Simulations that ignore common asset holdings can underestimate fire sale
losses considerably. Two strategies undertaken by banks were considered: one
where banks maintain portfolio weights and the other where banks prefer to
offload the most liquid assets first. The system always realizes a higher systemic
risk given the former. However, the latter generates more spillover effects for
a bank that elects to delay liquidating any of its assets when facing distress.

Levy-Carciente et al.351 Passive to price changes Empirical Venezuelan banks Introduce a model that captures changes in the structure of the Venezuelan
banking system, highlighting the sensitivity of bank portfolios to different ex-
ternal shocks.

Gualdi et al.311 - Empirical 13-F SEC filings
(Factset Owner-
ship database)

Highlight a significant increase in the similarity of banks’ holdings prior to a
financial crises
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in the European Union that have large exposures to the same class of assets, essentially projecting

a bilateral network from a bipartite network of 90 banks linked to 42 asset classes.312 They model

fire sale spillovers via a mechanism that is prompted when a highly connected bank offloads assets.

To account for the network effect of fire sales, they measured fire sale losses of the system and the

susceptibility of each bank to deleveraging by others.

In modeling shock propagation dynamics on overlapping portfolio networks, a few points must be

considered: the price response mechanism as banks liquidate and the banks’ reaction to losses on

assets (i.e., how are their portfolios readjusted to manage risk? ). Regarding the first point, several

models of asset fire sales employ a market impact function that assumes a linear price impact

that is proportional to the volume of assets liquidated; hence a higher liquidated amount leads to

higher devaluation of the asset’s price. Cont and Schaanning313 consider a more complex forms

of the market impact function that considers investors being motivated to buying the asset when

its prices suffers considerable devaluation. For the loss response of banks, a simple approach is to

assume that banks are passive once their respective losses remain below the threshold, otherwise

the bank liquidates its entire portfolio.72,310 Caccioli et al. applied this assumption to derive

results analytically for bipartite Erdös-Rényi ensemble of random networks. By using a generalized

branching process they found that in a supercritical state propagation can be systemic despite

an initially small exogenous shock. The branching process follows from the work of Watson and

Galton who studied the probability of family names surviving across generations.376 In epidemic

spreading models, the first infected person creates a certain number of new cases where this number

is obtained from a probability distribution. Each of these newly infected individuals go on to

generate independently a certain number of new infections, also drawn from the same probability

distribution.

The process repeats for each new set of infected individuals. If the expected number of newly

infected persons (i.e., basic reproduction number) is less than 1, then the process dies with certain

probability. If the expected number of newly infected persons (i.e., basic reproduction number) is

less than 1, then the process dies with certain probability. It is this branching process that Caccioli
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et al. generalized to account for multiple types of individuals i ∈ {1, 2, . . . , . . . q}. More specifically,

this multi-type branching process focuses on the expected number of infected persons of type i that

are in fact generate by a type-j individual. For each pair of individual type, a q × q matrix can be

obtains with each entry being the number of infected person of type i that are produced by type j.

In this specification, an on-going process will die when the largest eigenvector of the matrix is less

than 1 (i.e., subcriticality), and if greater than 1 (i.e., supercriticality), then the process is expected

to last indefinitely. According to Caccioli et al., banks can be differentiated on the basis of various

characteristics (e.g. degrees); hence the generalized branching process outlined earlier for infected

individuals could also apply to quantifying the expected number of banks of a given type i that

fails due to the failure of another bank that is of type j. Caccioli et al.310 show a phase transition

consisting of a region where global cascades occur in the parameter space that is separate from

another area void of such cascades. Furthermore, although diversification may reduce risk exposure

of individual banks to specific assets, it does not necessarily enhance stability of the system. Huang

et al. also showed that in an empirica study of U.S. commercial banks that a phenomenon exists

that resembles a phase transition occurring between stable and unstable regimes.72

The passive response assumption on banks could be regarded as realistic if we consider that banks

are responding amid a crisis, and that they have little to no time to respond in a way that staves off

default. However, banks are subject to risk-management and regulatory procedures that motivate

them towards optimization in reality; hence a realistic depiction of bank’s behavior is one which

sees them responding to changes in markets by re-balancing their portfolios. The approach by

Greenwood et al.312 considers banks being subjected to risk-management procedures; they target

leverage ratios by liquidating a proportion of their assets as they experience losses.

2.5.4. Systemic importance in financial networks

Centrality and clustering measures

The systemic risk literature has highlighted that, in addition to the size of banks, the extent of their

interconnections is also important. It is in this regard that the overlap between social networks and

financial systems becomes even more discernible, i.e., when we aim to not only quantify the level
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of interconnectedness but also identify those banks that are critical to the financial system. Policy

discussions on systemic financial risk after 2008 highlighted the need to identify those banks that

are analogous to superspreaders in social networks, and for consideration to be given to the system-

wide importance of individual banks — a property that originates from connectivity to others or

due to their scale of operation.91,104,285 The parallel is highlighted in the approaches that are taken

to evaluate banks’ importance with the use of centrality measures.377 Many studies107,117,189 have

relied on the connections between banks to find those most consequential in terms of their role in

providing funding liquidity, and their vulnerability or the risk posed to the system due to their

highly leveraged state. There has been some focus on formulating measures that reflect the specific

features of financial systems. Against this background, some have constructed measures based on

market data on banks’ portfolio returns, giving consideration to contagion via fire sales378,379 or to

the presence of correlation between banks’ returns.380

DebtRank

The DebtRank381 measure was formulated on the basis that banking networks are not only weakened

by the actualization of bank defaults. In fact, even when a default does not materialize, neighboring

banks will encounter some stressful effects which reduces their ability to withstand additional strain,

and this fragility will also be transmitted to their counterparties. DebtRank follows from feedback

centrality382 measures such as PageRank383,384 which has been applied to ranking Internet pages

on the worldwide web. With this type of centrality measure, networks with cycles can produce

an infinite number of reverberations of the node’s impact to counterparts which then reverts to

itself. In such instances, may be difficult to find an economic interpretation that is measurable with

practical application; however, the methodology of DebtRank addresses this challenge by focusing on

exposures propagating along trails; hence links are visited only once. DebtRank considers recursively

the impact of initial distress by banks, and this impact is computed as the fraction of total economic

value in the network that is susceptible to that distress or default. The measure is based on a

directed, weighted exposure matrix E with elements Ei,j as the amount invested by bank i in bank

j, and the individual capital buffer ci are the elements of vector c. The effect of bank j’s default

on bank i is expressed as Wj,i = min
{
1,

Ei,j

ci

}
. Furthermore, the set of distressed banks is denoted
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by Sf and the initial level of distress is given by ψ ∈ [0, 1] with ψ = 1 indicating default.

The algorithm defines two variables s and h which track the state and distress level of nodes,

respectively. Nodes can be in one of three states: undistressed, distressed or inactive. The initial

values si(1) and hi(1) are si(1) = D and hi(1) = ψ, that is, if bank i belongs to the set of distressed

banks; otherwise si(1) = U and hi(1) = 0. The process of updating the values of si(t) and hi(t)

occur iteratively as follows:

hi(t) = min
{
1, hi(t− 1) +

∑
j

Wj,ihj(t− 1)
}
, (2.18)

si(t) =


D if hi(t) > 0 and si(t− 1) ̸= I

I if si(t− 1) = D

si(t− 1) otherwise,

(2.19)

for all i and for t > 2. The first step begins with Eq. (2.5.4) where the distress level for all nodes i

is updated in parallel. Here, i’s current level of distress hi(t) is the based on two components: i) its

distress level up to the previous time period hi(t− 1) and ii) the loss impact (relative to its capital

level) due to distress from j’s (denoting i’s neighbors). The second step considers the state of all

nodes, where the current state of node i changes to distress (D) if i is not inactive and its current

level of distress is positive. Eq. (2.19) also implies that in the next time period i.e., (t+1), the state

of node i will change to inactive (I).

Battiston et al. show that their algorithm converges in a finite number of steps T with nodes being

in state U or I. The DebtRank R of the set Sf is then computed as:

R =
∑
j

hi(T )vj −
∑
j

(1)vj (2.20)

In Eq. (2.20), vj =
∑

k Ej,k/
∑

j

∑
k Ej,k. Essentially, R measures the distress build-up in the

system (not including initial distress), and if the set of initially distressed banks Sf contains only

one bank, then R measures the stress induced by that bank on the whole system.
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SinkRank

SinkRank is another measure of systemic importance in payment and/or exposure networks in which

transfers between banks occur along directed edges. The sender of the payment loses access to it once

the transfer is made; the receiver, however, is at liberty to transfer the funds to any bank in the sys-

tem. In contrast to DebtRank which occurs along trails, the transfer process for SinkRank61,115,385

occurs as random walks in the network; hence banks engage the same counterparty as sender and/or

receiver more than once. SinkRank represents the directed, weighted payment or exposure network

as an absorbing Markov process, apt for modeling liquidity dynamics in payment systems. Markov

systems can be in one of any number of states, passing from one state i at time t − 1 to another

state j in a subsequent time step t based on a fixed probability pij , also referred to as a transition

probability. The SinkRank process begins with a node which, at some point, terminates at a sink

which is an absorbing node bank with no outgoing edges.61 The method simulates the process

in a payment or exposure network where transferred funds to a failed banks remain dormant (i.e.

unavailable to the wider system) until the bank recovers. SinkRank determines that the systemic

importance of a bank i is based on the number of steps required for a process, beginning anywhere

in the system, to terminate at an absorbing node i, with higher SinkRank indicating a more central

node needing fewer expected steps and greater systemic importance.

The payments between banks are represented as an n×n adjacency matrix M =
[
sij

]
with elements

sij representing payment edges from i to j and the weight on each edge is the value of the payment.

SinkRank converts this adjacency matrix M to an n×n transition matrix P by dividing the entries

in each row by their respective row sum
∑

j sij to obtain P =
[
sij/

∑
j sij

]
. To compute the

SinkRank of a node, the outgoing edges of that node are removed such that the probability of

exiting that state is zero. Note that, in the absorbing state system, the states are numbered with

the absorbing state displayed last in the transition matrix. The original SinkRank measure model

failure of a single bank; hence the number of sinks m = 1. Considering node k as an absorbing
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node, the transition matrix is rewritten as:

P sink
k =

S T

0 I

 . (2.21)

The original transition matrix without the k-th column and row of P is denoted by an (n−m)×(n−

m) matrix S, the k-th column of P (with the k-th element omitted) is denoted by an (n−m)×m

vector T , the m ×m identity matrix is denoted by I and an m × (n −m) row vector of zeros is

denoted by the 0 entry.

Movement along the non-absorbing states is encapsulated by S; however, the time to absorption in

a Markov system depends on the entries of the matrix Q obtained from Q = (I − S)−1. A process

that begins at a node i is expected to visit a node j a total of qij times before absorption. The

total number of visits of the process initiated by i to all nodes in the non-absorbing states, before

absorption, is computed as
∑

i

∑
j qij i.e., Sink Distance. The SinkRank of i is then obtained by

taking the inverse of its average Sink Distance:

SinkRank =
n− 1∑
i

∑
j qij

. (2.22)

2.5.5. Implications for macroprudential policy design

The application of network models to the study of financial systems can provide numerous policy

insights to reduce systemic instability.36,91,104 The acknowledgement that risk concentration played

a major role in the financial meltdown of 2008 encouraged steps to formulate a post-crisis policy

framework, with a need for tools to quantify interconnectedness in the system386 and tools to

identify the institutions most critical for stability.387 In the preceding section, we addressed the

latter by examining measures of systemic importance to identify banks that are most central to the

operations of the entire system. For financial stability experts, measuring interconnectedness is one

aspect of the puzzle, the other is tracing the potential paths for contagion as a way of improving

how micro- and macro-prudential policies are formulated. Early versions of stress testing focused

on measuring the impact that a severe but plausible negative economic shock has on the capital

level of banks.387 The post-crisis move towards macroprudential stress tests, however, aimed at
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expanding the supervisory perspective to the entire system to incorporate: i) the interaction among

banks during stressful times, and ii) the mechanisms that can amplify an exogenous shock which

may then lead to the realization of large losses.282,283 In other words, macroprudential policies

extend beyond minimizing idiosyncratic risks from individual banks to a much broader objective

of reducing the potential for financial network spillovers.91 In the following sections, we examine

some macroprudential policy concerns that have been simulated in the literature that use network

models to investigate financial systemic risk.

Regulating capital levels

Capital ratio is the amount of capital held by a bank as a percentage of risk-weighted assets. To limit

the occurrence of insolvency among banks, regulators implement capital requirements on banks by

stipulating that this ratio is to be maintained above a given threshold. To safe guard the system as

a whole, it was proposed that higher regulatory requirements be levied on banks with the capacity

to destabilize the system due to their size and connectivity.104

Bluhm et al.388 simulated increasingly strict capital requirements in an interbank network in three

stages. The first stage considered low capital requirements, for which they find that interbank

lending is extensive and occurs among banks that realize high returns on non-liquid assets. However,

as interbank lending increases, so does interest rates which favors highly profitable banks that borrow

considerable amounts. At this stage, Bluhm et al.388 describes the system as being in a robust-

yet-fragile state. This means, given a medium-sized shock to one of the highly leveraged banks,

fractional amounts of the shock is transmitted to each of its lenders; thus allowing the lenders to

bear their respective losses and avoid default. However, a large shock to one of these lending banks

will lead to the default of a substantial fraction of banks in the network.

They then simulated a gradual increase in the capital requirement, to find that the scope for

leveraging declined which subsequently lowered the demand for interbank loans, and consequently

the interest rate on them. The reduced interest rate on interbank loans induced more banks to

borrow because their non-liquid asset returns were now higher than that of the interbank market.

Bluhm et al.388 explains that, at this stage the interbank market has more borrowers and fewer
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creditors; hence, the network is in a more fragile state because there is a smaller number of creditors

to share the effects of a shock from a single borrower. Finally, for a capital requirement above 7

percent, interbank activity and investment in non-liquid assets experienced declines, which produced

an inefficient network with monotonically decreasing systemic risk. In essence, their result indicates

systemic risk evolves in a bell-shaped pattern as capital requirement increases gradually.

Although capital requirements have been shown to have the ability to keep bank insolvency in

check,20,35,388 its interaction with the mark-to-market accounting of banks’ balance sheet can cause

endogenous amplification of an initial shock. Cifuentes et al.314 investigated this possibility and

find that an initial decline in the value of a bank’s assets will induce asset disposal. If the demand

for the asset is perfectly elastic, then market price may not be affected; otherwise, selling the asset

leads to a lower market price. Once the price has been updated, the bank may find that they no

longer meet the minimum capital requirement; thus inducing additional asset disposal. Following

from the previous round, the market price of the asset may be lowered even further and so on. The

study, therefore, highlights that it is quite possible to generate undesirable spillover effects that far

exceed the initial shock when an externally imposed solvency constraint on capital is combined with

mark-to-market accounting of banks’ balance sheet.

Regulating liquidity levels

Liquidity requirements stipulate that banks should maintain a minimum liquidity ratio i.e, the

amount of liquid assets held by banks in relation to their short-term liabilities. The motivation

behind liquidity requirements is the idea that they can mitigate systemic effects that emanate from

funding liquidity challenges that may be amplified via fire sales.104 The simulation exercises by

Gai and Kapadia36 discussed in Section 2.5.3 indicate that, a liquidity requirement that targets

large banks more effectively reduces the probability and size of contagion compared with a uniform

increase in the requirement on all banks. Subsequent studies389 share similar findings that liquidity

requirements have the ability to reduce overall systemic risk and the contribution of individual banks

to aggregate risk. Aldasoro and Faia390 raised liquidity requirement for systemically important

banks (SIBs) while reducing the requirement for others in the system. The SIBs responded by
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increasing liquidity through the sale of interbank assets and non-liquid assets, which means lower

risk of contagion. However, the other banks have room to increase liquidity in the system which

compensates for any shortage emanating from higher liquidity requirements on the SIBs. This

balancing act serves to maintain the assurance of liquidity in the interbank market. Under difference

conditions, however, stability comes at the cost of efficiency in the system, even to the point of

making the system more fragile.

To investigate this, one study390 conducted a policy experiment in which ‘phase-in’ increases in

banks’ liquidity ratios were shown have unintended consequence for system-wide fragility. This

can occur when the policy requirements is applied to banks equally, despite them having different

portfolios. From the outset, some institutions may have funding that is less stable and/or more

exposure to risk on asset returns. Increasing liquidity ratio can lead these banks to liquidate

their assets prematurely, as they attempt to meet the stricter requirement. This liquidation places

downward pressure on asset prices which causes other banks to suffer balance sheet losses. If

depositors of the affected banks respond via bank runs, the system may suffer a further decline

in liquidity and induce more asset fire sales. As discussed earlier, applying liquidity requirement

according to systemic importance is one way to maximize the beneficial aspects of the policy,

resulting in lower systemic risk while on the flip side, it also minimizes those that could be harmful.

2.6. Future challenges

We have provided an overview of various tools and methods from network science in general, and

more specifically social network analysis, that can be applied to further understand certain challenges

faced by authorities in managing financial systems. The rapid pace of development in both fields

of study is due partly to the interdisciplinary nature of network science, which means that at the

moment there may be several tools being developed to advance our current knowledge about them.

We have highlighted that similar to social networks, it is crucial that the health of the global financial

system is maintained to avoid detrimental social and economic consequences. It is, therefore, critical

that we continue working to develop better ways of identifying and regulating systemically important

institutions. Although several regulatory measures exist that have been shown to be effective in
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maintaining stability, there is still the need to formulate policies in a way that reduces reckless risk-

taking among institutions.33 Moreover, the introduction of new technology, for example the growing

popularity of digital currency, may be an added source of complexity in the system. It may be

worthwhile to investigate how these developments may challenge the state of financial systems. We

have also discussed that a key advantage of employing network models in financial network analysis

is the ability to capture and represent aspects of the system that are usually ignored in conventional

approaches in economics and finance. However, room remains for more realistic models of financial

networks that incorporate the temporal dimension of the relationships between institutions into

the analysis. This is expected to promote effective real-time monitoring of financial systems which

support early-warning signals of distress. Of course, such steps rely heavily on the availability of

more real-time data to research. Another area for improvement is that of stress-testing performed

by financial authorities. Battistion and Jaramillo391 have highlighted a need for other channels

of contagion to be included in the supervisory stress-testing of several financial authorities. They

explained that for many, the solvency channel is included in the analysis; however, the channels of

funding liquidity and common assets are usually missing. Improvements in these areas will hopefully

facilitate early-detection mechanisms and/or strengthen our response to occasional failures.
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Abstract

Interbank markets facilitate banks in managing liquidity via bilateral funds exchanges, but an ad-

verse initial local shock can spark a catastrophic series of events that cripples the entire system.

Temporal interaction patterns on spreading dynamics in social networks have been explored in sev-

eral studies. However social networks often feature interacting entities that are active intermittently,

while in interbank networks, credit contracts have set expiration dates which makes the duration of

bank interactions dependent on when loans are initiated. Here, we model banks’ interactions using

overnight bilateral trade data (i.e., with maximum duration of a day) and assess contagion effects

from one initially defaulted bank given the robust pattern in trade timings. Before controlling for

network size, banks appear to face the highest risk around the time the market opens. As in many

real-world systems, interbank networks have finite size which we correct for to find that there is

no significant difference in systemic risk among the time categories. However, we investigate why

mean systemic risk is slightly higher in networks close to end-of-day to find that the accessibility of

initial risk increases at this time.
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3.1. Introduction

In interbank markets, banks establish borrowing and lending relationships to insure against liquidity

shocks. Although interbank transactions can serve as a means of risk diversification for individual

banks, they may also establish paths to financial contagion that could spread throughout the entire

system.27,29,30,126,135,392 Each borrowing bank exposes its direct creditors to counterparty risk. If

the borrowing bank fails to repay the loan amount in full at maturity, the lending bank incurs a

financial loss. In the worst case, the bank defaults, which in turn creates another financial distress

to other banks, leading to a global cascade of defaults, known as systemic risk.135,393

The systemic risk hinges on the structure of networks and how it evolves in time. Simple structural

features such as the number of edges and degree of banks have profound impact on the size of

cascade.27,394,395 Temporality of network structure also influences spreading phenomena such as

infectious diseases, opinions and rumors.2,3, 42,43 In the context of the overnight market, most

studies examined the systemic risk from daily to quarterly scales by aggregating trades at different

times into a single network.19,20,22,24,37–40,294 While such aggregation is often necessarily due to

the unavailability of data and also helps reduce the fluctuations in network structure, it neglects a

critical feature of the overnight market: the duration of interbank relationships can be shorter than

a day. For example, it is possible that cascade occurs in the aggregated networks but does not in

practice if there is no direct lenders at the time of default. It has not been clear whether the short

duration of relationships facilitates or reduces the contagious risk in the interbank networks.

Here, we compare contagious risk at intraday time scale with the risk from daily aggregated networks

using high-resolution transaction data from the Italian interbank market (e-MID). We show that a

widespread measure for systemic risk has a strong bias arising from the number of banks in networks.

This bias is problematic particularly for the analysis at intraday time scale, where the size of the

network largely fluctuates in time. We address this bias problem by comparing the risk for the

networks of a similar size. While the biased measure for systemic risk displays the highest peak in

the morning, we find an opposite result after controlling the network size effect, i.e., the risk is the

highest in the evening.
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We explore the question of what gives rise to the high risk in the evening using null models for

networks and time series. Our results suggest that although systemic risk is well explained by

degree distribution and the bursty nature of trade in the market, they do not fully explain the high

risk. Rather, the high risk in the evening can be explained by the increasing number of banks being

exposed to risk.

We highlight the need to observe the short duration (i.e., up to a maximum of one day) of interbank

relationships in assessing systemic risk because a bank can default at any time prior to the actual

maturity of the loan and, our results indicate that at different point, the level of risk is higher.

We also demonstrate that the conventional measure of systemic risk (i.e., the fraction of banks to

default), presents a critical limitation due to differences in network size, thus resulting in inconsistent

initial risk at different times. In fact, this is a common concern for empirical studies on systemic

risk and, more generally, cascading behavior on networks.36,244,321,366,396 We address this network

size bias to facilitate a comparison of systemic risk between the intraday networks. Finally, we

postulate that both the distance and, the fraction of lenders linked to the initial defaulter influence

higher risk.

3.2. Data

3.2.1. Italian interbank network

We use a data set on bilateral interbank transactions conducted through the e-MID platform. The

e-MID is the Italian electronic market for interbank deposits and loans founded by e-MID SIM S.p.A

based in Milan, Italy. Our data set consists of transactions for 3, 922 business days between 2000–

2015 with banks trading mostly between 9:00–17:30. We retrieved the euro-denominated contracts

with an overnight maturity, which constitutes 86% of all 1, 192, 738 transactions. In the e-MID

market, banks can initiate a contract at any time during a day to meet liquidity requirements, and

the overnight contracts must be settled the following day.

3.2.2. Intraday networks

We model interconnectedness between banks as a network, where nodes represent banks, and a

directed edge from i to j represents a lending–borrowing relationship between lender i and borrower
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Figure 3.1: Schematic of intraday networks. Outgoing and incoming edges represent lending and
borrowing activity, respectively. Bank D (black circle) is the initial defaulter realized at each point
in time and the remaining banks (white circles) are initialized as solvent in the corresponding time
bin. The lower panel illustrates the corresponding intraday networks, i.e., cumulative networks up
to given time intervals, in which edge weights represent the sum of traded volume. The width of
edges indicate the amount traded between two banks.

j. Before the market opens, there is no transaction between banks, i.e., the network is empty.

When a new transaction is made between lender i and borrower j, an edge from i to j is added

to the network, i.e., the edge is weighted by the amount of funds transacted between the banks

since the opening of the market (see Fig. 3.1 for a schematic). The network thus grows over time

in a monotonic manner, and the network that emerges at the market closing time captures all the

transactions that were performed on that day.

All overnight loans must be repaid via an external automatic settlement service, closing out all

loan contracts between banks from the previous day. Therefore, when the market reopens, our data

set captures only new trades between banks. We analyze the intra-day temporal network at every

interval of 15 minutes between 9:00 and 17:30, where 97% of transaction events take place. We refer

to the networks between 9:00 and 17:30 as intra-day networks, and that at 17:30 as the inter-day

network for the day.

Fig. 3.2a shows that the fraction of trades, in terms of both number and amount in 15-minute
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Table 3.1: Banks’ stylized balance sheet.

Assets Liabilities
External assets (AEX) Deposits (D)
Interbank assets (AIB) Interbank liabilities (L)

Capital (C)

snapshots averaged over all business days, displays a bimodal pattern, where the first peak and the

second peak emerge around 9:30 and 15:00–17:00, respectively. For intraday networks, we observe a

superlinear scaling relationship between the numbers of active nodes N and edges M , i.e., M ∝ Nβ ,

with exponent β = 1.65, which is higher than that reported for interday networks55 (Fig. 3.2b). The

burstiness parameter B205 based on the inter-event times of intraday transactions is 0.48, which

indeed indicates a bursty activity pattern in the Italian overnight market.

3.3. Model of default cascades on intraday networks

3.3.1. Balance-sheet structure

We simulate a dynamical process of cascading bank failures under the worst case scenario; defaulted

banks fail to meet all of their debt obligations. Specifically, we consider a short-run response of

lending banks to the failure of borrowing banks, where the lenders have to resort to covering their

losses by reducing their own capital. This allows us to follow the convention in the literature on

financial systemic risk, where insolvency is a criterion for a bank failure. A bank is solvent if and

only if it retains a positive amount of capital (Table 3.1):

C = AEX +AIB −D − L ≥ 0, (3.1)

where C is the bank capital, AEX and AIB respectively denote the bank’s external assets (e.g.,

government bonds, stocks and other securities) and interbank credits, and D and L denote retail

deposits and interbank liabilities, respectively.

To study default cascades on interbank networks, C needs to be set at a hypothetical value since

the e-MID data set does not contain information on bank capital. Here, we assume that a bank’s

capital is correlated with its trade volume. Specifically, a bank’s capital is given by a fraction

r̄ (= 0.08) of the average daily traded volume, denoted by TV ≡ ĀIB + L̄, where ĀIB and L̄
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Figure 3.2: Diurnal trading activity. (a) Fraction of trade count (solid) and trade volume (dashed) in
a day, averaged over business days during 2000–2015 (3,922 business days). (b) Superlinear scaling
relationship for networks between 2002–2015. Each dot represents a 15-minute time interval of a
day. Blue and red dots indicate morning (< 13:00) and afternoon (≥ 13:00), respectively. Solid line
corresponds to a log-linear regression estimated by the ordinary least squares. (c) Complementary
cumulative distribution function (CCDF) for inter-event times of trades. Inter-event times are
computed as total seconds that elapsed between two consecutive trades. The burstiness parameter
B205 is 0.48, which suggests that the transactions pattern is indeed bursty. (d) Complementary
cumulative distribution function (CCDF) for degrees. The networks are inhomegeneous in degrees
i.e., most banks have only a few out-going (in-coming) edges but few banks have large numbers
of out-going (in-coming) edges. These plots highlight that trading activity have a diurnal pattern,
and these activities occur in bursts among banks with heterogeneous degrees. These influence the
network structure over time and may have implications on the evolution of systemic risk.

denote the daily average of interbank lending and borrowing, respectively. However, determining

a persistent state variable such as bank capital from the most recent trading volume would not be

appropriate because banks’ trading activity can be intermittent (i.e., there can be a long period of

no trade). Therefore, we use the average value for TV over the past 12 months in computing the

(hypothetical) bank capital. If banks have no recorded transaction over the past 12-month period,
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we compute their individual capital level as follows: Given the observed TV in the current month, we

first estimate a pseudo average daily TV for the preceding 12 months by exploiting the estimated

positive relationship between TV in the current month and the average TV in the preceding 12

months using the data for the banks that traded over the past 12 months (Fig. 3.B.1). Then, the

bank’s capital is given by a fraction r̄ of the pseudo TV. It should be noted that our simulation

period now ranges from 2002 to 2015 (3,585 business days) because the preceding 12 months are

used for the estimation of capital levels. We assume that the bank capital is constant for a month.

3.3.2. Simulating default cascades

We investigate the level of systemic risk by quantifying the impact that a bank default has on

the entire interbank market. To do this, we simulate the spreading process using a threshold

model.27,366,397 In this simulation, we first select a borrower at random as an initial defaulter.

Then, we compute the losses caused by the initial defaulter on its lenders. The lenders default if

their capital is insufficient to cover the losses they face from the borrower. The newly defaulted

banks may in turn inflict losses on their lenders, causing additional defaults. Note that exposure to

a defaulted bank may not cause the exposed banks to become insolvent. However, it reduces the

banks’ capital at least to some extent, making those banks more vulnerable to default. The default

cascade continues until no new bank defaults.

Our cascade model has three assumptions. First, the set of initial defaulters (i.e., seed set) consists

only of banks that have engaged in at least one transaction as a borrower. This is because the risk

of default flows from a borrower to a lender. Second, we assume that all lenders to a defaulted bank

lose their loans entirely i.e., a recovery rate of 0%.27 Although in practice a portion of losses could

be recovered immediately following the default of a bank, a high degree of uncertainty about the

amount that can be recovered and when this will be possible lead a presumption of total loss of their

loans by creditors. Third, failed banks are not allowed to recover (i.e., become solvent subsequent

to a state of default) because we study default cascades over a short timescale.
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3.3.3. Measuring systemic risk

We quantify how likely it is for a bank to fail given an initial defaulter. Therefore, we want to

capture the system-wide effect of a single defaulted bank on the network so we adopt a conventional

measure of systemic as the fraction of defaulters at the end of a cascade;27,280,321 if an initial

defaulter i causes a cascade that results in N f
i failed banks, the risk originating from bank i denoted

by fi, is defined as

fi ≡
N f

i − 1

N − 1
, (3.2)

where N is the number of banks in the network, excluding isolated banks. We note that we subtract

one in both the numerator and the denominator to exclude the initial defaulter, i.e., the bank that

defaults due to some exogenous factors. Risk fi depends on which bank is selected as the initial

defaulter. Assuming that every bank has an equal chance of being an initial defaulter, we compute

the average systemic risk by

f ≡ 1

|B|
∑
i∈B

fi, (3.3)

where B denotes the set of borrowers (i.e., the set of initial defaulters). In general, systemic risk mea-

sure f quantifies the vulnerability of the interbank network to the default risk from one borrowing

bank.

3.4. Results

3.4.1. Diurnal pattern of systemic risk

Since the global financial crisis, the number of participating banks,398 trading volume399 and the

number of transactions398,399 in the Italian interbank overnight market have declined considerably.

While no single causal factor has been identified, other events have transpired in the post-crisis

period that could have mutually contributed to the persistence downward trend highlighted in some

studies20,331,398,399 including the European Debt Crisis and the considerable expansionary monetary

policies employed by the European Central Bank. To exclude the possible impact of such disruptive

changes, we segment trade data into three periods prior to, in the midst of and posterior to the

global financial crisis.
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Figure 3.3: Systemic risk f measured at the intra-day time scale. We split the data set into three
subsets, namely (a) before the global financial crisis, (b) during the crisis, and (c) the post crisis
periods. Then, for each period, we compute f averaged over all business days. Insets: Despite an
almost constant f after 10:00, the evolution of active banks N and failed banks N f (normalized by
their respective daily volumes) increase in time as they approach the maximum value of 1 at the
end of the day. This suggests the possible impact of changing network size. NT and N f

T are the
numbers of active banks and defaulted banks in the daily network, respectively.

In all three periods, systemic risk f (Eq. 3.3) is highest around 9:00 but then decreases rapidly

within an hour (Fig. 3.3). This peak in risk is at least three times higher than the risk estimated

from the daily aggregated network. We examine further, why a higher level of systemic risk emerges

in the morning?

The interbank network grows monotonically from a characteristically small size as the market opens

until it achieves the size of the daily network at the end of day (Fig. 3.3, inset). This systematic

growth in the network size is crucial in the evaluation of systemic risk because, risk f is strongly anti-

correlated with network size, i.e., the number of active banks, N (Spearman correlation, ρ = −0.67;

Fig. 3.4a). This leads to a question of whether the high risk in the morning is attributed to the

network structure or to the small network size.

We control for the network size by comparing the risk f of networks of a similar size. Specifically,

we group the networks into three groups based on the network size, i.e., 25 ≤ N < 50, 50 ≤ N < 75,

75 ≤ N < 100, which accounts for the 70% (approximately 20, 000 networks) of all networks in the

data set. Then, for networks in each group, we compare the risk f across four time categories: Early-

morning (<11:00), Mid-morning (11:00–12:59), Afternoon (13:00–14:59), and Evening (≥15:00).

Note that we exclude excessively small or large networks (i.e., N < 25 and 100 ≤ N) from the
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analysis because we did not have the sufficient number of such networks for this comparison.

Overall, systemic risk f tends to increase with respect to time, as indicated by the increasing median

of risk f (Fig. 3.4b). Regarding median risk, evening networks have up to 50% higher f than that

of morning networks (Fig. 3.4b, middle). The distribution of risk f for the evening is significantly

higher than that for the morning under the significance level of 5% (Fig. 3.G.1; Table 3.H.1).

In sum, the interbank network faces the highest systemic risk in terms of f in the morning (Fig. 3.3),

which, however, is due to the nature of the risk measure f , i.e., f is inherently high when the network

is small (Fig. 3.4a). By controlling for the network size, the evening network turns out to be the

riskiest during the day. The conventional measure of systemic risk is, therefore, sensitive to network

size and this emphasizes that the dynamic components of the metric e.g., changing network size,

should be controlled to enable meaningful comparison of risk in different periods. Eliminating the

difference in network size allows us to focus on other network characteristics that are affecting

risk differently in each period. While the results highlight that evening networks are the riskiest,

cascades that occur in early periods are not necessarily innocuous. This is because banks have

full information about themselves but not about their counterparties or other banks which means

that, an otherwise small early-morning cascade in the overnight market could be amplified, resulting

in system-wide effects (e.g., credit freezes) when the remaining solvent banks withdraw from the

market to avoid being exposed to further risk.

3.4.2. Position of the initial defaulter on systemic risk

Why is the evening network riskier than that of the morning? We approach the question by focusing

on two processes that may facilitate the cascade of defaults in the interbank networks, namely

the timing of trades and network structure. The various mechanisms that underlie occurrences

of network cascades are complex, however, some features of cascades can be explained by network

topology.244 For financial networks, understanding their structure can elucidate how shocks that are

initially localized can proliferate within the system via interconnections.20,27 Another mechanism

that can affect spreading phenomena is the temporal structure which can be obtained from the

event times, in fact, heterogeneous distribution of inter-event times has been shown to facilitate
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Figure 3.4: Systemic risk for networks in different time periods. (a) Joint distribution of systemic
risk and network size for time categories: Early-morning (<11:00), Mid-morning (11:00–12:59),
Afternoon (13:00–14:59) and Evening (≥15:00). The solid line denotes a log-linear regression of
the relationship between f and N . For all time categories, the systemic risk f has a strong anti-
correlation with the network size as indicated by larger R2 ≥ 0.55. (b) To control for the strong
correlation, we compare the risk of the network of a similar size. The risk in the evening is up to
1.5 times higher than that for the morning. The distributions of f in later times are significantly
higher at the 5% significance level (Kolmogorov-Smirnov test).

propagation in some cases400,401 but hinder it in others.46,163,164,402–404 To control for the network

size effect, we focus on the networks with size 75 ≤ N < 100 in each of the four periods (Early-

morning, Mid-morning, Afternoon and Evening). Also, a bank fails if and only if it is first exposed
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to risk, hence, we measure the initial defaulter’s ability to reach the rest of the network (via a

directed path) and then note the size of the set of banks at risk expressed as a fraction of all active

banks (i.e., the reachable fraction).

As a proxy of the initial defaulter’s ability to reach susceptible banks via a directed path (i.e.,

the initial defaulter’s ’reachability ’), we use the geodesic distance dji. A bank is more likely to be

exposed to risk if it is close to the initial defaulter. Therefore, we conjecture that systemic risk

increases if the initial defaulter is in close proximity to many banks in the network. As a measure of

the initial defaulter’s proximity to other banks, we use the geodesic distance, a simple widespread

measure of network proximity. Note that, default risk flows in the opposite direction to the original

direction of an edge.

To investigate the effect of network distance on cascade size, we first test whether a bank is more

likely to default the closer it is to the initial defaulter. Based on the Fig. 3.5a it is reasonable to

expect that a shorter distance to the initial defaulter may increase a bank’s chances of a default. As

shown in Fig. 3.5a, most banks that have defaulted are in fact, directly connected with the initial

defaulter (i.e., d = 1). To confirm, we calculate the likelihood of default at a given distance d, by

first grouping banks by the distance and computing the fraction of the defaulters within each group,

or equivalently the probability of default given a distance. Therefore, for each distance group, we

compute the default probability for all networks and then take the average. We find that there is

virtually no difference in the likelihood of the default with respect to the distance from the initial

defaulter (Fig. 3.5b).

We also consider that, a bank is exposed to risk only if it is reachable from the initial defaulter,

which implies that cascade size is inherently constrained by the number of reachable banks from

the initial defaulter. Therefore, one reason for the high risk for the evening network is because

more banks are reachable from the initial defaulter in the evening than in the morning. To test

this hypothesis, we compute the fraction of banks that can be reached by the initial defaulter (via

a directed path) i.e., the reachable fraction of banks, conditioned on 75 ≤ N ≤ 99 to control for

the network size effect. The fraction of reachable banks increases in time which suggests that more
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banks are exposed to initial risk in later networks (Fig. 3.5c, blue boxes). Moreover, this pattern

in the reachable fraction is followed closely by systemic risk f (Fig. 3.5c, red circles). We note

that the reachable cluster reflects the worse-case where all banks default once exposed to initial

risk. Systemic risk, therefore, cannot exceed this limit because without a directed path between the

initial defaulter and other banks, risk will not propagate.

3.4.3. Effect of network structure and temporal correlations on systemic risk

While we have focused on the impact of network size and the reachability of initial defaulters on risk,

it is possible that other inherent heterogeneity in the interbank networks has a greater impact on

systemic risk. For example, the distribution of the degree (i.e., the number of edges emanating from

a node) and the strength (i.e., the sum of the weights on edges emanating from a node) predict

well the systemic risk in networks.394 Meanwhile, the timing of events affect the frequency of

transactions and this can either impede402,404 or facilitate cascades.42,49 We find that the interbank

networks are heterogeneous in terms of the degree and strength distributions (Fig. 3.2d), and the

timing of trading events (Fig. 3.2c). These observations lead us to ask whether heterogeneity in

degree, strength and trading activities explain the diurnal pattern in systemic risk f . We investigate

the extent of the effects by employing three null models as follows. Each null model randomizes

the original networks while maintaining the degree (i.e., in-/out-) of each bank, the order of trade

events, or the time on trade events. For each reference model, we generate 100 realizations.

Network structure

We employ the enhanced configuration model (ECM) as a null model that preserves the degree and

strength distributions. The ECM is built based on the maximum entropy approach.405 Consider

a directed and weighted network represented as the weighted adjacency matrix W = (Wij), where

Wij is the weight of the edge from node i to node j. In the ECM, one samples a randomized

network, denoted by W̃ , from a probability distribution P over all networks composed of the same

set of nodes with the original network. One finds the probability P by maximizing the entropy —

a quantity that measures the randomness — with constraints on the expected degree and strength

78



Early-Morning     Mid-Morning     Afternoon     Evening
D

ef
au

lt 
pr

ob
ab

ili
ty

 
 g

iv
en

 d
is

ta
nc

e,
 d

Fr
ac

tio
n 

of
 d

ef
au

lte
rs

(a)

     Time

              Distance from initial defaulter, d

Early-Morning     Mid-Morning     Afternoon     Evening
(b)  

       2010—2015    2007—2009    2002—2006

 Distance from initial defaulter, d

Fr
ac

tio
n 

of
 b

an
ks

, 75
≤

N
≤9

9 (c)

Figure 3.5: Reachable fraction as an approximation of systemic risk, f . (a-b) Intraday networks
during 2002–2006. (a) Fraction of defaulters at distance d from the initial defaulter. (b) Fraction
of defaulters among banks at distance d from the initial defaulter. (c) Fraction of banks that are
reachable by the initial defaulter. Systemic risk is close to the reachable fraction of active banks
which is effectively an upper bound for f . For a-c, the average is taken over all networks with size
75 ≤ N < 100. The figures for 2007–2009 and 2010–2015 that correspond to a-b are shown in
Fig. 3.E.1 and Fig. 3.F.1

of each node to be equal to those for the original network, i.e.,

max
P

−
∫
P (W̃ ) lnP (W̃ )dW̃ , (3.4)

subject to

d±i (W ) =

∫
d±i (W̃ )P (W̃ )dW̃ , i = 1, 2, . . . , N, (3.5)

s±i (W ) =

∫
s±i (W̃ )P (W̃ )dW̃ , i = 1, 2, . . . , N, (3.6)
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Figure 3.6: Schematic of reference null models that eliminate temporal structure. Event shuffling
(ES) assigns a time which is selected randomly from the set of original event times, to each trans-
action. Random time (RT) method ignores the original transaction times on trades within a day
and repeatedly selects times between 9:00–17:30 uniformly at random until all trades for that day
have been assigned a time.

where d+i (W ) =
∑

j h(Wij) and d−i (W ) =
∑

j h(Wji) are the out-degree and in-degree of node

i for W , respectively, and h(x) = 1 if x > 0, and h(x) = 0 otherwise. s+i (W ) =
∑

j Wij and

s−i (W ) =
∑

j Wji are the out-strength and in-strength of node i for W , respectively. See Section 3.A

in Supplementary Information (SI) for details.

Systemic risk for the random networks follows a similar diurnal rhythm observed for the original

network, with a difference in that the magnitude of f at its peak is lower (Fig. 3.7a). The lower

peak in f is partly attributed to the fragmentation of random networks into many disconnected

components, which particularly occurs when the network is small. If the network is large, systemic

risk is well predicted by the degree and strength distribution which is inline with previous studies.394

Trade timings and other temporal correlations

The long-tailed distribution of inter-event times highlight the bursty nature of trades in the interbank

data set (Fig. 3.2c) which can mitigate or facilitate spreading behaviour. Here, we use two reference

models to determine how f is impacted by the order and timings of trades.

Event shuffling(ES): First, we consider event shuffling (ES) which randomly permutes the original

timestamps on trading events for a single day (Fig. 3.6, middle). This method retains the number of

events and the total traded amount for a bank pair while shuffling the times for all trading events.

In other words, ES can produce a different network at each time during a day but the same network
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as the original at closing time (i.e., daily network).

In the ES model, we find a marked peak of risk f in the morning (Fig. 3.7, middle) which is attributed

to the small network size at this time. As is the case for the original network, the morning network

is the smallest in the ES model (Fig. 3.C.1, middle). Although, the inter-event timing between

consecutive trades in the ES model is the same as the original data (i.e., ES preserves the original

timestamps), heterogeneity in inter-event times for single links are interrupted. ES therefore allows

us to test whether risk f is explained solely by this type of heterogeneity in timing between trades.

Since we still observe a peak in risk around 9:00 in the ES model, we conclude that despite a

lower f , systemic risk is not solely influenced by heterogeneous inter-event times. Notwithstanding,

maximum intraday f in ES is not only lower than that of original networks, but it is comparable

with risk in the daily ES network (Fig. 3.D.1).

Random time(RT): In addition to the order of events, we further randomize the timing of events.

To this end, we distribute the timestamps of events uniformly at random between 9:00–17:30 in

each day (Fig. 3.6, right). RT networks display a similar diurnal pattern as original networks;

however, the magnitude of f at 9:00 is noticeably lower (Fig. 3.7c). In the RT model, trades are

distributed more uniformly across time bins, disrupting the the timing between trades for individual

banks hence Lenders (borrowers) accumulate losses (obligations/debt) more slowly. In other words,

burstiness of bank interaction in the original networks facilitates the spread of contagion, which is

consistent with previous studies .42,49 Up to a certain period, the RT model creates networks that

are less bursty in trade activities than original networks. The randomization method maintains daily

activities within the original daily time window of trades (i.e., 9:00–17:30). However, due to the

finite size of the daily networks, the bursty activity pattern observed in original networks re-emerges

towards market closing time. In fact, by 12:00 the original network size is reclaimed in all the null

models (i.e., 80% of daily network size) (Fig. 3.7, inset a-c). This highlights why, despite a lower

peak in RT networks at 9:00, f is comparable with the original networks in subsequent periods.

Furthermore, this also implies that the features that give rise to expanding reachable fraction in the

evening (Section 3.4.2) are not interrupted by RT.
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Figure 3.7: Diurnal pattern of systemic risk in the three reference models. (a) Enhanced config-
uration model which rewires the edges while maintaining the average in-/out-degree and average
in-/out-strength of banks in the interbank network. (b) Event shuffling (ES) model randomly shuf-
fles the order of trades. (c) Random time (RT) model distributes the timings of trades uniformly
at random. Insets: NT and N f

T respectively show how the numbers of active banks and defaulted
banks change during the daily time window.

3.5. Discussion

Our analysis reveals a diurnal pattern of risk propagation, in which the market experiences the

highest risk in the morning but relatively lower risk in most of the remaining time. We investigated

the role played by some inherent features of the interbank network: market size, accessibility of

initial risk and bursty trading.

Although we demonstrated a strong correlation between risk and network size, it is not exactly clear

why smaller networks are riskier. It could be argued that in small networks sufficient banks are not
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yet active to enable the risk-sharing benefits often associated with financial networks. Systemic risk

has a strong dependence on the network size, making it difficult to compare the risk of networks

of different sizes. In fact, systemic risk for the morning networks is considerably larger than that

of the evening for most days. However, if we compare the network of a similar size, we find that

evening networks are indeed riskier. Our result call for correcting the network size effect so that we

can correctly measure the impact of risk.

From the null models, we also find that although the degree distribution explains the level of systemic

risk in interbank networks to some degree, it does not explain why risk is slightly higher in networks

closer to market closing time. Even in destroying the order and timing of trades, the original diurnal

pattern of systemic risk is not disrupted. However, when we compare networks of the same size, we

find that close to market opening time, most banks that default have a direct lending relationship

with the initial defaulter while in later times, the group of banks that are accessible to the initial

defaulter expands in time. This means that more banks become exposed to risk in networks near

market closing time.

Despite focusing on systemic risk generated by random initial shocks, risk can also originate from

targeted initial defaults on the basis of nodes’ position in the network or their characteristic of

being net borrowers (net lenders). This can be addressed in future research on temporal interbank

networks to understand how risk is impacted by the dynamism of node properties. We also suggest

further investigation into whether the likelihood of a default differs between direct and indirect

lenders to the initial defaulter since, a higher risk among indirect lenders may partly explain the

tendency for systemic risk to be higher in the evening than in the morning. Furthermore, we

restricted certain bank responses given a default such as, allowing lenders to suffer complete loss of

loans to defaulters and preventing the sale of assets by lenders to offset losses. These assumptions

could exaggerate systemic risk (i.e., representing the worse-case) because in reality, banks will

respond to reduce the impact of a loss. However, we elected to focus on banks’ short-run reactions

because some responses — such as recouping a portion of defaulted loans — could be infeasible and

time-consuming.
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By taking a dynamic modelling approach to systemic risk analysis in interbank networks, we il-

lustrate that the system is more fragile at different times in a day. Interbank vulnerability is

underpinned by the simultaneous interaction of banks’ activity pattern and network architecture

that entails market size and banks’ interdependencies. In many ways, current policies aimed at

maintaining stability in financial systems rely on information almost entirely about the architecture

of the network. However, incorporating temporal characteristics highlights that, while market size

affects risk at different times, when markets are the same size; high interconnectedness of risk be-

tween banks drives the system’s fragility. The dimension of time in systemic risk analysis reflects

more realistically, the setup of the interbank system and it can provide useful insights into how

regulators can monitor and, to some extent, anticipate growing risk to guide the most appropriate

responses that ensure stability.
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Appendix

3.A. Enhanced configuration model

We show how we solve the entropy maximization problem defined by Eqs. 3.4, 3.5 and 3.6. One

rewrites the constrained entropy maximization problem as an unconstrained maximization problem

using the Lagrangian, which is given by

J = −
∫
P (W̃ ) lnP (W̃ )dW̃

+
∑
i

α+
i

[∫
d+i (W̃ )P (W̃ )dW̃ − d+i (W )

]
+
∑
i

α−
i

[∫
d−i (W̃ )P (W̃ )dW̃ − d−i (W )

]
+
∑
i

β+i

[∫
s+i (W̃ )P (W̃ )dW̃ − s+i (W )

]
+
∑
i

β−i

[∫
s−i (W̃ )P (W̃ )dW̃ − s−i (W )

]
+ γ

[∫
P (W̃ )dW̃ − 1

]
, (3.7)

where α±
i , β±i (i = 1, 2, . . . , Na) and γ are the Lagrange multipliers. By taking the functional

derivative with respect to P (W̃ ), we have

∂J
∂P

= − lnP (W̃ ) +
∑
i

α+
i d

+
i (W̃ ) +

∑
i

α−
i d

−
i (W̃ ) +

∑
i

β+i s
+
i (W̃ ) +

∑
i

β−i s
−
i (W̃ ) + γ + constant.

(3.8)

Solving ∂J /∂P = 0 with respect to P (W̃ ) and setting γ such that
∫
P (W̃ )dW̃ = 1 lead to the

enhanced configuration model (ECM):406

P
(
W̃θ

)
=

1

C (θ)
exp

[∑
i

(
α+
i d

+
i (W̃ ) + α−

i d
−
i (W̃ ) + β+i s

+
i (W̃ ) + β−i s

−
i (W̃ )

)]
, (3.9)

where θ = (α+
i , α

−
i , β

+
i , β

−
i )i is the parameters for the ECM, and C (θ) is the normalization constant.

We rewrite d±i and s±i using W̃ij , which yields

P (W̃ |θ) = 1

C(θ)

∏
i

∏
j

exp
[
(α+

i + α−
j )h(W̃ij) + (β+

i + β−j )W̃ij

]
. (3.10)

We find θ by fitting P (W̃θ) to the original network, W , using the maximum likelihood estima-

tion.406 In other words, we seek θ by maximizing the log-likelihood lnP (Wθ). In the original

paper on the ECM,406 the authors employed a root finding algorithm. Here we employ a gradient

descent algorithm, which is computationally less expensive than the root finding algorithm. Note
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that the gradient descent algorithm will find the global maximum of lnP (W |θ) because lnP (W |θ)

is a concave function with respect to θ.

The gradients for the log-likelihood with respect to θ are given by

∂ lnP (Wθ)

∂α±
i

= d±i (W )− EP (W̃θ)

[
d±i (W̃ )

]
, (3.11)

∂ lnP (Wθ)

∂β±i
= s±i (W )− EP (W̃θ)

[
s±i (W̃ )

]
, (3.12)

where EP (W̃ |θ) [x̃] is the expected value for a random variable x̃ under probability distribution

P (W̃ |θ).

The gradients involve the expectation EP (W̃θ)

[
d±i (W̃ )

]
and EP (W̃θ)

[
s±i (W̃ )

]
,which we derive as

follows. With the ECM, the weight of edge (i, j) is independent of that for other edges (k, ℓ).

Therefore, the normalized constant C(θ) is the product of the normalization constants for each

node pair, i.e.,

C(θ) =
∏
i

∏
j

Cij(θi, θj), (3.13)

where Cij(θi, θj) is the normalization constant for node pair (i, j), and θi = (α+
i , α

−
i , β

+
i β

−
i ). The

pairwise normalization constant Cij(θi, θj) is given by

Cij(θi, θj) =
∞∑

w=0

exp
[
(α+

i + α−
j )h(Wij) + (β+

i + β−j )Wij

]
= 1 + exp

(
α+
i + α−

j

) ∞∑
w=1

exp
[(
β+i + β−j

)
w
]
. (3.14)

Substituting Eqs. (3.13) and (3.14) into Eq. (3.10), we have

P (W |θ) =
∏
i

∏
j

1

Cij(θi, θj)
exp

[
(α+

i + α−
j )h(Wij) + (β+

i + β−j )Wij

]

=
∏
i

∏
j

exp
[
(α+

i + α−
j )h(Wij) + (β+

i + β−j )Wij

]
1 + exp

(
α+
i + α−

j

)∑∞
w=1 exp

[(
β+i + β−j

)
w
]

=
∏
i

∏
j

exp
[(
α+
i + α−

j

)
h(Wij)

]
exp

[(
β+i + β−j

)
Wij

] [
1− exp

(
β+i + β−j

)]
1− exp

(
β+i + β−j

)
+ exp

(
α+
i + α−

j

)
exp

(
β+i + β−j

) .

(3.15)
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The expected value for h(Wij) under P (W |θ) is given by

EP (W̃ |θ)

[
h
(
W̃ij

)]
= 1−

1− exp(β+
i + β−j )

1− exp
(
β+i + β−j

)
+ exp

(
α+
i + α−

j

)
exp

(
β+i + β−j

)
=

exp
(
α+
i + α−

j

)
exp

(
β+i + β−j

)
1− exp

(
β+i + β−j

)
+ exp

(
α+
i + α−

j

)
exp

(
β+i + β−j

) . (3.16)

Note that we have exploited relationship EP (W̃ |θ)[h(W̃ij)] = P (h(Wij) = 1) = 1− P (h(Wij) = 0).

The expected value for the weight Wij under P (W |θ) is given by

EP (W |θ)

[
W̃ij

]
= EP (W̃ |θ)

[
h
(
W̃ij

)] ∞∑
w=1

w
[
1− exp

(
β+i + β−j

)]
exp

(
β+i + β−j

)w−1
. (3.17)

Note that
∑∞

w=1w
[
1− exp

(
β+i + β−j

)]
exp

(
β+i + β−j

)w−1
is equivalent to the mean of the geo-

metric probability distribution with success probability 1− exp
(
β+i + β−j

)
. The mean with success

probability p for the geometric distribution is given by 1/p. Therefore, we have

EP (W |θ)

[
W̃ij

]
=

EP (W̃ |θ)

[
h
(
W̃ij

)]
1− exp

(
β+i + β−j

) . (3.18)

One obtains the gradients (i.e., Eqs. (3.11) and (3.12)) using the expected values for h(Wij) and

Wij , which are given by Eqs. (3.16) and (3.18).

Gradient descent algorithms has a learning rate (i.e., step size) as a hyper-parameter which controls

the amount of changes in the parameter values at each iteration. To determine the learning rate,

we use the ADAptive Moment estimation (ADAM),407 which adjusts the learning rate based on the

current and previous gradients at each iteration. We set parameters for the ADAM as β1 = 0.9 ,

β2 = 0.999 and η = 10−3.
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3.B. Imputation of average daily trading volume of banks
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Figure 3.B.1: Daily traded volume averaged over the previous 12-month period against the total
traded volume in the current month. For banks with no trade volume (TV) data from the previous
one year, we impute the average daily TV from the estimated line (dashed), given the total TV in
the current month.
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3.C. Intraday systemic risk vs. seed fraction in time-randomizing models
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Figure 3.C.1: Relationship between intraday systemic risk and the fraction of initial defaulters in
time-randomizing models.
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3.D. Interday systemic risk and maximum intraday systemic risk

Original ECM

Event shuffling Random time

Year Year

f

f

(a)

(c)

(b)

(d)

Figure 3.D.1: Interday systemic risk and maximum intraday systemic risk. (a) The empirical data
set is compared with (b) ECM that randomly rewires edges in the network while preserving in-/out-
degree and in-/out-strength, (c) the ES model that randomly shuffles the order of transactions, and
(d) the RT model that randomly assigns the timing of trade uniformly. We compare the 20-day
moving average of systemic risk in intraday networks with that of the daily aggregated networks.
Maximum intraday risk (solid blue) is higher than the risk of contagious default on the aggregated
daily networks (solid black). The dotted line indicate the standard deviation.
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3.E. Reachable fraction as an approximation of systemic risk (2007–2009)
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Figure 3.E.1: Reachable fraction as an approximation of systemic risk, f . (a-b) Intraday networks
during 2007–2009. (a) Fraction of defaulters at distance d from the initial defaulter. (b) Fraction of
defaulters among banks at distance d from the initial defaulter. For a-b, the average is taken over
all networks with size 75 ≤ N < 100.
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3.F. Reachable fraction as an approximation of systemic risk (2010–2015)
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Figure 3.F.1: Reachable fraction as an approximation of systemic risk, f . (a-b) Intraday networks
during 2010–2015. (a) Fraction of defaulters at distance d from the initial defaulter. (b) Fraction of
defaulters among banks at distance d from the initial defaulter. For a-b, the average is taken over
all networks with size 75 ≤ N < 100.
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3.G. Distribution of systemic risk in networks for temporal category

Figure 3.G.1: Distribution of f in networks corresponding to each temporal category. The analysis
is restricted to the range in which the four periods share the same network size By doing this we
eliminate the disturbance arising from differences in levels of initial risk. From the distributions, we
can conclude that Evening networks tend to generate higher systemic risk than at any other period.
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3.H. Comparing risk in Early-morning to later periods given range of networks
size

Periods 25–50 50–75 75–100
Mid-morning 0.0 0.0 5.89× 10−5
Afternoon 0.0 0.0 3.58× 10−48
Evening 0.0 0.0 0.0

Table 3.H.1: KS test comparing samples of systemic risk f in Early-morning
with f in later periods given a range of networks size. For each period:
H0:Distribution of f in Early-morning = Distribution of f in later period (e.g., Evening),
HA: Distribution from Early-morning > Distribution of f in later period (e.g., Evening).
At the 5% significance level we reject the null hypothesis and conclude that
the empirical CDF is larger for Early-morning than for each of the later
periods. This means, the probability density function for Early-morning
systemic risk is skewed to the left relative to the other periods (Fig. 3.4b).
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CHAPTER 4

Identifying the temporal dynamics of densification and

sparsification in human contact networks

Shaunette T. Ferguson1, and Teruyoshi Kobayashi2,3

1 Graduate School of Economics, Kobe University, Kobe, Japan

2 Department of Economics, Kobe University, Kobe, Japan

3 Center for Computational Social Science, Kobe University, Kobe, Japan

Abstract

Temporal social networks of human interactions are preponderant in understanding the fundamental

patterns of human behavior. In these networks, interactions occur locally between individuals (i.e.,

nodes) who connect with each other at different times, culminating into a complex system-wide web

that has a dynamic composition. Dynamic behavior in networks occurs not only locally but also at

the global level, as systems expand or shrink due either to: changes in the size of node population or

variations in the chance of a connection between two nodes. Here, we propose a numerical maximum-

likelihood method to estimate population size and the probability of two nodes connecting at any

given point in time. An advantage of the method is that it relies only on aggregate quantities,

which are easy to access and free from privacy issues. Our approach enables us to identify the

simultaneous (rather than the asynchronous) contribution of each mechanism in the densification

and sparsification of human contacts, providing a better understanding of how humans collectively

construct and deconstruct social networks.
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4.1. Introduction

Individuals are interacting in unprecedented ways due to advancements in communication technol-

ogy, which has granted access to human contact data in a variety of social contexts (e.g., mobile

calls,139,205–208 texts,408,409 email,209 face-to-face8,140,255,410,411). Our understanding of fundamen-

tal human behavioral patterns have benefited considerably from these rich data sources in which

individuals (i.e., nodes) establish and break existing connections (i.e., edges) with each other, thus

driving the evolution of a complex network structure. To capture the dynamics of these systems in

which the contacts between nodes occur intermittently, social networks are often modeled using a

temporal representation.16,412

In social systems, contacts tend to occur periodically because individuals have a choice on how and

when to engage with others; hence, at a given point in time, the number of active nodes (N) and the

number of edges (M) in the system are changing. Furthermore, many empirical networks exhibit

a relationship between total edges and network size that is consistent with a densification scaling

property:55,59,232 M ∝ Nγ with γ > 1, in which aggregate edges increase superlinearly in network

size. In temporal social networks, this dynamical property between N and M is influenced either by

i) fluctuations in population size,57–59 ii) changing probability of node connection,57 or iii) both.58

Given a fixed connection probability and changing size of population, the conventional superlinear

scaling emerges i.e., M ∝ Nγ with γ > 1.57 Conversely, for constant population size and varying

connection probability, M exhibits an accelerating growth pattern.57

However, many human contact networks exhibit a dynamical N -M relationship that is a mixture

of the two behaviors, each appearing either as a growth in M along a straight line or an increasing

M along an upward sloping trajectory on log-log scale.57,58 This type of mixed densification scaling

usually appears when individuals are free to enter and exit the system, and opportunities to connect

are clearly defined (e.g., during lunch in a work setting) or activities are strictly regulated by a

schedule (e.g., events at a conference). At a conference, for instance, it is expected that attendees

will limit socialization during times designated for a keynote talk because they are attentive to the

speaker. During coffee break, in contrast, they are free to interact with others. The emergence of a
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mixed scaling relationship in temporal social networks suggests that the mechanism that describes

the dynamical growth of M in N may be alternating occasionally.58 From this standpoint, a Markov

regime-switching model413,414 is employed in a previous study to estimate the probability that the

dynamical source of densification and sparsification is attributed either to changing population size

or fluctuating intensity in activity level at a given time.58

Here, we develop an alternative approach to identify the extent to which changing population and

connection probability concurrently influence the dynamics of densification and sparsification in hu-

man contact networks. The proposed method, based on numerical likelihood functions, enables the

simultaneous estimation of population size (= # active nodes + # isolated nodes) and connection

probability in different social networks using a series of (N,M) observations, each corresponding

to a given temporal snapshot. By taking this approach, we can gain insight not only into the in-

dependent contribution of the two mechanisms but also into how their co-movement influences the

emergence of a mixed scaling. While contact lists (or event sequences) usually allow us to observe

the number of active individuals who made at least one contact, the number of inactive individuals

who were present but have never interacted (i.e., isolated nodes) is often unknown. Our approach

also provides an estimate for the number of isolated nodes by relying only on the total numbers of

active nodes and edges at a given point in time.

4.2. Methods

4.2.1. Data

We use the following four temporal human-contact networks collected by the SocioPatterns collab-

oration:137

• Hospital415: Contacts between patients, nurses and doctors at a hospital in Lyon, France on

December 7, 2010.

• Workplace416: Contacts between employees at an office building in France on June 27, 2015.

• IC2S2-17417: Contacts between conference attendees at the International Conference on

Computational Social Science 2017 at GESIS in Cologne, Germany on July 11, 2017.
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Figure 4.2.1: Evolution of number of edges M and active nodes N in face-to-face networks. The
following days are shown for each data set: (a) Hospital on December 7, 2010, (b) Workplace on
June 27, 2015, (c) IC2S2-17 on July 11, 2017 and (d) WS-16 on December 1, 2016. Timeline below
panels c and d identify time windows for scheduled events. Gray shading highlights unrestricted
sessions i.e., registration, break, lunch, poster session and closing remarks.

• WS-16417: Contacts between participants at the Computational Social Science Winter Sym-

posium 2016 at GESIS in Cologne, Germany on December 1, 2016.

For each data set, interaction between individuals occurs in a physical location, and Radio Frequency

Identification (RFID) sensors detect a contact when one person is within 1.5 meters of another.415–417

Contacts are recorded at 20-second intervals. Such high-resolution data have been frequently used

to discover temporal patterns in human behavior3,16,138,154 or to explore how infectious diseases

spread through human contacts.194,418,419

We take advantage of the time-resolved data to explore the temporal dynamics of densification
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and sparsification in the data sets, by converting them to temporal networks with unweighted and

undirected edges. We segment a data set into a snapshot sequence (i.e., a series of networks that

are ordered in time420), which we construct as sliding time windows. A time window has a duration

of 10 minutes and consecutive windows have a 5-minute overlap between them. Then, we connect

two nodes if they have at least one contact within the time window, and we extend this to all other

time windows to obtain a sequence of snapshots. A node is considered to be active if we detect that

it is involved in one or more contact events for a given network snapshot. The numbers of active

nodes and edges in a snapshot are denoted by N and M , respectively. The observed N and M are

shown in Fig. 4.2.1 (See Fig. 4.A.1 in Supplementary Information for different days).

4.2.2. Estimation

Dynamic hidden-variable model

To explore the densification and sparsification dynamics in temporal networks, we employ a hidden-

variable (or a fitness) model with a temporal dimension.57,58,229,230 The probability that two nodes

i and j are connected in time interval [t, t+∆t] (henceforth, we refer to as time interval t) is given

by

pij,t = 1− e−κtaiaj , i, j = 1, . . . , Np,t, t = 1, . . . , T , (4.1)

where ai is node i’s intrinsic activity level and is assumed to be uniformly distributed on [0, 1]. Note

that the dynamical source of networks is decomposed into two factors: Np,t and κt. In time interval

t, the overall activity of nodes is captured by κt > 0, which encapsulates changing activity levels

due to prespecified schedule, circadian rhythm, etc., while the total number of nodes (i.e., combined

sum of active and inactive nodes) is denoted by Np,t. It should be noted that the number of active

individuals N , at a given time, can be directly observed from contact lists, but the potential number

of individuals (i.e., population) in a system is not usually known because contact events naturally

exclude non-interacting individuals. Due to the lack of information on population, it is generally

not obvious to what extent variations in N and M could be explained by changes in population

or activity. Our model takes into account the two possible factors, population and overall activity

level, in explaining the observed behaviors of N and M , which cause densification and sparsification
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of temporal networks.

As an alternative to the connecting probability in Eq. (4.1), we also show the results for the following

specification:

pij,t = κtaiaj , i, j = 1, . . . , Np,t, t = 1, . . . , T . (4.2)

This specification is employed in previous studies,57,58 and we confirm that the essential results do

not change compared to the baseline model based on Eq. (4.1).

Numerical maximum-likelihood estimation

We estimate the parameters (κt, Np,t) for a given (Nt,Mt) in time interval t, using a numerical

maximum-likelihood method. Let Θκ ≡
{
κ(1), . . . , κ(Lκ)

}
and Θp ≡

{
N

(1)
p , . . . , N

(Lp)
p

}
be the sets

of all possible values for κ and Np, respectively. The Cartesian product of two sets Θκ and Θp is

given as

Θ = {(κ,Np)|κ ∈ Θκ, Np ∈ Θp} . (4.3)

We define θℓ ∈ Θ as the ℓ-th element of the set Θ for ℓ = 1, . . . , |Θ|, where |Θ| = LκLp is the

cardinality of Θ, i.e., the total number of combinations (κ,Np).

Our maximum-likelihood estimation proceeds as follows:

1. For a given θℓ, generate an unweighted and undirected network based on probabilities {pij} for

i > j. By repeating the network generation S times, one can obtain a sequence of combinations{(
N (s),M (s)

)}S
s=1

, where N (s) and M (s) respectively denote the number of active nodes and

the number of edges observed in the s-th simulation. We set S = 104.

2. Count the number of appearances of each unique combination in
{(
N (s),M (s)

)}S
s=1

and ex-

press as a fraction of the number of runs S to get the joint distribution fℓ(N,M |θℓ), i.e., the

likelihood function for a given θℓ.

3. Repeat steps 1 and 2 to obtain a set of likelihood functions
{
fℓ(N,M |θℓ)

}|Θ|
ℓ=1

.

4. Select ℓ = ℓ∗(≤ |Θ|) such that fℓ∗(Nt,Mt|θℓ∗) yields the highest probability for a given
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fℓ′ = f(Nt,Mt |θℓ′ )

fℓ* = f(Nt,Mt |θℓ*)

fℓ*
fℓ* > fℓ′ fℓ′ 
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Series of temporal snapshots Maximum- likelihood estimation

Face-to-face contact data

Nt = 11, Mt = 8

Figure 4.2.2: Schematic of maximum-likelihood estimation of κ and Np. The top panel shows
contact data that gives a combination (Nt,Mt). The sequence {(Nt,Mt)}Tt=1 is plotted in the N -M
space, in which a particular combination of (11, 8) is highlighted in red (bottom left). The joint
distributions of (N,M), or likelihood functions, are generated using the hidden-variable model for
different combinations of (κ,Np) = θ, with each indexed by ℓ′ and ℓ∗ (bottom right). A likelihood
function gives the probability of observing a network with N nodes and M edges, for a given
combination of (κ,Np). The maximum-likelihood estimators, denoted by κ̂t and N̂p,t, are given by
a combination of κ and Np associated with the maximum-likelihood function fℓ∗ = f(Nt,Mt|θℓ∗).

empirical observation (Nt,Mt). The maximum-likelihood estimators κ̂t and N̂p,t are thus

given by(
κ̂t, N̂p,t

)
= θℓ∗ , (4.4)

where ℓ∗ = argmaxℓ fℓ(Nt,Mt|θℓ).

5. Repeat steps 1–4 for all time intervals t = 1, . . . , T .

A schematic of the estimation method is presented in Fig. 4.2.2.
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Estimated overall activity ̂κ Estimated population size ̂N p

κ Np

Figure 4.2.3: Validation of the maximum-likelihood estimation method. The upper panels show
estimated overall activity level κ̂ and population size N̂p, given the respective true values of Np

ranging from 5 to 150 (incremented by 5) and κ ranging from 0.1 to 2.5 (incremented by 0.1).
The performance of the maximum-likelihood estimators are respectively assessed against the true
overall activity κ and true population size Np shown in the lower panels. The estimates N̂p and κ̂
are obtained based on Eq. (4.1).

4.2.3. Validation Analysis

We perform a validation analysis to assess the accuracy of our numerical maximum-likelihood

method in estimating the model parameters. For each combination of the true values (Np, κ),

we generate synthetic networks based on the baseline model (Eq. 4.1) and apply the estimation

method to obtain N̂p and κ̂. Then we take the average of the respective estimated values over 1,000

runs.

Based on the comparison of estimated values with their respective true values, the maximum-

likelihood estimators perform well in recovering the true population size and overall activity (Fig. 4.2.3).

It should be noted, however, that κ̂ is sensitive to small values of the true population size (i.e.,

Np ≤ 50), in that κ̂ overestimates true κ (Fig. 4.2.3, left). For larger population sizes (e.g.,
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Np > 50), the performance of the estimation method improves considerably, with deviations, if

any, being much smaller. The reason for the low accuracy when Np is small is that our method

relies on N and M to identify the most likely combination of the model parameters; a particular

combination (N , M) does not necessarily have a one-to-one correspondence with a particular (κ,

Np)-combination especially when the network is small, thereby making it possible to see large de-

viations as exhibited in Fig. 4.2.3 (left). We also show another validation in which one of the two

parameters is fixed (Fig. 4.B.1).

4.3. Results

4.3.1. Evolution of κ and Np in temporal social networks

Estimation results for Np and κ are shown in Figs. 4.3.1 and 4.3.2, respectively. Fluctuating N̂p,t

and κ̂t in the four data sets indicate that, quite often, both are changing simultaneously. Similar

findings are seen in other days for the model based on Eq. (4.1) (Figs. 4.C.1 and 4.D.1) and also

for the alternative probability based on Eq. (4.2) (Figs. 4.E.1–4.H.1).

A source of these shifts in κ and Np would be stemming from situational conditions that may affect

human behavior in each location. One example is a pre-specified schedule in an academic conference

that rules the behavior of participants.58,421–423 For the IC2S2-17 and WS-16 data, we can compare

the shifts in the estimated values with the official programs that are available publicly.424,425 In

contrast, a strict schedule of activities is not stipulated in the Hospital and Workplace data, thus

precluding a similar kind of assessment.

Dynamic behavior of estimated population size N̂p,t.

Fluctuations of N̂p,t in Hospital and Workplace (Figs. 4.3.1a and b) stands in contrast to that of

IC2S2-17 and WS-16 (Figs. 4.3.1c and d), in which N̂p,t exhibits more systematic variations. Prior

to the first keynote talk of IC2S2-17, N̂p,t increases steadily as expected during a period when

participants are arriving at the venue; however, it declines during poster session (Figs. 4.3.1c).

The poster session precedes the final keynote talk; hence the decline in population size (Fig. 4.3.1c

after 15:00) may reflect the exit of participants who, based on the subsequent rise in N̂p,t shortly

after (Fig. 4.3.1c, 17:00), reconvene for the keynote speech (Fig. 4.3.1c, 17:30). In WS-16, the
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Figure 4.3.1: Estimated size of network population, N̂p,t, number of active persons, Nt, and total
isolated nodes, N̂p,t −Nt for (a) Hospital, (b) Workplace, (c) IC2S2-17, and (d) WS-16. Timelines
at the bottom identify time windows for conference schedule. Gray shading highlights unrestricted
sessions i.e., registration, break, lunch, poster session and closing remarks.

population size is also high during oral and keynote sessions and a noticeable decline is seen during

the closing remarks, which is the final event of the day (Fig. 4.3.1d, 17:00). In Fig. 4.C.1d, WS-16

has a similar schedule to that of IC2S2-17 (Fig. 4.3.1c) and similar movements in N̂p,t, which grows

during registration but subsides during poster session before increasing again prior to the start of

the final keynote speech.

In most of the data sets, total active individuals Nt follows closely the population size, which is the

maximum possible value of nodes that can be active at a given time (i.e, Nt ≤ Np,t). From the

estimated population size, we can compute the number of resting nodes as N̂p,t−Nt (Fig. 4.3.1, bro-

ken line). Resting nodes reflect a realistic but generally unobservable feature of dynamic networks,
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Figure 4.3.2: Estimated overall activity level, κ̂t. (a) Hospital, (b) Workplace, (c) IC2S2-17, and
(d) WS-16. Timelines at the bottom identify time windows for conference schedule. Gray shading
highlights unrestricted sessions i.e., registration, break, lunch, poster session and closing remarks.

that of isolated individuals who are not in direct contact with any other individual in the system.57

In conference data, total isolated nodes exhibit a systematic correspondence with activities; few

individuals are isolated during registration, break, lunch, and poster session, while elevated levels

are seen for keynote talks and oral sessions (Figs. 4.3.1c and d, broken line). In Hospital data, total

isolated nodes is fairly small (close to zero in many instances); however, this is not unnatural in such

high-contact environments where hospital staff are frequently engaging each other and/or attending

to patients (Fig. 4.3.1a, broken line). In contrast, the number of isolated nodes in Workplace data

is generally high, up to three times Nt (Fig. 4.3.1b).
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Dynamic behavior of estimated overall activity κ̂t

The estimated activity parameter, κ̂t, is high during unrestricted sessions at both conferences,

signaling intense interactions between participants (Figs. 4.3.2c and d, shading). However, during

keynote talks and oral sessions, κ̂t fluctuates around much smaller values. This suggests that

attendees have a greater chance of making contact with each other during registration, coffee break,

lunch and poster session than during the oral sessions. Although κ̂t declines and remains very

low for the duration of keynote talks and oral sessions, our method still detects slight variations,

suggesting that N̂p,t is not the only dynamical parameter at play. Fig. 4.F.1 shows estimated overall

activity for the same days based on an alternative probability, Eq. (4.2).

In contrast, κ̂t changes erratically in Hospital and Workplace data. A discernible pattern that

corresponds with coordination in movement or activity, as seen in conference data, is not exhibited

(Figs. 4.3.2a and b). Nevertheless, for Hospital data, κ̂t is highest at the end of the day (Fig. 4.3.2a)

when there is also a diminution in population size (Fig. 4.3.1a), while for Workplace data, κ̂t is

highest at the beginning of the day (Fig. 4.3.2b) when N̂p,t is increasing (Fig. 4.3.1b). At these

times, the behaviors of N and M reflect the dual impact of a sharp rise in κ̂t as individuals leave

the Hospital network (thereby reducing N̂p,t) or individuals in Workplace join the system (thereby

increasing N̂p,t).

4.3.2. Time-varying contribution of Np and κ to the emergence of densification scaling

We now examine the dynamical relationship between the number of active nodes N and the number

of edges M in empirical data to identify the source of densification scaling in social networks.

Figs. 4.3.3 and 4.3.4 demonstrate the relationship between N and M based on a series of temporal

snapshots for each data set, and the respective color scales denote changing levels of population

size N̂p,t and overall activity κ̂t. All data sets exhibit a superlinear scaling, or “densification power

law”,59,233 i.e., M grows in N more than proportionally. This behavior is also evident in other days

which we analyzed for each data set (Figs. 4.I.1–4.J.1). However, the scaling pattern emerges as a

mixture of two distinct behaviors;57,58 the straight-line scaling pattern indicates a constant exponent

γ > 1 of M ∝ Nγ , and it emerges for small to intermediate values of N . However, for larger values
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Figure 4.3.3: Densification scaling and changes in estimated population size in face-to-face networks.
N -M scaling plots are shown for (a) Hospital on December 7, 2010 (b) Workplace on June 27, 2015
(c) IC2S2-17 on July 11, 2017 and (d) WS-16 on December 1, 2016. Each dot represents a snapshot
of the network and colors denote estimated population size N̂p,t based on the respective color bar.
Gray dashed and dotted lines show theoretical lower (M = N/2) and upper (M = N(N − 1)/2)
bounds. Estimates are based on Eq. (4.1).

of N , total edges M grows along an upward bending trajectory, implying an accelerating growth of

M in N . The two patterns are easily distinguished in the conference networks but to a lesser extent

in Hospital and Workplace data.

In all data sets, a linear pattern tends to emerge within a specific range of values for population

size N̂p,t and activity level κ̂t. Population size gradually expands from small to moderate values

and, along with this, Nt is also increasing (Fig. 4.3.3). At the same time, activity level is high in

small networks with the number of edges M at its upper bound N(N − 1)/2 in some instances,

implying that a considerable proportion of the individuals present are engaged (Figs. 4.3.4a and
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Figure 4.3.4: Densification scaling and changes in overall activity κ̂t in face-to-face networks. See
the caption of Fig. 4.3.3 for details.

4.J.1a, c–d). However, as the population grows, activity level declines rapidly and M continues to

grow at a constant rate (e.g. Fig. 4.3.4a blue-green-yellow transition). During this phase, therefore,

the dynamics between M and N are dominated by the gradual expansion of N̂p,t which allows more

and more individuals to become active.

Given that population size of face-to-face networks is finite, N̂p,t will eventually become constant

but M may continue to grow as the number of active nodes N gradually approaches N̂p,t, yielding

an upward bending slope towards M ’s upper bound N(N − 1)/2 (dotted line in Figs. 4.3.3 and

4.3.4). The plots for IC2S2-17 and WS-16 in Figs. 4.3.3 and 4.3.4 suggest that this accelerating

growth in M occurs as κ̂ increases while N̂p,t remains high and relatively constant. As the number of

active individuals N gets closer to N̂p,t, few isolated nodes (if any) remain, thus resulting in denser

networks in whichM is almost at the maximum number of edges that can exist between active nodes.
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To enable these previously isolated individuals to make at least one connection, overall activity level

increases, and this drives the continued growth in aggregate edges. We also show in Supplementary

Information the corresponding figures based on the alternative probability of connection in Eq (4.2),

and the results are consistent with that of the baseline model (Figs. 4.K.1–4.N.1).

4.4. Discussion

In this study, we proposed a method to identify the driving force of the dynamical relationship

between total active nodes N and total edges M in temporal networks. Changes in population

size Np and overall activity κ have both been identified as the mechanisms behind this dynamical

relationship, each contributing to the emergence of different densification scaling patterns. Our main

contribution is a numerical maximum-likelihood method that is able to estimate simultaneously,

population size Np and activity rhythm κ at given times, extending previous works in which one

parameter is estimated by assuming the other is constant.57,58 We found that changes in the

mechanisms of densification and sparsification reflect explicit periodic transitions in networks that

have rigid time constraints. Furthermore, our findings remain consistent with previous studies which

explain the emergence of a constant scaling exponent as the result of an increasing population size,

while the accelerated growth pattern is being impelled by intensification of overall activity.

Although we have focused on social temporal networks in face-to-face contexts, the method is

adaptable to practically any dynamical system that can be modeled as a time-varying network of

nodes and edges. This is one advantage of our method because of the accessibility of N and M in

most networks without having privacy issues. Of course, there are some limitations which need to be

addressed in future research. Firstly, we employed a dynamic hidden variable model in generating

networks, in which each node is randomly linked to another based on their individual activity. This

means that although the model can reproduce the global quantities of N and M , more realistic

structural features that are known to exist in social networks (e.g. community structure, triads)

are absent in generated networks. However, our focus in this work is to understand the variation

in these global quantities of networks which does not require knowledge of structural properties.

Our method also facilitates the use of network generating models that incorporate such properties
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observed in empirical networks.

Secondly, we assume that the distribution of node fitness (i.e., intrinsic activity of a node) in the

network generating model is uniform. Although an empirical fitness distribution is preferred, the

challenge exists in obtaining the individual activity level of nodes that are part of the population

but are dormant (i.e., having no edges). Such nodes are generally not observable, because they are

not explicitly stated as nodes that have interacted with others in the contact data set.

The relevance of this work lies in the simplicity of the method for understanding the dynamical

relationship between fundamental global quantities of temporal networks, and the adaptability of

our method to include more realistic features of empirical networks. The dynamics of network

growth and shrinkage is central to how systems work, and it would also be one crucial factor in how

information and infectious diseases spread in networks. Given the pervasiveness of complex systems

and our reliance on them in our daily lives, greater understanding of the dynamics of networks

would improve how we interact with, and even control such systems.

110



Appendix

4.A. Evolution of total active edges and active nodes (Alternative day)
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Figure 4.A.1: Evolution of total active edges M and total active nodes N in face-to-face networks.
The following days are shown for each data set: (a) Hospital on December 8, 2010, (b) Workplace
on June 28, 2015, (c) IC2S2-17 on July 12, 2017 and (d) WS-16 on November 30, 2016. Timeline
below conference data ((c) IC2S2-17 and (d) WS-16) identify time windows for scheduled events.
Gray shading highlights unrestricted sessions i.e., registration, break, lunch and poster session.
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4.B. Validation of the maximum-likelihood estimation method

True activity level, κ

Es
tim

at
ed

 a
ct

iv
ity

 le
ve

l, 
̂ κ

Es
tim

at
ed

 p
op

ul
at

io
n,

 
̂

N
p (a)

(b)

κ = 0.05 κ = 0.5 κ = 1

Np = 50 Np = 200
True population size, Np

Np = 100

Figure 4.B.1: Validation of the maximum-likelihood estimation method. (a) Estimation of Np for
Np ranging from 5 to 200 (incremented by 5) given κ = 0.05, κ = 0.5 and κ = 1. (b) Estimation
of κ for κ ranging from 0.05 to 2.5 (incremented by 0.05) given Np = 50, Np = 100 and Np = 200.
The estimates N̂p,t and κ̂t are obtained from the model with probability of a connection between
two nodes i and j given by Eq. (4.1). Errors bars represent one standard deviation and they are
computed over 1,000 runs.
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4.C. Shifts in estimated population and no. of active persons (Eq. 4.1, alternative
day)
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Figure 4.C.1: Shifts in estimated population size N̂p,t, number of active persons Nt and total isolated
nodes N̂p,t−Nt in face-to-face networks. The following days are shown for each data set: (a) Hospital
on December 8, 2010 (b) Workplace on June 28, 2015 (c) IC2S2-17 on July 12, 2017 and (d) WS-16
on November 30, 2016. Timelines below conference data, in panels (c) and (d), identify time windows
for scheduled events. Gray shading highlights unrestricted sessions i.e., registration, break, lunch
and poster session. Estimates of Np,t are based on the model with probability pij,t = 1 − e−κaiaj

from Eq. (4.1).
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4.D. Changes in estimated overall activity (Eq. 4.1, alternative day)
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Figure 4.D.1: Changes in estimated overall activity κ̂t in face-to-face networks. The following days
are shown for each data set: (a) Hospital on December 8, 2010 (b) Workplace on June 28, 2015 (c)
IC2S2-17 on July 12, 2017 and (d) WS-16 on November 30, 2016. Timelines below conference data
(c) IC2S2-17 and (d) WS-16 identify time windows for scheduled events. Gray shading highlights
unrestricted sessions i.e., registration, break, lunch and poster session. Estimates of κ̂t are based
on the model with probability pij,t = 1− e−κaiaj from Eq. (4.1).
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4.E. Shifts in estimated population, no. of active persons and isolated nodes
(Eq. 4.2)
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Figure 4.E.1: Shifts in estimated population size N̂p,t, number of active persons Nt and total isolated
nodes N̂p,t−Nt in face-to-face networks. The following days are shown for each data set: (a) Hospital
on December 7, 2010 (b) Workplace on June 27, 2015 (c) IC2S2-17 on July 11, 2017 and (d) WS-16
on December 1, 2016. Timelines below conference data (c) IC2S2-17 and (d) WS-16 identify time
windows for scheduled events. Gray shading highlights unrestricted sessions i.e., registration, break,
lunch, poster session and closing remarks. Estimates of Np,t are based on the model with probability
pij,t = κaiaj from Eq. (4.2).
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4.F. Changes in estimated overall activity (Eq. 4.2)
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Figure 4.F.1: Changes in estimated overall activity κ̂t in face-to-face networks. The following days
are shown for each data set: (a) Hospital on December 7, 2010 (b) Workplace on June 27, 2015 (c)
IC2S2-17 on July 11, 2017 and (d) WS-16 on December 1, 2016. Timelines below conference data
(c) IC2S2-17 and (d) WS-16 identify time windows for scheduled events. Gray shading highlights
unrestricted sessions i.e., registration, break, lunch, poster session and closing remarks. Estimates
of κ̂t are based on the model with probability pij,t = κaiaj from Eq. (4.2).
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4.G. Shifts in estimated population and no. of active persons (Eq. 4.2, alterna-
tive day)
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Figure 4.G.1: Shifts in estimated size of population N̂p,t, number of active persons Nt and total
isolated nodes N̂p,t − Nt in face-to-face networks. The following days are shown for each data
set: (a) Hospital on December 8, 2010 (b) Workplace on June 28, 2015 (c) IC2S2-17 on July 12,
2017 and (d) WS-16 on November 30, 2016. Timelines below conference data (c) IC2S2-17 and (d)
WS-16 identify time windows for scheduled events. Gray shading highlights unrestricted sessions
i.e., registration, break, lunch and poster session. Estimates of Np,t are based on the model with
probability pij,t = κaiaj from Eq. (4.2).
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4.H. Changes in estimated overall activity (Eq. 4.2, alternative day)
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Figure 4.H.1: Changes in estimated overall activity κ̂t in face-to-face networks. The following days
are shown for each data set: (a) Hospital on December 8, 2010 (b) Workplace on June 28, 2015 (c)
IC2S2-17 on July 12, 2017 and (d) WS-16 on November 30, 2016. Timelines below conference data
(c) IC2S2-17 and (d) WS-16 identify time windows for scheduled events. Gray shading highlights
unrestricted sessions i.e., registration, break, lunch, and poster session. Estimates of κ̂t are based
on the model with probability pij,t = κaiaj from Eq. (4.2).
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4.I. Densification scaling in estimated population (Eq. 4.1, alternative day)
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Figure 4.I.1: Densification scaling and changes in estimated population size in face-to-face networks.
N -M scaling plots are shown for: (a) Hospital on December 8, 2010 (b) Workplace on June 28,
2015 (c) IC2S2-17 on July 12, 2017 and (d) WS-16 on November 30, 2016. Each marker represents
a snapshot of the network and colors denote estimated population size N̂p,t based on the respective
color bar. Gray dashed and dotted lines show theoretical lower (M = N/2) and upper (M =
N(N − 1)/2) bounds. Estimates of Np,t based on the model with probability pij,t = 1 − e−κaiaj

from Eq. (4.1).
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4.J. Densification scaling in estimated overall activity (Eq. 4.1, alternative day)
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Figure 4.J.1: Densification scaling and changes in estimated overall activity in face-to-face networks.
N -M scaling plots are shown for: (a) Hospital on December 8, 2010 (b) Workplace on June 28, 2015
(c) IC2S2-17 on July 12, 2017 and (d) WS-16 on November 30, 2016. Each marker represents a
snapshot of the network and colors denote estimated activity level κ̂t based on the respective color
bar. Gray dashed and dotted lines show theoretical lower (M = N/2) and upper (M = N(N−1)/2)
bounds. Estimates of κ̂t based on the model with probability pij,t = 1− e−κaiaj from Eq. (4.1).
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4.K. Densification scaling in estimated population (Eq. 4.2)

Hospital Workplace

IC2S2-17 WS-16

(a) (b)̂N p,t
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(c) (d)
M
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Figure 4.K.1: Densification scaling and changes in estimated population size in face-to-face networks.
N -M scaling plots are shown for: a) Hospital on December 7, 2010 (b) Workplace on June 27, 2015
(c) IC2S2-17 on July 11, 2017 and (d) WS-16 on December 1, 2016. Each marker represents a
snapshot of the network and colors denote estimated population size N̂p,t based on the respective
color bar. Gray dashed and dotted lines show theoretical lower (M = N/2) and upper (M =
N(N − 1)/2) bounds. Estimates of Np,t based on the model with probability pij,t = κaiaj from
Eq. (4.2).
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4.L. Densification scaling in estimated overall activity (Eq. 4.2)

Hospital Workplace

IC2S2-17 WS-16
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Figure 4.L.1: Densification scaling and changes in estimated overall activity in face-to-face networks.
N -M scaling plots for: a) Hospital on December 7, 2010 (b) Workplace on June 27, 2015 (c) IC2S2-
17 on July 11, 2017 and (d) WS-16 on December 1, 2016. Each marker represents a snapshot of
the network and colors denote estimated activity level κ̂t based on the respective color bar. Gray
dashed and dotted lines show theoretical lower (M = N/2) and upper (M = N(N − 1)/2) bounds.
Estimates of κ̂t based on the model with probability pij,t = κaiaj from Eq. (4.2).
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4.M. Densification scaling in estimated population (Eq. 4.2, alternative day)

Hospital Workplace

IC2S2-17 WS-16

(a) (b)̂N p,t

̂N p,t ̂N p,t
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(c) (d)
M
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Figure 4.M.1: Densification and changes in estimated population size in face-to-face networks. N -M
scaling plots are shown for: (a) Hospital on December 8, 2010 (b) Workplace on June 28, 2015 (c)
IC2S2-17 on July 12, 2017 and (d) WS-16 on November 30, 2016. Each marker represents a snapshot
of the network and colors denote estimated population size N̂p,t based on the respective color bar.
Gray dashed and dotted lines show theoretical lower (M = N/2) and upper (M = N(N − 1)/2)
bounds. Estimates of Np,t based on the model with probability pij,t = κaiaj from Eq. (4.2).
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4.N. Densification scaling in estimated overall activity (Eq. 4.2, alternative day)

Hospital Workplace

IC2S2-17 WS-16
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N
Figure 4.N.1: Densification and changes in the estimated overall activity in face-to-face networks.
N -M scaling plots are shown for: (a) Hospital on December 8, 2010 (b) Workplace on June 28, 2015
(c) IC2S2-17 on July 12, 2017 and (d) WS-16 on November 30, 2016. Each marker represents a
snapshot of the network and colors denote estimated activity level κ̂t based on the respective color
bar. Gray dashed and dotted lines show theoretical lower (M = N/2) and upper (M = N(N−1)/2)
bounds. Estimates of κ̂t based on the model with probability pij,t = κaiaj from Eq. (4.2).
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CHAPTER 5

Concluding Remarks

In this work, we examined social and financial networks using data on: i) face-to-face contact be-

tween humans, and ii) bilateral transactions between banks in an interbank market. We showed

that not only do they share the commonality of being vital to life in the modern world, but also that

much more can be gained from taking a cross-disciplinary approach to studying them. Employing

tools and methods from the more advanced area of social network analysis has seen a rapid ad-

vancement in our understanding of financial networks over the last two decades. At the same time,

the occasional outbreak of infections, most recently the 2019 outbreak of coronavirus, indicates a

consistent need to identify ways to maintain global health. We addressed in this dissertation, points

that may be considered to be central to these objectives of maintaining the health of the global

financial system and the well-being of humans worldwide.

We first addressed one of the gaps in financial systemic risk analysis, where time-varying properties

are not reflective of the true timescale over which relationships are established and disbanded. This

approach is an adaptation of time-varying analysis often employed in studies of how epidemics and

social phenomena propagate given local activity in social networks. We find that the interbank

system displays different degrees of fragility that is dependent on the time of day. In many ways,

current policies aimed at maintaining stability in financial systems rely on information, almost

entirely, about the architecture of the network. However, by incorporating temporal characteristics

we showed that while market size affects risk at different times — when markets are the same size

— high interconnectedness of risk between banks drives the system’s fragility. The dimension of

time in systemic risk analysis reflects more realistically, the setup of the interbank system and it

can provide useful insights into how regulators may monitor and, to some extent, anticipate growing

risk to guide the most appropriate responses that ensure stability.

Our investigation into the source of dynamical changes in the global network property of size was

based on human contact networks. As mentioned earlier, the result of our study of systemic risk in
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an interbank network highlighted that market size can in fact impact the magnitude of systemic risk;

therefore, the source of changes in network size can be seen as a crucial factor with implications for

the stability of systems. We developed a method that allows us identify the interplay between the

driving mechanisms, namely overall activity and size of population. Given the fundamental nature

of the metrics that our method relies on, we believe that its application is relevant to understand

the dynamics of growth and shrinkage of any network in the real world.

Technology has certainly influenced how interaction occurs in social and financial systems which

implies that advancements in technology may signal new areas of research. Here we highlight pos-

sibilities for future investigations. For social networks, more research is still needed on the multiple

layers of interactions among individuals beyond the common assumption that individuals’ dynamics

are identical. In other words, individuals do not respond in the same way to influences emanating

from different segments and at different times, and based on the literature, interactions between mul-

tiple network layers can materially affect the dynamics of systems and how they function.324,426–432

Another aspect of the temporal network research in need of attention relates to how the results

from empirical studies on spreading behavior can be extrapolated to large-scale networks.122 Es-

sentially, the objective is to use smaller more manageable empirical networks as the foundation for

much larger data sets while avoiding the considerable biases that are expected to emerge due to the

finite-size of the original data.

For financial networks, there is an urgent need for reliable early-warning signals of distress to enable

appropriate responses that mitigate or prevent system-wide failures. Moreover, greater focus should

also be aimed at extending the idea of network and/or structural controllability433,434 to identify

financial institutions most crucial to ensuring that the system is functioning well. Ideally, these

considerations should incorporate the realistic structure of financial systems and the dynamical

changes in structure over time. Advancements in these areas may require a whole new theoretical

framework specific to financial networks; or as seen in the study by Delpini et al.435 an application

from existing controllability theory433,434 on complex systems. Either way, such developments may

be able to supplement quantitative indicators that can support the development of proactive and
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effective policies of intervention. In other words, by taking on the aspect of the research on financial

network analysis we would be progressing into the phase of predicting the future state of the system

in order to preempt pernicious outcomes.
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