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ABSTRACT 

This dissertation focuses on the automatic generation of high-quality dispatching 

rules in compact structures and low computational requirements using the Genetic 

Programming (GP) to solve static and dynamic Job Shop Scheduling Problems (JSSPs).  

Precisely, the main objective is to reduce the computational burden required by the GP 

algorithm to evolve high-quality dispatching rules for both static and dynamic JSSPs.  

Five approaches are proposed in this thesis to address the limitations of the conventional 

research. Two of these approaches are developed to generate scheduling rules for the 

static JSSPs, whereas the other three approaches deal with the dynamic JSSPs. 

Regarding the static JSSPs, two main limitations have been reported in the 

literature. The first limitation is premature convergence caused by low diversity among 

GP individuals that leads to low solution quality, whereas the second one is the high 

computational costs of GP approaches due to significant growth in the size of generated 

rules without a tangible return in fitness values, known as the bloat effect. 

Consequently, a distance metric is introduced to measure the genotypic similarity 

between the GP individuals and the best-evolved rule in this thesis. The proposed metric 

overcomes the limitations of the current metrics by considering the interaction effect 

between nodes and their parents, does not require additional simulation runs, and gives 

higher priority to the nodes closest to the root node. The aim is to represent population 

diversity in a numerical format that can be optimized and thus improve the exploration 

ability of the GP algorithm by avoiding early convergence. Therefore, a multi-objective 

GP framework is proposed by integrating Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) with the GP algorithm to optimize three objectives simultaneously. The 

three considered objectives are diversity values estimated using the proposed metric, 

rule length, and solution quality. To assess the effectiveness of the proposed distance 

metric and multi-objective GP framework, two algorithms are developed and compared 

with three algorithms from the literature across ten static JSSP instances using 

makespan and mean tardiness as objective functions. Experimental results show the 

effectiveness of the proposed methods in generating a diverse population of high-quality 

rules with smaller sizes in a shorter computational budget compared with the 

conventional methods. 

Regarding the dynamic JSSPs, two major limitations have been reported in the 

literature. The first limitation is similar to the static problems which is the high 
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computational time of the GP algorithm due to the bloat effect. In contrast to the static 

problems where benchmark instances are used for fitness assessment, a Discrete Event 

Simulation (DES) model is the most common approach for the dynamic JSSPs. 

Therefore, the second limitation is the high fitness evaluation costs to assess the fitness 

values of evolved rules using a DES model. In order to address the first limitation, this 

thesis proposes a feature selection approach to reduce the size of evolved rules. The 

proposed approach uses a probabilistic selection scheme to estimate the weight of given 

terminals instead of the binary discrimination usually used in conventional methods. In 

addition, the proposed approach does not require pilot GP runs as the conventional 

methods. Because it uses the evolutionary information collected from previous 

generations in estimating the weights of the terminals in the next generation in an online 

manner. The proposed approach (PGP) is compared with three GP algorithms and 30 

manually-made rules from the literature under different job shop configurations and 

scheduling objectives, including total weighted tardiness, mean tardiness, and mean 

flow time. Experimentally obtained results demonstrate that the proposed approach 

outperforms the other conventional methods in generating more compact rules in a 

shorter computational time. 

Gene Expression Programming (GEP) algorithm is a modified version of the tree-

based GP algorithm to evolve dispatching rules using a fixed-linear representation that 

is less susceptible to the bloat effect. Therefore, this thesis modifies the feature selection 

approach proposed for the GP algorithm to be applicable to the GEP algorithm for the 

dynamic JSSPs. The aim is to evaluate the effect of imposing an additional constraint on 

the size of evolved rules in the case of the contained GP representation. The proposed 

approach adds two main points to the existing literature. First, it is the first attempt to 

control the bloat effect for constrained GP representations in the literature on the 

automated design of scheduling rules. Second, it increases the likelihood of using the 

proposed approach in more complex manufacturing environments due to the significant 

reduction in training time. The proposed algorithm is compared with three algorithms 

from the literature using three objective functions namely total weighted tardiness, mean 

tardiness, and mean flow time. Experimental results confirm the ability of the proposed 

algorithm in evolving rules with smaller sizes in a shorter computational time without 

sacrificing performance. The weight of terminals across generations of the proposed 

algorithm is compared with the weights obtained using the PGP algorithm. Results 
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demonstrate the ability of the proposed feature selection approach to identify the same 

set of critical terminals regardless of the evolutionary algorithm used. 

Finally, a surrogate assisted GEP approach is introduced to reduce the time of 

expensive fitness assessments of dispatching rules generated for dynamic JSSPs. 

Reducing fitness assessment times significantly speeds up the most computationally 

demanding step of the GP algorithm. The proposed approach extends the conventional 

methods through three main contributions. First, it is the first attempt to use machine 

learning to abstract a DES model of DJSSPs. Second, it reduces fitness evaluation time 

without significantly affecting prediction accuracy. Third, it is independent of the 

structure of evolved rules, and thus it can be adopted with other hyper-heuristic 

approaches. Three surrogate models are developed by integrating the proposed approach 

with three simplified models from the literature. The proposed surrogates are compared 

with their counterparts from the literature using mean tardiness and mean flow time 

objective functions. Experimental results prove that the proposed surrogates have 

significantly lower computational costs with a neglectable loss in prediction accuracy 

across different training and testing scenarios. 

It is verified that the proposed approaches significantly reduced the computational 

time of the GP algorithm to automatically evolve high-quality scheduling rules in 

compact structures compared to conventional methods. In addition, the performance of 

the proposed approaches is evaluated under different job shop environments including 

static and dynamic instances using a combination of the most common scheduling 

objectives such as makespan, mean flow time, mean tardiness, and total weighted 

tardiness. The behaviour of the best-evolved rules for each objective function is also 

analysed and several useful insights are gained. Finally, experimental results 

demonstrate that the proposed approaches enhance the performance of various stages of 

the GP algorithm starting from representation, then selection, until fitness evaluations. 
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Chapter 1. INTRODUCTION 

This chapter begins by providing a background on job shop scheduling problems 

from an academic and practical perspective. Then, the current solution approaches in the 

literature, and their capabilities and limitations for solving job shop scheduling 

problems are presented.  Moreover, broad overviews are given in the field of the 

automated design of scheduling rules using hyper-heuristic techniques with a major 

focus on genetic programming methods. Literature limitations, research objectives, and 

major contributions of this thesis are also shown in subsequent sections. Finally, the 

organization of this thesis is illustrated.  

1.1 Background 

1.1.1 Job Shop Scheduling Problem 

Industrial facilities strive to cope with unexpected market fluctuations, meet 

customers' requirements, and utilize available resources in the best possible way. Most 

manufacturers today have started with so-called “job shops” which are a type of small 

manufacturing systems where customized products are made with a relatively small 

production sequence (Pinedo, 2012). Typically, job shops make a variety of custom or 

semi-custom parts for other businesses in small to medium-sized orders, for instance, 

the automotive industry, semiconductor manufacturing facilities, and many others. 

Although job shops increase the production flexibility in making a large variety of 

customized products to meet customer demands, it is very challenging to efficiently 

schedule the production processes due to high product variability and non-standard 

production flow (Jones et al., 1998). Resulting in a decrease in the levels of utilization 
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of production resources, an increase in the lead time of jobs, and an increase in 

production costs. Therefore, solving production scheduling problems can help decision-

makers reduce inventory costs, increase throughput, and improve resource usage (Jones 

et al., 1998). Over the past 60 years, the Job Shop Scheduling Problem (JSSP) has been 

studied extensively in academia and industry because of its broad real-world 

applications to manufacturing and cloud computing (Nguyen et al., 2013a). From the 

academic point of view, most JSSPs are NP-hard problems. Therefore, the 

computational time required to solve JSSPs increases exponentially with the increase in 

the size of the problem (Pinedo, 2012).     On the other hand, from a practical perspective, 

there are many manufacturing facilities around the world that share the same 

characteristics of the job shop models including semiconductor manufacturers and 

automobile assembly lines (Jones et al., 1998). Therefore, developing effective models 

for JSSPs may not only increase throughput and decrease costs in job shops, but also in 

many related industries resulting in a significant impact on the global economy.  

As shown in Figure 1.1, the job shop consists of a number of jobs (tasks) that need 

to be processed by a limited number of machines (resources). Each job has a specific set 

of operations that must be processed according to a set of technical and precedence 

constraints (arrows with the same colour as their job). The objective of the JSSP is to 

achieve a schedule of jobs that optimizes some predefined objectives related to 

productivity (reducing completion time) or the level of customer satisfaction (meeting 

due dates) (Pinedo, 2012). JSSPs can be categorized into two main classes of problems 

depending on whether the operational information is available beforehand. They are 

Static JSSPs (SJSSPs) and Dynamic JSSPs (DJSSPs). In static job shop scheduling, all 

jobs are ready to process at time zero. Also, all the information related to all jobs and 

machines on the shop floor is available when making a schedule. On the other hand, in 

dynamic job shop scheduling, jobs constantly arrive following deterministic or 

stochastic arrival patterns, and no operational information is known before the arrival of 

the job (Jakobović and Budin, 2006). Although it is inevitable to avoid unexpected 

events during the production process, static scheduling is more widely covered in the 

literature as compared with dynamic scheduling. Stochastic nature is always inherent in 

real job shops, for example, the processing time of operations varies due to different 

skill levels among operators, urgent jobs can arrive at any moment, and machines may 

suddenly breakdown (Ouelhadj and Petrovic, 2009). 
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Figure 1.1: Example of a job shop scheduling problem 

1.1.2 Solution Approaches 

Due to the availability of knowledge in SJSSPs, exact optimization approaches have 

been proposed to achieve optimal solutions such as integer linear programming (Simon 

and Takefuji, 1988), branch-and-bound (Lawler and Wood, 1966), Lagrangian 

relaxation (Kaskavelis and Caramanis, 1998), and dynamic programming (Gromicho et 

al., 2012). However, the use of exact methods has been limited to solving small SJSSP 

instances due to the exponential increase in computational cost with increasing problem 

size (NP-hard problem). Therefore, approximate methods known as heuristics have been 

developed to get satisfactory solutions in an acceptable computational budget. 

Approximate methods can be classified into improvement and construction heuristics. 

Although improvement heuristics such as genetic algorithms (Park et al., 2003), 

simulated annealing (Akram et al., 2016), and ant colony algorithms (Flórez et al., 

2013) do not guarantee optimality, they are able to find quasi-optimal solutions for 

static JSSPs within a reasonable computational time. In addition, improvement 

heuristics are not suitable for handling dynamic events because it would be 

computationally expensive to frequently modify the obtained schedule (running the 

heuristic again with the new information) to any change that occurs in the system. In 

contrast, construction heuristics such as dispatching rules are one of the most common 

optimization approaches used to solve DJSSPs (Ouelhadj and Petrovic, 2009). 

Moreover, Aytug et al. categorized existing strategies for solving DJSSPs into three 

classes: completely reactive approaches, robust pro-active approaches, and predictive–

reactive approaches (Aytug et al., 2005). The authors reported that dispatching rules are 

the most popular completely reactive approach used in many real-life production 

systems. 
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Dispatching rules are mathematical functions of attributes of the job shop and 

machines used to prioritize all jobs awaiting processing on a given machine. In other 

words, a dispatching rule determines which job must be processed next when a machine 

becomes idle. The main reasons behind the popularity of dispatching rules are their 

flexibility to incorporate domain knowledge, ease of implementation, scalability to 

solve large problem instances, low computational cost, and prompt response to dynamic 

events (Nguyen et al., 2017a). Moreover, dispatching rules have been integrated with 

other optimization techniques in order to generate effective initial solutions. Many 

efficient manually designed dispatching rules covering a wide variety of job shop 

environments and objectives have been proposed in the literature. More details are 

available in several surveys (Baker, 1984; Blackstone et al., 1982; Dominic et al., 

2004). In addition, there are several comparative studies in the literature to analyse the 

performance of traditional scheduling rules under different manufacturing conditions, 

for example (Mizrak and Bayhan, 2006) and (Sels et al., 2012a). Three main 

conclusions were drawn from these studies as follows. 

1) Scheduling rules are problem-specific solution methods developed to deal with 

specific job shop settings under a certain objective function. Therefore, they 

perform poorly on other system configurations or performance measures.  

2) Dispatching rules which combine multiple attributes together (composite rules) 

have better performance compared with simple rules with only one attribute. 

3) Manual design of high-quality rules that usually include a large number of 

attributes in complex formulas is a challenging task. Because it requires a 

significant amount of time and code effort, great domain knowledge, and 

extensive empirical testing. 

1.1.3 Automated Design of Dispatching Rules Using Genetic Programming 

In order to meet the limitations of manually designed dispatching rules, several 

researchers have suggested taking advantage of advances in computational power and 

machine learning methods to automate the process of generating heuristics for hard 

optimization problems known as "hyper-heuristics". In other words, hyper-heuristics are 

high-level search methodologies that explore the search space of low-level heuristics 

rather than the search space of solutions to the underlying problem (Drake et al., 2020). 

The objectives to be achieved through this approach are as follows.  
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1) Raise the level of generality by discovering the right heuristic for a particular 

problem instead of solving a single problem instance directly. 

2) Reduce the time and effort needed by experts to design efficient heuristics for 

different problem instances (job shop settings). 

3) Gain useful insights by exploring widely diverse, undiscovered high-quality 

heuristics.  

Burke et al. proposed a classification of hyper-heuristic approaches based on their 

search mechanism including heuristic selection and heuristic generation methods 

(Burke et al., 2013). A brief discussion of hyper-heuristic applications covering a wide 

range of scheduling and combinatorial optimisation problems was also presented. 

Heuristic selection methods seek to choose a set of low-level heuristics for different 

problem instances. Low-level heuristics can be simple operators (neighbourhood moves 

or basic local search operations), metaheuristics, or even hyper-heuristics. On the other 

hand, the goal of heuristic generation methods is to develop new high-level heuristics 

by making use of the components (features or operations used in existing heuristics) of 

known heuristics. In addition, hyper-heuristics can be categorized into supervised and 

unsupervised methods based on the machine learning technique used. Regarding the 

automatic design of scheduling rules, Genetic Programming (GP) has been shown to be 

a promising unsupervised heuristic generation approach that dominates other hyper- 

heuristic methods (Branke et al., 2015).   

GP is a type of evolutionary computation method (a subset of machine learning) 

derived from the model of biological evolution and its core mechanisms. GP algorithm 

has been used in many areas, such as discovering the functional relationship between 

features (symbolic regression) (Amir Haeri et al., 2017), grouping data into specific 

classes (classification) (Jabeen and Baig, 2010), software engineering (Afzal and 

Torkar, 2011), and even aiding in the design of antennas and electrical circuits (Lohn et 

al., 2005). Regarding the use of the GP algorithm for the automatic generation of 

scheduling heuristics, (Miyashita, 2000) is expected to be the first study that proposed 

the GP approach to evolve dispatching rules for a JSSP using a multi-agent model, 

where each agent dispatches the operations on the resources under its control. Since 

then, there has been a growing interest among researchers in using the GP algorithm for 

evolving scheduling rules. Because GP does not depend on any assumptions and can be 

easily extended to deal with various production scheduling problems (Branke et al., 

2016a).  
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The GP framework for the automated design of scheduling rules consists of two 

main modules, the GP reasoning module and the fitness evaluation module, as shown in 

Figure 1.2. The GP reasoning module is responsible for generating a candidate 

population of dispatching rules whose fitness values have to be estimated using the 

fitness evaluation module. The GP algorithm generates dispatching rules using 

predefined sets of terminals and functions, and a specific representation. The terminal 

set includes relevant jobs, machines, and shop floor attributes (features). Typically, 

most of these attributes (features) are derived from manually designed rules in the 

literature based on the nature of the scheduling problem under investigation. Also, the 

functions set consists of a set of arithmetic functions such as addition, subtraction, 

multiplication, and division, as well as some logical operators such as minimum, 

maximum, IF conditions, etc. In terms of the GP representation, an expression tree 

structure is the standard representation used in many previous studies (Đurasević et al., 

2016; Hildebrandt et al., 2010a; Shady et al., 2020a). To ensure the validity of the 

generated rules and they are syntactically correct, certain grammar has to be imposed. 

Grammar defines how the individual components (functions and terminals) can be 

grouped to yield valid mathematical functions (dispatching rules) (Branke et al., 2016a).  

 

Figure 1.2: GP framework for the automated design of dispatching rules 

Figure 1.3 shows a simple grammar for constructing priority functions using three 

terminals (PT: Processing Time, DD: Due Date, and CT: Current Time) and three 

arithmetic functions. Also, an example of a GP individual that can be generated using 

this grammar is shown in Figure 1.3 in both expression tree and mathematical forms.  
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Figure 1.3: Example of a simple grammar and a random GP individual 

The fitness values of the GP rules are estimated in the performance evaluation 

model that consists of two main components, training instances, and a meta-algorithm. 

In the case of static scheduling problems, a set of static training instances obtained from 

real-world situations is used for fitness evaluation. There is a wide range of benchmark 

static job shop instances in the literature including OR-library (Beasley, 1990), and 

randomly generated instances of varying levels of difficulty (instance size) (Storer et al., 

1992; Taillard, 1993; Yamada and Nakano, 1992). In contrast, a discrete event 

simulation model is the most common simulation technique used to estimate the 

solution quality of scheduling rules (Nguyen et al., 2014a). Moreover, a meta-algorithm 

must be defined that specifies the job shop logic and constraints for a given scheduling 

problem. It also specifies how a particular dispatching rule will be used to create a valid 

schedule (Shady et al., 2020b). After all GP individuals are evaluated, the GP reasoning 

mechanism selects the best individuals (parents) using some selection techniques such 

as the roulette method (Holland, 1992), tournament selection (Blickle and Thiele, 1995), 

etc. to form the mating pool. 

Afterward, genetic operators are applied to generate a new population of dispatching 

rules (offspring). The standard genetic operators used in the GP literature are subtree 

crossover and mutation operators (Willis et al., 1997). The crossover operator combines 

the genetic information of two parents to evolve a new offspring, whereas the mutation 

operator introduces new random information in one parent to get a new rule. The 

aforementioned steps are considered as one evolutionary iteration (generation). The 
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population evolves over a predefined number of generations depending on the available 

computational time. Finally, if the stopping criteria are satisfied, then the algorithm 

terminates and the best rule is returned; otherwise, another evolutionary iteration begins 

by following the same steps (Tay and Ho, 2008). 

The GP algorithm offers several major advantages compared with other hyper-

heuristics such as decision trees, logistic regression, and artificial neural networks, 

which can be mentioned as follows (Branke et al., 2016a; Nguyen et al., 2017a). 

1) Variable-length encoding representation: The main difference between the 

GP algorithm and other optimization algorithms, such as a genetic algorithm that 

uses the same evolutionary strategies, is the representation of solutions. The 

common representation used in the GP algorithm is the tree structure with a 

variable depth, as opposed to the genetic algorithm that uses a fixed string of 

numbers to represent a solution (J. R. Koza, 1994a). This flexible representation 

is able to simultaneously explore the structure and corresponding parameters of 

a heuristic, thereby covering a larger area of the heuristic search area (Nguyen et 

al., 2017a). Another key benefit of the GP variable representation is that the best 

scheduling rule (structure and contents) for a given scheduling problem is 

usually not known in advance, and therefore it is not reasonable to impose a 

fixed structure on all generated rules (Hildebrandt et al., 2010a). 

 

2) Availability of multi-objective optimization techniques: Although the GP 

algorithm has a different encoding scheme compared with other evolutionary 

algorithms, most of the current multi-objective optimization techniques available 

in the evolutionary computation literature can be easily integrated with the GP 

approaches. For instance, Tay and Ho provided the first work that aimed to solve 

flexible multi-objective DJSSP with respect to minimizing makespan, mean 

tardiness, and mean flow time objectives (Tay and Ho, 2008). In this study, the 

objective function is constructed by combining the objectives into a linear 

weighted sum in which all the objectives have the same priority. Moreover, 

Nguyen et al. combined the GP approach with NSGA-II and SPEA2 methods to 

evolve scheduling rules for multi-objective DJSSP under a single simulation 

scenario (Nguyen et al., 2015a). Finally, the authors of one study (Masood et al., 

2016) have integrated the NSGA-III algorithm, which is one of the latest and 

well-known multi-objective optimization methods, with the GP algorithm for 
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creating dispatching rules under static job shop settings while optimizing five 

performance measures. 

3) The obtained results can be analysed and partially interpreted: Typically, 

GP individuals are represented using the expression tress structure composed of 

leaf nodes (features) and internal nodes (arithmetic functions and logic 

operators). The tree structure is one of the most intuitive ways to represent 

mathematical functions. Therefore, there is no need to use sophisticated 

decoding methods to convert GP individuals into a human-readable format 

(Branke et al., 2016a). The evolved rules can also be directly provided to a 

discrete event simulation model of a given scheduling problem for fitness 

assessment without any pre-processing. 

 

4) An increasing number of GP articles for production scheduling problems 

and promising results have been reported in the existing literature: Nguyen 

et al. provided a comprehensive review of existing studies from 2000 to 2017 on 

using GP for automated design of production scheduling rules (Nguyen et al., 

2017a). They reported that although there were only four papers between 2000 

and 2004 on this topic, there has been significant growth in the number of 

studies since 2010, reaching 69 papers between 2010 and 2017. Recently, a book 

has been published reporting several successful applications of GP approaches 

in developing high-quality dispatching rules that outperform common human-

made rules across a wide variety of job shop scheduling environments and 

objectives (F. Zhang et al., 2021d). 

1.2 Limitations of Existing Studies  

Although the dispatching rules evolved using the genetic programming algorithm 

have obtained better performance compared with manually made rules in the literature, 

the use of the GP to automatically generate scheduling rules is relatively new. 

Therefore, there are many limitations and research opportunities in existing GP 

approaches. As shown in Figure 1.4, the current limitations can be categorized into two 

key classes including limitations of using the GP approach in static scheduling 

problems, and dynamic scheduling problems. Although the two classes share the same 

problem with the high computational costs of GP, they differ with respect to population 

diversity and the time required for fitness assessments.  
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Figure 1.4: Challenges of using the GP approach for static and dynamic JSSPs, 

current solution approaches (bullets), and their limitations (numbering) 

1) The limitations of automatically generating dispatching rules in SJSSPs using the 

GP approaches are as follows. 

a) The first challenge is the premature convergence (low solution quality) caused 

by the low diversity among GP individuals. Because all operational information 

is available in static scheduling problems and no unexpected events occur during 

the scheduling horizon, thereby the scheduling problem does not change during 

the evolution generations. Consequently, a GP individual that gets a high fitness 

value in one generation will achieve the same high performance in the upcoming 

generations. Thus, this rule has a higher probability of survival in the following 

generations and other individuals will copy its genetic information. Resulting in 

a well-known phenomenon in the evolutionary computation literature called 

“premature convergence” (Pandey et al., 2014). Premature convergence is 

defined as the condition in which the GP individuals converge very early to a 

suboptimal region due to a loss of diversity within the population leading to low-

quality solutions. In order to increase diversity between individuals, several 

distance metrics have been developed. The type of metrics that measures 

similarity (distance) between individuals based on their syntactic structure is 

called “genotypic” metrics, whereas “phenotypic” metrics assess similarity based 

on the actual performance of compared rules (Burke et al., 2002).  
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There are two limitations in the existing genotypic metrics as follows.  

• They only consider the position of the nodes in GP individuals while 

neglecting the interaction effect between a specific node and its parents. 

• Most distance metrics assume that all nodes have the same weight, which 

is not the case in scheduling rules where nodes closer to the root have a 

greater influence than nodes farther away.  

 Regarding phenotypic metrics, 

• They are computationally expensive compared with genotypic metrics 

because they require fitness evaluations of individuals in measuring the 

distance between them.    

b) The second challenge is the high computational costs of GP approaches due to 

the unjustified, significant growth in the size of generated rules across 

generations without a tangible return in fitness values.  This is a common 

behaviour commonly observed in GP algorithms and other variable-length 

genomes methods and is known as the "bloat effect" (Luke and Panait, 2006). 

The bloating effect negatively affects GP searching ability in three ways. 

• It shows down the search process by wasting computing resources in 

evaluating large individuals (complex mathematical functions) with 

many redundant elements.  

• It reduces the probability that genetic operators will alter important parts 

of evolved rules.  

• It reduces the possibility of evolving rules being interpreted by decision-

makers, and thus reduces the chances of their use in industry (Mori et al., 

2008).  

Therefore, two main methods are commonly used in the literature to impair 

the bloating effect in the GP approaches. The first method is to specify the 

maximum allowable size of evolved rules using the maximum tree depth or the 

maximum number of nodes at each rule. The main drawback of this approach is 

the lack of theoretical background (trial and error is the only technique 

available) on how to determine the maximum size of evolved rules because the 

size of the best base is not known in advance (Nguyen et al., 2017a). The second 

method is to consider the size of evolved rules as an objective that can be 

optimized using multi-objective optimization approaches. Generally, this 

approach indirectly optimizes the size of the rules, that is, if there are two rules 
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with the same fitness values in the selection stage, then the GP algorithm selects 

the rule with a smaller size (tiebreaker) (Burks and Punch, 2015). The main 

limitation of this approach is that in the case where the GP population is very 

diverse (large range of fitness values), it will have no or minimal effect in 

reducing the size of evolving bases. 

2) The limitations of automatically generating dispatching rules in DJSSPs using the 

GP approaches are as follows.  

a) The first challenge is similar to that in the static scheduling problems which is 

the high computational time of the GP approaches due to the bloating effect 

caused by relatively different causes. In contrast to the case in SJSSPs, the GP 

population in DJSSPs is highly diverse due to the influence of dynamic events. 

Therefore, the fitness value of specific rule changes from one generation to the 

next due to the use of a new random seed in each generation, which changes the 

configuration of the job shop under study (processing times, due dates, job 

arrivals, etc.) (Hildebrandt et al., 2010a). This reduces the benefit that can be 

obtained from the use of the bloating control methods used in the static methods, 

although the maximum depth of the tree is frequently used (Branke et al., 

2016a). Moreover, due to the large variability among evolved rules with 

different tree structures and contents, it is difficult to distinguish between 

significant and irrelevant terminals. Therefore, two approaches have been 

proposed to reduce the size of evolved rules which are feature selection 

methods, and constrained GP representations. Although the existing feature 

selection methods have been successfully reduced the size of GP rules in several 

studies without compromising the quality of generated rules, they suffer from 

two major drawbacks (Mei et al., 2016, 2017a; F. Zhang et al., 2021a).  

• Most of the current methods are offline feature selection methods which 

means they require multiple expensive GP runs (pre-processing) to 

determine the important terminals to be used in subsequent GP runs (F. 

Zhang et al., 2021a). Therefore, they have huge overhead computational 

costs. In addition, the use of an attribute vector to represent the 

importance of each terminal on its corresponding rule is a promising 

approach to reducing the size of the GP rules (Nguyen et al., 2018a). Its 

main limitation is that attribute vectors do not provide accurate 

information about their priority functions because they do not consider 
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situations in which a particular attribute might not be present in the 

priority function (Shady et al., 2021a). 

• The existing feature selection methods use a binary discrimination 

method, i.e., inclusion or exclusion of a particular feature from the 

terminal set, which ignores the relative importance of the respective 

terminals at different stages of the GP run (Nguyen et al., 2018a).  

Regarding the use of constrained GP representations to control bloating 

effect, the Gene Expression Programming (GEP) algorithm introduced in 

(Ferreira, 2001) has been used as an alternative to the GP algorithm when the 

size of evolved rules is significantly important. GEP algorithm uses fixed-length 

linear strings (chromosomes) to represent expression trees of various shapes and 

sizes, thereby the bloating effect is not as pronounced as in the GP algorithm. 

However, the rules evolved using the GEP approach might contain irrelevant 

terminals because there is no direct way to eliminate their occurrence. To the 

best of our knowledge, there is no feature selection approach proposed in the 

literature for the GEP representation. 

b) The second challenge in the automatic generation of scheduling rules in DJSSPs 

is the high fitness evaluation time that adds to the overall computational costs 

of the GP  algorithm. Discrete Event Simulation (DES) models of the dynamic 

job shops are usually developed to introduce stochastic variables such as job 

arrivals, due dates, processing times, etc. in an easier and more flexible way as 

compared with analytical methods. However, DES models used in the case of 

DJSSPs have much greater computational needs in contrast to static instances 

used in SJSSPs. Therefore, computationally cheaper fitness evaluation models 

known as “surrogates” have been introduced to reduce the fitness evaluation 

time of DES models. Two surrogate models have been proposed to overcome 

this challenge in the field of automated design of dispatching rules for DJSSPs 

using GP. The literature surrogate models are:  

• Phenotypic characterization model (Hildebrandt and Branke, 2015a).  

• Simplified models (Nguyen et al., 2017d). 

Regarding the phenotypic characterization model, the surrogate model is 

based on a decision vector that estimates the fitness of a given rule by using the 

same fitness value of the most similar rules generated in the previous generation. 

One drawback is that the dimensions of the decision vectors must be large 
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enough to adequately distinguish between evolving rules. Another limitation of 

this surrogate model is that the prediction accuracy is very low, as reported in 

(Nguyen et al., 2017d). In contrast, the simplified surrogate models do not use a 

decision vector or any performance-related information from previous 

generations. The main idea of these models in reducing computational time is to 

use smaller versions of the actual job shop understudy, i.e., a smaller number of 

jobs and machines. Although the simplified models achieved high prediction 

accuracy with a significant reduction in computational costs, they do not use any 

information collected during simulation evaluation.  

1.3 Research Objectives 

The overall objective of this thesis: is to automatically generate high-quality 

dispatching rules in concise structures with low computational costs for the static and 

dynamic job shop scheduling problems by enhancing the performance of the GP 

algorithm. Although dispatching rules are widely used in real-world applications, it has 

been noted that the main limitation on the widespread use of GP approaches to 

automatically evolve rules is the high computational burden, which always takes hours 

or even days of training time as well as the complexity in understanding the behaviour 

of evolved rules. The size of GP rules is not only one of the main reasons for the high 

computational time of GP approaches, but also has a direct impact on interpretability 

because complex (large) rules are more challenging to interpret by decision-makers than 

simple (short) rules. Thus, these rules are less likely to be adopted in the industry. It is 

noteworthy that all GP approaches proposed in this thesis were developed and evaluated 

in a specific problem domain of the GP algorithm, which is the automatic generation of 

scheduling rules, and thus other GP applications are out of the scope of this work. 

As shown in the previous section, the performance of the GP algorithm in 

generating high-quality dispatching rules relies heavily on the problem under 

investigation. In other words, the GP limitations in the field of automatic generation of 

scheduling rules are different in the case of SJSSPs than in the case of DJSSPs. 

Therefore, the overall research objective can be divided into five sub-objectives. In 

addition, these objectives are categorized into two major groups in the same manner as 

used in the literature limitations section, as shown in Figure 1.5:  

1. Objectives related to the automatic generation of dispatching rules in SJSSPs 

using the GP approach. 
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2. Objectives related to the automatic generation of dispatching rules in DJSSPs 

using the GP approach. 

 

Figure 1.5: Research objectives that are addressed in this thesis with the proposed 

solution approach for each objective. 

Thus, the details of the objectives addressed in this thesis are presented as follows. 

1) Objectives related to the automatic generation of dispatching rules in SJSSPs using 

the GP approach: 

a) The first objective is to increase diversity among GP rules to overcome the GP 

premature conversion, and thus increase the quality of evolved rules. This 

objective consists of two main challenges. The first challenge is how to measure 

the similarity of GP individuals and represent them in numerical form. In other 

words, a distance metric should be developed that captures the main 

characteristics of generated rules and brings out the similarities between them in 

an easy-to-optimize format. Second, the proposed distance metric needs to be 

computationally efficient so as not to overburden the GP algorithm. Therefore, 

this thesis develops a new distance metric to estimate the similarity between the 

evolved rules considering these two challenges. The proposed distance metric 

relies on the genotypic similarity between GP rules and the best rule evolved so 

far, thereby it has lower computational costs compared with literature 

phenotypic distance metrics. Also, it addresses the limitations in the existing 

genotypic metrics by considering the interaction effect between nodes and their 

parents, as well as giving a higher weight to nodes near the root than to more 
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distant nodes. The distance metric estimates similarity between two individuals 

with a numerical value between 0 and 1, where "0" indicates that the two rules 

are completely different and "1" indicates they are identical. Therefore, in order 

to increase population diversity, the similarity values of GP individuals have to 

be maximized, which is addressed in the following objective. 

b) The second objective is to reduce the computational time of the GP algorithm 

by reducing the size of evolved rules. Controlling the bloating effect will also 

increase the understandability of evolved rules, which increases the likelihood 

that the best-generated rules will be used in real-world scheduling problems. 

There is a major challenge in restricting the size of generated rules without 

negatively affecting their performance. Specifically, when the size of evolved 

rules alone is considered as an objective, then smaller rules will be generated 

(selected through generations) even if they have poor performance. In contrast, 

if the solution quality alone is considered as an objective, then high-quality rules 

will be generated without any limitations regarding their size. Therefore, a 

multi-objective GP framework is proposed for SJSSPs to simultaneously 

optimize diversity value (using the proposed distance metric), solution quality, 

and size of generated rule. The idea behind considering the three objectives 

simultaneously with the same weight is due to the conflicting nature between the 

solution quality and rule size, and between diversity value and rule size (small 

rules have a smaller diversity range compared with large rules). Consequently, 

rules with higher diversity values, smaller sizes, and higher performance have a 

higher probability of surviving across generations. It is worth noting to consider 

diversity value and solution quality at the same time when selecting rules helps 

in balancing the exploration and exploitation ability of the GP algorithm (better 

search space exploration).  

2) Objectives related to the automatic generation of dispatching rules in DJSSPs using 

the GP approach: 

a) The first objective is to reduce the computational time needed for the tree-

based GP approach. Although the tree representation helps the GP algorithm to 

obtain dispatching rules of different sizes and contents, it is the most susceptible 

representation to the bloating effect. As mentioned in the literature limitations 

section 1.2, maximum tree depth is the most widely used method to control 

bloating in the existing studies although it cannot guarantee the quality of 

evolved rules. In contrast, feature selection using attribute vectors proposed in 
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(Nguyen et al., 2018a) and constrained GP representation used in (Ozturk et al., 

2019) achieved promising results regarding the performance and size of evolved 

rules. Consequently, this thesis aims to enhance the performance of these two 

promising methods. Regarding feature selection, the limitations in the existing 

feature selection methods stated previously are addressed in the proposed 

approach as follows.  

• This thesis develops an online feature selection method for the GP 

algorithm that uses the evolutionary information generated in previous 

generations to select important terminals in an adaptive manner.  

• The proposed feature selection method does not require any GP runs, and 

uses a probabilistic discrimination scheme (probability of selecting a 

specific terminal) to choose terminals instead of the binary method used 

in the literature.  

Regarding the constrained GP representations, this challenge is considered in 

more detail in the following research objective.  

b) The second objective is to reduce the computational time of the GP algorithm 

in the case of using a GP constrained representation. In contrast to the first 

objective, where the tree-based (variable-length representation) GP approach is 

used, the fixed-linear representation of the GEP algorithm is used. Changing the 

encoding scheme of individuals not only affects the tendency of the GP 

individuals to increase in size, but also determines the set of genetic operators 

that can be used based on the chosen representation (Ferreira, 2001). Therefore, 

the feature selection approach that gets good results in the case of the tree-based 

GP algorithm does not guarantee that similar performance will be achieved in 

the case of the GEP algorithm; i.e., better, similar, or worse results might be 

obtained. Therefore, this objective can be broken down into the following 

research questions.  

• How to propose a feature selection method applicable to the GEP 

representation? To the best of our knowledge, there is no feature 

selection method in the literature for the GEP algorithm. 

• Is it effective to integrate feature section methods with a fixed-length GP 

representation such as the GEP algorithm? and if yes, would they 

negatively affect the GEP exploration ability as it is already restricted?  
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In order to answer these questions, this thesis modifies the feature selection 

approach proposed for the GP algorithm to be applicable to the GEP algorithm. 

Afterward, the performance of integrating the modified feature selection 

approach with the GEP algorithm is assessed across different DJSSP instances 

and objective functions. 

c) The third objective is to reduce the fitness evaluation time of generated 

individuals. The main reason behind the high computational costs is the use of 

DES models to imitate the behaviour of the dynamic job shop understudy. 

Therefore, this objective is concerned with overcoming the following 

challenges.  

• Propose a surrogate model to reduce the simulation length (runtime) of 

DES models used in fitness assessment without miss-ranking the 

performance of evolved rules.  

• The proposed model has to be independent of the structure of the GP 

evolved rules in order to be applicable to other GP approaches.  

The simplified models proposed in (Nguyen et al., 2017d) are the latest 

models used to reduce fitness assessment in the field of automated design of 

dispatching rules while maintaining high prediction accuracy. Therefore, this 

thesis proposes an approach to reduce the computational costs of the simplified 

models without sacrificing accuracy. Specifically, the proposed approach aims 

to reduce the simulation length of the simplified models by collecting fitness-

related information during evaluating the performance of a small set of GP rules 

(training rules). Then, a machine learning model is trained using the collected 

information to develop a simple function (surrogate model) that will replace the 

excluded simulation interval. Finally, the remaining rules are evaluated using the 

simplified model with a shortened simulation length and the developed surrogate 

model. 

1.4 Major Contributions 

In order to address the five aforementioned sub-objectives in the previous section, 

this thesis offers five major contributions to the current literature on the automatic 

generation of scheduling rules using the GP algorithm for JSSPs as follows. 

1) In order to increase the diversity of generated rules that positively affect the 

quality of their solutions in the case of SJSSPs, this thesis introduces a distance 
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metric to measure the similarity between GP individuals based on their 

genotypic characterization. The proposed metric differs from the similarity 

metrics in the literature as follows: 

a) It considers not only the positions of the nodes but also the interaction 

effect between the nodes and their parents in estimating similarity values. 

b) It is a genotypic-based similarity measure, thereby there is no need to 

estimate fitness values for evolved rules using expensive simulation runs 

as for phenotypic metrics. 

c) It prioritizes the weight of the nodes closest to the root node compared 

with those farthest to match the nature of the rules used in JSSPs. 

2) For the sake of creating high-quality dispatching rules for SJSSPs in a smaller 

computational budget and concise structures, this thesis proposes a multi-

objective framework by integrating NSGA-II with the GP algorithm to 

simultaneously optimize diversity value, rule length, and solution quality in 

static job shop settings. The proposed approach helps the GP algorithm avoid 

premature convergence and reduce the size of evolved rules while maintaining 

high fitness values. In contrast to the existing methods, the proposed approach 

has the following advantages. 

a) The framework considers the size of GP rules as a direct objective to be 

optimized rather than using it as a “tiebreaker” when two rules have the 

same fitness values. This reduces the size of generated rules which has a 

significant impact on reducing computational time and increasing the 

interpretability of the best rules. 

b) The framework does not depend on the system settings of the job shop 

understudy or the performance measures to be improved.  

3) In order to increase the interpretability of evolved rules and speed up the process 

of the automatic generation of scheduling rules, this thesis proposes a feature 

selection approach to reduce the size of GP rules and reduce GP computational 

costs by modifying the attribute vector proposed in (Nguyen et al., 2018a). The 

proposed feature selection approach extends the GP literature by offering the 

following advantages. 

a) The attribute vector is strictly linked to its corresponding rule which 

helps in gathering useful information from complex tree structures. In 

addition, any change that might occur in the attribute vector of a specific 

rule will have a direct impact on the performance of the rule. 
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b) The attribute vector uses an adaptive selection scheme to estimate the 

probability of selecting a particular terminal instead of the binary 

discrimination usually used in literature methods. 

c) The feature selection approach uses the evolutionary information 

collected from previous generations using attribute vectors of rules to 

estimate the weights of the terminals in the next generation. 

4) In order to check the applicability of the proposed approach when using fixed 

representation to encode dispatching rules, this thesis modifies the feature 

selection approach proposed for the GP algorithm to be applicable to the GEP 

algorithm where evolved rules are represented using linear chromosomes. The 

integration of the proposed feature selection approach with the GEP algorithm 

adds the following points to the existing literature. 

a) The use of feature selection to control bloating in constrained GP 

representations has not yet been reported in the literature on the 

automated design of scheduling rules. 

b) It increases the likelihood of using the proposed approach in more 

complex manufacturing environments due to the significant reduction in 

training time resulting from both restricted search space and the ability to 

select important features only. 

5) In order to speed up the automatic generation of dispatching rules, this thesis 

proposes three surrogate models to reduce the time needed for fitness assessment 

which is the most computationally demanding step. The surrogate models aim to 

replace part of the simulation length of an expensive DES model with a simple 

mathematical function. This significantly reduces computational times due to the 

large number of generated rules that must be evaluated. Consequently, the 

proposed surrogate models achieve the following advantages. 

a) They are built on the simplified models that get higher prediction 

accuracy compared with the phenotypic model (Nguyen et al., 2017d). 

b) They have a low computational budget and the same prediction accuracy 

compared with the simplified models (Nguyen et al., 2017d). 

c) They only depend on the behaviour of the DES model, and therefore they 

can be used with algorithms other than GP or GEP algorithms. 

d) It is the first attempt to use machine learning to abstract a DES model of 

DJSSPs. Therefore, there is a wide range of research opportunities to 

develop other machine learning techniques using the same concept.  
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1.5 Thesis Outline 

The remainder of this thesis is organized as shown in Figure 1.6. Chapter 2 provides 

a literature review of related work where problem domains are highlighted in blue, and 

literature limitations are highlighted in red. Chapter 3 is the only chapter focusing on the 

SJSSPs. The major contributions of this thesis are presented in four chapters from 

Chapter 3 to Chapter 6 where the proposed solution approaches are highlighted in 

green. Chapter 7 presents the conclusions and future directions for research. An 

overview of each chapter is presented as follows.  

Chapter 2 provides a review of production optimization techniques with an 

emphasis on job shop scheduling. In addition, a detailed explanation of several solution 

approaches that have been proposed for different job shop scheduling environments is 

given, with the advantages and limitations of each method. The basic concepts of 

dispatching rules, hyper-heuristics, and automated design of scheduling heuristics are 

illustrated. Moreover, a review of current research articles related to the use of the GP 

algorithm to automatically generate dispatching rules is presented. Finally, the 

limitations of the existing literature are discussed in detail. 

Chapter 3 covers the proposed distance metric for measuring similarities between 

dispatching rules in case of static job shop scheduling problems. The multi-objective GP 

framework is proposed to optimize the fitness, diversity, and size of the evolved rules. 

Finally, the performance of the proposed framework is evaluated across multiple 

instances (different sizes and difficulties) of SJSSP and two objective functions. 

Chapter 4 proposes a feature selection approach for identifying important terminals 

and excluding insignificant ones during GP runs. Existing articles that have developed 

feature selection methods in the field of automated design of dispatching rules are also 

briefly discussed. Moreover, the limitations of current feature selection methods are 

analysed. Finally, the performance of integrating the proposed feature selection with the 

GP algorithm is shown in terms of computational time, rule length, and solution quality.  

Chapter 5 build on the work of Chapter 4 by modifying the feature selection 

approach proposed for the tree-based GP algorithm to be applicable to the fixed-length 

GEP algorithm. The effectiveness of the proposed approach is evaluated under different 

dynamic job shop scheduling instances and three scheduling objective functions. 

Moreover, the results obtained using the GEP feature selection approach are compared 



Chapter 1: Introduction 

     35 

with those obtained using the literature approaches with respect to computational time, 

the average size of evolved rules, and solution quality. 

Chapter 6 proposes a surrogate assisted GEP approach to reduce the evaluation time 

needed to estimate the performance of evolved rules. In addition, current surrogate 

models from the literature are illustrated. Finally, the proposed surrogates are compared 

with their counterparts from the literature regarding computational time and prediction 

accuracy.  

Chapter 7 provides a summary of the findings of this thesis as well as a list of 

possible future research directions. 
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Figure 1.6: Structure of this thesis including problem domain, literature 

limitations, and proposed approaches used in each chapter  
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Chapter 2. LITERATURE REVIEW 

This chapter begins by introducing the impact of the manufacturing sector on the 

global economy. The definition of the production planning and control concept and its 

main components are given, with the main focus on production scheduling activities. 

Then, job shop scheduling problems are described, including terminologies, notations, 

problem formulation, classes of schedules, etc. Moreover, a review of solution 

approaches is provided for both static and dynamic job shop settings, in which a deeper 

analysis is made of evolutionary algorithms and dispatching rules. Then, an overview of 

the types of hyper-heuristics used to select or generate heuristics is provided. This 

chapter also presents the main components of the GP algorithm, such as representation, 

evaluation, selection, genetic operators, and pseudocode of a basic GP algorithm. 

Afterward, the related work to the automatic generation of dispatching rules using the 

GP algorithm under different scheduling environments is covered. In addition, the 

limitations of the current literature are discussed, including premature convergence, GP 

bloating effect, feature selection methods, and high computational time. 

2.1 Introduction 

Manufacturing facilities have a significant impact on the national economies of 

countries, including gross domestic product, meaningful return on investment, 

employment rate, the link between manufacturing and innovation, and national security 

(Wang, 2018). Also, decision-makers seek to quickly adjust production systems to adapt 

to fluctuations in market demand, individual customization, a globalized market, and 

environmental pressures. Therefore, production planning is a necessity for 

manufacturing facilities to make the production process as efficient as possible 
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according to customers and organizational needs. Production planning can be defined as 

an administrative procedure that takes place within a manufacturing company to ensure 

that enough raw materials, workers, and other resources are available to generate final 

products according to the predetermined schedule (Kiran, 2019). Production planning 

activities are categorized into three major planning levels based on the length of the 

planning horizon as follows (Maravelias and Sung, 2009; Stadtler et al., 2015). 

1) Long-term planning. Strategic decisions are made at this level which lay the 

foundation for the future development of the manufacturing organization over 

several years. Typically, decisions included in long-term planning are plant 

location and layout, product development, process development, equipment 

planning, material handling, employee welfare, etc. 

2) Mid-term planning. It establishes a framework for routine operations, including 

basic quantities and timings for the flows and resources in a specific 

manufacturing system. The planning horizon extends from 6 to 24 months. 

Material requirement planning, production planning, and distribution planning 

are some examples of the tactical decisions involved in mid-term planning. 

3) Short-term planning: All actions must be specified as comprehensive tasks for 

immediate execution and control. As a result, short-term planning models need 

the greatest level of precision as they have a great influence on the actual 

performance. The planning horizon might range from a few days to three 

months. Operational tasks include material control, quality control, machine 

loading, production scheduling, transport planning, etc. 

Over the last decades, short-term production scheduling has been studied from 

various perspectives to develop efficient methods for a variety of manufacturing 

environments to deliver on-demand products to customers in a cost-effective manner 

(Dolgui et al., 2019). Production scheduling is a complex decision-making procedure 

for assigning tasks to a limited number of production resources with the goal of 

optimizing one or multiple objectives under constraints related to processes, resources, 

and system settings. In 1954, Johnson proposed a two-machine flow shop scheduling 

model with the objective of minimizing makespan (Johnson, 1954). This model is 

considered the first work in the scheduling literature. Since then, multiple scheduling 

approaches have been suggested for different manufacturing paradigms including 

centralized scheduling, distributed scheduling (Toptal and Sabuncuoglu, 2010), 
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decentralized scheduling (Minguillon and Lanza, 2019), and cloud manufacturing 

scheduling (Liu et al., 2019).  

Job shop scheduling problems typically belong to centralized scheduling 

environments. As shown in Figure 2.1, centralized scheduling approaches can be 

classified based on five major factors (Jiang et al., 2021). They are the production 

environment, processing characteristics of operations, resource constraints, objective 

function, and system configuration. Regarding resource constraints, one-piece refers to 

a manufacturing system where products can flow one by one through each step of the 

process. Batch, on the other hand, refers to manufacturing methods in which products 

are moved from one phase to the next in groups (batches). The scheduling problems 

addressed in this thesis include one-piece resource constraints. In addition, the other 

factors are explained in more detail in the upcoming sections.   

 

Figure 2.1: Classification of centralised scheduling 

2.2 Job Shop Scheduling  

2.2.1 Problem Description 

The notations used to describe general JSSP instances are as follows.  

• There are a number of 𝑀 machines on the shop floor that need to process 𝑁 jobs.  

• Each job 𝑗 that arrives on the job shop floor has a set of 𝑁𝑗 operations that have 

to be processed in the same sequence to complete the job.  

• The due date assigned to job 𝑗 is indicated as 𝑑𝑗.  
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• Each operation 𝑜𝑖𝑗  for a job 𝑗 , which is the 𝑖 th operation of job 𝑗 , has a 

processing time 𝑝(𝑜𝑖𝑗), which determines how long the operation needs to be 

processed by a particular machine 𝑚(𝑜𝑖𝑗).  

• The time when an operation 𝑜𝑖𝑗 of a job 𝑗 is ready to be processed on a given 

machine is referred to as operation ready time 𝑟(𝑜𝑖𝑗), which is the completion 

time of its preceding operation (𝑜𝑖−1,𝑗).  

• The release time of job 𝑗 denoted as 𝑟𝑗  is equal to the ready time of its first 

operation 𝑟(𝑜1𝑗).  

• The completion time of job 𝑗, when all operations finish processing, is referred 

to as 𝐶𝑗.  

• The weight of job 𝑗 denoted as 𝑤𝑗 represents the importance of the job in goals 

related to customer satisfaction such as weighted tardiness objective. 

The model parameters that remain constant from the moment a job 𝑗 arrives on the 

shop floor are 𝑟𝑗, 𝑁𝑗, 𝑝(𝑜𝑖𝑗), 𝑚(𝑜𝑖𝑗), 𝑑𝑗, and 𝑤𝑗. In contrast, model variables that change 

depending on scheduling decisions made during the production process are 𝑟(𝑜𝑖𝑗), and 

𝐶𝑗. In order to obtain valid schedules for JSSPs, there are many constraints that have to 

be taken into account as follows. 

• Operation 𝑜𝑖−1,𝑗  must finish processing before operation 𝑜𝑖𝑗  can start 

processing. 

• No job can be processed on more than one machine at any time. 

• Only one job can be processed by a machine at a time. 

• No job can begin processing before its arrival in the shop. 

• A job cannot be processed before it arrives on the shop floor. 

• Job routing has to be maintained during the planning horizon and no alternative 

routes are allowed. 

In the absence of precedence relationships between operations, that is, operations 

can be processed by machines in an arbitrary order, this problem is known in the 

scheduling literature as an “open shop” scheduling problem. In contrast, if all jobs 

follow exactly the same machinery sequence, then the problem is called a “flow shop” 

scheduling problem. In addition, in a parallel machine environment or “flexible job 

shop”, there is a collection of work centres where there are a number of machines in 

each centre that can process a given operation.  
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There are two main classes of job shop scheduling problems, static and dynamic 

problems.  In static scheduling problems, the set of jobs on the shop floor does not 

change over time. In contrast, new jobs can arrive on the shop floor at any time point 

during the production process in dynamic scheduling problems. Another key factor to 

consider in JSSPs is the uncertainty of the processing data, such as release times, 

processing times, due dates, etc. If all the processing information is known in advance 

before the production begins, then it is a deterministic scheduling problem, whereas 

information uncertainty is inherent in stochastic scheduling problems. Specifically, 

when a job arrives on the shop floor in either a static or dynamic pattern, it joins the 

queue of the first machine, in its route, to process the first operation with a deterministic 

or stochastic processing time. When the first operation is completed, the job moves to 

the next machine in its operation sequence. After the last operation in a given job is 

processed, the job exits the shop floor, and its completion time is updated. When all the 

required number of jobs are processed, a schedule is obtained that determines the start 

and finish time of each operation for all jobs.  In order to assess the quality of the 

obtained schedule, several objective functions have been developed and frequently used 

in previous studies (Nguyen et al., 2015a; Shady et al., 2021b; Tay and Ho, 2008) as 

shown in Table 2.1, where 𝑓𝑗  denotes the flow time of a job 𝑗. Set 𝕋 represents the 

collection of tardy jobs; and ℂ stands for the set of completed jobs.  

Table 2.1 Objective functions for job shop scheduling problems 

Objective function Equation 

Makespan 𝐶𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑗∈ℂ {𝐶𝑗} 

Mean Flowtime 𝐹 =  
∑ 𝑓𝑗𝑗∈ℂ

|ℂ|
 

Maximum Flowtime 𝐹𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑗∈ℂ {𝑓𝑗} 

Mean Tardiness 𝑇 =  
∑  (𝐶𝑗 −  𝑑𝑗)𝑗∈𝕋

|𝕋|
, 𝕋 = {𝑗 ∈ ℂ: 𝐶𝑗 −  𝑑𝑗  > 0} 

Max Tardiness 𝑇𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑗∈𝕋 {𝐶𝑗 −  𝑑𝑗} 

Percentage of Tardy Jobs %𝑇 = 100 × 
|𝕋|

|ℂ|
 

Total Weighted Tardiness 𝑇𝑊𝑇 =  ∑  𝑤𝑗 (𝐶𝑗 −  𝑑𝑗)
𝑗∈𝕋
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2.2.2 Classes of Schedules 

Because there are an infinite number of ways to insert idle time in a given schedule, 

there are an infinite number of potential schedules that can be generated for any job 

shop scheduling problem. In other words, when a machine becomes idle at a certain 

time (after the current process is finished), the scheduling algorithm must decide which 

job to process. Therefore, there are three basic classes of schedules as follows (Pinedo, 

2012). 

1) Active schedule. It is a feasible schedule where it is not possible to create 

another schedule where at least one operation completes earlier than the 

original schedule while having at least one operation that finishes later than 

the original schedule. In other words, an active schedule cannot be modified 

to make one process finish early without making another process finish later. 

2) Semi-active schedule. It is not possible to make an operation finish 

processing earlier without changing the order of processing operations on 

any of the machines on the shop floor. 

3) Non-delay schedule. It is a feasible schedule where no machine is kept idle 

while there is a job waiting in the machine queue. That is, a machine is 

allowed to be idle if there are no waiting jobs, otherwise, the machine starts 

processing one of the waiting jobs based on the scheduling algorithm 

immediately upon completion of the current job. 

Giffler and Thompson have proven that the optimal solution for job shop scheduling 

in the case of minimizing the makespan objective must be an active schedule (Giffler 

and Thompson, 1960). Figure 2.2 presents a generalized procedure to create active, non-

delay, or hybrid (active and non-delay) schedules for job shop scheduling problems with 

a predefined scheduling rule (Nguyen et al., 2017a). This algorithm has been commonly 

used in the scheduling literature to deal with a variety of production scheduling 

problems. The algorithm begins by defining a set of unscheduled operations (Ω) that are 

ready to be processed. Then, the algorithm determines the operation (𝜎∗ ) with the 

earliest completion time 𝑆(𝑚∗) and its corresponding machine (𝑚∗). Accordingly, a set 

of all operations with a ready time smaller than 𝑆(𝑚∗) +  𝛼(𝑡(Ω) − 𝑆(𝑚∗))  is created. 

The 𝛼 parameter is a non-delay factor 𝛼 ∈ [0, 1] to control the look-ahead ability of the 

procedure i.e., it restricts operations included in the set Ω′. In other words, if 𝛼 = 0, 

only non-delay schedules can be created (operations that are waiting at the queue of 

machine 𝑚∗), whereas if 𝛼 = 1, the algorithm creates an active schedule by considering 
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all operations ready to be processed (join the machine's queue) before the earliest 

completion time of 𝑚∗. On the other hand, if the non-delay factor has a value between 0 

and 1, then hybrid schedules are created of both active and non-delay schedules. 

 

Figure 2.2: Generalized schedule construction algorithm 

 

According to (Ouelhadj and Petrovic, 2009), the real-time events that can occur in 

dynamic scheduling problems can be classified into two major categories as follows. 

1) Resource-related events: Including unforeseen events that will influence the 

performance of production resources, such as machine breakdowns, 

maintenance, changes in job setup times, defective materials, delays in arrival, 

shortages of materials, etc. 

2) Job-related events: Including dynamic events affecting jobs, whether these 

events occur due to a change in jobs' properties, for example, processing times, 

number of operations, due dates, etc., or a change in the number of jobs expected 

to arrive on the shop floor during processing, for example, the arrival of urgent 

jobs, cancellation of jobs, early or late arrival of jobs, etc. 

 

This thesis focuses on the job-related dynamic events, including dynamic arrival of 

jobs, stochastic processing times, the number of operations at each job, and jobs' due 

dates are stochastic. 
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2.2.3 Solution Approaches for JSSPs 

This section gives an overview of solution approaches that have been proposed in the 

scheduling literature based on the job shop environment, including static and dynamic 

scheduling problems. As shown in Figure 2.3, there are five major solution approaches 

in the scheduling literature. These approaches are exact methods (mathematical 

programming methods), approximate methods including heuristics and meta-heuristic 

algorithms, simulation methods, and artificial intelligence methods (Jiang et al., 2021). 

Exact methods such as mixed-integer programming, lagrangian relaxation, branch and 

bound, and dynamic programming are the most traditional optimization methods 

proposed in the scheduling literature in order to obtain optimal schedules for static 

problems. Typically, these methods rely on excessive assumptions to reduce the 

complexity (simplification) of the underlying scheduling problem. Also, they are 

computationally impractical for large problem instances because most scheduling 

problems are NP-hard (Pinedo, 2012).  

 

Figure 2.3: Solution approaches for scheduling problems 

Approximate approaches have been developed to overcome the computational 

burden of exact methods i.e., approximate methods aimed at obtaining good enough 

solutions in an acceptable computational budget. Heuristic and meta-heuristic 
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algorithms are the main categories of approximate methods, although their nature is 

different (Gao et al., 2020). Heuristic algorithms such as dispatching rules (Sels et al., 

2012a), NEH algorithm (Liu et al., 2012), Johnson's rule (Johnson, 1954), etc. are 

problem-dependent methods developed to solve specific problems and usually include 

domain knowledge in their searching mechanism. Therefore, Heuristic algorithms are 

not applicable to other problem domains without significant modification. In contrast, 

meta-heuristic algorithms, e.g., genetic algorithm, tabu search algorithm, simulated 

annealing algorithm, etc., are problem-independent methods that can be used for a wide 

variety of problems without the need for significant modification (Onar et al., 2016). 

Simulation models have been widely used in dynamic scheduling to imitate 

stochastic variables that occur in real-world problems because it is very challenging to 

model them using analytical approaches (Ramasesh, 1990). Typically, simulation 

models are combined with other optimization techniques either exact or approximate to 

generate solutions that are evaluated using simulation models. Several simulations 

software have been proposed with user-friendly interfaces to facilitate the modeling of 

manufacturing systems under different production conditions such as Witness (Waller, 

2012), Plant simulation (Bangsow, 2020), and Flexsim (Nordgren, 2002). 

The use of artificial intelligence methods in the field of production planning and 

scheduling has been very active since the 1960s (Çaliş and Bulkan, 2015). Since then, 

artificial intelligence techniques have become powerful solution methods for many 

combinatorial optimization problems including job shop scheduling. Frequently used 

artificial intelligence methods include artificial neural networks (Weckman et al., 2008), 

fuzzy logic (Bilkay et al., 2004), expert systems, multi-agent systems (Kouider and 

Bouzouia, 2012), and hyper-heuristics (Burke et al., 2013). Most of these methods are 

specially developed to solve dynamic scheduling problems with random job arrivals and 

machine breakdowns as reported in (Çaliş and Bulkan, 2015; Mohan et al., 2019).  

1) Approximate Methods for Scheduling Problems  

This section provides more details on the most common heuristics and meta-

heuristic algorithms used to solve both static and dynamic JSSPs. Regarding heuristic 

methods, Johnson's rule is used to minimize the completion time (makespan objective 

function) for a set of jobs that has to be processed on a two-machine flow shop 

(Johnson, 1954). Johnson's rule can achieve the optimal solution if some conditions are 

met including job processing times are known and constant, job priorities are not taken 



Chapter 2: Literature Review 

     46 

into account, and all jobs must follow the same sequence of the two machines. In a 

follow-up study (Jackson, 1956), Jackson's algorithm uses Johnson's rule to minimize 

the makespan objective function in the static two-machine scheduling problem. This 

algorithm can also obtain an optimal solution in polynomial time 𝑂(𝑛 × 𝑙𝑜𝑔(𝑛)) if the 

same conditions are satisfied. Afterward, Palmer's algorithm was introduced in (Palmer, 

1965) for static scheduling problems where there are more than two machines, multiple 

jobs, and Jonson's conditions are not met. Campbell Dudek Smith (CDS) algorithm 

(Campbell et al., 1970) uses Johnson’s algorithm at each iteration to obtain optimal or 

near-optimal schedules in terms of minimum completion time for multiple jobs, and 

multiple machine scheduling problems. Also, Nawaz Enscore Ham (NEH) Algorithm 

has been proposed in (Nawaz et al., 1983) and is known as the insertion algorithm to 

reduce makespan objective for multiple jobs, and multiple machines flow shops. If the 

number of machines on the shop floor greatly exceeds the number of jobs, then the CDS 

algorithm is expected to outperform the NEH algorithm because the effectiveness of the 

former depends on the number of machines and the latter depends on the number of 

jobs.   The aforementioned algorithms follow a set of rules for determining the sequence 

of jobs on the available machines i.e., they prioritize the set of jobs waiting to be 

processed on a machine based on specific characteristics. This idea has influenced 

researchers to design scheduling heuristics known as “dispatching rules” to create 

schedules for different job shop settings and objective functions. For many decades, 

dispatching rules have been extensively studied in the scheduling literature leading to a 

large number of dispatching rules developed for both static and dynamic problems. 

Although dispatching rules is one of the approximate methods initially proposed for 

static problems, they are more commonly used in dynamic environments than other 

solution approaches as reported in (Dominic et al., 2004). Since Chapters 4, 5, and 6 

focus primarily on dynamic settings, dispatching rules are converted in more detail in 

the next section. 

In the past two decades, research on the development of meta-heuristic algorithms 

has been very active due to the high computational costs of exact methods and the 

inability of heuristic methods to adapt to environments other than for which they were 

developed (Garey et al., 1976). Meta-heuristics are higher-level problem independent 

methods that guide the search process to find near-optimal solutions for optimization 

problems. Metaheuristic methods are classified into two categories, local, and global 

search-based algorithms as shown in Figure 2.4. Local search-based methods can find 
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the optimal solution for a specific area of the search space (local optima), or the global 

optima where there is no local optima or the area being searched contains it.  

Local search methods start with a complete candidate solution (schedule) and 

iteratively make small changes (neighbourhood exploration) until there is an 

improvement in the quality of the solution, and then they takes it as a new solution 

(schedule) (Hussain et al., 2019). These methods include simulated annealing algorithm, 

tabu search, iterated local search, variable neighbourhood search, and Greedy 

Randomized Adaptive Search Procedure (GRASP). Teramoto et al. proposed a 

scheduling method based on a simulated annealing algorithm for JSSP with the aim of 

reducing the average flowtime (Teramoto et al., 2020). They developed two methods for 

limiting the neighbourhood of a solution in order to overcome the drawback of 

simulated annealing, where finding good solutions largely depends on the quality of the 

initial solution. The proposed methods obtained higher probabilities of finding effective 

solutions compared with the standard SA algorithm due to its ability to avoid updating a 

solution in the wrong direction. The two identical parallel-machine scheduling problems 

found in many real-world industries are investigated in (Xu et al., 2019). The authors 

used Iterated Local Search (ILS) and a Tabu search method to find a near-optimal 

solution to the problem, with the goal of optimizing the maximum total completion time 

for each machine, that is, increasing the level of machine utilization and decreasing the 

overall waiting time for jobs. The computational results on random instances showed 

that the proposed Tabu search algorithm outperforms two existing (SPT and RSPT) 

algorithms and the ILS method in instances with a small-to-medium number of jobs. In 

contrast, the ILS method performs better than the two SPT and RSPT algorithms as well 

as the Tabu search algorithm in instances with a large number of jobs. Zandieh and 

Adibi introduced a scheduling approach based on a variable neighbourhood search for 

dynamic job shop scheduling problems that take into account random job arrivals and 

machine failures (Zandieh and Adibi, 2010). An artificial neural network was also used 

to update the parameters of the variable neighbourhood search at any rescheduling point 

according to the problem state. The proposed method was compared with the shortest 

processing time, first in first out, and last in first out dispatching rules commonly used 

in the dynamic scheduling literature to optimize the mean flowtime objective function. 

The results demonstrated the efficiency of the proposed method in a variety of job shop 

conditions. 
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Figure 2.4: Meta-heuristic algorithms for scheduling problem 

Global search methods are typically used on relatively complex problems when 

little information is known about the objective function response surface structure, or 

when there are many local optima in the function (Hussain et al., 2019). Global search 

meta-heuristics are categorized into two main categories, evolutionary computation, and 

swarm intelligence. Evolutionary strategies, genetic algorithm, GP are the most 

common evolutionary computational methods used in the scheduling literature. Horng 

et al. proposed an evolutionary algorithm by embedding an evolutionary strategy in 

ordinal optimization to get an acceptable schedule for stochastic job shop scheduling 

problems with the objective of minimizing the expected sum of storage expenses and 

tardiness penalties (Horng et al., 2012). Experimental results from comparing the 

proposed approach with five dispatching rules demonstrated the efficiency of the 

approach in achieving sufficiently good schedules in terms of solution quality and 

computational efficiency. Zhou et al. developed a hybrid heuristic genetic algorithm 

approach to improve the efficiency of the traditional genetic algorithm in reducing the 

maximum completion time of job shop scheduling problems (Zhou et al., 2001). The 

proposed approach integrated SPT and MWKR scheduling rules and neighbourhood 

search technique into the genetic evolution process to improve the solution 

performance. The achieved results demonstrated the superiority of the method over 

literature methods including guided biology search, simulated annealing, and traditional 

genetic algorithm. Since the focus of this thesis is the automatic generation of 

dispatching rules using GP methods, the following sections are devoted to a detailed 

explanation of dispatching rules, the GP mechanism, related studies, and current 

challenges. 
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Swarm intelligence is a branch of evolutionary computing that makes use of the 

collective behaviour of decentralized and self-organized systems represented in a swarm 

or flow of organisms (Kennedy, 2006). Particle Swarm Optimization (PSO) and Ant 

Colony Optimization (ACO) are the two most prominent methods of swarm 

intelligence. Wang et. al proposed an improved particle swarm optimization algorithm 

for DJSSPs with random job arrivals (Wang et al., 2019). The improvement strategies 

include a modified decoding scheme, a population initialization approach, and a novel 

particle movement method. They used a mixed integer programming model to generate 

an initial schedule while minimizing three objective functions. When a new job arrives 

on the job floor, the proposed PSO algorithm reschedules the new jobs to maintain the 

performance and stability of the job shop schedule. Results showed that the improved 

PSO algorithm has high performance compared with five variants of the standard PSO 

algorithm and three meta-heuristics from the literature. Korytkowski et. al. developed an 

approach by integrating a simulation model of a dynamic job shop with a heuristic 

based on ant colony optimization to minimize four objective functions including mean 

flow time, max flow time, mean tardiness, and max tardiness (Korytkowski et al., 

2013). The discrete event simulation model was used to evaluate the local fitness 

function of ants, whereas the ACO algorithm was used to find a good assignment of 

multi-attribute dispatching rules for each machine rather than using a single dispatching 

rule for all machines. The results obtained using a case study demonstrated the ability of 

the proposed approach to obtain better results than the case where only one dispatching 

rule was used in an entire system. 

2) Frequently Used Techniques for Dynamic Scheduling  

According to the literature review of dynamic scheduling in manufacturing systems 

proposed in (Ouelhadj and Petrovic, 2009), the solution approaches used for dynamic 

scheduling problems can be classified into three major groups which are discussed in 

detail below. 

1) Completely reactive scheduling  

No predetermined schedule is generated, and scheduling decisions are carried out in 

real-time during processing. In other words, scheduling decisions are made as soon 

as a specific machine becomes idle (Pinedo, 2012). Due to the short reaction time 

(prompt response) required in completely reactive scheduling, dispatching rules are 

the most widely used approach in practice. Dispatching rules, or scheduling policies, 
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are used to select the next job to be processed (highest priority) from the set of 

awaiting jobs when a machine becomes free. A large number of dispatching rules 

have been proposed in the literature that can be classified on the basis of structure 

into four categories (Jones et al., 1998) as shown in Figure 2.5.  

•  Simple priority rules: It includes rules which are primarily developed using 

job-related information. Examples of simple rules are those based on 

processing times (SPT: shortest processing time), due dates (EDD: earliest 

due date), arrival times (FIFO: first in first out), etc. 

• Combinations of rules: they are used depending on the current situation on the 

shop floor. An example of a combination of rules is the case where the SPT 

rule is used until the number of jobs in a machine's queue exceeds 5, and 

then the FIFO rule is used. This prevents jobs with large processing times 

from being queued for long periods. 

• Weighted priority indices: These rules usually have more than one piece of 

information (attribute) in a linear combination for creating schedules. Each 

attribute included has a weight (coefficient) that reflects its relative 

importance. A common example of this kind of rule is as follows: 𝑟𝑢𝑙𝑒 =

 2 × 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 +  𝑤𝑜𝑟𝑘 𝑖𝑛 𝑛𝑒𝑥𝑡 𝑞𝑢𝑒𝑢𝑒 +  𝑛𝑒𝑥𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒. 

• Composite dispatching rules: Scheduling information is combined into more 

sophisticated structures rather than a linear combination used in weighted 

priority indices. GP methods are usually used to automatically generate this 

kind of dispatching rule as they usually show robust and high performance 

under different scheduling problems (Nguyen et al., 2017a). 

 

Figure 2.5: Classification of dispatching rules 
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     Dispatching rules can also be classified according to their characteristics as static 

or dynamic. Static rules do not depend on the current time on the shop floor, e.g., 

SPT, FIFO, EDD, etc. In contrast, dynamic rules are time-dependent, which means 

that their performance is affected based on the current time, for example, minimum 

slack, critical ratio, cost over time, etc. Another classification is given in (Pinedo, 

2012) where dispatching rules are categorized based on the information, used to 

construct them, into local and global rules. Local rules use the processing 

information available at the machine to choose the next job for processing, such as 

SPT, FIFO, etc. On the other hand, global rules use processing information from 

other machines, such as work in the next queue, apparent tardiness cost, etc. Several 

comparative studies have been conducted in the literature to evaluate the 

performance of existing dispatching rules under different job shop settings and 

objective measures (Holthaus and Rajendran, 2000; Rajendran and Holthaus, 1999; 

Sels et al., 2012a). Three major limitations of human-made dispatching rules found 

in the literature are frequently reported as described below. 

• The performance of dispatching rules is highly dependent on the scheduling 

problem (system settings and processing characteristics) and the objective 

function to be optimized. 

• The more information about the processing and the considered objective 

function is included in the dispatch rules, the higher their performance under 

different system settings.     

• Although composite dispatching rules have better performance compared 

with other types of scheduling rules, the manual design of these rules is a 

very challenging task. 

2) Predictive-reactive scheduling 

An initial schedule is generated before processing begins using the available 

information. Then, when unexpected events occur during the actual processing, the 

generated schedule is modified in response to the real-time events. Most of the 

predictive–reactive scheduling approaches in the literature rely on simple schedule 

modification, known as “rescheduling”, considering only job shop efficiency. The 

goal of these approaches is to minimize deviation from the initial schedule because 

significant changes might seriously affect other planning activities, resulting in poor 

schedule performance. Several predictive–reactive scheduling methods have been 
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proposed in the literature, for example (Adibi et al., 2010; Duenas and Petrovic, 

2008; Yang and Geunes, 2008).  

3) Robust pro-active scheduling 

Robust pro-active scheduling approaches attempt to predict unforeseen events that 

might occur during processing, thus generating predictive schedules (robust 

schedules) that can reduce the negative impact caused by these dynamic events (Al-

Hinai and ElMekkawy, 2011). This is accomplished by allocating idle time between 

jobs processing so that jobs are less likely to be disrupted by new incoming jobs or 

machine failures (Mehta and Uzsoy, 1998). A limited number of research articles 

have been published on the generation of robust schedules because predictability 

metrics are difficult to define and there is no universal definition of schedule 

robustness (Ouelhadj and Petrovic, 2009).  

2.3 Hyper-heuristics 

Despite the fact that heuristic and meta-heuristic approaches have been successfully 

applied in solving real-world computational search problems, there are still certain 

challenges in applying them to new problems or even new instances of the same 

problems (Burke et al., 2013). The reasons behind this are as follows: 

a) There is a large range of parameters or algorithm options involved when using 

these methods. 

b) Developing and maintaining problem-specific methods (heuristics) is a costly 

process in terms of time and effort. 

c) There are no clear guidelines on how to choose them based on the problem 

understudy and why different heuristics work efficiently, or not, in different 

problem instances. 

Therefore, many scholars have suggested using artificial intelligence techniques to 

develop algorithms that are more applicable than many existing research approaches in 

the literature, which are known as “hyper-heuristics”. In other words, the goal of using 

hyper-heuristics is to raise the level of generality with which search algorithms can 

operate by developing an easy-to-implement system that can operate on a wide range of 

related problems rather than a single narrow class of problem instances (Burke et al., 

2003). A hyper-heuristic framework is a high-level methodology that, given a specific 

problem instance(s) and a number of low-level heuristics (or their components), 
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automatically generates an appropriate solution by appropriately combining the 

components available to solve the given problem(s). The term “hyper-heuristics” was 

first coined in a conference paper by Cowling et. al in 2001 (Cowling et al., 2000). The 

idea was further developed in (Cowling et al., 2002) and a genetic algorithm-based 

hyper-heuristic was applied for scheduling geographically distributed training staff and 

courses. Since then, numerous articles, tutorials, reviews, and books have been 

published regarding this emerging search paradigm. For instance, an introduction of 

hyper-heuristics concepts and a review of related articles are found in (Burke et al., 

2003). In addition, Burke et al. proposed a classification of hyper-heuristic approaches 

based on their search mechanisms (Burke et al., 2013). A brief discussion of hyper-

heuristic applications covering a wide range of scheduling and combinatorial 

optimisation problems was also presented. In a follow-up survey (Drake et al., 2020), 

the authors expanded the survey on hyper-heuristic approaches published in 2013 by 

considering recent advances in hyper-heuristic research frameworks, mainly selection-

based methods, current research trends, and future research directions. 

 

Figure 2.6: General hyper-heuristic framework 

Figure 2.6 shows the general framework of the hyper-heuristic approach (Burke et 

al., 2011). The framework consists of two main layers, hyper-heuristic and domain 

layers, separated by domain barrier to prevent any knowledge transfer between the 
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layers. The hyper-heuristic layer is responsible for selecting or generating a number of 

heuristics from a set of low-level heuristics without having any prior knowledge of the 

domain in which they are used. The domain layer includes problem-related information 

such as a set of low-level heuristics, representation, problem instance, fitness function, 

etc. Finally, the hyper-heuristic method has to accept or reject a solution based on the 

results of the fitness assessment. Hyper-heuristic approaches can also be classified 

according to three main criteria, the source of feedback, the type of low-level heuristics, 

and the nature of the search space, as shown in Figure 2.7 (Burke et al., 2019). 

According to the source of feedback information, three techniques are available, 

including online, offline, and no-learning. In online hyper-heuristics, the learning 

process takes place while the hyper-heuristic algorithm is solving a given instance of a 

problem by sending instant feedback regarding performance, for instance, integrating 

reinforcement learning with heuristic selection methods, and the use of meta-heuristics 

to explore the search space of heuristics. In contrast, offline learning hyper-heuristics 

collect performance-related knowledge by evaluating the performance of generated 

heuristics over a set of training instances that generalize the nature of unseen instances 

(Swiercz, 2017). Also, there are two types of low-level heuristics existing in the 

literature including constructive and perturbation heuristics. Perturbative hyper-

heuristics start with complete solutions randomly generated or by following some 

simple rules and then try to improve solution quality iteratively, whereas constructive 

hyper-heuristics start with partial candidate solutions and build up a solution gradually 

(iteratively) during the construction process. Finally, heuristic selection and generation 

are the two types of hyper-heuristic methodologies based on the nature of the heuristic 

search space. Heuristic selection approaches aim to select the right low-level heuristic 

for each problem instance, whereas heuristic generation methods seek to combine low-

level heuristics to generate “new” heuristics for the problem under investigation. 

 

Figure 2.7: Classification of hyper-heuristic approaches 



Chapter 2: Literature Review 

     55 

2.4 GP Based Hyper-heuristics 

GP is an evolutionary computational method for global optimization inspired by the 

biological process of Darwinian evolution. In GP, computer programs are automatically 

generated in different shapes and sizes to solve problems without requiring the user to 

know or define in advance the shape or structure of the solution (J. R. Koza, 1994a). In 

other words, since the optimal solution and its shape are usually unknown in most real-

world problems, the main advantage of using the GP approach is the variable length of 

generated solutions which allow a large number of solutions to be explored compared 

with fixed-length representations. The GP search mechanism can be briefly described in 

the following steps (O’Neill, 2009).  

• A population of programs (solutions) is randomly generated using a specific 

representation and problem-related components. 

• The performance of each program is assessed using a predefined fitness 

function. 

• The fitness value of each program determines its likelihood of surviving and 

reproducing in the next generation. 

• The average performance of generated programs evolves over generations until 

stopping criteria are met and the best program is returned. 

The remainder of this section presents the key concepts of the GP approach with a 

detailed explanation of each step of the GP evolutionary process. 

2.4.1 Representation 

The syntax tree is the most popular GP representation (Nguyen et al., 2017a). However, 

other representations exist in the GP literature such as linear GP (Nie et al., 2013a), 

cartesian GP (Miller and Harding, 2008), and grammar-based GP (Hunt et al., 2016a). 

An example of a GP individual in a tree-based representation is shown in Figure 2.8. 

This tree structure represents the mathematical expression 𝑥 + 𝑦2 + 3 . Here the 

arithmetic operators are {×, +} which is called the function set. Each element in the 

function set requires a finite number of arguments (leaf nodes) with a minimum of one 

argument, and thus cannot be placed at the leaves of a specific tree. The function set can 

include other types of functions, including mathematical functions, trigonometric 

functions, and logarithmic functions, depending on the nature of the problem (Branke et 

al., 2016a). In contrast, the elements {𝑥, 𝑦, 3} represent the contents of the terminal set 

and can be located only at the tree leaves (arguments). The variables 𝑥  and 𝑦  take 
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numerical values and represent the input of this expression. In addition, the terminal set 

might include problem-related features (program’s external inputs) and constants that 

can be predefined or randomly generated. Therefore, the search space consists of all 

possible combinations created by selecting elements from the terminal (external nodes) 

and function sets (internal nodes). The set of the functions and terminals together is 

known as the primitive set of a GP. For the sake of convenience, GP individuals are 

usually expressed in a user-friendly format such as LISP S-expression (Nguyen et al., 

2017a) because it is straightforward to see the relationship between sub-trees. For 

example, the tree expression displayed in Figure 2.8 can be presented using the prefix-

notation expression as ( + 𝑥 ( + 3 ( ×  𝑦 𝑦 ) ) ).  

 

Figure 2.8: GP syntax tree representing the function: 𝒙 + 𝒚𝟐 + 𝟑 

There are two requirements that terminal and function sets have to satisfy, namely 

sufficiency and closure. The sufficiency characteristic assumes that the contents of the 

terminal and function sets are sufficient to solve the problem under study. Because 

usually the optimal solution is not known in advance, it is difficult to ensure that 

included functions and terminals are enough to solve a given problem. However, the 

contents of the terminal and function sets are extracted from high-quality solutions that 

have been achieved in related studies. On the other hand, the closure property means 

that any function or terminal can be used as an input for any function in the functions 

set. Therefore, a protected division that returns zero (rather than undefined) in the case 

of dividing by zero is commonly used in previous studies (Mei et al., 2017a; Nguyen et 

al., 2018a; Shady et al., 2021b). In order to satisfy the sufficiency property, a large 

number of terminals have to be included, which increases the size of generated 

programs. Therefore, fixed length GP representation has been developed to resolve this 

issue. Also, other GP representations, such as strongly typed GP approaches and 

grammar-based GP approaches, have been developed to evolve syntactically and 
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semantically correct programs while satisfying the closure property. A brief description 

of each of these representations is given below. 

• Gene Expression Programming (GEP): has been proposed to overcome the 

bloating effect that commonly occurs in tree-based GP approaches by using a 

fixed linear structure in the evolution process. More details of the GEP approach 

regarding the initialization process, genetic operators, and learning mechanism 

are described in the next section and Chapter 6. 

• Strongly typed GP: is an approach to enforcing type constraints where each 

terminal has a specific data type, and each function accepts arguments of certain 

types and will return its own type (Hunt et al., 2016a).  

• Grammar-based GP: imposes some constraints on the structure or contents of 

generated individuals by using some rules known as “grammar” in the 

initialization process and genetic operators to ensure that the rules are logically 

correct (McKay et al., 2010).  

2.4.2 Population Initialization 

Similar to other evolutionary computation methods, the GP approach begins by 

randomly generating a population of programs. There are a number of different 

approaches to generating this random initial population. Three main initiation methods 

have been proposed in the literature for random population initialization. These 

approaches are full, grow, and ramped half-and-half (John R. Koza, 1994). The 

maximum depth is predefined for these methods in order to restrict generated 

individuals from going beyond it. The depth of a node is the number of edges that must 

be traversed to reach the root (the highest node in the tree with a depth of zero).  

Therefore, the depth of the tree is the distance from the furthest node (leaf) to the root of 

the tree. The full method generates full trees where all leaves have the same depth by 

randomly selecting elements from the function set until the maximum tree depth is 

achieved. Although the full method initializes programs with the same depth as the 

maximum depth, this does not mean that these programs have an identical number of 

nodes. Because the considered functions might require a different number of arguments 

known as arity. In contrast, the grow method generates individuals of various sizes and 

shapes because nodes are chosen from the primitive set (both function and terminal sets) 

until the maximum depth is reached. In other words, once the required maximum depth 

is achieved, only terminals can be chosen, similar to the full method. Consequently, 



Chapter 2: Literature Review 

     58 

Koza proposed a combination of the two methods called ramped half-and-half because 

neither the full nor the grow method obtains a sufficient variety of sizes and shapes on 

its own (J. R. Koza, 1994a). Using the ramped half-and-half method, half of the initial 

population is initialized by the full method while the other half is initialized by the 

growth method. Figure 2.9 shows the pseudocode for a recursive implementation of 

both the full and grow methods; where 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠: are the elements in the functions set, 

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠: are the elements in the terminals set, max_depth: is the maximum allowed 

depth, method: is either full or grow method, expr: is the generated expression, and 

𝑟𝑎𝑛𝑑(): returns a random number uniformly distributed between 0 and 1 (O’Neill, 

2009). 

 

Figure 2.9: Pseudocode for program generation algorithm. 

2.4.3 Fitness Evaluation 

Fitness assessment is a crucial step in any evolutionary computation algorithm because 

it represents the performance of generated individuals in a given task. Therefore, the 

higher the performance of a program in the current generation, the more likely it is to 

survive and reproduce, thus increasing its contribution to future generations. In other 

words, fitness functions guide the GP algorithm to promising search regions (high-

quality programs) in the search space (Nguyen et al., 2017a). Fitness values are 

estimated using a fitness function, which can be either static or dynamic as shown 

below.  
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• Static fitness function: the fitness function does not change during the run. 

Therefore, evaluating the fitness value of a rule multiple times using the same 

static instance will always result in the same value.   

• Dynamic fitness function: the function changes at any moment during the run. 

Therefore, the fitness value of a specific program might change depending on 

the time at which the program was evaluated. 

Also, fitness functions might vary greatly depending on the problem domain. 

Therefore, it is common to evaluate the performance of generated programs across a 

range of different scenarios, i.e., by running the programs with different inputs. The set 

of scenarios used during the learning phase of GP is known as the training set, whereas 

the set of unseen scenarios used to evaluate the general performance of the generated 

programs is known as the testing set. The reason why different combinations of 

scenarios are used is that all possible inputs for a specific task are usually unknown, 

thus the objective of the learning phase is to generate programs that can perform well on 

unseen scenarios, i.e., their performance does not deteriorate on unseen scenarios 

(overfitting). Therefore, two sets of scenarios are used to verify this objective (F. Zhang 

et al., 2021d). In addition, fitness values can be used as termination criteria, such as 

predetermining the desired fitness level where the algorithm ends, or the achieved best 

fitness value does not change for a predetermined number of generations.   

2.4.4 Selection 

After the evaluation of all the individuals in a particular generation has been completed, 

some individuals will be selected to be the parents of the next generation. Several 

selection methods have been proposed in the literature, as shown below. 

1) Tournament selection  

2) Roulette wheel selection 

3) Rank selection 

4) Elitism selection 

However, tournament selection and roulette wheel selection are the most popular 

selection methods in the GP literature (Nguyen et al., 2017a). Using the tournament 

method requires two main steps.  

1) A number of programs equal to the tournament size are randomly chosen from 

the population to form the tournament. 

2) The individuals with the best fitness values (lowest value in the case of the 

minimization problem) will be selected as parents.  
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The key merit of the wide use of the tournament selection method is the ease of 

adjusting the selection pressure by changing the tournament size. Specifically, a higher 

tournament size increases selection pressure, giving high-quality individuals a greater 

chance of being selected, whereas a smaller tournament size decreases selection 

pressure, giving a greater chance of poor individuals being selected. In addition, the 

tournament method can operate on a parallel architecture that reduces the computational 

time (Blickle, 2000). 

The roulette wheel selection method is one of the methods known as fitness 

proportionate selection, where individuals are selected randomly based on a distribution 

proportional to their fitness values. In other words, individuals with higher fitness 

values will be selected more often compared with lower individuals. Equation 2.1 

shows the probability 𝑝𝑖  of selecting an individual 𝑖 as a parent according to its fitness 

value 𝑓𝑖 , where 𝑁  represents the number of individuals in the current population 

(Blickle, 2000). The main limitation of the roulette wheel selection is that it might 

suffer from premature convergence caused by the loss of population diversity. Because 

the selection pressure might become very high if there are prominent individuals, and 

thus better individuals will be preferred over poor individuals. In contrast, if the 

difference between the fitness values of the individuals is very small, then the roulette 

wheel selection ability becomes similar to random selection (Yadav and Sohal, 2017). 

                                                                  𝑝𝑖 =  
𝑓𝑖

∑ 𝑓𝑗
𝑁
𝑗=1

                                                                2.1 

Using the rank selection method, individuals are weighted based on their rank in 

three steps, rather than their fitness values as used in the roulette wheel selection 

method. First, individuals in a given generation are sorted according to their objective 

values. Second, the fitness value assigned to each individual depends on their rank. 

Third, the probability of selecting each individual depends on its fitness value 

normalized by the total fitness values of the population (uniform selection scheme). 

Therefore, the rank selection method offers an advantage over the roulette wheel 

selection method by avoiding premature convergence by using more robust selection 

pressure. However, it is computationally expensive because all individuals must be 

sorted based on fitness value. Also, it might experience a slow convergence speed 

because high-performing individuals do not differentiate sufficiently from others 

(Kumar, 2012). 
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Finally, the elitism selection method copies a subset of the fittest individuals from 

the current generation into the population of the following generation. In other words, 

the elitism method reduces genetic drift during the evolution process by ensuring that 

only the best individuals are allowed to pass their traits to the next generation. Although 

the performance of the GP algorithm can be rapidly increased, the number of selected 

rules using the elitism method must be carefully determined to avoid losing population 

diversity and getting trapped in local optima (Du et al., 2018). 

2.4.5 Genetic Operators 

The rule of genetic operators is the formation of new individuals known as “offspring” 

for the next generation based on selected individuals from the previous generation 

(parents). Specifically, genetic operators help increase genotypic diversity within a 

population to efficiently explore different regions of the search space (O’Neill, 2009). 

Differences between individuals in real life occur for two main reasons: mutation of 

genes within the individual and recombination of genes through the process of 

reproduction. Similarly, two genetic operators have been proposed in the tree-based GP 

literature, following the same concepts that occur in nature (Nguyen et al., 2017a). They 

are subtree mutation and crossover operators, which are usually used with predefined 

probabilities to create the population of the next generation. (Poli et al., 2007) 

1) Subtree mutation operator: it only requires one parent to generate a new 

program (offspring) following two steps. First, a random point, known as a 

mutation point, is randomly chosen in the selected parent. Second, a randomly 

generated subtree replaces the subtree rooted at this point (Poli et al., 2007). An 

example of the subtree mutation operator is shown in Figure 2.10, where the 

mutation point is highlighted by a dashed frame. Also, Figure 2.10 (a), Figure 

2.10 (b), and Figure 2.10 (c) show the parent program, the randomly generated 

tree, and the new program generated after mutation, respectively. 

2) Subtree crossover operator: Two programs (parents) are randomly selected 

from the current population. Then, a crossover point is randomly chosen for 

each parent. Two offspring are created by swapping the subtree rooted at the 

crossover point of the first parent with the subtree rooted at the crossover point 

of the second parent (Poli et al., 2007). Figure 2.11 shows an example of the 

subtree crossover operator applied to two parents to create two offspring; 

swapped subtrees are highlighted in dashed frames. It has been noted that many 
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crossovers might only swap two leaves (insignificant effect on diversity). Thus, 

Koza suggested randomly choosing function nodes 90% of the time and leaving 

nodes 10% of the time to increase population diversity (John R. Koza, 1994). 

 

Figure 2.10: Subtree mutation in GP 

 

Figure 2.11: Subtree crossover in GP 
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2.4.6 Standard GP Algorithm 

The pseudocode of the standard GP algorithm with a minimization objective function is 

shown in Figure 2.12. The algorithm returns the best program evolved, i.e., the program 

𝑝∗  that achieved the smallest fitness value 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝∗) in the given problem. The 

algorithm begins by loading either static or dynamic problem data that is required for 

fitness assessment, function, and terminal sets based on the problem domain. This 

algorithm follows the four main steps discussed in the previous sections, including 

population initialization, fitness evaluation, selection, and genetic operators.  

• First, a population of candidate programs is randomly created using the 

predefined function and terminal sets with a size equal to 𝑁 and an initialization 

method that can be full, grow, or ramped half-and-half.  

• At each generation in the evolutionary process, each program is evaluated using 

the predefined fitness function.  If a specific program 𝑝𝑖  has better performance 

(smaller fitness value in the minimization problems) than the current best 

program, it will replace the best program evolved so far and the best fitness 

value will also be updated accordingly, as shown in steps 5–11.  

• Afterward, parent programs 𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠  are selected using one of the previously 

described selection methods to form the mating pool. Genetic operators are 

applied to generate new individuals for the next generation according to 

predefined probabilities until the desired population size is reached, as shown in 

steps 14–17.  

• Finally, if the maximum number of generations 𝑚𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is reached, 

then the algorithm terminates and the best rule is returned; otherwise, another 

evolutionary iteration begins by following the same steps. 

 

 

  Inputs: problem data, function and terminal sets, and fitness function 

  Output: the best evolved rule 𝑝∗ 

  1:  𝑃 ← {𝑝1, 𝑝2, … , 𝑝𝑁} 

  2:  Set 𝑝∗ ← 𝑛𝑢𝑙𝑙 and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝∗) ←= ∞ 

  3:  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0 

  4:  while 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≤ max 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do 
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  5:         for all 𝑝𝑖  ∈  𝑃 do 

  6:                 evaluate 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖)  

  7:                 if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖)  <  𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝∗)  then   

  8:                     𝑝∗ ← 𝑝𝑖 

  9:                     𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝∗) ←  𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖) 

10:                 end if 

11:         end for              

12:         𝑝𝑛𝑒𝑤 ← {} 

13:         while | 𝑝𝑛𝑒𝑤 | < 𝑁 do 

14:                 𝑝𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔  ← apply genetic operators to selected individuals from 𝑃 

15:                 𝑝𝑛𝑒𝑤 ← 𝑝𝑛𝑒𝑤 +  𝑝𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔  

16:         end while | 𝑝𝑛𝑒𝑤 | < 𝑁 do 

17:         𝑃 ← 𝑝𝑛𝑒𝑤 

18:         𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1 

19:  end while 

20:  return 𝑝∗ 

Figure 2.12: Pseudocode for the standard GP algorithm 

2.5 Generating Dispatching Rules Using GP 

GP approach is the most popular hyper-heuristic approach in the field of automatic 

generation of scheduling rules. According to the hyper-heuristic classification given in 

Figure 2.7, using the GP approach to evolve dispatching rules is a hyper-heuristic 

generation method based on offline learning feedback to generate new low-level 

constructive heuristics. Several promising approaches to developing superior 

dispatching rules as compared with manually designed ones have been proposed in the 

literature for different job shop environments and manufacturing conditions (Branke et 

al., 2016a). This section provides a review of literature articles related to the use of the 

GP approach for scheduling problems, categorized based on the manufacturing 
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environment, as shown in Figure 2.13. Then, the challenges, their causes, and solution 

approaches in the current literature are discussed in detail in the second subsection, as 

illustrated in Figure 2.13, where GP limitations are highlighted in red, the reasons are 

highlighted in blue, and the solution approaches considered in this thesis are highlighted 

in green. Finally, a detailed explanation of how this thesis contributes to addressing 

each of these limitations is also provided. 

 

 

Figure 2.13: Structure of the 5th subsection of section 2. 

2.5.1 GP Applications for Scheduling Problems 

The GP approach has been used to generate dispatching rules for different 

manufacturing settings such as single machine, flow shops, job shops, and flexible job 

shop scheduling environments (Nguyen et al., 2017a), as described below. 

 

a) Single machine scheduling 

Yin et al. proposed a GP approach to generate predictive scheduling heuristics in 

a single-machine environment with stochastic breakdowns while considering 

two objectives, job tardiness, and stability (Yin et al., 2003). The proposed 

approach uses bi-tree GP representation to evolve two components: dispatching 

rules and a function to estimate the idle time that must be inserted before a given 

job can be processed. Empirical results showed that the proposed approach can 

efficiently generate high-quality dispatching rules and deal with uncertain 

perturbations due to the inserted idle time. In the same context, a single machine 

environment with a total weighted tardiness objective was investigated in 

(Dimopoulos and Zalzala, 2001). The authors proposed a GP approach to train 
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dispatching rules to handle different levels of job tardiness and due dates. The 

results showed that the nine dispatching rules evolved using the proposed 

approach had high performance in many unseen scenarios. Specifically, the 

automatically generated dispatching rules were at least as good as the current 

human-made rules in the literature across different validation instances and 

tardiness levels. 

      Geiger et al. proposed a GP approach to generate dispatching rules for a 

variety of single machine environments under three objective functions, 

including minimizing total completion time, minimizing maximum lateness, and 

minimizing total tardiness (Geiger et al., 2006a). The authors integrated the 

proposed approach with a simulation model (fitness evaluation) to develop a 

system for evolving dispatching rules called “scheduling rule discovery and 

parallel learning system”. Dispatching rules generated using their system 

showed better performance compared with a large set of literature rules. Finally, 

the authors stated that although the man-made rules in the scheduling literature 

are the results of decades of research, the rules generated using the GP approach 

had better performance and could be created with a fraction of the time and 

effort. Therefore, the use of machine learning techniques in production 

scheduling is a promising research area with many opportunities to explore. 

Also, Jakobović and Budin developed an interesting GP approach for a dynamic 

single machine and job shop scheduling with bottleneck estimation capability 

(Jakobović and Budin, 2006). The proposed approach generates three program 

trees containing one discrimination function and two dispatching rules. The 

discrimination function is used to determine whether a given machine is a 

bottleneck. This function evolves using separate function and terminal sets. 

Accordingly, if the machine is a bottleneck, then the first dispatching rule is 

used, otherwise, the second rule is applied. Promising results were obtained by 

comparing the evolved scheduling rules with the literature ones. Finally, the 

authors reported that the proposed approach is particularly useful for scheduling 

environments in which appropriate heuristics are not available or to facilitate the 

design of high-quality heuristics. 

b) Flow shop scheduling 

Chen et al. proposed a GP approach to create heuristic rules for a k-stage hybrid 

flow shop problem where one stage consists of non-identical batch processing 

machines and the other contains non-identical single processing machines (Chen 
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et al., 2015). Then, the offline generated rules were selected by ant colony 

optimization algorithm for each sub-problem in the equipment manufacturing 

industry including part assignment, part sequencing, and batch formation. The 

proposed algorithm showed better performance compared with other hyper-

heuristics in terms of reducing the total weighted tardiness. In the same vein, 

Vázquez-Rodríguez and Ochoa proposed a GP framework to generate variants 

of the Nawaz Enscore Ham heuristic for flow shop scheduling problems under 

five objectives i.e., one variant of NEH was generated for each objective 

(Vázquez-Rodríguez and Ochoa, 2011). The objective functions considered 

were: makespan, total tardiness, total weighted tardiness, the sum of completion 

time, and the sum of total weighted completion times.  Experimental results 

showed that the proposed approach outperformed the original and randomized 

versions of the NEH heuristic across several benchmark problems. Shi et al. 

introduced a scatter programming algorithm to generate composite rules in a 

hybrid flow shop scheduling problem with the objective of reducing makespan 

(Shi et al., 2015). The proposed approach included a local improvement method 

to accelerate convergence. Simulation experiments demonstrated the 

effectiveness of the proposed approach compared with the standard GP and the 

scatter programming approaches in generating rules with higher scalability and 

flexibility. 

c) Job shop scheduling 

Since dispatching rules typically suffer from a lack of global perspective (do not 

consider the future state of the job shop when making scheduling decisions), 

Hunt et al. proposed a GP algorithm to evolve less-myopic dispatching rules for 

a dynamic ten machines job shop scheduling problem (Hunt et al., 2014a). The 

proposed approach evolved robust rules regarding the total weighted tardiness 

objective by incorporating features from the wider shop system. Regarding 

numerical experiments, it was observed that including global features in the 

terminal set improved the mean and reduced the standard deviation of the 

performance of the best-evolved rules. The same findings were also reported in 

(Shady et al., 2020b), where local and global features were included in the 

terminal set of the GP approach used in evolving dispatching rules for a dynamic 

job shop environment. The proposed approach had a lower mean flow time 

compared with ten man-made rules from the literature under different job shop 

utilization levels. In a follow-up study (Shady et al., 2020a), the authors 
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examined the GP approach with global features across a larger range of training 

and testing scenarios. Two objectives were considered including mean flow time 

and mean tardiness as well as 12 literature rules. The results showed the GP 

best-evolved rule had an average relative increase in performance of about 

5.85% and 45.56% compared with the best literature rules with respect to mean 

flowtime and mean tardiness, respectively. In order to tackle the myopic nature 

of traditional dispatching rules, Nguyen et al. proposed a GP approach to 

generate a new type of dispatching rules called iterative dispatching rules 

(Nguyen et al., 2013b). Different from traditional dispatching rules that create 

one fixed schedule of jobs, these rules include look-ahead strategies to 

iteratively improve schedules by utilizing the information of scheduled jobs in 

previous steps. In other words, iterative dispatching rules can correct their 

behaviour based on their mistakes in previous sequencing decisions. The 

proposed approach had significantly better performance compared with the 

standard GP algorithm with makespan and total weighted tardiness as objective 

functions. 

       Hunt et al. developed a GP-based hyper-heuristic approach to create 

scheduling policies for a two-machine job shop scheduling problem in static and 

dynamic conditions (Hunt et al., 2014b). The static problem was considered to 

verify the ability of the GP approach to discover optimal scheduling rules. On 

the other hand, two representations (evolve a single rule for the two machines 

and evolve a specific rule for each machine) were used in the case of the 

dynamic problem with the aim of reducing the total weighted tardiness. The 

results showed that the GP algorithm was able to generate rules that could 

achieve optimal schedules similar to Jackson's algorithm. Also, the performance 

of the representations relied heavily on the testing instances (processing time 

and utilization levels). Since real-life scheduling problems usually encounter 

multiple conflicting objectives, Nguyen et al. developed four multi-objective GP 

approaches to automatically generate dispatching rules and Due-Date 

Assignment Rules (DDARs) in dynamic job shop scheduling problems (Nguyen 

et al., 2014a). Three multi-objective approaches from the literature were used 

namely Nondominated Sorting Genetic Algorithm II (NSGA-II), strength Pareto 

evolutionary algorithm 2, and harmonic distance-based multi-objective 

evolutionary algorithm. In addition, a new approach called diversified multi-

objective cooperative evolution was used. The authors compared the rules 
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evolved using the four developed approaches with existing rules created from 

combinations of existing dispatching rules and DDARs with respect to 

makespan, normalized total weighted tardiness, and mean absolute percentage 

error. Experimental results showed that the evolved rules have dominated 

popular literature rules in both training and testing scenarios. Also, the obtained 

Pareto fronts helped in a better understanding of the trade-off between the 

objectives.  

       In the same context, Shady et. al proposed a GP for multi-objective DJJSP 

considering machine breakdowns (Shady et al., 2021b). The proposed approach 

combined the standard GP algorithm with NSGA-II to generate dispatching 

rules that can handle different breakdown situations while reducing job mean 

flow time and makespan. Regarding numerical experiments, the authors 

compared the evolved non-dominated rules to 12 literature rules under 10 testing 

scenarios generated by varying levels of machine breakdown. In addition, the 

structure of the best-evolved rule and the distributions of attributes across GP 

generations were analyzed to gain useful insight into the behavior of the evolved 

rules. 

 

d) Flexible job shop scheduling  

The Flexible Job Shop Scheduling Problem (FJSSP) is an extension of the JSSP 

where there are multiple copies of the most important machines (parallel 

machines) in order to reduce the waiting time caused by busy machines 

(bottlenecks) (Chaudhry and Khan, 2016). Therefore, two scheduling decisions 

have to be performed; finding a suitable machine to process a given operation 

(routing) and deciding the sequence of awaiting operations at each machine 

(sequencing). Tay and Ho proposed a GP approach to evolve dispatching rules 

for solving multi-objective FJJSPs where the weighted sum method was used to 

construct an objective function by combining makespan, mean tardiness, and 

mean flow time with the same weight (priority) (Tay and Ho, 2008). In addition, 

the least waiting time assignment rule was used to select a machine to process a 

given job. Five composite dispatching rules were evolved by the GP approach. 

The evolved rules showed higher performance compared with five popular rules 

from the literature. Hildebrandt et al. (Hildebrandt et al., 2010a) tested the rules 

generated in (Tay and Ho, 2008) under various objectives. The authors found 

that these rules performed poorly. In addition, two main reasons for this limited 
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performance were reported. First, a linear combination of objectives is not 

appropriate where the weight of each objective is unknown, which is usually the 

case. Second, the use of the fixed least waiting time assignment rule severely 

affects scheduling decisions facing sequencing rules.  

       Therefore, Yska et al. proposed the use of a cooperative co-evolution GP 

framework to simultaneously evolve both routing and sequencing rules for static 

and dynamic FJSSPs (Yska et al., 2018). Experimental results demonstrated the 

effectiveness of the proposed approach in reducing max flow time, mean flow 

time, and mean weighted flow time objectives compared with the standard GP 

approach that generated only dispatching rules for both static and dynamic 

scenarios. In the same context, Xu et al. developed a GP algorithm with delayed 

routing for solving multi-objective dynamic FJSSPs that optimizes energy 

efficiency and mean tardiness simultaneously (Xu et al., 2021). Three delayed 

routing strategies were presented to define the subset of ready jobs for the idle 

machine in order to make the sequencing decision. Therefore, every routing 

decision can be delayed which helps in taking the most recent information into 

consideration before assigning the ready jobs to machines. 

2.5.2 Limitations and Corresponding Solution Methods in Related Studies 

Although the GP approach has shown promising performance in generating dispatching 

rules automatically under different manufacturing settings and objective functions as 

described in the previous section, there are two general challenges in the existing GP 

approaches (Branke et al., 2016a; Nguyen et al., 2017a). The literature limitations are: 

• Premature convergence in the case of static scheduling problems  

• High computational time for both static and dynamic scheduling problems. 

The following subsections discuss the reasons for these challenges, the advantages and 

disadvantages of the current solution methods in the literature, and a brief overview of 

the approaches proposed in this thesis. 

1) Premature Convergence due to Low Population Diversity 

Because JSSPs are NP-hard optimization problems, thus the fitness landscape might 

contain more than one optimum. Therefore, there is a higher chance that the GP 

individuals converge very early to one of these local optima (sub-optimal solutions), 

known as “premature convergence”. Premature convergence is a well-known 
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phenomenon in evolutionary computation that occurs due to the significant loss of 

diversity among evolved individuals. Since high-quality individuals typically survive to 

future generations and their traits are shared between individuals with crossover 

operators at higher rates, thus a significant portion of individuals in future generations 

(offspring) will have somewhat similar genotypic structures (Ekárt and Németh, 2000). 

Therefore, it is necessary to maintain high levels of diversity among GP individuals to 

prevent premature convergence towards the structure of a small number of high-

performance rules. Although a mutation genetic operator helps in increasing the genetic 

diversity between individuals to a certain extent, its effect is limited because of the 

following reasons (Hughes, 2021). 

• The mutation rate, which determines how many individuals should be mutated, 

is usually much lower than the crossover rate to avoid over-exploration. 

• There is no direct method to determine mutation rates because it depends on the 

problem under investigation, which requires many expensive GP runs. 

Instead, distance metrics have been developed to define a straightforward technique 

to numerically measure the diversity between GP individuals, thereby controlling for 

desired diversity across generations. From a topological point of view, if two trees are 

close to each other or identical, one can be easily converted to the other with a few 

applications of genetic operators (Gustafson and Vanneschi, 2008). Accordingly, to 

enhance the population diversity, the similarity (distance) between individuals must be 

evaluated, and individuals with low similarity values must survive across generations. 

a) Promoting population diversity 

To enhance diversity among GP individuals, two major challenges must be considered:  

• How to measure diversity between individuals? 

• How to maintain diversity across evolving generations? 

Regarding measuring the diversity between individuals, the distance between GP 

individuals is determined using distance metrics that measure similarity based on the 

individuals' structure (genotype) or performance (phenotype) (Burke et al., 2002). 

Therefore, several distance metrics have been proposed in the literature, such as the 

number of different structural individuals (genotypes) (Burks and Punch, 2015), fitness 

values (phenotypes) (Jackson, 2010), edit distances (de Jong et al., 2001), and 

composite measures (Kelly et al., 2019). In addition, Burke et al. examined the 

relationship between several measures of diversity in GP and fitness values (Burke et 
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al., 2004). Moreover, a survey and analysis of different semantic methods used to 

increase the phenotypic diversity between GP individuals were presented (Vanneschi et 

al., 2014). The distance metrics in these literature reviews were analysed using standard 

GP methods, such as artificial ants, even-5-parity, and symbolic regression. To the best 

of our knowledge, research that addressed the applicability of distance measures in 

measuring diversity among GP individuals in the JSS domain has not yet been reported. 

Also, the distance metrics in the GP literature have certain limitations that make them 

unsuitable for use in generating diverse rules for job shop scheduling problems, as 

shown below. 

• Genotypic distance metrics consider the position of a node while neglecting the 

interaction effect between the node and its parents.  

• Many distance measures assume that all nodes have the same weight, and this is 

not the case in scheduling rules where nodes near the root have more impact 

than nodes that are far away.  

• The evolution of GP rules is computationally expensive, limiting the use of 

phenotypic distance measures. 

Regarding maintaining diversity across generations, multiple diversity mechanisms 

are used to reduce the risk of high-performance individuals taking over the entire 

population before effectively exploring the fitness landscape (Sareni and Krahenbuhl, 

1998). Diversity mechanisms can be classified into two groups: niching and non-

niching. The most common niching methods are fitness sharing, clearing, and crowding. 

Non-niching techniques include methods such as the removal of genotype or phenotype 

duplicates, incest prevention, and island models (Hughes, 2021). The main intuition 

behind fitness-sharing methods is to devalue each individual's fitness at a rate that is 

proportional to the number of identical individuals in the population. Rather than 

penalizing fitness values, some scholars have suggested using multi-objective methods, 

where diversity is included as an explicit objective to be optimized along with fitness in 

the GP algorithm. A multi-objective method called age-fitness Pareto optimization was 

proposed in (Schmidt and Lipson, 2011) to promote population diversity by 

simultaneously optimizing the age and fitness of individuals. Similarly, Burks and 

Punch introduced a genetic diversity technique and employed the Pareto tournament 

selection method to obtain a set of non-dominated GP individuals (Burks and Punch, 

2015). Similarity among individuals was measured using tree fragments, and the 
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dominance relationship between individuals was determined using both the solution 

quality and diversity values.  

To the best of our knowledge, considering the diversity values among GP 

individuals as an objective to be optimized has not been addressed in the field of 

automated design of dispatching rules using the GP approach. Therefore, in the next 

chapter, a new distance metric is proposed to measure diversity among GP evolved 

scheduling rules in SJSSPs. The proposed metric prioritizes the nodes closest to the 

root, takes into account the interaction effect between nodes, and is computationally 

efficient. In addition, a multi-objective framework is introduced by integrating the GP 

approach with the NSGA-II algorithm to maintain diversity across generations. Finally, 

the proposed framework considers the rule size as an objective to be optimized rather 

than the tie-breaker approach used in literature methods, thus reducing the 

computational time of the GP algorithm. 

2) High Computational Time due to the Bloating Effect and Fitness Evaluation 

A well-established phenomenon in GP and other variable-length genome methods is the 

tendency of evolved programs to grow rapidly over time without a significant return in 

fitness. This phenomenon is referred to as “bloat” (Luke and Panait, 2006). This slows 

down the search process by wasting computing resources in evaluating large individuals 

and reduces the likelihood that genetic operators will alter important parts of the 

evolved programs (Mori et al., 2008). From the practical point of view, larger 

dispatching rules in complex mathematical structures have high computational costs and 

are difficult to understand compared with simpler rules. Therefore, when the training 

time of the GP algorithm becomes more affordable, it will lead to greater adoption in 

more complex manufacturing environments with fewer assumptions and more 

objectives to be optimized. Moreover, reducing the size of evolved rules increases the 

chances of their use in the industry because smaller rules are easier to interpret by 

decision-makers and to implement in real-world manufacturing systems (Nguyen et al., 

2017d; F. Zhang et al., 2021b). The most common way to control bloating is to impose 

size limits on the evolved programs. The size constraint can be expressed using the 

maximum allowable tree depth or the maximum number of tree nodes (Crane and 

McPhee, 2006). Many bloat control methods have been reported in the literature to 

mitigate the redundant growth of GP individuals, and ten bloat control techniques were 

compared in (Luke and Panait, 2006). Other methods include code editing, modifying 

genetic operators, parsimony pressure, and the removal of oversized individuals 
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(Alfaro-Cid et al., 2010). In addition, the size of the GP individuals is indirectly (tie-

breaker) optimized in parallel with fitness and diversity as proposed in (Alfaro-Cid et 

al., 2010; Burks and Punch, 2015; de Jong et al., 2001).  

In terms of using GP to develop scheduling rules, the bloating effect not only greatly 

increases the computational time, but also evolving rules tend to be too complex for 

decision-makers to understand, which limits their use in real-world applications (Branke 

et al., 2016a). Therefore, many scholars have suggested the use of simplification 

techniques to reduce the complexity and improve the readability of GP rules. These 

methods are used to remove redundant parts of evolved heuristics using manual (Tay 

and Ho, 2008) or online learning (Wong and Zhang, 2006) techniques, thereby making 

heuristics more compact and easier to interpret. Moreover, since the GP computational 

time and population diversity in the case of DJSSPs are significantly larger than that of 

SJSSPs, the proposed multi-objective GP approach is not applicable to the dynamic 

settings. In other words, integrating a multi-objective approach with the GP algorithm in 

dynamic settings will increase the computational time without increasing the solution 

quality of generated rules (prioritise smaller rules even with lower solution quality). 

Instead, there are two main research themes commonly adopted to mitigate the impact 

of bloating effect on the GP evolved rules for job shop scheduling problems.  

• Feature selection methods have been used in several studies (Mei et al., 2016, 

2017a; Shady et al., 2021a) to indirectly control the growth in GP rules by 

selecting a subset of the most important features and eliminating non-critical 

features, resulting in a reduction in the size of the generated rules.   

• It has been reported that the GEP algorithm generates smaller rules compared 

with the GP algorithm because it is not strongly affected by the bloat due to its 

constrained representation (Nguyen et al., 2017a; Nie et al., 2010, 2011, 2013a). 

a) Feature Selection 

The ability of GP to generate superior rules relies on careful selection of the terminal set 

that covers the most relevant job, machine, and job shop information (F. Zhang et al., 

2021a). However, it is very challenging to ascertain the most important features 

manually from a large set of system attributes that may encounter interaction effects 

(Zhang et al., 2019a).  Some examples are due-date attributes, which are usually 

worthless when minimising flowtime-related objectives.  The inclusion of irrelevant 

terminals engenders three main downfalls, as shown below (Mei et al., 2017a).  
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• It adversely affects GP searching ability by broadening the heuristics search 

space and thereby hinders the achievement of promising search areas. Precisely, 

if the tree structure is used with a maximum depth of 𝐷 and if all functions are 

binary, then the GP search space size is |𝐹|2𝐷−1. |𝑇|2𝐷
, where 𝐹  and 𝑇 

respectively stand for the function and terminal sets.  

• Generated rules tend to be complex with a large variety of terminals, which 

hinders the process of understanding how the evolved rules work and how any 

change will alter the priority value of a given job.  

• Longer rules require high computational costs to be evaluated, which can be 

expected to increase the GP computational burden. 

Although GP can perform feature selection automatically, its ability is limited. For 

example, even the best rules usually include some redundant terminals (Zhang et al., 

2019a). The frequency analysis proposed in (Friedlander et al., 2011) is a commonly 

used feature ranking method. Its main limitation is that the weight of the features can be 

incorrectly estimated because some terminals might have a higher weight even if they 

occur more frequently in redundant arithmetic operations than other terminals involved 

in critical operations (Mei et al., 2017a). Therefore, Mei et al. suggested an offline 

feature selection method based on the contribution of each terminal to the priority 

function of the best rules (Mei et al., 2016). This approach regards feature selection as a 

pre-processing step that requires several computationally expensive GP runs to obtain a 

variety of good rules for estimating terminals’ weights from them. In a later study, Mei 

et al. proposed an offline feature selection approach for identifying important features of 

the GP algorithm in dynamic job shop settings (Mei et al., 2017a). The proposed 

framework consists of three key steps. First, a niching-based search framework is used 

to extract a diverse set of good rules. Second, a weighted voting method is used to 

estimate the weight of each terminal and to identify a subset of significant terminals. 

Finally, the significant terminal set replaces the original terminal set in future GP runs. 

They reported two limitations associated with the proposed approach. First, although the 

approach was sufficient to identify a compact set of features, it did not reduce the 

program size of the evolved rules in later GP runs. Second, the output of feature 

selection is binary and uses no evolutionary information collected from earlier 

generations. Zhang et al. proposed a two-stage feature selection framework to evolve 

routing and sequencing rules for the flexible DJSSP (F. Zhang et al., 2021a). They split 

the whole GP process into two stages using a predefined checkpoint such as the number 
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of generations used in their work. For the first stage, they employed a niching method 

and a surrogate model to identify a set of the most relevant terminals. Then, the new 

terminal set replaced the original set, which is used in evolving individuals in the 

generations following the checkpoint's generation. For one study, a new hybrid GP 

approach based on a new representation, new local search heuristic, and efficient fitness 

evaluators was developed (Nguyen et al., 2018a). Using this representation, GP rules 

are defined using two parts: priority functions and attribute vectors. Attribute vectors 

perform an explicit selection of attributes by deactivating irrelevant terminals, thereby 

narrowing the search space and improving the interpretability of evolving rules. The 

authors reported that, although the proposed approach reduced rule length, it obtained 

more active terminals than the standard GP algorithm did. Earlier studies have revealed 

some challenges in the current approaches, as described below: 

• Most feature selection methods assess the effect of each terminal by the 

frequency with which it occurs in the best-evolved rules (Riley et al., 2016). The 

main shortcoming of this technique is that the results may be biased towards 

irrelevant features because of the occurrence of redundant features. 

• Feature selection methods usually adapt offline selection mechanisms (Mei et 

al., 2016) or a checkpoint to obtain a promising subset of terminals, resulting in 

additional simulation runs, making the GP algorithm too time-consuming and 

impractical (F. Zhang et al., 2021a). 

• Feature selection methods reported in the literature use a binary discrimination 

method, i.e., inclusion or exclusion of a feature from the terminal set, which 

ignores the relative importance of the respective terminals (Mei et al., 2017a). 

In order to address the literature limitations, Chapter 4 includes the following 

contributions. 

• A reliable method to estimate the weight of each terminal without being affected 

by the occurrence of redundant terminals or complex rule structures is 

developed. 

• An online feature selection approach that uses the estimated weights of terminals 

from earlier generations to guide the search in the current generation is 

proposed. 

• Feature selection probability rather than the inclusion or exclusion method is 

introduced to provide a broad preference scheme for each feature. 
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b) Gene Expression Programming 

Gene Expression Programming (GEP) algorithm is a GP constrained representation 

proposed to evolve programs of different sizes and shapes encoded in linear 

chromosomes of fixed length (Ferreira, 2001). Typically, a GEP chromosome includes 

one or more genes of equal length connected to each other using a linking function. 

GEP genes are composed of a head and a tail. The elements in the head are selected 

from the function set or the terminal set, while those in the tail are only selected from 

the terminal set (Sabar et al., 2015). To ensure a valid tree expression, it is required that 

the length of the head ℎ and the tail 𝑡 satisfy the equation 𝑡 =  ℎ (𝑛 −  1)  +  1, where 

𝑛 is the maximum number of arguments for all functions in the function set. The K-

expression is used to decode strings into expression trees. The first element in the gene 

corresponds to the root of the tree, and each function is attached to as many branches as 

there are arguments to that function, following a depth-first fashion (Nie et al., 2010). 

When the last node in a branch is a terminal, the branch stops growing, and thus it is 

common for GEP genes to have a noncoding region (Ferreira, 2001). A variety of 

genetic operators have been developed to introduce diversity in GEP individuals. 

Transposition operators such as Insertion Sequence (IS) transposition, Root IS (RIS) 

transposition, and gene transposition, have been introduced to select a fragment 

(successive symbols) and insert it into a specific location in the chromosome. In 

contrast to the RIS transposition where selected elements must start with a function 

from the head portion of the GEP individual, IS elements can start with either terminal 

or function and thus can be selected randomly at any position in the chromosome. 

Moreover, recombination operators such as one-point, two-point, and gene 

recombination can be employed to exchange some parts of the chromosomes of two 

randomly selected parents (Nguyen et al., 2017a).   

In (Nie et al., 2013a) and (Zhou et al., 2020a), the authors reported that the linear 

representation used in the GEP algorithm was able to generate higher quality rules 

compared with the tree-based GP in much less computational time and smaller sizes. 

Moreover, the GEP algorithm has been used to evolve scheduling rules under various 

operational settings, including single machine (Nie et al., 2010), DJSSP (Nie et al., 

2011), Flexible Job Shop (FJS) (Nie et al., 2013a), multi-objective FJS (Ozturk et al., 

2019), limited buffer spaces (Ozturk et al., 2020), and FJS with setup time (C. Zhang et 

al., 2021). Since the GEP approach is relatively new compared with the GP algorithm 

and there are many genetic operators that need fine-tuning before running, the number 
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of literature articles that have used the GEP for the automatic generation of dispatching 

rules is very limited. Also, there is no feature selection approach proposed in the GEP 

existing literature (Nguyen et al., 2017a). Although this is reasonable because the GEP 

algorithm is less susceptible to the bloating effect, the GEP evolved rules might still 

include some redundant features. Therefore, the research questions that can be derived 

from the current GEP literature are as follows. 

• Does integrating feature selection methods with the GEP algorithm help reduce 

computational time? and if yes, will it negatively affect the GEP exploration 

ability since it is already restricted? 

• How can the proposed feature selection method for the tree-based GP approach 

be modified for use in the GEP algorithm? 

In order to find answers to these questions, Chapter 5 includes the following 

contributions. 

• The proposed feature selection approach for the tree-based GP approach is 

modified to be applicable to the GEP algorithm.  

• The performance of the proposed feature selection GEP algorithm is evaluated 

under different DJSSP instances and objective functions.  

• The GP feature selection approach proposed in (Nguyen et al., 2018a) is 

modified to be applicable to the GEP algorithm to analyse its performance in the 

case of the GEP algorithm and compare it with the proposed approach. 

c) Surrogate Models for Expensive Fitness Evaluation 

As mentioned earlier, there are a large number of dispatching rules (in the hundreds) 

evolve in each generation, and each of these rules needs to be evaluated using a 

simulation model that imitates a specific scheduling problem. During the evaluation of 

each rule, thousands of scheduling decisions are made by estimating the priority values 

of the waiting operations using the given rule (function). Therefore, the most 

computationally expensive part of using the GP approach to generate dispatching rules 

for dynamic problems is fitness assessment with simulation (Nguyen et al., 2017a). 

Several surrogate models have been proposed in the evolutionary computation literature 

to overcome the computational burden caused by fitness assessments (Jin, 2011). 

Surrogate models are computationally affordable approximations of an expensive 

fitness function derived from statistical or machine learning techniques that are trained 

using samples of fully evaluated solutions (Jin, 2011). Integration of surrogate models 
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and evolutionary algorithms aids in the early identification of promising individuals 

whose actual performance will subsequently be assessed using an expensive fitness 

function. In addition, poor-quality individuals can be quickly discarded without 

sacrificing high computational costs (Hildebrandt and Branke, 2015a). Two surrogate 

models have been proposed in the literature to reduce the fitness evaluation time 

required for the GP algorithm to evolve rules for DJSSPs as described below. 

1) Hildebrandt and Branke proposed a surrogate model based on the phenotypic 

characterization of evolved rules (Hildebrandt and Branke, 2015a). The 

proposed model estimates the fitness value of a certain rule by using the fitness 

of the most similar rule generated in the previous evolutionary generations. 

Then, the rules with the highest approximate fitness values are selected to form 

the next generation, and their real fitness values are obtained using the actual 

simulation model. The results showed that the proposed surrogate assisted GP 

approach had a higher convergence speed compared with the standard GP 

approach given the same computational budget.  

2) Nguyen et al. developed surrogate models based on simplified versions of the 

original job shop; i.e., three simplified versions of the actual job shop settings 

were introduced using a smaller number of machines, operations at each job, and 

the total number of jobs required (Nguyen et al., 2017d). The results showed that 

the simplified methods significantly reduce the computational costs of fitness 

assessment while achieving higher accuracy levels compared with the 

phenotypic surrogate model. 

Although the existing surrogate assisted GP models have shown better performance 

compared with the standard GP algorithm, there are some limitations that need to be 

addressed as follows. 

1) The decision vector used in the surrogate model proposed in (Hildebrandt and 

Branke, 2015a) has to be adequately large to differentiate between GP rules, 

resulting in an increase in computational time. In addition, the prediction 

accuracy of this surrogate model is significantly lower compared with the 

simplified model as reported in (Nguyen et al., 2017d). 

2) Although the simplified models achieve high prediction accuracy with a 

significant reduction in computational costs by reducing the job shop 

complexity, all information obtained during simulation runs is discarded. 
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In order to address the above limitations, Chapter 6 includes the following 

contributions. 

• Three surrogate models are developed to reduce the computational time required 

to evaluate the performance of GEP rules. The proposed models are built on the 

simplified models that have higher prediction accuracy compared with the 

phenotypic surrogate and do not use any decision vectors. 

• The surrogate assisted GEP approach uses the information collected during 

fitness assessment of a subset of rules, in training a simple mathematical 

function to replace part of the simulation length (reduce simulation time). 

• This is the first attempt to use machine learning methods to abstract a simulation 

model of DJSSPs, which opens up a wide range of research opportunities to 

develop other machine learning techniques using the same concept. 

 

 



Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems 

     81 

Chapter 3. MULTI-OBJECTIVE GENETIC 

PROGRAMMING APPROACH FOR STATIC 

JOB SHOP SCHEDULING PROBLEMS 

3.1 Introduction 

The first objective of this chapter is to propose a distance metric for measuring the 

similarity between GP individuals to increase the solution quality of evolved rules. 

Because static job shop scheduling problem instances do not change across evolutionary 

generations, high-quality rules ensure that the same high performance is obtained in 

subsequent generations, which is not the case in dynamic settings. Therefore, they have 

a higher probability to take over the entire population before effectively exploring the 

fitness landscape (premature convergence) (Nguyen et al., 2017a). Representing the 

population diversity in numerical formats helps to track and control it across 

generations. In other words, a higher selection probability can be given to distinct 

individuals that have low similarity values regardless of their fitness values, and thus 

can survive for the upcoming generations (Burke et al., 2004). In addition, promoting 

population diversity enhances the exploration ability of the GP algorithm to explore 

large regions of the solution's space without being trapped in local optima, which is 

reflected in the quality of the obtained solutions. However, considering population 

diversity only as an objective to be optimized leads to higher over-exploration and thus 

computational budget might run out before the algorithm converges to a good solution. 

Consequently, the solution quality of GP individuals must be taken into account while 

optimizing their diversity values.  
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The second objective is to develop a multi-objective GP framework to 

simultaneously optimize solution quality, diversity value, and rule length. Controlling 

the growth in the size of the evolved rules significantly reduces the computation time of 

the GP algorithm as stated earlier. In addition, the rules in simple structures are easier to 

interpret by the decision-makers and to implement in real-world manufacturing systems 

(Branke et al., 2016a). In most multi-objective GP methods in the literature, the size of 

rules is indirectly considered. Meaning that when the two compared rules have the same 

fitness value, the smaller rule is chosen in the next generation. The reason is that smaller 

rules usually include limited information about the job shop floor and thus have low 

performance compared with larger rules. Also, smaller rules have a smaller range of 

potential changes (lower diversity) compared with larger rules. Finally, it is clear that 

optimizing the three objectives simultaneously is suitable due to their conflicting nature.   

The remainder of this chapter is organized as follows. Section 3.2 provides a 

detailed explanation of the proposed distance metric and the multi-objective GP 

approach. The experimental details are presented in Section 3.3 including comparison 

design, static job shop scheduling problem instances, and GP parameters. Section 3.4 

provides the results in terms of parameter tuning, makespan, and mean tardiness 

objective functions. Finally, Section 3.5 presents the conclusions of this chapter. 

3.2 Proposed Approach 

3.2.1 Distance Metric 

Because the purpose of developing this new distance metric is to promote diversity 

among dispatching rules, a behaviour analysis was carried out for the scheduling rules 

that were evolved using GP. The preliminary runs enabled four observations to be made 

as follows. 

a) The fitness evaluation of rules is computationally expensive, restricting the use 

of phenotypic distance measures.  

b) The structure of GP individuals converges to that of the best rule in a given 

generation. 

c) Not only does the location of the nodes greatly affect their performance, but the 

interaction between the node and its parents also has a significant impact.  

d) Not all nodes have the same weight, because it was noted that nodes near the 

root had a greater impact on the fitness value of a given rule than distant nodes.  
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These findings were addressed in the proposed distance metric. To reduce the 

computational requirements, a genotypic metric is proposed that does not require any 

additional fitness evaluations. Moreover, instead of evaluating the similarity between 

every pair of rules in a GP population, the similarity between each rule and the best rule 

is evaluated, which reduces the similarity calculations from 𝑂(𝑛2) to 𝑂(𝑛). Finally, the 

distance between the two rules is calculated in three steps as shown below: 

I. The two trees 𝑖 and 𝑗 are brought to the same structure (depth) by adding 𝑛𝑢𝑙𝑙 

nodes. 

II. Weighted edge sets 𝑆𝑖 and 𝑆𝑗 for the two rules are generated using the following 

equations: 

𝑆𝑖 = {𝑤(𝑒𝑖) ∀ 𝑒𝑖 ∈ 𝐸𝑖}, 𝑆𝑗 = {𝑤(𝑒𝑗) ∀ 𝑒𝑗  ∈ 𝐸𝑗} 3.1 

where e is an edge in the set of all Edges 𝐸 in a specific tree, and 𝑤(𝑒) is a 

function that estimates the weight of edge 𝑒.  

The weight 𝑤(𝑒) of an edge 𝑒 connecting nodes 𝑥 and 𝑦 is estimated using the 

following equation: 

𝑤(𝑒) =
𝑤𝑥  +  𝑤𝑦

2
 3.2 

where 𝑤𝑥 and 𝑤𝑦 represent the weights of nodes 𝑥 and 𝑦 respectively, which can 

be evaluated as follows: 

  𝑤𝑥 = 𝑘(𝑑𝑚𝑎𝑥−𝑑𝑥+1), 𝑎𝑛𝑑 𝑤𝑦 = 𝑘(𝑑𝑚𝑎𝑥−𝑑𝑦+1) 

where 𝑑𝑚𝑎𝑥 is the tree depth, 𝑑𝑥 and 𝑑𝑦 denote the depth of nodes x and y. 𝑘 is 

a constant ≥ 1 to indicate that the difference at depth 𝑘 in the compared trees is 

𝑘 times more important than the difference at depth 𝑘 + 1. 

III. The similarity value 𝑆𝑖𝑗  between trees 𝑖 and 𝑗 are measured using the following 

equation: 

𝑆𝑖𝑗 =
∑ (𝑤(𝑒𝑖)  +  𝑤(𝑒𝑗))𝑒∈𝐸𝑖∩𝐸𝑗

∑ (𝑤(𝑒𝑖)  +  𝑤(𝑒𝑗))𝑒∈𝐸𝑖∪𝐸𝑗

 
3.3 

An illustrative example of how the proposed distance metric measures the similarity 

between two trees is shown in Figure 3.1. The two rules are presented in both the tree 

structure and mathematical form. Three terminals are presented: processing time 𝑃𝑇, 

work in the next queue 𝑊𝐼𝑁𝑄, and next processing time 𝑁𝑃𝑇. The depth of the first 
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rule (𝑑1 = 2) is incremented by one using a null node to obtain the same depth as the 

second rule (𝑑2 = 3). The depth and weight for each node are shown in columns 𝑑 and 

𝑤 next to the tree structure of rule 2. The weights of the nodes were assigned using 𝑘 =

2. Clearly, the set of common edges includes +𝑃𝑇, + ×,× 𝑁𝑃𝑇, 𝑎𝑛𝑑 × 𝑊𝐼𝑁𝑄 . The 

similarity value between the two rules is estimated by dividing the sum of the weights 

of the common edges by the total weight of all the edges in both rules. There is a 

similarity value of 0.7 between the two rules. From this example, when 𝑘 = 2, the 

weight of a node is half the weight of its parent node, that is, increasing the depth by 

one will reduce the edge weight by half. In addition, the location of an edge (right or 

left) does not affect its weight because edges at the same depth have the same weight 

regardless of their position. In addition, the similarity value ranges from 0 to 1 and can 

be evaluated even if the two trees have different depths or dissimilar root nodes. Finally, 

the proposed metric utilizes the information available in the structure of the rules to be 

compared; thus, additional fitness evaluations are not required. 

 

Figure 3.1: Example of the proposed similarity measure. 

3.2.2 Multi-objective GP approach 

The aim of the proposed approach is to extend the standard GP algorithm (John R. 

Koza, 1994) by enhancing diversity and reducing the bloat effect in the evolved rules. 

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is one of the most popular 

Pareto-based multi-objective algorithms used to obtain a set of well-spread Pareto-

optimal solutions (Deb et al., 2002a). In addition, Zhang et al. (Zhang et al., 2019b) 

integrated the strategies of NSGA-II and SPEA2 into GP to solve the dynamic flexible 

JSSP. The results showed that incorporating NSGA-II with GP generated more effective 
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rules with higher consistency than SPEA2. Therefore, the NSGA-II was integrated with 

the GP algorithm to simultaneously optimize the three objectives at the same time. The 

objectives considered were the fitness value, similarity value, and rule depth. The 

pseudocode for the proposed algorithm is presented in Figure 3.2. The algorithm begins 

by generating a population of dispatching rules using a predefined set of functions and 

terminals. Evolutionary generation begins by using each of these rules to construct a 

schedule for a given JSSP instance. The objective values of the rules are then estimated 

from the constructed schedules, and the best rule in this generation is updated 

accordingly. Parents and offspring are combined to ensure elitism, which guarantees 

that the best individuals secure a place in the next generation. Then, the similarity value 

between each rule and the best-evolved rule is assessed using the proposed distance 

metric. NSGA-II is used to select rules with high ranks and smaller crowding distances 

for new population formation. If the required number of generations is not reached, 

another evolutionary iteration starts; otherwise, the algorithm terminates, and a set of 

non-dominated scheduling rules is returned. 

 

 

Figure 3.2: Pseudocode of the proposed multi-objective GP algorithm 
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3.3 Experimental Setup 

This section presents the experimental setup used to compare the proposed approach 

with the other methods. In addition, the parameter settings for both the GP algorithms 

and JSSP instances are shown. 

3.3.1 Comparison Design  

To assess the effectiveness of the proposed distance metric and multi-objective GP 

approach, two algorithms are developed. The first algorithm, referred to as “PGP_P,” 

evaluates the ability of the proposed similarity metric to increase the quality of GP rules 

by promoting population diversity. The second algorithm, denoted as “PGP_N,” follows 

the same steps presented in Figure 3.2 and is used to verify whether the proposed 

approach can optimize the solution quality, diversity, and size of evolved rules 

simultaneously. The two proposed algorithms were compared with the following three 

algorithms in the literature: 

i. SGP: Standard GP algorithm (John R. Koza, 1994). 

ii. EGP: SGP with Edit-distance metric (de Jong et al., 2001). 

iii. MGP: SGP with genetic Marker metric (Burks and Punch, 2015). 

The SGP algorithm was developed to evaluate the benefits of increasing the 

population diversity and controlling the bloating effect compared with the standard 

version of the GP algorithm. In addition, the EGP and MGP algorithms were considered 

to enable the proposed algorithm to be compared with other GP algorithms that use 

different distance metrics and bloat control techniques. The edit distance metric used in 

the EGP algorithm measures the distance between two individuals as the shortest 

number of editing operations required to convert one tree to the other. Specifically, the 

edit metric works in three steps as follows (de Jong et al., 2001). 

a) The distance between each individual in the GP population and the best 

individual found so far is measured. 

b) Two overlapping nodes get a distance of 1 when they are different, otherwise 

(same), the distance is 0. 

c) The distance between two trees is the sum of all different nodes divided by the 

size of the smaller tree for normalizing. 

In addition, the authors proposed a multi-objective GP optimization approach to 

avoid bloat and prompt population diversity. Experimental results showed that the 
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proposed approach had better performance compared with the standard GP on the 3, 4, 

and 5-parity problems both with respect to computational time and tree size. On the 

other hand, the MGP algorithm uses a genetic marker distance metric that estimates the 

similarity between individuals by comparing a small portion of each tree known as a 

"genetic marker". In other words, the MGP algorithm enhances diversity by maintaining 

an appropriate number of unique genetic markers (tree fragments) in the population 

(Burks and Punch, 2015). The genetic marker distance metric promotes diversity using 

the following steps. 

i. Depth-first traverse is performed for each tree up to a predefined depth (end of 

the genetic marker). 

ii. The resulting Lisp expression becomes the genetic marker. 

iii. The density of a genetic marker is used to determine the prevalence of a specific 

genetic marker in a population. 

Finally, the MGP algorithm outperformed three literature algorithms on benchmark 

problems with respect to solution quality and convergence speed. 

A flowchart of the five algorithmic experiments is shown in Figure 3.3. All 

algorithms begin by initializing the same population of scheduling rules using the same 

random seed. Subsequently, their fitness values were evaluated on a specific JSSP 

instance using a predefined objective function. In the case of SGP, no diversity metric is 

used, and the best rules are selected by the standard tournament method. For the EGP 

and MGP algorithms, the similarity values of the rules were evaluated using the edit 

distance and genetic marker distance metrics, respectively. The proposed distance 

metric was used for both PGP_P and PGP_N. For the PGP_N algorithm, the Pareto 

front rule with the lowest fitness value was used to measure the similarity values. The 

Pareto tournament method (Schmidt and Lipson, 2011) was employed to select the 

fittest rules for the EGP, MGP, and PGP_P algorithms. The same selection mechanism 

was used to evaluate the performance of the proposed metric separately. In the case of 

PGP_N, the best rules were selected using NSGA-II. Genetic operators were then 

applied to create a new population of scheduling rules. If the stopping criterion is 

satisfied, the algorithm terminates; otherwise, a new evolutionary iteration begins.  
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Figure 3.3: Flowchart of the five developed algorithms 

3.3.2 Genetic Programming Parameters 

Ten JSSP instances (ta61-ta70) based on previously proposed benchmark data (Taillard, 

1993) were used for comparison purposes. These instances are chosen from the 80 

available instances because they are the most complex instances with the largest number 

of jobs and machines, and the optimal solutions are known for the makespan objective 

(for validation). The job shop contains 20 machines, and 50 jobs are processed. Each 

job must visit all machines following a predetermined routing path. The processing 

times follow a uniform distribution U [1, 99]. Two objectives were investigated: 

makespan and mean tardiness. These objectives are chosen because the makespan 

represents the level of productivity that the system can achieve, whereas the mean 

tardiness objective assesses its ability to meet customer due dates (customer satisfaction 

level). Job due dates are estimated using the total work content method (Nguyen et al., 
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2017a), where job due date = current time + tightness factor × total processing time, as 

these dates are not available in the instances reported in the literature. A tightness factor 

of 1.9 was used as proposed in a previous report (Sels et al., 2012a). Regarding the GP 

parameters used for the five algorithms, a population of 250 rules was created using the 

ramped-half-and-half method, with a maximum depth of 8. Table 3.1 lists the set of 

functions and terminals used. In addition, the underlined terminals are used when 

optimizing the mean tardiness objective, and are excluded in the case of the makespan 

objective. The function set comprises basic arithmetic operations and logical functions. 

The values of the crossover and mutation rates are set to 0.9 and 0.1. The algorithm 

terminates after 30 generations are completed. Therefore, increasing the population 

diversity will only affect the fitness value of the best-evolved rule at a specific 

generation without affecting the computational time since the number of generations is 

fixed.  Because of the randomness inherent in the GP algorithm, 20 replications were 

performed. Also, the Wilcoxon rank-sum test was used with a significance level of 5 %.  

Table 3.1 GP terminal and function sets 

Attribute Explanation 

JR Job release date 

OR Operation ready time 

WR Work remaining of the job 

PT Operation processing time 

RO Number of remaining operations in a job 

WT Operation waiting time 

NPT Processing time of the next operation 

WINQ Work in the next queue 

APR Average processing time of queued job 

DD Job due date 

CT Machine ready time (current time) 

SL Job slack 

Function set +, −, ×, /,  𝑚𝑎𝑥, and 𝑎𝑏𝑠 
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3.4 Results 

This section discusses the evaluation of the two proposed algorithms with respect to the 

three approaches. In Section 3.4.1, parameter 𝑘 is fine-tuned by analysing its impact on 

the performance of the proposed similarity metric. To gain in-depth insights into the 

behaviour of the five algorithms, the quality of the GP individuals was tracked across 

generations. Additionally, the results obtained by applying the five algorithms to the ten 

job shop scenarios are presented in subsections 3.4.2 and 3.4.3 for the makespan and 

mean tardiness objectives, respectively. 

3.4.1 Parameter Analysis 

The PGP_P algorithm is implemented using four values of the 𝑘 parameter 𝑘={1,2,3,4}, 

where 𝑘 = 1 represents the case in which a node takes a weight equal to its depth. In 

addition, four performance measures were considered: 

• Solution quality: average objective values of rules in a given generation. 

• Mean rule length: the average number of terminals included in GP individuals.  

• Genotypic diversity: the number of unique rules. Two rules are identical if they 

have the same structure and content (Burke et al., 2004). 

• Phenotypic diversity: the number of unique fitness values in a population.  

The experiments in this subsection were performed in the ta61 instance, as similar 

results were obtained in the other nine instances and presented numerically in the next 

subsections. In addition, the aim of this analysis was to investigate the performance of 

the algorithms across generations rather than their overall performance which is 

presented in the next subsections. Figure 3.4 shows the results obtained by 

implementing the PGP_P algorithm using the four values of the 𝑘 parameter, where the 

mean values are shown as a solid line, and the standard deviations are depicted as a 

shaded area around it. As shown in Figure 3.4 (a), changing the value of the 𝑘 parameter 

does not affect the solution quality of the evolved rules, as there is no significant 

difference between the four runs. In contrast, the average rule length is highly sensitive 

to the 𝑘 value, as shown in Figure 3.4 (b). Similar observations are revealed for the 

other two measures, as shown in Figure 3.4 (c) and (d), where altering the 𝑘 value had a 

great impact on the population diversity. The interesting finding here is that even 

though the population diversity changes according to the value of parameter 𝑘, the GP 

reasoning ability can mitigate this effect on the quality of the generated rules (similar 
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makespan results). Specifically, when the value of 𝑘 is 4, if the node depth is decreased 

by one, its weight increases fourfold. Thus, the GP search explores the search space of 

small rules (higher impact on diversity), resulting in a reduction in the length of new 

rules, as shown in Figure 3.4 (a) and (b), where 𝑘 = 4 has the smallest average rule 

length with the same fitness values. The distance metric with 𝑘 = 3 was used in the next 

GP runs because it yielded acceptable results for the four performance measures. 
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Figure 3.4: Effect of changing the value of the 𝑘 parameter on the four 

performance measures. 

In Figure 3.5, the behaviour of the two proposed algorithms is analysed against that 

of the three algorithms from the literature on the ta61 instance with respect to the 

quality of evolved rules, rule length, computational time, and population diversity. 

Regarding the quality of the evolved rules, the PGP_N algorithm obtained the lowest 
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makespan value with a consistent improvement across generations, as shown in Figure 

3.5 (a). In addition, the exploration ability of PGP_P was superior to that of the EGP 

and MGP algorithms. It is noteworthy that although the SGP algorithm obtained higher 

quality makespan results compared with the EGP, MGP, and PGP_P algorithms, these 

results would be reversed if the computational time was used as a stopping condition 

instead of the number of generations, as illustrated in Figure 3.5 (c). The use of the 

Pareto tournament selection method in the EGP, MGP, and PGP_P algorithms 

significantly decreased the average rule size by approximately 75% compared with the 

SGP algorithm, resulting in a reduction in computational time of approximately 56.5%, 

as shown in Figure 3.5 (b) and (c). Therefore, when comparing the other JSSP instances 

in the next subsection, the average rule length was used as an indicator of the 

computational time of the algorithm.  

Regarding the diversity of GP individuals, the proposed PGP_N algorithm obtained 

higher genotypic and phenotypic diversity values across generations compared with 

other methods, especially in the first ten generations as depicted in Figure 3.5 (d) and 

(e). In addition, although the SGP algorithm generated high-quality rules, it had the 

lowest genetic and phenotypic diversity, which explains the exponential growth in the 

mean rule length as SGP strives to escape from local optima by increasing the rule 

sizes. Moreover, the use of the proposed distance metric increases the phenotypic 

diversity of GP rules compared with the literature similarity measures without 

sacrificing the performance or size of the rules. These results led to two main findings.  

1. The PGP_N algorithm was able to generate rules with lower makespan values 

compared with the other methods because of the high diversity levels, especially 

in the early generations.  

2. The use of NSGA-II as a section mechanism enhanced the exploration ability of 

the GP algorithm compared with the standard or Pareto tournament selection 

methods used in the other algorithms.  

Finally, the PGP_N algorithm obtained a mean makespan value of 3315 with a 7.2% 

deviation from the optimal solution (2868) of this JSSP instance, which proves that GP 

is a promising approach for the automated design of scheduling rules. 
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Figure 3.5: Performance of the five GP algorithms on the ta61 JSSP instance. 

3.4.2 Makespan Objective 

The performances of the five GP algorithms for optimizing the makespan objective 

were estimated. Ten instances from the literature were used and four performance 

measures were evaluated. These measures were Makespan Value (MV), average Rule 

Length (RL), Genotypic Diversity (GD), and Phenotypic Diversity (PD). The mean and 

standard deviation of the obtained results as are listed in Table 3.2. The statistical 

results achieved by comparing PGP_P with the three algorithms are represented by the 

tuple next to the PGP_P results (PGP_P versus SGP, PGP_P versus EGP, and PGP_P 

versus MGP). The symbols "+," "−," and "=" indicate that the corresponding result is 

significantly better, worse than, or similar to its counterpart, respectively. In addition, 

the performance of PGP_N is compared with that of the three literature methods, as well 

as the PGP_P algorithm represented by the fourth element in the tuples next to its 

results. The last row of the table summarizes the results counting the number of times a 

certain method loses (significantly worse) or wins (significantly better) against the 

PGP_P and PGP_N algorithms (lose/win). 
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Regarding the quality of the evolved rules, the PGP_N algorithm delivered similar 

performance to the SGP with only one loss, whereas the PGP_P produced inferior 

results in four instances. In contrast, the proposed algorithms significantly outperformed 

the SGP algorithm in terms of the average size of the rules and diversity objectives. The 

rules evolved using the proposed methods were able to achieve smaller makespan 

values compared with the EGP and MGP algorithms with wins in almost all instances. 

In addition, the population diversity of the PGP_P and PGP_N rules was significantly 

larger than that of the EGP rules in the ten instances. In contrast, although the 

phenotypic diversity of the PGP_P algorithm was greater than that of the MGP 

algorithm in the nine scenarios, the genotypic diversity was significantly worse in all 

instances. These results are consistent with those in the literature, as good fitness values 

were reported to be correlated with high phenotypic diversity. Therefore, it is clear that 

the phenotypic diversity among the GP evolved rules has a more pronounced effect on 

solution quality compared with the genotypic diversity. The integration of NSGA-II and 

the proposed distance metric greatly increased the genotypic diversity and reduced the 

average length of rules compared with the PGP_P algorithm.  

The following conclusions were drawn. The edit distance method used in the EGP 

algorithm is clearly unsuitable for measuring the similarity between GP rules in JSSPs 

because it produced the worst results for the GD and PD measures. In contrast, the 

genetic marker diversity measure used in the MGP algorithm achieved high levels of 

genotypic and phenotypic diversity among the GP rules. Finally, the rules evolved using 

the PGP_N algorithm have the lowest makespan values, highest diversity, and smallest 

average rule length, which demonstrates the usefulness of integrating NSGA-II with the 

GP algorithm while using the proposed distance metric. 

Table 3.2 Performance of the five GP algorithms in terms of optimizing the 

makespan objective on the ten JSSP instances 

Inst. Perf. SGP EGP MGP PGP_P PGP_N 

ta61 

MV 
3078.15  

± 16.4 

3152.5  

± 12.5 

3129.55  

± 17.2 

3102.6 ± 11.6  

(-, +, +) 

3077.0 ± 13.0  

(=, +, +, +) 

RL 
14.09  

± 2.6 

3.73  

± 1.1 

3.38  

± 0.2 

3.3 ± 0.8  

(+, =, +) 

3.19 ± 0.7  

(+, +, =, +) 
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GD 
89.82  

± 6.3 

103.33  

± 13.3 

155.82  

± 3.4 

145.68 ± 5.0  

(+, +, -) 

180.59 ± 8.3  

(+, +, +, +) 

PD 
32.08  

± 5.5 

62.47  

± 7.7 

93.21  

± 5.1 

99.1 ± 5.9  

(+, +, +) 

103.9 ± 6.6  

(+, +, +, =) 

ta62 

MV 
3133.15  

± 13.8 

3188.75  

± 28.0 

3158.2  

± 14.8 

3142.3 ± 7.8  

(-, +, +) 

3135.2 ± 7.5  

(=, +, +, =) 

RL 
11.61  

± 2.2 

3.07  

± 0.6 

3.15  

± 0.2 

3.08 ± 1.0  

(+, =, +) 

2.79 ± 1.1  

(+, =, =, +) 

GD 
96.47  

± 6.7 

78.39  

± 13.9 

149.74  

± 4.2 

137.44 ± 6.0  

(+, +, -) 

164.35 ± 11.4  

(+, +, +, +) 

PD 
25.35  

± 4.0 

41.48  

± 7.1 

74.75  

± 4.8 

84.34 ± 6.6  

(+, +, +) 

79.28 ± 9.7  

(+, +, =, -) 

ta63 

MV 
2960.9  

± 10.3 

3003.4  

± 17.7 

2984.65  

± 8.8 

2967.45 ± 11.6 

(=, +, +) 

2956.45 ± 10.1 

(=, +, +, =) 

RL 
13.9  

± 2.5 

3.48  

± 1.3 

3.42  

± 0.2 

3.52 ± 1.2  

(+, =, -) 

3.16 ± 0.9  

(+, =, +, +) 

GD 
95.28  

± 6.5 

101.24  

± 10.7 

156.87  

± 3.3 

143.83 ± 4.6  

(+, +, -) 

177.07 ± 9.6  

(+, +, +, +) 

PD 
25.68  

± 4.6 

57.09  

± 6.7 

85.27  

± 4.7 

88.1 ± 6.7  

(+, +, +) 

86.99 ± 6.8  

(+, +, =, =) 

ta64 

MV 
2857.75  

± 18.2 

2912.5  

± 15.0 

2885.3  

± 7.2 

2861.2 ± 9.5  

(=, +, +) 

2853.5 ± 7.0  

(=, +, +, =) 

RL 
13.85  

± 3.0 

3.16  

± 0.7 

3.11  

± 0.2 

3.19 ± 1.4  

(+, -, -) 

2.9 ± 1.0  

(+, =, =, +) 

GD 
90.36  

± 6.5 

98.81  

± 11.7 

156.95  

± 3.1 

142.15 ± 5.4  

(+, +, -) 

178.88 ± 9.6  

(+, +, +, +) 
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PD 
25.95  

± 4.7 

42.52  

± 6.5 

65.93  

± 4.7 

76.51 ± 6.9  

(+, +, +) 

79.68 ± 8.7  

(+, +, +, =) 

ta65 

MV 
2988.9 ± 

21.0 

3035.6 ± 

13.3 

3024.85 

± 17.9 

2987.65 ± 16.8 

(=, +, +) 

2994.85 ± 14.1 

(=, +, +, =) 

RL 
12.99  

± 2.8 

3.2  

± 0.9 

2.86  

± 0.2 

2.92 ± 1.2  

(+, =, -) 

2.56 ± 1.1  

(+, +, =, +) 

GD 
86.92  

± 7.8 

75.58  

± 15.3 

147.65  

± 3.9 

132.8 ± 13.7  

(+, +, -) 

140.17 ± 17.0  

(+, +, -, =) 

PD 
26.51  

± 4.7 

36.62  

± 7.2 

56.46  

± 4.7 

77.37 ± 8.6  

(+, +, +) 

65.22 ± 9.6  

(+, +, +, -) 

ta66 

MV 
3042.15  

± 11.4 

3099.25  

± 10.4 

3075.85  

± 9.2 

3056.95 ± 7.7  

(-, +, +) 

3050.0 ± 5.8  

(=, +, +, =) 

RL 
14.08  

± 3.4 

3.58  

± 0.9 

3.44  

± 0.2 

3.31 ± 1.0  

(+, =, +) 

3.22 ± 1.2  

(+, +, +, +) 

GD 
88.61  

± 6.7 

102.36  

± 12.8 

155.44  

± 3.7 

143.47 ± 4.9  

(+, +, -) 

173.65 ± 9.1  

(+, +, =, +) 

PD 
28.48  

± 4.4 

60.68  

± 8.2 

94.49  

± 4.8 

95.21 ± 5.3  

(+, +, +) 

95.21 ± 6.9  

(+, +, =, =) 

ta67 

MV 
3024.95 

± 19.8 

3108.25 

± 18.5 

3084.15 

± 16.2 

3040.95 ± 10.1 

(=, +, +) 

3039.6 ± 11.6  

(=, +, +, =) 

RL 
13.87  

± 2.2 

3.35  

± 0.7 

3.51  

± 0.2 

3.68 ± 1.3  

(+, -, -) 

3.49 ± 1.2  

(+, -, +, +) 

GD 
91.13  

± 5.5 

109.15  

± 9.6 

157.55  

± 3.1 

143.85 ± 4.7  

(+, +, -) 

180.33 ± 7.0  

(+, +, +, +) 

PD 
32.65  

± 5.7 

66.22  

± 6.1 

96.73  

± 4.5 

96.25 ± 5.7  

(+, +, =) 

104.62 ± 6.2  

(+, +, =, =) 

ta68 MV 2922.95 2985.15 2946.65 2936.35 ± 14.6 2922.1 ± 10.9  
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± 11.9 ± 15.8 ± 8.9 (=, +, +) 
(=, +, +, =) 

RL 
11.57  

± 2.0 

3.24  

± 0.7 

3.4  

± 0.2 

3.21 ± 0.8  

(+, +, =) 

2.76 ± 0.6  

(+, +, +, +) 

GD 
94.16  

± 7.3 

91.48  

± 13.9 

153.12  

± 3.5 

143.29 ± 5.0  

(+, +, -) 

166.0 ± 12.3  

(+, +, =, +) 

PD 
25.19  

± 4.7 

48.27  

± 8.1 

83.4  

± 4.4 

85.65 ± 7.1  

(+, +, +) 

79.62 ± 7.9  

(+, +, =, =) 

ta69 

MV 
3211.35  

± 6.6 

3275.55  

± 14.0 

3268.9  

± 11.7 

3234.3 ± 12.3  

(-, +, +) 

3221.15 ± 9.0  

(-, +, +, =) 

RL 
13.92  

± 3.5 

4.62  

± 2.0 

3.28  

± 0.2 

3.23 ± 1.1  

(+, +, +) 

3.11 ± 0.8  

(+, +, +, +) 

GD 
91.14  

± 5.6 

111.56  

± 10.2 

155.88  

± 3.5 

140.8 ± 7.4  

(+, +, -) 

183.13 ± 8.1  

(+, +, +, +) 

PD 
28.12  

± 4.8 

54.83  

± 6.7 

74.94  

± 5.3 

87.23 ± 6.0  

(+, +, +) 

94.44 ± 6.8  

(+, +, +, +) 

ta70 

MV 
3278.55 

± 21.8 

3334.65 

± 16.9 

3301.55 

± 16.5 

3289.55 ± 16.7 

(=, +, =) 

3258.85 ± 12.4 

(=, +, +, +) 

RL 
13.82  

± 2.4 

3.51  

± 0.8 

3.46  

± 0.2 

3.59 ± 1.3  

(+, -, -) 

3.29 ± 1.1  

(+, =, =, +) 

GD 
93.14  

± 6.0 

106.65  

± 11.6 

154.47  

± 3.9 

146.4 ± 4.7  

(+, +, -) 

169.31 ± 10.2  

(+, +, =, +) 

PD 
28.55  

± 5.0 

63.56  

± 7.5 

86.05  

± 4.9 

92.52 ± 6.5  

(+, +, +) 

90.38 ± 7.5  

(+, +, =, -) 

Sum. 

MV 
0-4,  

0-1 

10-0,  

10-0 

9-0,  

10-0 
2-0 

None 

RL 
8-1,  

8-1 

3-2,  

6-1 

4-4,  

6-0 
9-0 
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GD 
10-0,  

10-0 

10-0,  

10-0 

0-10,  

6-1 
9-0 

 

PD 
10-0,  

10-0 

10-0,  

10-0 

9-0,  

4-0 
1-3 

 

3.4.3 Mean Tardiness Objective 

The five algorithms were evaluated in terms of their ability to optimize the Mean 

Tardiness (MT) objective, which evaluates the ability of the job shop to meet customer 

due dates. The results are presented in Table 3.3. The performance of the PGP_P and 

PGP_N algorithms was superior to that of the SGP algorithm with respect to the RL, 

GD, and PD objectives. Regarding the MT objective, both SGP and PGP_N had 

relatively similar performances, except for one instance in which SGP outperformed 

PGP_N. Compared with the EGP algorithm, the proposed algorithms achieved results 

that are of a significantly higher quality for the MT, GD, and PD objectives in all 

considered instances. The conclusion regarding the average length of the evolved rules 

is not definitive because the PGP_P algorithm delivered superior performance in three 

instances and inferior performance in four instances compared with the EGP algorithm.  

The results in Table 3.3 indicate that the proposed algorithms were able to create 

rules with higher solution quality and smaller sizes than the MGP algorithm. 

Specifically, PGP_P and PGP_N have significantly lower mean tardiness values than 

the MGP algorithm in nine and ten instances, respectively. In terms of the phenotypic 

diversity of the evolved rules, both PGP_P and PGP_N outperformed MGP in nine and 

two instances, respectively, without any loss. In contrast, the PGP_P algorithm yielded 

poor GD results compared with the MGP results for the ten scenarios. In addition, it is 

important to note that high genotypic diversity does not necessarily imply high 

phenotypic diversity because rules with different structures and content may obtain the 

same fitness values. The main reason for this phenomenon is the presence of redundant 

operations, for example, even though the 𝑊𝐼𝑁𝑄 + 𝑃𝑇  rule and the 𝑊𝐼𝑁𝑄 +

((𝑃𝑇 × 𝑁𝑃𝑇)/𝑁𝑃𝑇)) rule have different structures and terminals (genomes), they will 

return the same results (phonemes). Finally, the rules generated using the proposed 

multi-objective approach had higher solution quality in two instances, shorter lengths in 

seven instances, and higher genotypic diversity in nine instances compared with the 

PGP_P algorithm. 
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Although the results obtained using the mean tardiness objective were consistent 

with those obtained using the makespan objective, two additional observations were 

noted. First, in most scenarios, the average rule length in the case of the mean tardiness 

objective is greater than the average length of the rules generated for the makespan 

objective. Second, the PD measure in the SGP algorithm did not change significantly 

between the two objectives; in spite of this, the other algorithms had higher PD levels in 

most instances in the case of the mean tardiness objective compared with the makespan 

objective. Increasing the number of specified terminals related to job due dates by three 

in the case of the mean tardiness objective might be the reason for the increase in the 

average rule length and phenotypic diversity. When the number of terminals increases, 

the heuristic search space increases exponentially; thus, the GP algorithm increases the 

length of the generated rules to improve the exploration ability. In addition, as the 

heuristic search space and average length of rules increase, distance metrics become 

more efficient because the possibility of variability between the structure and fitness 

value of evolving rules increases. 

Table 3.3 Performance of the five GP algorithms in terms of optimizing the mean 

tardiness objective on the ten JSSP instances 

Inst. Perf. SGP EGP MGP PGP_P PGP_N 

ta61 

MT 
492.14  

± 5.0 

514.54  

± 5.4 

507.98  

± 5.5 

498.37 ± 4.8  

(=, +, +) 

494.0 ± 3.4  

(=, +, +, =) 

RL 
14.56  

± 3.6 

4.62  

± 1.4 

4.1  

± 0.2 

3.71 ± 0.7  

(+, +, +) 

3.59 ± 0.8  

(+, +, +, +) 

GD 
94.25  

± 5.5 

113.1  

± 12.5 

155.83  

± 3.1 

142.63 ± 5.0  

(+, +, -) 

168.69 ± 9.6  

(+, +, =, +) 

PD 
25.27  

± 3.6 

74.33  

± 9.6 

97.28  

± 4.6 

103.32 ± 6.4  

(+, +, =) 

100.04 ± 5.5  

(+, +, =, -) 

ta62 

MT 
463.19  

± 7.6 

485.07  

± 4.9 

478.94  

± 4.3 

470.15 ± 4.3  

(=, +, +) 

466.72 ± 4.2  

(=, +, +, =) 

RL 
12.21  

± 1.8 

4.08  

± 1.0 

4.17  

± 0.2 

4.11 ± 1.0  

(+, -, +) 

3.68 ± 0.7  

(+, +, +, +) 
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GD 
89.34  

± 6.4 

117.38  

± 10.4 

158.15  

± 3.3 

145.08 ± 5.0  

(+, +, -) 

182.13 ± 8.1  

(+, +, +, +) 

PD 
27.96  

± 4.4 

88.5  

± 8.0 

112.89  

± 4.9 

121.24 ± 6.9  

(+, +, +) 

128.05 ± 7.3  

(+, +, =, =) 

ta63 

MT 
461.61  

± 4.0 

486.55  

± 5.5 

475.17  

± 3.1 

468.75 ± 4.7  

(-, +, +) 

466.37 ± 4.1  

(-, +, +, =) 

RL 
13.57  

± 2.3 

4.11  

± 1.4 

4.18  

± 0.2 

3.9 ± 0.9  

(+, =, =) 

3.99 ± 1.0  

(+, =, =, =) 

GD 
91.78  

± 7.5 

106.42  

± 11.4 

157.02  

± 3.5 

143.86 ± 5.0  

(+, +, -) 

179.58 ± 8.8  

(+, +, +, +) 

PD 
26.65  

± 4.0 

79.03  

± 8.7 

105.7  

± 4.7 

116.22 ± 6.3  

(+, +, +) 

125.12 ± 7.6  

(+, +, =, =) 

ta64 

MT 
455.9  

± 7.3 

479.64  

± 7.0 

467.02  

± 6.5 

457.33 ± 6.0  

(=, +, +) 

447.49 ± 7.0  

(=, +, +, +) 

RL 
14.13  

± 3.3 

3.48  

± 0.6 

4.11  

± 0.2 

3.83 ± 1.0  

(+, -, =) 

3.88 ± 1.1  

(+, -, =, =) 

GD 
95.07  

± 6.6 

99.75  

± 11.5 

157.64  

± 3.1 

145.97 ± 4.8  

(+, +, -) 

175.15 ± 8.7  

(+, +, +, +) 

PD 
24.27  

± 4.2 

68.86  

± 7.2 

94.83  

± 5.1 

115.77 ± 6.6  

(+, +, +) 

112.81 ± 6.1  

(+, +, +, -) 

ta65 

MT 
443.85  

± 5.9 

459.51  

± 5.9 

454.9  

± 4.8 

449.91 ± 3.7  

(-, +, =) 

446.21 ± 4.9  

(=, +, +, =) 

RL 
13.34  

± 2.1 

3.8  

± 0.7 

4.09  

± 0.2 

3.67 ± 0.8  

(+, +, +) 

3.51 ± 0.5  

(+, +, +, +) 

GD 
92.07  

± 6.1 

114.4  

± 9.5 

157.6  

± 3.1 

144.45 ± 4.7  

(+, +, -) 

179.33 ± 9.8  

(+, +, +, +) 
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PD 
25.05  

± 3.5 

81.4  

± 7.6 

102.43  

± 5.3 

116.4 ± 6.0  

(+, +, +) 

123.65 ± 7.7  

(+, +, =, =) 

ta66 

MT 
470.19  

± 7.4 

499.12  

± 6.2 

490.54  

± 4.9 

476.14 ± 6.0  

(=, +, +) 

475.51 ± 6.0  

(=, +, +, =) 

RL 
13.97  

± 2.8 

3.73  

± 1.0 

3.91  

± 0.2 

3.53 ± 1.0  

(+, =, +) 

3.16 ± 0.8  

(+, +, +, +) 

GD 
90.77  

± 7.1 

96.24  

± 10.0 

153.67  

± 3.6 

141.62 ± 5.9  

(+, +, -) 

143.73 ± 13.2  

(+, +, =, =) 

PD 
24.28  

± 3.5 

62.96  

± 7.0 

87.22  

± 4.4 

110.23 ± 6.6  

(+, +, +) 

90.11 ± 7.4  

(+, +, =, -) 

ta67 

MT 
488.62  

± 6.6 

515.9  

± 7.1 

502.96  

± 3.9 

494.27 ± 3.3  

(=, +, +) 

491.38 ± 4.3  

(=, +, +, =) 

RL 
15.24  

± 4.1 

3.73  

± 0.7 

4.19  

± 0.2 

4.15 ± 1.3  

(+, -, +) 

3.72 ± 1.0  

(+, =, +, +) 

GD 
90.96  

± 6.8 

107.05  

± 9.8 

155.82  

± 3.5 

144.88 ± 4.9  

(+, +, -) 

168.02 ± 9.0  

(+, +, =, +) 

PD 
27.3  

± 4.0 

79.58  

± 7.7 

97.8  

± 5.4 

119.75 ± 6.3  

(+, +, +) 

114.54 ± 7.1  

(+, +, =, -) 

ta68 

MT 
476.26  

± 7.6 

496.38  

± 6.5 

491.58  

± 4.5 

481.2 ± 6.6  

(=, +, +) 

475.53 ± 5.8  

(=, +, +, =) 

RL 
14.24  

± 3.1 

3.85  

± 0.8 

4.08  

± 0.2 

3.82 ± 1.1  

(+, +, =) 

4.0 ± 1.1  

(+, -, =, =) 

GD 
91.7  

± 6.9 

103.03  

± 12.6 

155.09  

± 4.0 

144.81 ± 4.5  

(+, +, -) 

173.99 ± 8.6  

(+, +, +, +) 

PD 
28.31  

± 3.9 

72.94  

± 8.9 

99.39  

± 6.0 

120.84 ± 6.9  

(+, +, +) 

123.42 ± 7.3  

(+, +, +, =) 
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ta69 

MT 
523.12  

± 8.2 

546.72  

± 5.6 

538.03  

± 5.6 

527.85 ± 7.4  

(=, +, +) 

517.62 ± 4.3  

(=, +, +, +) 

RL 
11.62  

± 1.7 

3.4  

± 0.5 

3.98  

± 0.2 

3.56 ± 0.8  

(+, -, +) 

3.46 ± 0.9  

(+, -, +, +) 

GD 
92.87  

± 5.6 

96.1  

± 10.3 

155.46  

± 3.1 

142.01 ± 5.0  

(+, +, -) 

163.64 ± 11.9  

(+, +, =, +) 

PD 
23.76  

± 3.0 

65.77  

± 6.5 

87.13  

± 6.4 

101.75 ± 7.5  

(+, +, +) 

99.83 ± 5.7  

(+, +, =, -) 

ta70 

MT 
505.36  

± 6.0 

526.77  

± 5.5 

521.24  

± 3.4 

514.11 ± 6.3  

(-, +, +) 

508.56 ± 5.1  

(=, +, +, =) 

RL 
12.92  

± 2.1 

4.11  

± 0.9 

4.15  

± 0.2 

3.79 ± 0.9  

(+, =, =) 

3.39 ± 0.6  

(+, +, +, +) 

GD 
98.77  

± 7.2 

110.45  

± 13.1 

158.48  

± 3.0 

141.31 ± 5.2  

(+, +, -) 

181.76 ± 8.7  

(+, +, +, +) 

PD 
23.54  

± 3.8 

71.94  

± 9.5 

99.15  

± 5.1 

107.57 ± 7.7  

(+, +, +) 

113.43 ± 7.3  

(+, +, =, =) 

Sum. 

MT 
0-3,  

0-1 

10-0,  

10-0 

9-0,  

10-0 
2-0 

None 

RL 
10-0,  

10-0 

3-4,  

5-3 

6-0,  

7-0 
7-0 

 

GD 
10-0,  

10-0 

10-0,  

10-0 

0-10,  

6-0 
9-1 

 

PD 
10-0,  

10-0 

10-0,  

10-0 

9-0,  

2-0 
0-5 
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3.5 Chapter Summary 

This chapter proposed a distance metric to promote diversity among the scheduling 

heuristics evolved using a genetic programming algorithm. The proposed distance 

metric took into account four main characteristics of GP rules observed by behaviour 

analysis. In addition, to mitigate the bloating effect, the proposed metric was integrated 

with NSGA-II to optimize the solution quality, diversity value, and rule length 

simultaneously. Two algorithms, PGP_P and PGP_N, were developed to assess the 

effectiveness of the proposed distance metric and multi-objective GP approaches. In 

addition, two objective functions were addressed: the makespan and mean tardiness. For 

each objective, four performance measures were evaluated: the objective value, 

genotypic diversity, phenotypic diversity, and average length of the evolved rules. 

The impact of the newly introduced parameter 𝑘  was analysed by tracking the 

performance of the proposed algorithm across evolutionary generations using several k 

values 𝑘 =  {1, 2, 3, 4} and the four performance measures. Afterward, the performance 

of the two proposed algorithms was compared with that of three algorithms from the 

literature namely, SGP, EGP, and MGP across ten benchmark job shop scheduling 

problem instances. Regarding the literature methods, experimental results indicated that 

the edit distance metric used in the EGP algorithm was not effective for measuring the 

similarity between the GP evolved rules. In contrast, measuring similarity using the 

genetic marker metric used in the MGP algorithm enhanced both genotypic and 

phenotypic diversity among the GP rules. In addition, the obtained results demonstrated 

the effectiveness of the proposed methods in generating a phenotypically diverse 

population of scheduling rules with smaller sizes and higher solution quality compared 

with other methods. Although one of the existing diversity metrics (MGP) obtained 

higher quality genotypic diversity results compared with the PGP_P algorithm, the 

evolved rules using PGP_P significantly outperformed the MGP rules in terms of the 

other three objectives. The rules generated using the PGP_N algorithm produced 

superior results compared with the literature approaches for the studied objectives. 

Finally, it was noted that the average rule length in the case of the mean tardiness 

objective was greater than that in the case of the makespan objective. This was expected 

since the number of features in the mean tardiness objective had three more features in 

the terminal set compared with the makespan objective. Reducing the number of 

features in the terminal set in order to reduce the size of evolved rules is the motivation 

behind the next chapter. 
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Chapter 4. GENETIC PROGRAMMING WITH 

FEATURE SELECTION FOR DYNAMIC JOB 

SHOP SCHEDULING PROBLEMS 

4.1 Introduction 

The ability of the GP algorithm to generate high-quality rules depends largely on the 

features included in the terminal set that need to cover the most crucial characteristics of 

the job, machine, and shop floor (F. Zhang et al., 2021c). However, there is a wide 

range of features to choose from which varies depending on job shop settings, problem 

constraints, and objective functions making the manual selection of features impractical 

(Zhang et al., 2019c). In addition, the inclusion of insignificant terminals leads to three 

major issues as follows (Mei et al., 2017b).  

a) It greatly increases the search space for dispatching rules and thus negatively 

affects the ability of the GP algorithm to reach the most promising areas.  

b) The average size of evolved rules tends to be large which hinders their 

understanding and implementation in real-world problems.  

c) It increases the GP computational time greatly because complex rules require a 

high computational budget for a fitness assessment compared with simpler rules.  

Therefore, feature selection is an important issue in the GP literature which can 

simplify the evolved rules and speed up the learning process (F. Zhang et al., 2021c). 

Although GP can perform feature selection automatically, its ability is limited. For 

example, even the best rules usually include some redundant terminals (Zhang et al., 

2019c). 
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The main objective of this chapter is to propose a new feature selection approach for 

the GP algorithm to include significant features and exclude redundant ones from the 

structure of evolved rules. In contrast with existing feature selection approaches in the 

literature, the proposed approach is expected to offer the following advantages. 

I. The proposed approach uses a modified attribute vector representation to 

estimate the weight of each terminal without being affected by the occurrence of 

redundant terminals or complex rule structures. 

II. It is an online feature selection approach which means that it selects important 

features during the GP runs using the estimated weights of terminals from earlier 

generations to guide the search in the current generation. 

III. It uses a probabilistic selection scheme rather than the inclusion or exclusion 

method (binary selection) to provide a broad preference scheme for each feature. 

The remainder of this chapter is organized as follows. Section 4.2 provides a 

detailed explanation of the proposed attribute vector, and feature selection approach. 

The experimental details are presented in Section 4.3 including comparison design, 

dynamic job shop scheduling problem instances, and GP parameters. Section 4.4 

provides the results in terms of parameter tuning, training performance, testing 

performance, feature and behaviour analysis of evolved rules, and feature selection 

verification. Finally, Section 4.5 presents the conclusions of this chapter. 

4.2 Proposed methods 

4.2.1 Modified Attribute Vector 

The GP-evolved rules are usually complex tree structures that are difficult to analyse 

and interpret. The authors of one study (Nguyen et al., 2018b) extended the tree 

representation (𝑝𝑡𝑟𝑒𝑒𝑖) for each rule 𝑖 by an attribute vector (𝑎𝑣𝑒𝑐𝑖)  with the goal of 

increasing the interpretability of the rules by selecting relevant attributes. The attribute 

vectors are binary arrays (1, 0) with a number of elements 𝑇 equal to the total number 

of terminals. If the terminal state 𝑥𝑖𝑗 of a terminal 𝑗 in rule 𝑖 is 1 (active or important), 

then the actual value of the attribute is used to evaluate the priority function. In contrast, 

if 𝑥𝑖𝑗 is 0, then the attribute is regarded as irrelevant (inactive). Its value is set to 1 to 

exclude its effect on estimating priority values for queued jobs. The key limitation is 

that it ignores situations in which a particular attribute might not be present in the 
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priority function. Therefore, the attribute vector is not strictly linked to its 

corresponding priority function, leading to the following challenges. 

• Attribute vectors do not provide sufficient information about their priority 

functions. Some examples are that elements in an attribute vector might take a 

value of 1 (active) even if the rule includes only one terminal. 

• Mutation operators in attribute vectors may not always provide a true influence 

on how evolved rules estimate priority values (redundant operations). In other 

words, changing the activation state of a terminal has no effect if this terminal is 

not present in the rule. However, it might exert a future effect if any of these 

terminals emerge after tree crossover or mutation, although this is not certain. 

• The attribute vector mutation operator is applied to only one random terminal 

with a fixed mutation rate that ignores the relative importance of the terminals. 

Therefore, a new attribute vector representation is proposed by modifying the 

representation proposed in that earlier paper (Nguyen et al., 2018b). The proposed 

attribute vector extends the binary representation, where the terminal state 𝑥𝑖𝑗 of rule 𝑖 

and terminal 𝑗 can be 𝑎𝑐𝑡𝑖𝑣𝑒 = 1  or 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 = 0 to a ternary array where three states 

exist for each terminal. If terminal 𝑗 appears in the priority function of rule 𝑖, then its 

state 𝑥𝑖𝑗  may be 𝑎𝑐𝑡𝑖𝑣𝑒 = 1 or 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 = −1; otherwise, it is 𝑎𝑏𝑠𝑒𝑛𝑡  with a state 

equal to 0. For tree-based GP, priority functions are generated using a predefined set of 

functions and terminals. The set of terminals and functions used is shown in Table 4.1. 

Table 4.1 GP terminal and function sets 

Terminal Description Terminal Description 

WINQ Work in the next queue DD Due date of the job 

OR Ready time of the operation CT Current time 

RO Number of remaining operations SL Slack of the job 

PT Operation processing time JR Release date of a job 

WT Waiting time of the operation WR Work reaming of the job 

Npt Processing time of next operation JW Weight of the job 

Apr Average processing time of queued jobs # Random number from 0 to 4 

Functions +, −,×,/, 𝑚𝑖𝑛, 𝑚𝑎𝑥, 𝑎𝑏𝑠 
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An example of a dispatching rule encoded using the proposed representation and the 

literature representation is presented in Figure 4.1. Although both representations have 

the same priority function (𝑝𝑡𝑟𝑒𝑒𝑖) for the function PT + Npt + WINQ / JW and the 

similar simplified version (PT + Npt + WINQ), the main difference appears in the 

attribute vectors (𝑎𝑣𝑒𝑐𝑖). In the case of literature representation, there are ten active 

attributes, although only three of them exist in the rule. In addition, the WT, SL, and JW 

terminals are encoded in the same way (inactive), even though JW is presented in the 

priority function. In contrast, by using the proposed representation, one can readily 

distinguish between active terminals (PT, Npt, and WINQ), inactive terminals (JW), and 

absent terminals (remaining terminals). This concise abstraction engenders two main 

advantages over the literature representation.  

• It supports attribute vectors to be linked precisely to the structure of their 

corresponding priority functions. Therefore, attribute vectors are useful to gain 

useful insights into the structure of complex priority functions.  

• It ensures that any change in the feature's state will have a direct effect on the 

rule. This additional capability facilitates the feature selection mechanism 

presented in the next subsection. 

 

Figure 4.1: Example of a rule in the literature and proposed representations. 

4.2.2 Genetic operators and Feature Selection Approach 

Genetic operators are applied in a two-step procedure. In the first step, the standard 

subtree crossover and mutation operators are applied to priority functions (J. R. Koza, 

1994b). The second step represents the proposed feature selection mechanism as 

follows.  
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a) A subset 𝕊  of the best-selected rules from the current generation is used to 

estimate the weights of the terminals in the next generation. The weight of a 

terminal 𝑗 is reflected by its activation probability 𝐴𝑃𝑗 in the attribute vector.  

b) At the end of each evolutionary step, the weight of each terminal 𝐴𝑃𝑗  is 

estimated as shown in Equation 4.1. 

c) Attribute vectors are copied from the parents. Another mutation is applied using 

Equation 4.2. For each rule 𝑖, in the absence of a certain terminal 𝑗 the value of 

𝑥𝑖𝑗 in 𝑎𝑣𝑒𝑐𝑖 will be 0.  

d) Conversely, if terminal 𝑗 is presented, then a uniform random number (𝑟𝑎𝑛𝑑) 

between 0 and 1 is generated. Two situations can occur. If 𝑟𝑎𝑛𝑑 is less than or 

equal to its activation probability 𝐴𝑃𝑗 , then 𝑥𝑖𝑗 is 1 (active), otherwise, the 

terminal 𝑥𝑖𝑗 is inactive and takes a value of -1. 

 The idea underlying this approach is that, if a particular terminal is active in most of 

the selected rules, then it reflects its great weight. Therefore, the GP algorithm will be 

directed to use that terminal heavily in the next generation. In other words, if the 

activation probability of a terminal equals 1 (very important), then it will be active in all 

the dispatching rules containing this terminal in the next generation. In contrast, if the 

activation probability of a terminal is 0 (greatly irrelevant), then it will be inactive in the 

next generation even if it is present in the priority function of some rules. Therefore, the 

activation probability acts as an on-the-fly feature selection mechanism that uses past 

evolutionary information to estimate the importance of each terminal based on its effect 

on the best-generated rules. Finally, to address a special case in which a certain terminal 

did not occur or in which it was inactive in all selected rules that rarely happen, a fixed 

activation probability (revive) of 0.05 is used. The motive is to activate this terminal in 

only 5% of newly generated rules because it might have a tangible effect on other 

dispatching rules with different structures. Table 4.2 presents an illustrative example of 

how terminals' weights are evaluated using attribute vectors of five arbitrary dispatching 

rules. 

𝐴𝑃𝑗 =  
∑ 1 [𝑥𝑖𝑗 = 1]

|𝕊|
𝑖=1

∑ 1 [𝑥𝑖𝑗 = 1]
|𝕊|
𝑖=1 +  ∑ 1 [𝑥𝑖𝑗 = −1]

|𝕊|
𝑖=1

 4.1 

                   𝑥𝑖𝑗 =  {

   0,            𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑗 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟 𝑖𝑛 𝑟𝑢𝑙𝑒 𝑖
  1,                                  𝑟𝑎𝑛𝑑 ≤  𝐴𝑃𝑗                       

−1,                                  𝑟𝑎𝑛𝑑 >  𝐴𝑃𝑗                         
 4.2 
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Table 4.2 An example for estimating terminals' weights using five attribute vectors 

Rules JR OR RO WR PT DD CT SL WT Npt WINQ Apr JW 

Rule 1 1 1 1 -1 1 1 1 0 0 1 1 0 0 

Rule 2 0 0 0 0 1 0 0 0 0 1 1 0 -1 

Rule 3 -1 0 1 -1 -1 1 1 1 1 0 1 0 0 

Rule 4 1 1 -1 -1 0 -1 0 1 -1 -1 1 0 -1 

Rule 5 1 0 -1 1 -1 -1 1 1 1 1 1 0 -1 

Weight 0.75 1 0.5 0.25 0.5 0.5 1 1 0.67 0.75 1 0.05 0.05 

4.2.3 Overall Algorithm Framework 

The proposed approach including the novel representation and feature selection is 

presented as Algorithm 1 in Figure 4.2. The algorithm starts by initialising a random 

population of dispatching rules. Each rule (𝑅𝑖) is represented by two parts: the priority 

function in the tree structure (𝑝𝑡𝑟𝑒𝑒𝑖) and an attribute vector (𝑎𝑣𝑒𝑐𝑖). The activation 

probabilities array 𝐴𝑃  is initialised with the same initial probability 𝑃𝑟𝑜𝑏𝑖𝑛𝑡  for all 

terminals. As suggested in an earlier paper (Zhou and Yang, 2019), the same random 

seed is used for all individuals in the same generation, whereas the seed is changed 

between generations to avoid overfitting to a specific problem instance. A DES model is 

developed to evaluate the steady-state performance of scheduling policies. All the 

generated rules are evaluated across a set of predefined training instances representing 

different job shop settings. If the fitness of a certain rule is smaller than (in the case of 

minimisation problems) the fitness of the best-recorded individual, then the best rule 

and its fitness value are updated as shown in steps 7–13.   

The mating pool is formed by high-quality rules that are chosen from the current 

population using the tournament selection method. Moreover, a subset 𝕊 of the selected 

rules is used to update features’ weights in the activation probability array. The standard 

tree crossover and mutation operators are used. In addition, the proposed adaptive 

mutation operator is applied to the attribute vectors of the newly generated rules as 

described in steps 18–28. If the stopping criterion is met, then the algorithm terminates 

and the best rule is returned; otherwise, another evolutionary iteration begins by 

following the same steps. 
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Inputs: training simulation scenarios 𝑂 ← {𝑂1, 𝑂2, … , 𝑂𝑁} 

Output: the best evolved rule 𝑅𝑏𝑒𝑠𝑡 

1:  Initialize population 𝑃1 ← {𝑅1, 𝑅2, … , 𝑅𝑛},  

                                     𝑅𝑖 ← {𝑝𝑡𝑟𝑒𝑒𝑖, 𝑎𝑣𝑒𝑐𝑖}, 𝑎𝑣𝑒𝑐𝑖 ← {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑇} 

2.  Initialize activation probabilities array 𝐴𝑃 ← {𝑇 𝑣𝑎𝑙𝑢𝑒𝑠 𝑒𝑞𝑢𝑎𝑙 0 < 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 ≤ 1} 

3:  Set 𝑅𝑏𝑒𝑠𝑡 ← 𝑛𝑢𝑙𝑙 and the best fitness value 𝑓(𝑅𝑏𝑒𝑠𝑡) ← +∞ 

4:  𝑔𝑒𝑛 ← 1 

5:  while 𝑔𝑒𝑛 ≤ max 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do 

6:         reset the random seed 

7:         for all 𝑅𝑖  ∈  𝑃𝑔𝑒𝑛 do 

8:                 evaluate 𝑓(𝑅𝑖) by applying 𝑅𝑖 to each scenario 𝑂𝑘  ∈ 𝑂 

9:                 if 𝑓(𝑅𝑖) <  𝑓(𝑅𝑏𝑒𝑠𝑡) then   

10:                      𝑅𝑏𝑒𝑠𝑡 ← 𝑅𝑖 

11:                     𝑓(𝑅𝑏𝑒𝑠𝑡) ←  𝑓(𝑅𝑖) 

12:               end if 

13:      end for              

14:      select the best |P| individuals of 𝑃𝑔𝑒𝑛 to join mating pool 

15:      estimate 𝐴𝑃 using a subset | 𝕊 | of the best rules 

16:      for all 𝑅𝑖  ∈  𝑃𝑔𝑒𝑛  do 

17:               apply genetic operators on 𝑝𝑡𝑟𝑒𝑒𝑖 

18:               for all 𝑥𝑖𝑗  ∈  𝑎𝑣𝑒𝑐𝑖 do  

19:                     if terminal 𝑗 not in  𝑝𝑡𝑟𝑒𝑒𝑖 then    

20:                            𝑥𝑖𝑗 ← 0  

21:                     else          

22:                            if 𝑟𝑎𝑛𝑑 ≤ 𝐴𝑃𝑗 then 
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23:                                    𝑥𝑖𝑗 ← 1   

24:                            else     

25:                                    𝑥𝑖𝑗 ← −1   

26:                            end if  

27:                     end if       

28:               end for  

29:      end for 

30:      𝑔𝑒𝑛 ← 𝑔𝑒𝑛 + 1 

31: end while 

32: return 𝑅𝑏𝑒𝑠𝑡 

Figure 4.2: The proposed genetic programming algorithm 

4.3 Experiment Design 

To investigate the effectiveness of the proposed approach compared with other methods 

that have been reported in the literature, a set of numerical experiments was performed. 

4.3.1 Comparison Design 

Four GP approaches are considered for evolving scheduling policies in the DJSSP. The 

overall algorithm framework is shown in Figure 4.3. The exclusive operations of the 

proposed approach are highlighted with a dashed frame. Three GP algorithms are 

adopted from the literature including Standard Genetic Programming algorithm (SGP) 

(Geiger et al., 2006b), Non-dominated Sorting Genetic Programming (NSGP) (Hunt et 

al., 2016b), Hybrid Genetic Programming (HGP) (Nguyen et al., 2018b) to provide a 

detailed comparison between the Proposed Genetic Programming (PGP) approach and 

the current methods. The SGP algorithm is regarded as evaluating the usefulness of 

extending the standard version of the GP algorithm with the proposed new 

representation and feature selection capability. In addition, the HGP algorithm is 

developed to check whether the modification proposed in the current representation 

enhances the GP algorithm in evolving shorter dispatching rules without sacrificing 

solution quality. From one earlier study (Hunt et al., 2016c), the authors suggested 

integrating GP and a multi-objective algorithm to improve solution quality and rule 
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length simultaneously. In addition, the integration between GP and NSGA-II, denoted 

as NSGP, obtained dispatching rules with better performance than that of SPEA2 for 

multi-objective DJSSP (Nguyen et al., 2015b). Therefore, in order to ascertain whether 

it is adequate to consider rule length as an explicit objective along with solution quality 

rather than an implicit consideration that is achieved using the proposed framework. 

Therefore, the NSGP algorithm is adopted to optimise both solution quality and rule 

length in an explicit fashion.  

 

Figure 4.3: Framework of the four algorithmic experiments 

The four algorithms start by initialising a population of rules in the tree structure. 

For the case of HGP, attribute vectors are initialised using the representation shown by 

Nguyen et al. (Nguyen et al., 2018b), whereas PGP uses the modified representation 

presented herein. In the case of the SGP, HGP, and PGP algorithms, the solution quality 

of evolved rules is evaluated. The best rules are chosen using a tournament method 
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according to their fitness values for reproduction. For the NSGP algorithm, NSGA-II 

(Deb et al., 2002b) is used as a selection mechanism to assign ranks and crowding 

distance to each individual. Individuals with higher ranks and smaller crowding 

distances are selected as parents. In addition, the fitness value for each rule is expressed 

using both the rule length and solution quality, unlike the other three algorithms in 

which the fitness value represents only the solution quality. Afterward, in the case of the 

PGP method, the features’ weights are updated in the activation probability array.  

For all algorithms, generic operators are conducted on priority functions to create 

offspring. The additional mutation operator is used in the HGP algorithm, which selects 

a single attribute in the attribute vector randomly and inverts its state. In the case of 

PGP, attribute vector mutations are applied using activation probabilities estimated from 

the prior generation. The new population is formed in the case of the NSGP by 

combining both parents and offspring to ensure elitism, as recommended by Deb et al. 

(Deb et al., 2002b). The evolutionary cycle is repeated for a predefined number of 

generations. Finally, the algorithm terminates. The best-evolved rule is obtained. For the 

sake of comparison, 30 literature dispatching rules are adopted to verify the superiority 

of the GP reasoning mechanism in outperforming the standard rules commonly used in 

industry. The chosen rules are shown in Table 4.3. These rules have obtained high-

solution quality in accordance with the considered objectives in previous studies 

(Nguyen et al., 2013c; Zhou et al., 2020b). 

Table 4.3 Benchmark dispatching rules 

Rule Description Rule Description 

SPT Shortest processing time SL Slack 

LPT Longest processing time PW Process waiting time 

EDD Earliest due date WATC 
Weighted apparent tardiness 

cost 

FDD Earliest flow due date COVERT Cost over time 

FIFO First in first out OPFSLK/PT 
Operation flow slack / 

processing time 

LIFO Last in first out LWKR + SPT 
Least work remaining + 

processing time 
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LWKR Least work remaining CR + SPT Critical ratio + processing time 

MWKR Most work remaining SPT + PW Processing time + waiting time 

NPT Next processing time SPT+PW+FDD Processing time + PW + FDD 

WINQ Work in next queue SL / MOR 
Slack per most operation 

remaining 

CR Critical ratio SL / LWKR Slack per least work remaining 

AVPRO 
Average processing time / 

operation 
PT+WINQ Processing time + WINQ 

MOD Modified due date 2*PT+WINQ+Npt 
2Processing time + WINQ + 

next processing time  

MOR Most operation remaining PT+WINQ+SL Processing time + WINQ + SL 

NSL Negative slack 
2PT+WINQ+ 

NPT + WSL 

2Processing time + WINQ + 

next processing time + waiting 

slack 

4.3.2 Dynamic Job Shop Simulation Model 

A simulation model of a symmetrical job shop was developed that was considered in 

relevant earlier studies (Hildebrandt et al., 2010b; Shady et al., 2020c). The simulation 

configurations are the following. 

• Jobs arrive stochastically according to a Poisson distribution and at a rate that 

engenders a predetermined utilisation level in the job shop. 

• The job shop consists of 10 machines. 

• Each job has 2–10 operations. 

• Processing times follow a uniform distribution U [1, 49]. 

• Weights of jobs are assigned based on a 4:2:1 rule (Nguyen et al., 2013c). 

• A tightness factor is used to estimate due dates using the total work content 

method. 𝐷𝑢𝑒 𝑑𝑎𝑡𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 + 𝑡𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒. 

At each simulation replication, the job shop starts empty. All the collected data up to 

the 500th job are discarded. Statistics from the 501st job to the next finished 2500 jobs 

are used to calculate the performance measures. Three objective functions are 

investigated including Total Weighted Tardiness (TWT), Mean Tardiness (MT), and 
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Mean Flow Time (MFT). The TWT objective is chosen to assess not only the ability to 

meet due dates, but also how to prioritise jobs with higher weights. In addition, the MT 

objective is used to estimate the average delay, which indicates the level of customer 

satisfaction. Finally, the MFT objective is used to verify the adaptability of the proposed 

method in cases where increased throughput is the desired goal. 

Generally, all hyper-heuristics including the GP approach generate new heuristics 

by gathering reusable knowledge from a set of training instances either in a supervised 

or unsupervised manner (Nguyen et al., 2017b). Therefore, defining a set of scenarios 

that reflect the problem domain that the heuristics are likely to encounter in their future 

use is a critically important step. Two factors are examined when selecting training 

cases including the training set size and computational time, as recommended in an 

earlier paper (Branke et al., 2016b). If a small training set is chosen, then the generated 

heuristics are likely to suffer from overfitting leading to poor performance in unseen 

scenarios. However, a large training set increases the runtime of the heuristics' 

evaluation phase without ensuring better results. Training and testing scenarios are 

shown in Table 4.4. Simulation scenarios are denoted by a tuple (𝑢, 𝑡) to represent a 

combination of job shop utilisation 𝑢% and tightness factor 𝑡. It is noteworthy that, in 

the case of the MFT objective, the tightness factor of 3 is set in all scenarios because 

changing the value of the tightness factor does not affect the job flow time. In addition, 

in the MT scenarios, tighter due dates are used to estimate the quality of generated 

heuristics under more challenging scenarios compared with the job shop settings used 

for the TWT objective. In the training stage, a single simulation replication is executed 

for each configuration. In the testing stage, 20 simulation replications are performed for 

each scenario. The objective value (𝑜𝑏𝑗𝑖,𝑛) of rule 𝑖 in an instance 𝑛 is estimated using 

the developed DES model. Moreover, for each objective, a reference rule  (𝑟𝑒𝑓)  is 

chosen to normalise the obtained results. The overall performance of a rule (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖) 

is assessed through a set 𝑁𝑜 of training instances for a specific objective 𝑜, as shown in 

Equation 4.3. The WATC, Covert, and PT + WINQ rules are used respectively as 

reference rules to minimise the TWT, MT, and MFT objectives. These rules are chosen 

because they have yielded superior results for the objectives under study (Mei et al., 

2017c; Sels et al., 2012b; Zhou et al., 2019). Finally, the percentage change 𝑃𝐶𝑜  in the 

performance of a given method to a reference rule for an objective function 𝑜  is 

estimated using Equation 4.4 where 𝑜𝑏𝑗𝑏𝑒𝑠𝑡,𝑛 denotes the best evolved rule.    
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𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =  
1

|𝑁𝑜|
∑

𝑜𝑏𝑗𝑖,𝑛

𝑜𝑏𝑗𝑟𝑒𝑓,𝑛

|𝑁𝑜|

𝑛=1
 4.3 

𝑃𝐶𝑜 =  
1

|𝑁𝑜|
∑

𝑜𝑏𝑗𝑟𝑒𝑓,𝑛 − 𝑜𝑏𝑗𝑏𝑒𝑠𝑡,𝑛

𝑜𝑏𝑗𝑟𝑒𝑓,𝑛

|𝑁𝑜|

𝑛=1
 × 100 4.4 

Table 4.4 Parameter settings of the training and testing scenarios 

Factor Training Testing 

TWT 

(80, 3), (80, 6), (80, 8),  

(90, 2), (90, 6), (90, 8) 

(80, 3), (80, 4), (80, 5), (80, 6), (80, 7), (80, 8), (85, 3), 

(85, 4), (85, 5), (85, 6), (85, 7), (85, 8), (90, 3), (90, 4), 

(90, 5), (90, 6), (90, 7), (90, 8), (95, 3), (95, 4), (95, 5), 

(95, 6), (95, 7), (95, 8) 

MT 
(80, 1.5), (80, 3), (85, 4), (90, 

1.5), (90, 3), (90, 4) 

(80, 1.5), (80, 2), (80, 2.5), (80, 3), (80, 3.5), (80, 4),     

(85, 1.5), (85, 2), (85, 2.5), (85, 3), (85, 3.5), (85, 4),     

(90, 1.5), (90, 2), (90, 2.5), (90, 3), (90, 3.5), (90, 4),     

(95, 1.5), (95, 2), (95, 2.5), (95, 3), (95, 3.5), (95, 4) 

MFT (70, 3), (85, 3), (97.5, 3) 
(70, 3), (72.5, 3), (75, 3), (77.5, 3), (80, 3), (82.5, 3),      

(85, 3), (87.5, 3), (90, 3), (92.5, 3), (95, 3), (97.5, 3) 

4.3.3 GP Parameter Settings 

A population size of 750 rules is generated using the ramped-half-and-half method with 

maximum depth of 8 in the four developed algorithms. The crossover, mutation, and 

elitism rates are set respectively as 85%, 10%, and 10%. In addition, tournament 

selection is used with size equal to 5. The algorithm terminates after completing 50 

generations. These parameters have been addressed in earlier studies (Hildebrandt et al., 

2010b; Shady et al., 2020d). Regarding HGP, the attribute mutation probability of 0.5 is 

used because it obtained the best results. In addition, it is recommended in another 

earlier paper (Nguyen et al., 2018b). 

4.4 Results 

First, multiple experiments are conducted to tune the new parameters in the PGP 

algorithm. Second, the proposed algorithm is compared with the literature methods 

related to convergence speed, rule length, and computational time. Third, further 

discussions are presented to analyse the structure of best-evolved rules and to elucidate 

their internal mechanisms under the three considered objectives. Lastly, the set of 

significant features obtained using the PGP algorithm is compared with the results 
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obtained using the Feature Selection Genetic Programming (FSGP) algorithm (Mei et 

al., 2017c) to verify the validity of the proposed framework in the three objectives. It is 

noteworthy that this chapter is not particularly addressing improvement of the solution 

quality of evolved rules but on achieving more interpretable rules with shorter lengths 

without sacrificing efficiency. 

4.4.1 Fine-tuning the Parameters of the Proposed Algorithm 

Because similar findings were obtained for the three objectives, the process of selecting 

the suitable parameters for the PGP algorithm is presented for the TWT objective. Two 

new parameters must be adjusted, including the number of selected individuals 𝕊 and 

the initial activation probability 𝑃𝑟𝑜𝑏𝑖𝑛𝑡. Three values for the number of selected rules 

are examined while fixing 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 to 0.5. The 𝕊 values are 150, 300, and 450 chosen 

rules denoted respectively as 𝐸𝑥𝑝. 150 , 𝐸𝑥𝑝. 300 , and 𝐸𝑥𝑝. 450 . The proposed 

algorithm is executed for 20 independent runs for each parameter setting.  

The obtained results are shown in Figure 4.4: the mean values are shown as a solid 

line; the standard deviations are depicted as shaded area. In addition, a Wilcoxon’s 

rank-sum test with a significant level of 0.05 was conducted. As shown in Figure 4.4(a), 

although no significant difference was found among the results of the three experiments 

related to the number of active terminals, 𝐸𝑥𝑝. 150  had a larger number of active 

terminals compared with the cases of 300 and 450 rules. One reason might be that when 

the number of selected rules is small (𝕊 = 150), the feature selection mechanism does 

not gain sufficient information to distinguish between terminals’ weights. It therefore 

has low selective pressure. In contrast, high selective pressure is achieved by selecting a 

larger number of rules ( 𝕊 = 300 and 500)  resulting in fewer active terminals. 

Regarding the average number of inactive rules, as shown in Figure 4.4 (b), the three 

experiments obtained somewhat similar performance. Similar findings are presented in 

Figure 4.4 (c), where 𝐸𝑥𝑝. 150 obtained larger values of mean rule length and wider 

standard deviation than other experiments.  
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Figure 4.4: Impact of number of selected rules 𝕊 on the PGP algorithm 

Regarding the quality of created rules, 𝐸𝑥𝑝. 150 shows a kind of stagnation after the 

33rd generation, whereas 𝐸𝑥𝑝. 300 and 𝐸𝑥𝑝. 450  are gradually increasing until the 

algorithm terminates as depicted in Figure 4.4 (d). These results demonstrate that, 

although the algorithm selective pressure is influenced by the number of selected rules 

𝕊 to some degree, this effect is not statistically significant. Therefore, the number of 

selected individuals 𝕊 equal to 300 is chosen for the following PGP runs because it 

achieved slightly better results. 

The effects of different values of initial activation probability 𝑃𝑟𝑜𝑏𝑖𝑛𝑡  were 

assessed. The examined values are 0.1, 0.5, and 0.9 while fixing the number of selecting 

rules to 300. As shown in Figure 4.5 (a), it appears that changing the initial activation 

probability significantly affects the algorithm's computational time. Figure 4.5 (b) 

illustrates these results because the use of 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 equal to 0.9 had the highest average 

rule length among all experiments.  
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Figure 4.5: Impact of initial activation probability on the PGP algorithm 

Statistical differences were found between 0.1 and 0.9, and between 0.5 and 0.9 

with p-values equal to 0.011 and 0.017. Regarding the average number of active 

terminals, no strong effect of changing the initial activation probability was found, as 

depicted in Figure 4.5 (c). From Figure 4.5 (d), it is clear that a small change in the 

𝑃𝑟𝑜𝑏𝑖𝑛𝑡 value has a negligible effect on the percentage deviation in all total weighted 

tardiness. The only statistical difference was found between 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 equal to 0.1 and 

0.9 (p=0.02). Consequently, 𝕊=300 and 𝑃𝑟𝑜𝑏𝑖𝑛𝑡=0.5 were chosen for the PGP algorithm 

because they yielded acceptable results under all performance measures. 

4.4.2 Training Performance 

Results of statistical analyses by comparison of PGP with the three algorithms from the 

literature in the three objective functions are represented by the tuple next to the PGP 

results (PGP versus SGP, PGP versus NSGP, and PGP versus HGP), as depicted in 

Table 4.5. Symbols "+", "-" and "=" respectively denote that the corresponding result is 

significantly better, worse than, or similar to its counterpart. Figure 4.6 (a1), (a2), and 



Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems 

     123 

(a3) respectively show the percentage changes in the TWT, MT, and MFT objectives. In 

terms of the solution quality of evolved rules, the PGP algorithm yielded similar 

performance to those of the SGP and HGP algorithms for the TWT and MT objectives. 

In addition, PGP showed significantly better performance than all algorithms from the 

literature in the MFT objective. Obviously, the NSGP algorithm is adversely affected 

more by premature convergence than the other methods, which confirms the claim that 

it is beneficial to consider the rule length implicitly to not negatively affect the solution 

quality.  

For the computational budget, the NSGP algorithm experienced the highest 

computational time because both parents and offspring must be evaluated, which is 

twice the number of evaluations required in the other GP algorithms, as shown in Figure 

4.6 (b1), (b2), and (b3). In contrast, the PGP algorithm significantly outperformed the 

literature algorithms in terms of the TWT, MT, and MFT objectives because, as shown 

in Figure 4.6 (c1), (c2), and (c3), the PGP algorithm has the second-lowest average rule 

length, which significantly reduces the time necessary for fitness assessment of the 

generated rules. Unlike the NSGP algorithm, only offspring individuals are evaluated in 

the PGP algorithm. From these results, it is obvious that assigning the rule length equal 

weight to that of the solution quality (the NSGP algorithm) helps shorter individuals 

with lower solution quality to survive across generations, which negatively affects the 

exploration capability of the GP algorithm. 

Table 4.5 Mean and standard deviation of the performance measures in the 

training phase 

Perf. Meas. Objective SGP NSGP HGP PGP 

Percentage 

change 

TWT 110.71± 21.67 39.77 ± 6.73 102.75 ± 21.18 
108.92 ± 19.47  

(=, +, =) 

MT 125.65 ± 2.46 55.01 ± 10.91 124.35 ± 2.96 
125.03 ± 3.53  

(=, +, =) 

MFT 56.72 ± 0.5 47.75 ± 12.49 55.5 ± 0.3 
56.28 ± 0.45  

(+, +, +) 

Comp. time 

TWT 181.73 ± 10.93 199.22 ± 2.94 162.17 ± 10.33 
135.26 ± 6.82  

(+, +, +) 

MT 154.55 ± 12.79 179.15 ± 3.91 159.7 ± 14.15 
129.66 ± 10.98  

(+, +, +) 
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MFT 119.26 ± 8.2 138.43 ± 2.67 110.57 ± 6.3 
92.16 ± 5.38  

(+, +, +) 

Mean rule 

length 

TWT 16.83 ± 3.16 6.12 ± 0.22 16.9 ± 3.36 
14.32 ± 2.41  

(+, -, +) 

MT 14.62 ± 2.67 6.21 ± 0.23 15.44 ± 2.71 
12.75 ± 2.41  

(+, -, +) 

MFT 11.87 ± 1.51 6.12 ± 0.23 12.11 ± 1.14 
10.43 ± 1.15  

(+, -, +) 

Average 

number of 

absent 

terminals 

TWT 5.58 ± 1.84 8.48 ± 0.21 5.66 ± 1.7 
6.4 ± 1.57  

(+, -, +) 

MT 6.05 ± 1.67 8.42 ± 0.23 5.79 ± 1.83 
6.43 ± 1.57  

(+, -, +) 

MFT 7.5 ± 1.23 8.48 ± 0.22 7.2 ± 1.01 
7.48 ± 1.02  

(=, -, +) 

Average 

number of 

active 

terminals 

TWT 7.42 ± 1.84 4.52 ± 0.21 5.37 ± 1.36 
4.88 ± 1.32  

(+, -, +) 

MT 6.65 ± 1.67 4.58 ± 0.23 5.29 ± 1.4 
4.54 ± 1.01  

(+, =, +) 

MFT 5.5 ± 1.23 4.52 ± 0.22 4.53 ± 0.63 
3.45 ± 0.62  

(+, +, +) 

The main reason for using attribute vectors is to guide GP towards important 

features and to deactivate or exclude irrelevant features resulting in shorter rules. To 

verify whether the proposed approach meets this goal, the average number of active and 

absent terminals across generations was traced. As shown in Figure 4.6 (d1), (d2), and 

(d3), although the four algorithms had the same average number of absent terminals at 

the first generation, PGP achieved significantly better results than those obtained using 

the SGP and HGP algorithms for the TWT and MT objectives. For the MFT objective, 

no significant difference was found between SGP and PGP algorithms, although PGP 

significantly outperforms the HGP algorithm. Regarding the average number of active 

terminals presented in Figure 4.6 (e1), (e2), and (e3), the PGP approach achieved the 

fewest number of active terminals among the SGP and HGP methods for the three 

objectives. In addition, the rules generated using PGP are significantly smaller than 

those of NSGP in the MFT objective. Although the NSGP algorithm achieved the 
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greatest number of absent terminals and the fewest active terminals, these results were 

achieved at the expense of the quality of evolved rules and high computation costs. 

 

 

 

Figure 4.6: The performance of the GP algorithms during the training phase for 

the three objectives. Figures (a1), (b1), (c1), (d1), (e1) are for the TWT objectives. 

Figures (a2), (b2), (c2), (d2), (e2) are for the MT objectives. Figures (a3), (b3), (c3), 

(d3), (e3) are for the MFT objectives. 
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4.4.3 Testing Performance 

Testing experiments were performed to ascertain whether the reduction in the average 

rule length suppresses the GP's exploration ability to form superior rules under unseen 

scenarios. In addition, 30 manually made rules were used to provide more evidence that 

the GP algorithm is a promising machine-learning technique capable of creating 

scheduling heuristics under different configurations and objectives without direct 



Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems 

     128 

human intervention. Table 4.6 (a), (b), and (c) respectively show the means and 

standard deviations of the studied methods in the TWT, MT, and MFT objectives. 

Furthermore, the last row of each table provides a summary of the results obtained using 

a tuple (k, l, m), where k, l, and m respectively represent the number of times a certain 

method wins (significantly better), draws (no significant difference), and loses 

(significantly worse) against the PGP method. The best literature rule (BLR) for each 

scenario is included in parentheses along with its objective value. Because human-made 

rules are designed to handle specific system settings, no single rule works well in all 24 

scenarios. For the TWT objective, the PGP algorithm outperforms the BLR in 11 

scenarios. It obtained the same performance in 13 scenarios. Compared with all other 

literature methods, the PGP algorithm exhibited significantly poor performance in only 

4 scenarios against the SGP algorithm while outperforming in 8 scenarios. The NSGP 

algorithm had the worst TWT results compared with other GP algorithms: the PGP 

algorithm significantly outperformed it in 18 scenarios and similar performance in 6 

scenarios. Finally, HGP obtained significantly worse results compared with PGP in 7 

scenarios, with no significant difference found in 17 scenarios. 

For the MT objective, the PGP approach significantly outperformed the BLR in 11 

scenarios while obtaining similar results in 13 scenarios, as shown in Table 4.6 (b). It is 

worth noting that when due dates are very tight, the best human-made rule is the PT + 

WINQ rule, which seems counterintuitive for minimising the MT objective. Similar 

results have been described in earlier studies because, when the due date factor is very 

small, numerous jobs become tardy. As a result, the objective becomes reduction of the 

completion time of these jobs (Mei et al., 2017c). In contrast, the COVERT rule, which 

is one dispatching rule that takes into account due-date-related information, became the 

BLR when the tightness factors were large. Comparison of PGP with the other GP 

literature algorithms shows that it achieved similar performance to that of SGP in all 

scenarios, in addition to providing significantly better results than the HGP in two 

scenarios. As expected, the generated rules using the NSGP algorithm had significantly 

worse solution quality than that obtained using the PGP algorithm in the 24 system 

configurations. 

Regarding the MFT objective, as depicted in Table 4.6 (c), the PGP algorithm 

significantly outperforms the results obtained from both the BLR and NSGP algorithms 

in the 12 job shop settings. In addition, the gap widens in challenging scenarios with 

high utilisation levels (high job arrival rates) compared with low utilisation scenarios. 
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No significant difference was found between the performance of the PGP algorithm and 

both SGP and HGP algorithms because the PGP achieved better results in only one 

scenario in the case of SGP and two scenarios in the case of HGP. Finally, in the three 

considered objectives, the BLRs showed higher standard deviations than those of the 

GP algorithms, indicating that the human-made rules have low robustness. Specifically, 

manually designed rules lack the ability to obtain consistent performance across 

different job shop settings. Therefore, the GP extensions proposed in this chapter do not 

limit the solution quality of generated rules in favour of reducing the number of selected 

features. In other words, the proposed approach is able to achieve a significant reduction 

of the rule length and of the computational time without sacrificing the performance of 

evolved rules. 

Table 4.6 Mean and standard deviation of the considered methods in the testing 

phase. (a): the TWT objective, (b): the MT objective, and (c): the MFT objective.  

(a): 

scenarios 

BLR SGP NSGP HGP PGP 

(3, 0.8) 

88776.85 ± 30140.07 

(COVERT) 

56726.01 ± 

11241.72 

86159.32 ± 

15250.35 

57047.29 ± 

8984.61 

56635.67 ± 

11655.13  

(+, =, +, =) 

(3, 0.85) 

194286.4 ± 51664.4 

(ATC) 

149354.06 ± 

28496.28 

229690.39 ± 

32785.38 

149306.86 ± 

21124.09 

145764.9 ± 

28602.55  

(+, +, +, =) 

(3, 0.9) 

366232.85 ± 104891.17 

(ATC) 

363986.61 ± 

69343.26 

548164.46 ± 

73156.71 

361161.44 ± 

57110.55 

347100.0 ± 

63449.15  

(+, +, +, +) 

(3, 0.95) 

726419.3 ± 244325.95 

(ATC) 

865385.5 

±177930.55 

1229854.68 ± 

162961.44 

837916.48 ± 

148150.41 

788290.79 ± 

148226.04  

(=, +, +, +) 

(4, 0.8) 

9744.2 ± 10060.48 

(SL/RO) 

4945.72 ± 1895.55 

7893.51 ± 

3099.55 

5443.52 ± 2260.1 

5310.03 ± 

2168.64  

(=, +, +, =) 

(4, 0.85) 

55799.9 ± 34566.46 

(COVERT) 

28072.82 ± 

8561.04 

49798.54 ± 

13309.3 

29601.98 ± 

9455.21 

29088.92 ± 

7867.44  

(+, =, +, =) 

(4, 0.9) 

196604.95 ± 77786.43 

(ATC) 

134081.75 ± 

34149.56 

229520.81 ± 

41327.15 

134403.23 ± 

27780.53 

134109.43 ± 

35477.9  

(+, =, +, =) 
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(4, 0.95) 

506982.85 ± 224807.64 

(ATC) 

531832.68 ± 

120474.09 

819903.53 ± 

123725.86 

517073.26 ± 

94084.74 

497311.42 ± 

108193.34  

(+, +, +, +) 

(5, 0.8) 434.85 ± 99.66 (SL/RO) 277.4 ± 180.26 390.0 ± 346.2 393.06 ± 300.44 

391.74 ± 

286.37  

(=, -, =, =) 

(5, 0.85) 3733.4 ± 4094.16 (SL/RO) 2752.09 ± 1521.91 
5241.06 ± 

2755.81 

3232.1 ± 1763.51 

3137.53 ± 

1629.79  

(+, -, +, =) 

(5, 0.9) 

81346.85 ± 57911.32 

(COVERT) 

32349.83 ± 

14163.97 

67476.16 ± 

22478.61 

34694.23 ± 

13783.61 

33309.38 ± 

12602.53  

(+, =, +, =) 

(5, 0.95) 

338495.05 ± 193371.31 

(ATC) 

283197.38 ± 

77804.52 

481649.86 ± 

90541.06 

276233.92 ± 

55507.91 

270509.09 ± 

71361.67  

(+, +, +, =) 

(6, 0.8) 51.25 ± 45.69 (SL/RO) 57.92 ± 41.88 68.69 ± 101.95 70.32 ± 68.77 

59.68 ± 50.3 

(=, =, =, =) 

(6, 0.85) 93.65 ± 62.84 (SL/RO) 210.87 ± 143.39 199.58 ± 183.0 239.64 ± 226.55 

231.75 ± 

244.23  

(=, =, =, =) 

(6, 0.9) 

14170.9 ± 22668.5 

(SL/RO) 

4876.26 ± 3278.33 

12500.55 ± 

8100.89 

5467.22 ± 

3181.07 

5459.32 ± 

3807.42  

(=, -, +, =) 

(6, 0.95) 

221297.1 ± 164720.05 

(ATC) 

125112.34 ± 

46205.63 

238464.92 ± 

62936.98 

122721.71 ± 

39602.29 

121501.17 ± 

31598.03  

(+, =, +, =) 

(7, 0.8) 24.95 ± 29.22 (SL) 33.18 ± 31.43 30.77 ± 43.68 33.6 ± 33.06 
27.76 ± 25.37 

(=, +, =, +) 

(7, 0.85) 54.25 ± 76.95 (SL/RO) 32.9 ± 33.08 38.52 ± 59.84 48.68 ± 60.25 

36.21 ± 38.45 

(=, =, +, +) 

(7, 0.9) 328.0 ± 570.32 (SL/RO) 417.13 ± 478.79 1001.46 ± 931.7 618.85 ± 610.8 

622.45 ± 

742.44  

(=, -, +, =) 

(7, 0.95) 

122338.7 ± 94257.85 

(2*PT+WINQ+Npt+WSL) 

43338.93 ± 

23040.37 

96262.26 ± 

38381.32 

43405.94 ± 

18589.56 

42166.64 ± 

18235.3  

(+, =, +, =) 

(8, 0.8) 23.2 ± 38.74 (SL/RO) 20.97 ± 23.14 23.86 ± 32.97 20.9 ± 22.62 

20.0 ± 20.84 

(=, =, =, =) 

(8, 0.85) 16.45 ± 29.92 (ATC) 19.86 ± 22.81 21.78 ± 19.5 28.7 ± 40.24 20.25 ± 26.01 
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(=, =, =, +) 

(8, 0.9) 30.9 ± 44.26 (SL/RO) 54.88 ± 80.95 61.47 ± 128.29 93.69 ± 174.95 

36.76 ± 46.94 

(=, +, +, +) 

(8, 0.95) 

32531.45 ± 56731.89 

(SL/RO) 

10388.34 ± 7859.3 
26974.03 ± 

17255.77 

10957.37 ± 

6329.87 

10863.88 ± 

7267.15  

(=, =, +, =) 

Summary (0, 13, 11) (4, 12, 8) (0, 6, 18) (0, 17, 7)  

 

(b): 

scenarios 

BLR SGP NSGP HGP PGP 

(1.5, 0.8) 

128.19 ± 16.93 

(PT+WINQ) 

128.83 ± 6.24 158.54 ± 16.3 129.92 ± 5.89 127.2 ± 4.4 (=, =, +, +) 

(1.5, 0.85) 

175.23 ± 25.55 

(PT+WINQ) 

177.33 ± 8.26 218.2 ± 23.29 178.31 ± 7.76 175.39 ± 6.55 (=, =, +, =) 

(1.5, 0.9) 

253.34 ± 43.32 

(PT+WINQ) 

254.34 ± 12.31 316.05 ± 36.81 256.12 ± 11.7 252.32 ± 10.84 (=, =, +, =) 

(1.5, 0.95) 

395.69 ± 99.64 

(2*PT+WINQ+Npt) 

405.73 ± 21.63 504.41 ± 68.12 404.83 ± 20.45 400.7 ± 19.42 (=, =, +, =) 

(2, 0.8) 

77.09 ± 13.67 

(PT+WINQ) 

73.33 ± 4.76 100.52 ± 12.58 75.15 ± 5.08 72.96 ± 4.68 (=, =, +, +) 

(2, 0.85) 

117.9 ± 22.45 

(PT+WINQ) 

116.6 ± 7.15 158.19 ± 19.97 119.48 ± 7.56 116.32 ± 6.96 (=, =, +, =) 

(2, 0.9) 

189.99 ± 40.48 

(PT+WINQ) 

190.14 ± 10.8 256.06 ± 33.53 194.54 ± 11.91 189.65 ± 10.59 (=, =, +, =) 

(2, 0.95) 

328.34 ± 97.21 

(2*PT+WINQ+Npt) 

338.86 ± 20.42 444.7 ± 62.6 341.58 ± 20.97 336.16 ± 18.42 (=, =, +, =) 

(2.5, 0.8) 

42.52 ± 11.04 

(COVERT) 

34.61 ± 2.95 53.15 ± 8.32 36.1 ± 4.09 35.26 ± 4.14 (+, =, +, =) 

(2.5, 0.85) 

79.44 ± 18.22 

(PT+WINQ) 

68.93 ± 5.3 104.1 ± 14.93 72.39 ± 6.91 70.13 ± 6.77 (+, =, +, =) 

(2.5, 0.9) 

142.2 ± 35.88 

(PT+WINQ) 

135.36 ± 9.7 198.73 ± 28.76 141.2 ± 11.71 137.65 ± 11.25 (=, =, +, =) 

(2.5, 0.95) 

274.11 ± 92.69 

(2*PT+WINQ+Npt) 

280.03 ± 18.48 386.6 ± 57.42 285.14 ± 20.99 279.66 ± 19.41 (=, =, +, =) 

(3, 0.8) 

20.0 ± 6.8 

(COVERT) 

12.94 ± 1.88 21.68 ± 5.14 13.46 ± 2.82 13.37 ± 2.62 (+, =, +, =) 

(3, 0.85) 

46.69 ± 15.98 

(COVERT) 

35.52 ± 3.67 59.69 ± 10.51 38.0 ± 5.74 37.12 ± 5.35 (+, =, +, =) 
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(3, 0.9) 

108.18 ± 30.73 

(PT+WINQ) 

91.04 ± 8.41 144.38 ± 22.64 96.21 ± 10.77 92.98 ± 10.49 (+, =, +, =) 

(3, 0.95) 

230.41 ± 84.13 

(PT+WINQ) 

226.65 ± 17.31 328.82 ± 50.91 233.6 ± 19.47 228.29 ± 19.67 (=, =, +, =) 

(3.5, 0.8) 

7.85 ± 3.75 

(COVERT) 

3.77 ± 1.01 7.01 ± 2.43 4.04 ± 1.5 4.02 ± 1.44 (+, =, +, =) 

(3.5, 0.85) 

25.56 ± 10.97 

(COVERT) 

15.65 ± 2.3 28.97 ± 6.91 16.77 ± 3.97 16.56 ± 3.57 (+, =, +, =) 

(3.5, 0.9) 

75.33 ± 32.59 

(COVERT) 

55.38 ± 6.06 97.64 ± 17.98 60.59 ± 9.53 58.06 ± 9.42 (+, =, +, =) 

(3.5, 0.95) 

195.05 ± 77.56 

(PT+WINQ) 

177.78 ± 15.2 272.48 ± 46.38 187.26 ± 18.83 181.47 ± 17.99 (=, =, +, =) 

(4, 0.8) 

2.19 ± 2.26 

(SL/RO) 

0.88 ± 0.56 1.66 ± 0.94 0.97 ± 0.72 0.97 ± 0.71 (=, =, +, =) 

(4, 0.85) 

12.33 ± 7.5 

(COVERT) 

5.72 ± 1.4 11.69 ± 3.75 6.26 ± 2.41 6.24 ± 2.23 (+, =, +, =) 

(4, 0.9) 

49.54 ± 27.48 

(COVERT) 

29.79 ± 4.73 59.92 ± 13.65 33.91 ± 8.29 32.45 ± 7.59 (+, =, +, =) 

(4, 0.95) 

166.99 ± 71.12 

(PT+WINQ) 

135.44 ± 13.76 218.29 ± 39.4 143.33 ± 17.46 138.76 ± 16.98 (+, =, +, =) 

Summary (0, 13, 11) (0, 24, 0) (0, 0, 24) (0, 22, 2)  

 

(c): 

scenarios 

BLR SGP NSGP HGP PGP 

(3, 0.7) 286.17 ± 10.95 (PT+WINQ) 283.93 ± 1.62 284.82 ± 1.64 283.78 ± 1.63 283.97 ± 1.65 (+, =, +, =) 

(3, 0.725) 298.55 ± 12.79 (PT+WINQ) 295.42 ± 1.92 296.27 ± 2.01 295.6 ± 1.79 295.36 ± 1.74 (+, =, +, +) 

(3, 0.75) 312.78 ± 13.49 (PT+WINQ) 308.99 ± 2.05 310.0 ± 2.36 308.78 ± 2.13 308.88 ± 2.12 (+, =, +, =) 

(3, 0.775) 328.34 ± 16.39 (PT+WINQ) 324.31 ± 2.23 325.56 ± 2.55 324.14 ± 2.38 323.88 ± 2.18 (+, +, +, =) 

(3, 0.8) 348.07 ± 19.69 (PT+WINQ) 341.64 ± 2.45 343.94 ± 2.77 341.59 ± 2.53 341.55 ± 2.46 (+, =, +, =) 

(3, 0.825) 370.3 ± 24.3 (PT+WINQ) 362.51 ± 2.81 365.23 ± 3.36 362.23 ± 2.96 362.3 ± 2.67 (+, =, +, =) 

(3, 0.85) 396.63 ± 27.89 (PT+WINQ) 387.55 ± 3.34 390.99 ± 3.87 387.8 ± 3.45 387.2 ± 3.56 (+, =, +, +) 

(3, 0.875) 

431.19 ± 37.2 

(2*PT+WINQ+Npt) 

417.62 ± 3.69 422.24 ± 4.51 417.39 ± 4.04 417.69 ± 3.79 (+, =, +, =) 

(3, 0.9) 475.83 ± 45.48 (PT+WINQ) 458.27 ± 5.0 464.75 ± 6.02 458.02 ± 5.0 458.26 ± 4.85 (+, =, +, =) 

(3, 0.925) 532.32 ± 67.36 (PT+WINQ) 513.2 ± 6.19 523.33 ± 7.35 513.27 ± 6.74 514.11 ± 6.57 (+, =, +, =) 

(3, 0.95) 

618.97 ± 101.44 

(2*PT+WINQ+Npt) 

592.13 ± 8.97 607.27 ± 10.26 591.57 ± 9.06 592.9 ± 8.79 (+, =, +, =) 

(3, 0.975) 728.07 ± 148.15 701.35 ± 13.6 723.83 ± 14.98 701.46 ± 11.58 702.07 ± 11.51 (+, =, +, =) 
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(2*PT+WINQ+Npt) 

Summary (0, 0, 12) (0, 11, 1) (0, 0, 12) (0, 10, 2)  

4.4.4 Feature Analysis of the GP Best Evolved Rules 

Because the SGP, HGP, and PGP algorithms generated dispatching rules with similar 

performance compared with those obtained using the NSGP, the best-generated rules 

using the SGP, HGP, and PGP methods are considered for additional analysis. Figure 

4.7 presents the distribution of the terminals of the 20 best-rules generated using the 

three algorithms, where Figure 4.7 (a), (b), and (c) respectively represent the results 

obtained for the TWT, MT, and MFT objectives. It is readily apparent that the PGP 

algorithm evolved smaller rules, and that the gap separating relevant and irrelevant 

terminals is wider than that of the literature methods. In addition, the number of 

terminals in the rules created using the PGP algorithm is much smaller than that evolved 

using other literature methods resulting in more compact and interpretable rules. For the 

TWT objectives, the PGP rules achieved a reduction in the number of terminals by 

32.53% and 15.38% compared with the SGP and HGP algorithms. In addition, the most 

important terminals are PT, SL, JW, RO, and WINQ, whereas Npt, WT, JR, and OR 

terminals are not significant.  

Regarding the MT objective, the PGP rules have 31.19% and 10.36% fewer 

terminals than the rules generated using the SGP and HGP algorithms. In contrast to the 

TWT target, as expected, the GP algorithms considered the JW terminal as an irrelevant 

feature, whereas the weights of the RO, WR, SL, and WINQ terminals increased 

notably. In the case of the MFT objective, the PGP algorithm reduced the number of 

terminals in the best rules by 26.52% and 18.65%, respectively, compared with the SGP 

and HGP algorithms.  The best rules generated using the three algorithms extensively 

included the PT, Npt, and WINQ terminals, indicating their importance in reducing the 

MFT objective. These findings are consistent with the claim that the weight of terminals 

varies based on the objective. The selection ability of the GP methods in the literature is 

limited. In addition, the proposed feature selection approach is able to identify 

important features and to exclude irrelevant features in different objective functions, 

resulting in smaller rules that positively affect GP computation costs. 
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Figure 4.7: Terminals distribution in the best-evolved rules for the SGP, HGP and 

PGP algorithms. (a): for the TWT objective, (b): for the MT objective, (c): for the 

MFT objective 
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4.4.5 Behaviour Analysis of the PGP Best Evolved Rules 

To gain more knowledge about the PGP rule structure, two versions of the best-evolved 

rules rule are developed for the TWT, MT, and MFT objectives. The first version 

presents only priority functions, as shown in Figure 4.8 (a1, b1, and c1), whereas the 

second version, shown in other panels of Figure 4.8 (a2, b2, and c2), includes 

information presented respectively in their attribute vectors for the TWT, MT, and MFT 

objectives. Regarding the TWT objective, all existing terminals are active, except that 

the Npt and Apr terminals (highlighted by red frames) are deactivated. Therefore, the 

attribute vector was able to eliminate three terminals from the current 17, as shown in 

Figure 4.8 (a1) and (a2). In addition, the simplified version of the rule is represented in 

a mathematical form in Equation 4.5. In the case of the MT objective, the proposed 

representation was able to eliminate 13 terminals out of the 20 terminals that occurred in 

the evolved rule. The disabled terminals were the JR, OR, WT, and JW terminals, 

revealing their negligible effect on minimising the MT objective. Moreover, the 

simplified version of the best-generated rule to minimise the MT objective is shown in a 

mathematical form in Equation 4.6. Regarding the MFT objective, the attribute vector 

deactivated 3 terminals from the current 12 terminals presented in the priority function. 

Excluded terminals are the SL, Apr, and JW terminals. The included terminals are the 

PT, WINQ, and Npt terminals. The best PGP rule generated for minimising the MFT 

objective is presented mathematically in Equation 4.7. 

 

𝑇𝑊𝑇 𝑟𝑢𝑙𝑒 =
𝑀𝑎𝑥(𝑀𝑎𝑥(𝑅𝑂, 𝑃𝑇) + 𝑃𝑅, 𝑃𝑇 + 𝑊𝐼𝑁𝑄)

𝐽𝑊
               

+ 𝑀𝑎𝑥 (𝑀𝑎𝑥 (
𝑆𝐿

𝑅𝑂
+ 𝑃𝑇, 𝑃𝑇) ,

𝑅𝑂 − 𝑆𝐿

𝐽𝑊
+ 𝑊𝐼𝑁𝑄) 

4.5 

  

𝑀𝑇 𝑟𝑢𝑙𝑒 = min (
𝑊𝐼𝑁𝑄 +  

𝑆𝐿
𝑅𝑂

𝑃𝑇
, 𝑚𝑎𝑥(𝐶𝑇, 𝑃𝑇 𝑥 𝑁𝑃𝑇)) 4.6 

  

𝑀𝐹𝑇 𝑟𝑢𝑙𝑒 = max(max(min(𝑁𝑝𝑡, 𝑊𝐼𝑁𝑄 + 𝑃𝑇) + 𝑊𝐼𝑁𝑄 , 𝑃𝑇) ,

𝑊𝐼𝑁𝑄 − max (𝑊𝐼𝑁𝑄 + 𝑃𝑇)) 𝑥 𝑃𝑇 
4.7 
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Figure 4.8: The priority function of the best PGP rules. (a1) for the TWT without 

considering the attribute vector, (a2) for the TWT after considering the attribute 

vector, (b1) for the MT without considering the attribute vector, (b2) for the MT 

after considering the attribute vector, (c1) for the MFT without considering the 

attribute vector, (c2) for the MFT after considering the attribute vector 
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To elucidate the phenotypic characterisation of the PGP rules, 20 decision situations 

were sampled from an actual DES run, as recommended in an earlier paper (Hildebrandt 

and Branke, 2015b). The phenotypic behaviour helps to understand the internal 

mechanism of evolved rules. It provides some insights into how these rules prioritise 

operations and why they achieved superior performance. Technically, these experiments 

are conducted to examine the influence of changing terminals’ values in estimating 

priority values of jobs. The rule assigns high priorities to jobs with lower priority values 

(higher rank) from the set of waiting jobs. Regarding the TWT objective, the best PGP 

rule favours jobs with low processing time, high weight, low WINQ, low slack, and 

numerous remaining operations. In addition, the order of the included features based on 

their weight in descending order is: SL, PT, WINQ, JW, and RO. The best PGP rule 

generated to minimise the MT objective assigns higher priority to jobs with less 

processing time, less work in the next queue, less slack value, and more unprocessed 

operations. Additionally, it appears that the current time and the next processing time 

features have no direct effect on estimating the priority of a job. The order of the 

included features according to their influence is the following: PT, WINQ, SL, RO, CT, 

and Npt terminals. For the MFT objective, the evolved rule assigns higher priority 

values to jobs with the following characteristics: less processing time, less work in the 

next queue, and less processing time of the next operation. Moreover, the PT feature is 

the most significant terminal in terms of the performance of the evolved rule followed 

by the WINQ terminal, and finally the Npt terminal. It is noteworthy that experts may 

take advantage of these findings to design superior rules manually in less complex 

structures compared with PGP rules. However, the exact numerical estimation of 

terminals' relations and interaction effects among them remains challenging and 

requires further future investigation. 

4.4.6 Feature Selection Verification 

To verify the credibility of the proposed feature selection framework, an efficient 

feature selection algorithm from the literature (Mei et al., 2017c) was developed for 

comparison and designated as FSGP. In contrast to the proposed approach, which 

selects important features during the GP run (online) using relative weights of terminals 

(probabilistic), the FSGP algorithm considers feature selection as a pre-processing step 

(offline) to select features used in future GP runs in a binary manner (include/exclude). 

Therefore, it is unsuitable to compare it to the PGP algorithm using the same 

performance measures used earlier.  Instead, it is employed to ensure that the proposed 
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approach is able to identify the same critical terminals obtained using the FSGP 

algorithm in an online manner. The activation probability of each terminal is tracked 

during the PGP run to estimate the terminals' weights at a given generation. As shown 

in Figure 4.9 (a2, b2, and c2), the colour of each cell in the heat maps represents the 

average activation probability for a specific terminal during the PGP run. In contrast, 

the results obtained using the FSGP algorithm are depicted in Figure 4.9 (a1, b1, and 

c1), respectively, for the TWT, MT, and MFT objectives. Important terminals identified 

at the end of the FSGP run are shown in bright cells, whereas irrelevant terminals are 

shown in dark cells. Although the y-axis label differs between the two methods, they 

express the same meaning because the proposed approach applies feature selection 

during the run (generations), whereas the FSGP approach obtains the set of important 

features when the GP run finishes (GP replications). 

For the TWT objective results presented in Figure 4.9 (a2), similar findings were 

obtained using the two algorithms as the most important terminals (bright columns) are 

RO, WR, PT, SL, WINQ, Apr, and JW. Although the DD terminal is identified as an 

important terminal in the PGP algorithm, it is regarded as an irrelevant terminal using 

the FSGP algorithm. The inclusion of the SL terminal might be the reason because it 

can substitute some DD and CT terminals and can therefore affect their weights 

indirectly. Terminals of least importance (dark columns) include JR, OR, CT, WT, and 

Npt terminals. Regarding the MT objective, the significant terminals are RO, PT, DD, 

CT, SL, WINQ, and Apr terminals, whereas the non-significant terminals include JR, 

OR, WR, WT, Npt, and JW. Finally, for the MFT objective, the set of important 

terminals contains PT, Npt, and WINQ terminals. In addition, CT and Apr terminals are 

medium-weight features, whereas the set of irrelevant terminals includes all the 

remaining terminals. As the results showed, the proposed approach is efficient for 

selecting significant terminals and for eliminating irrelevant ones using a probabilistic 

selection mechanism during the GP run. 
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Figure 4.9: Matrix plot of feature selection results. (a1) the FSGP for the TWT, 

(a2) the PGP for the TWT, (b1) the FSGP for the MT, (b2) the PGP for the MT, 

(c1) the FSGP for the MFT, (c2) the PGP for the MFT 
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4.5 Chapter Summary 

This chapter proposed a new GP representation and an online feature selection approach 

for evolving more interpretable rules for the dynamic job shop scheduling problems 

using the GP algorithm. The new attribute vector representation controlled complex GP 

structures. It also extracted useful information related to the terminals’ contributions. 

Then, evolutionary information gained from the current generation was used by the 

feature selection mechanism to guide the GP to consider more important terminals and 

neglect irrelevant ones. The newly introduced parameters were fine-tuned through some 

pilot experiments. Then their effects were evaluated using various performance 

measures. In addition, the proposed algorithm (PGP) was compared with three 

algorithms (SGP, NSGP, and HGP) from the literature using rule length, computational 

time, and solution quality as performance measures. Regarding the solution quality of 

evolved rules, three objective functions were investigated, including total weighted 

tardiness, mean tardiness, and mean flow time.  

Experimentally obtained results demonstrated the effectiveness of the proposed 

approach for generating compact rules while reducing computation time considerably 

without compromising solution quality. The reduction in computation costs resulted 

from a significant decrease in the average rule length and the average number of active 

terminals in the PGP method compared with counterpart methods reported in the 

relevant literature. In addition, the generality of evolved rules was evaluated through a 

set of testing scenarios. Similar findings were achieved. Regarding the distribution of 

the terminals in the best rules, the proposed approach obtained smaller rules with more 

meaningful terminals. The best-evolved PGP rules were represented in both tree and 

mathematical forms to gain useful insights into their structure, how the rules estimate 

priority values, and the reasons underlying their superior performance. Finally, the 

ability of the PGP algorithm to identify important features was evaluated by comparing 

it with an offline feature selection algorithm from the literature in the three objective 

functions. As the results showed, the PGP algorithm identified the same set of important 

features in an online manner without additional GP runs. 
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Chapter 5. GEP WITH FEATURE SELECTION 

FOR DYNAMIC JOB SHOP SCHEDULING 

PROBLEMS 

5.1 Introduction 

As stated in previous chapters the variable representation of the tree-based GP approach 

is the reason behind the exponential growth in the size of generated rules due to the 

bloating effect. Therefore, in order to reduce the size of the GP search space, two 

research directions have been proposed (Nguyen et al., 2017c).  

I. Integrate the tree-based GP algorithm with a feature selection algorithm.  

II. Develop other GP representations with specific restrictions rather than the 

standard tree representation.  

The key difference between the two methods is that the first approach guides the GP 

algorithm to promising areas in the search space by focusing on the most significant 

terminals, whereas the second approach reduces the GP search space by changing the 

encoding scheme of heuristics and imposing several restrictions on the growth of 

generated rules. In other words, the representation approach deals directly with the GP 

bloating problem, while the feature selection approach handles the problem in an 

indirect manner (Zhang, Mei, and Zhang 2019).  

Regarding the integration between the tree-based GP algorithm and feature selection 

approach, this research direction is the most common technique in the literature. 

Therefore, the objective of the previous chapter was to develop a new feature selection 

approach for the GP algorithm. Regarding the use of other GP representations to restrict 
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the search space, the GEP algorithm is used in a limited number of studies compared 

with the GP algorithm to generate JSS rules as shown in (Nie et al., 2010, 2011, 2013a; 

Ozturk et al., 2019). Although the GEP algorithm obtained higher quality dispatching 

rules in a shorter computational time compared with the GP algorithm in previous 

studies (Nguyen et al., 2017c), its use is still limited for two main reasons. First, the 

GEP-generated rule usually contains a noncoding portion that is not used to estimate 

priority values at the current generation, however, these terminals and functions might 

have an impact on future generations when genetic operators alter their sequence. 

Therefore, the GEP individual needs a decoding process in order to be converted to a 

human-readable format (mathematical format) which is an additional process compared 

with the tree-based GP representation. Second, there is a larger set of genetic operators 

and several parameters that must be adjusted based on the problem understudy than the 

standard GP algorithm which requires many computationally expensive experiments 

(Ferreira, 2001). Specifically, there are ten genetic operators and parameters for the 

GEP algorithm including head length, number of genes, linking function, mutation, IS 

(Insertion Sequence) transposition, RIS (Root IS) transposition, gene transposition, one-

point, two-point, and gene recombination rates, whereas there are only three parameters 

in the GP algorithm which are maximum tree depth, crossover, and mutation rates.  

Because of the above reasons, a feature selection approach for the GEP algorithm 

has not been proposed in the literature, whereas there are five approaches for the GP 

algorithm even though both algorithms generate rules that might contain insignificant 

terminals. Therefore, this chapter has three main objectives as follows. 

a) Modify the feature selection approach proposed in the previous chapter to be 

applicable to the GEP algorithm. 

b) Study the impact of integrating the modified approach with the GEP algorithm. 

c) Modify the GP feature selection approach introduced in (Nguyen et al., 2018a) 

to be applicable to the GEP algorithm, and thus compare its performance with 

the proposed GEP algorithm. 

The rest of this chapter is organized as follows. Section 5.2 provides a detailed 

explanation of the proposed GEP algorithm with the feature selection approach. Section 

5.3 presents the numerical experiments including the fitness assessment module, design 

of the experiments, and parameter settings. Training and testing results are given in 

Section 5.4. Finally, Section 5.5 presents the conclusions of this chapter.  
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5.2 GEP algorithm with the proposed feature selection approach 

Because there is a noncoding region in the GEP individuals, the attribute vector is 

linked to the K-expression (valid portion) of a given individual rather than the whole 

linear chromosome of the rule. An illustrative example is presented in Figure 5.1, where 

a GEP rule is encoded using the proposed and literature attribute vector representations. 

The length of the head is set to 5, and the maximum number of arguments in the 

function set, shown in Table 4.1, equals 2. Then, the tail length 𝑡 = 5 × (2 − 1) + 1 = 6 

(underlined elements). The 11-elements genotype is decoded into an expression tree (K-

expression) containing only 7 elements. Therefore, the proposed and literature attribute 

vectors are modified to be linked to the K-expression part only instead of the original 

genotype as in the case of the GP algorithm. For instance, although SL terminal 

occurred in the linear chromosome (non-coding region), it is presented as an absent 

terminal in both representations. However, the main difference between the proposed 

and literature representations remains the same. The literature representation indicates 

that there are ten active (important) attributes even though there are only three of them 

in the K-expression. In contrast, with respect to the proposed representation, it is easy to 

distinguish between active terminals (PT, Npt, WINQ), inactive terminals (JW), and 

absent terminals (the rest) without reference to the expression tree.  Therefore, the 

proposed representation offers the following advantages. 

I. It supports the attribute vector being precisely bound to the valid region of its 

corresponding rule. Thus, attribute vectors can be used to abstract the complex 

structure of DRs without being affected by noncoding regions. 

II. It ensures that any change (mutation) of the feature’s state in the attribute vector 

will have a direct effect on the performance of the priority function. 

III. It enables the phenotype behaviour of evolved rules to change in response to 

changes in attribute vectors without affecting their genotypes. This maintains the 

evolutionary information presented in the structure of evolved rules across 

generations. 
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Figure 5.1: Example of a rule using the literature and proposed representations. 

The pseudocode of the proposed algorithm that integrates the GEP algorithm with 

the attribute vector is shown in Figure 5.2. The algorithm starts by initializing a random 

population 𝑃 of dispatching rules by using a predefined set of functions and terminals. 

Each rule 𝑅𝑖 consists of two main parts, expression tree 𝐸𝑇𝑖 which is the K-expression 

of the GEP chromosome, and an attribute vector 𝐴𝑉𝑖 using the proposed representation. 

The activation probability array 𝐴𝑃 is initialized with the same initial probability 

𝑃𝑟𝑜𝑏𝑖𝑛𝑡.  for all terminals. After several pilot experiments, the 𝑃𝑟𝑜𝑏𝑖𝑛𝑡.  is set to 0.5 

since it obtained a robust performance regarding the considered objectives (Shady et al., 

2021c). In order to avoid overfitting to a specific problem instance, the same random 

seed is employed to evaluate all individuals in the same generation while the seed value 

changes between generations. A set of training instances 𝑁  is used to evaluate the 

performance of the generated rules under different job shop settings.  

For minimisation objectives, if the fitness value of a specific rule 𝑓(𝑅𝑖) is smaller 

than the best individual found so far 𝑓(𝑅𝑏𝑒𝑠𝑡), the best rule and its fitness value are 

updated as depicted in lines 7 through 13. Afterwards, the best-evolved rules are chosen 

to represent the parents of the next generation. The weight of each terminal in the 

activation probability array is estimated using a subset |𝕊| of the best individuals. Then, 

the GEP genetic operators are applied to the genotypes of individuals to generate 

offspring. Similar to the previous chapter, the proposed mutation operator (feature 

selection) is applied to the attribute vector of evolved rules to activate critical terminals 

and deactivate irrelevant ones, as shown in lines 18-28. The newly created rules 

constitute the next generation, and this evolutionary process is repeated for several 

generations until the termination condition is satisfied. 
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Inputs: training simulation scenarios 𝑁 ← {𝑁1, 𝑁2, … , 𝑁𝑡} 

Output: the best evolved rule 𝑅𝑏𝑒𝑠𝑡 

1:  Initialize population 𝑃𝑖 ← {𝑅1, 𝑅2, … , 𝑅𝑛},  

                                     𝑅𝑖 ← {𝐸𝑇𝑖 , 𝐴𝑉𝑖}, 𝐴𝑉𝑖 ← {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑇} 

2.  Initialize activation probabilities array 𝐴𝑃 ← {𝑇 𝑣𝑎𝑙𝑢𝑒𝑠 𝑒𝑞𝑢𝑎𝑙 0 < 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 ≤ 1} 

3:  Set 𝑅𝑏𝑒𝑠𝑡 ← 𝑛𝑢𝑙𝑙 and the best fitness value 𝑓(𝑅𝑏𝑒𝑠𝑡) ← +∞ 

4:  𝑔𝑒𝑛 ← 1 

5:  while 𝑔𝑒𝑛 ≤ max 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do 

6:         reset the random seed 

7:         for all 𝑅𝑖  ∈  𝑃𝑔𝑒𝑛 do 

8:                 evaluate 𝑓(𝑅𝑖) by applying 𝑅𝑖 to each scenario 𝑁𝑘 ∈ 𝑁 

9:                 if 𝑓(𝑅𝑖) <  𝑓(𝑅𝑏𝑒𝑠𝑡) then   

10:                      𝑅𝑏𝑒𝑠𝑡 ← 𝑅𝑖 

11:                     𝑓(𝑅𝑏𝑒𝑠𝑡) ←  𝑓(𝑅𝑖) 

12:               end if 

13:      end for              

14:      select the best |P| individuals of 𝑃𝑔𝑒𝑛 to join mating pool 

15:      estimate 𝐴𝑃 using a subset | 𝕊 | of the best rules 

16:      for all 𝑅𝑖  ∈  𝑃𝑔𝑒𝑛  do 

17:               apply genetic operators on 𝐸𝑇𝑖 

18:               for all 𝑥𝑖𝑗  ∈  𝐴𝑉𝑖 do  

19:                     if terminal 𝑗 not in  𝐸𝑇𝑖 then    

20:                            𝑥𝑖𝑗 ← 0  

21:                     else          

22:                            if 𝑟𝑎𝑛𝑑 ≤ 𝐴𝑃𝑗 then 
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23:                                    𝑥𝑖𝑗 ← 1   

24:                            else     

25:                                    𝑥𝑖𝑗 ← −1   

26:                            end if  

27:                     end if       

28:               end for  

29:      end for 

30:      𝑔𝑒𝑛 ← 𝑔𝑒𝑛 + 1 

31: end while 

32: return 𝑅𝑏𝑒𝑠𝑡 

Figure 5.2: Proposed gene expression programming algorithm with the feature 

selection approach. 

5.3 Numerical Experiments 

5.3.1 Fitness Assessment Module  

A simulation model for the symmetrical job shop used in previous studies (Nguyen et 

al., 2014b; Shady et al., 2021d) was developed using the following settings: 

• Jobs arrive stochastically according to a Poisson distribution. 

• The job shop consists of ten machines (no breakdowns). 

• A warm-up period of 500 jobs is used, and the statistics are collected from the 

next 2000 jobs. 

• Each job has 2 to 10 operations (re-entry is not allowed). 

• Processing times follow a uniform discrete distribution with a range of [1, 49]. 

• The weights of 20%, 60%, and 20% of jobs are set as 1, 2, and 4 respectively. 

• Job due dates are assigned using the total work content method with different 

tightness factor values. 

The meta-algorithm shown in Figure 5.3 is employed to generate non-delay 

schedules for the evolved dispatching rules. Given specific job shop settings and a 

dispatching rule, there are two events that increment the current time in the simulation 
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model. The first event is when a job is released, and the second event is when a machine 

is idle, as shown in lines 3 and 10, respectively. A released job can be processed 

immediately if the next machine on its route is idle; otherwise, it joins the machine's 

queue, as illustrated in lines 3-8. When a machine becomes free and there are jobs in its 

queue, the dispatching rule is used to prioritise the queued jobs. Then, the machine 

starts processing the job with the highest priority, as depicted in lines 10-14. After 

processing all the required jobs, the algorithm terminates, and the objective value is 

estimated using the generated schedule, as shown in lines 17 and 18.  

 

Inputs: job shop configuration (𝑛), dispatching rule (i) 

Output: the objective value 𝑜𝑏𝑗𝑖,𝑛 

1:   Current time = 0 

2:   while 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑢𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑗𝑜𝑏𝑠  do 

3:          if there is a job released do 

4:                   if the next machine in its route is idle then   

5:                            Start processing the first operation of the job 

6:                   else   

7:                            The job enters the queue of the first machine in its route 

8:                   end if   

9:          end if 

10:        if there is an idle machine do 

11:                 Calculate priority values for all queued operations using the rule i 

12:                 Start processing the operation with the highest priority value 

13:                 Update the ready time of the machine and the job’s next operation 

14:        end if 

15:        Current time += 1 

16: end while 

17: Calculate the objective value 𝑜𝑏𝑗𝑖,𝑛 
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18: return 𝑜𝑏𝑗𝑖,𝑛 

Figure 5.3: Meta-algorithm of scheduling heuristics. 

Three job shop scheduling objectives are considered including Total Weighted 

Tardiness (TWT), Mean Tardiness (MT), and Mean Flow Time (MFT). The training 

and testing scenarios are illustrated in Table 5.1. The tuple (𝑢, 𝑡) represents the scenario 

where the utilization level is 𝑢% and the tightness factor is 𝑡. The tightness factor in the 

case of the TWT objective is slightly looser than in the case of the MT objective since 

the TWT considers not only the job due date as in the MT objective but also the job 

weight. Also, the utilization level varies greatly in the MFT scenarios compared with 

the tightness factor, which remains constant.  

Table 5.1 Parameter settings of the training and testing scenarios 

Obj. Training scenarios Testing scenarios 

TWT 

(80, 3), (80, 6), (80, 8),  

(90, 2), (90, 6), (90, 8) 

(80, 3), (80, 4), (80, 5), (80, 6), (80, 7), (80, 8), (85, 3), 

(85, 4), (85, 5), (85, 6), (85, 7), (85, 8), (90, 3), (90, 4), 

(90, 5), (90, 6), (90, 7), (90, 8), (95, 3), (95, 4), (95, 5), 

(95, 6), (95, 7), (95, 8) 

MT 

(80, 1.5), (80, 3), (85, 4),  

(90, 1.5), (90, 3), (90, 4) 

(80, 1.5), (80, 2), (80, 2.5), (80, 3), (80, 3.5), (80, 4),     

(85, 1.5), (85, 2), (85, 2.5), (85, 3), (85, 3.5), (85, 4),     

(90, 1.5), (90, 2), (90, 2.5), (90, 3), (90, 3.5), (90, 4),     

(95, 1.5), (95, 2), (95, 2.5), (95, 3), (95, 3.5), (95, 4) 

MFT (70, 3), (85, 3), (97.5, 3) 
(70, 3), (72.5, 3), (75, 3), (77.5, 3), (80, 3), (82.5, 3),      

(85, 3), (87.5, 3), (90, 3), (92.5, 3), (95, 3), (97.5, 3) 

For a specific objective 𝑜, the average normalized objective value of a rule 𝑖 through 

training scenarios 𝑁𝑜 is taken as the rule fitness value 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 as shown in Equation 

5.1, where 𝑟𝑒𝑓 refers to a reference rule. The WATC, Covert, and PT + WINQ rules are 

used as reference rules for the purpose of normalization as they are efficient human-

made rules in minimising the TWT, MT, and MFT objectives, respectively (Sels et al., 

2012b). For each testing configuration, 20 replications are used to assess the generality 

of the evolved rules under unseen scenarios. Finally, the percentage change 𝑃𝐶𝑜  in the 

performance of a given method with respect to a reference rule 𝑜𝑏𝑗𝑟𝑒𝑓,𝑛 is estimated by 

Equation 5.2, where 𝑜𝑏𝑗𝑏𝑒𝑠𝑡,𝑛 is the objective value of the best-evolved rule.    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =  
1

|𝑁𝑜|
∑

𝑜𝑏𝑗𝑖,𝑛

𝑜𝑏𝑗𝑟𝑒𝑓,𝑛

|𝑁𝑜|

𝑛=1
 5.1 
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𝑃𝐶𝑜 =  
1

|𝑁𝑜|
∑

𝑜𝑏𝑗𝑟𝑒𝑓,𝑛 − 𝑜𝑏𝑗𝑏𝑒𝑠𝑡,𝑛

𝑜𝑏𝑗𝑟𝑒𝑓,𝑛

|𝑁𝑜|

𝑛=1
 × 100 5.2 

5.3.2 Design Of the Experiments  

In order to assess the effectiveness of the proposed approach, four algorithms from 

the literature are developed for the sake of comparison. The developed algorithms are 

the standard genetic programming algorithm (SGP) (J. R. Koza, 1994b), the standard 

gene expression programming algorithm (GEP) (Nie et al., 2013b), the GEP algorithm 

with the literature feature selection approach (HGEP), and the GEP with the proposed 

feature selection approach (PGEP). The framework of the four algorithms is depicted in 

Figure 5.4, and the exclusive operations of the proposed approach are highlighted by a 

dashed line. The reasons for choosing these four algorithms are as follows: 

I. Comparing the GP with the GEP algorithms: to analyse the actual difference 

between the two standard algorithms for the dynamic job shop scheduling 

settings understudy. 

II. Comparing the GEP with the PGP: to verify that the proposed feature selection 

approach reduces the size of GEP rules and computational time.  

III. Comparing the HGP with the PGP: to verify whether the proposed modification 

in the current attribute vector and feature selection ability reduce the size of 

evolved rules without sacrificing solution quality.  

All algorithms start by generating a population of dispatching rules using the set of 

terminals and functions given in Table 4.1. The SGP algorithm uses the tree-based 

representation to initialise expression trees, while the HGEP, GEP, and PGEP adopt the 

K-expression to obtain expression trees for fixed-length linear chromosomes. Moreover, 

the proposed representation is employed to initialise attribute vectors for the individuals 

created using the PGEP algorithm, whereas attribute vectors are initialised using the 

representation given in (Nguyen et al., 2018c) for the HGEP algorithm. Then, the 

performance of evolved rules is estimated through a set of training instances using the 

developed simulation model. The rules with high solution quality are selected to form 

the parents of the next generation using the tournament method. The offspring are 

created by applying the GP genetic operators to the SGP individuals, and the GEP 

genetic operators to the HGEP, GEP, and PGEP individuals. An additional mutation 

operator is applied in the HGP algorithm to invert the state of a randomly selected 

attribute from the attribute vector. In the case of the PGEP algorithm, attribute vector 
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mutations are applied using activation probabilities estimated from the prior generation, 

where the activation probabilities (weights) of the terminals are updated using a subset 

of the best-selected rules. If the maximum number of generations is met, the algorithm 

terminates and returns the rule with the best objective value. 

 

Figure 5.4: Framework of the four algorithmic experiments. 
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5.3.3 Parameter Settings 

The algorithms were implemented in Python 3.7 on a system with an Intel(R) Xeon(R) 

3.6GHz and 64 GB of RAM. In order to provide a fair comparison between the four 

algorithms, similar parameters are shared between them. A population of 750 

dispatching rules is initialised, and the tournament size is set to 5 for the four 

algorithms. Table 5.2 shows the parameter settings for the four algorithms. Most of 

these parameters are commonly used in previous studies (Nie et al., 2013b; Shady et al., 

2021c). Since the GP and GEP algorithms use different representations to express 

dispatching rules, it is crucial to define appropriate initialisation parameters that can 

create rules of the same size in the first generation. It has been observed from 

preliminary experiments that using a maximum depth of 8 for the GP algorithms results 

in the same average rule length as GEP rules generated with a chromosome comprising 

two genes and a gene head length equal to 26. The activation probability at the initial 

generation 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 and the number of selected individuals |𝕊| are the new parameters 

introduced for the PGEP algorithm. The |𝕊| and 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 parameters are set to 300 and 

0.5, respectively. Regarding HGP and HGEP algorithms, the attribute mutation 

probability of 0.5 is used because it had the best results and is also recommended in 

(Nguyen et al., 2018c). Finally, the termination condition for all algorithms is set to 50 

generations, and 20 independent runs of each algorithm are performed for each 

objective. 

Table 5.2 Parameter settings for the four algorithms 

SGP Values GEP, HGEP, and PGEP Values 

Maximum tree depth 8 Head length 26 

Crossover rate 0.85 

Number of genes 

linking function 

Two genes 

Addition 

Mutation rate 0.1 

Mutation, IS, RIS, and  

Gene transposition rates 

0.03%, 0.1%, 0.1%, 

and 0.1% 

Elitism rate 0.05 

One-point, two-point, and  

Gene recombination rates 

0.2%, 0.5%, and 0.1% 
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5.4 Results 

Due to the stochastic nature of evolutionary algorithms, the Wilcoxon rank-sum test 

with a significance level of 0.05 was used to examine the statistical difference in the 

performance of the algorithms. In the following results, the statistical results obtained 

from comparing PGEP with the other three algorithms are represented by a tuple next to 

the PGEP results (SGP versus PGEP, GEP versus PGEP, and HGEP versus PGEP). 

Also, the symbols "+", "-" and "=" indicate that the corresponding result is significantly 

better, worse than, or similar to its counterpart. It is noteworthy that this chapter is not 

primarily focused on improving the performance of evolved rules, but on generating 

rules with small sizes and high interpretability without sacrificing efficiency. Smaller 

rules are mathematically simpler than complex ones, and thus contribute positively to 

reducing the computational expenses of evolutionary algorithms and are feasible to 

implement in the industry 

5.4.1 Training Performance  

Five performance measures were considered to compare the performance of the four 

algorithms across generations during the training phase. The performance measures are 

the percentage change in objective value, computational time, mean rule length, the 

average number of absent terminals, and the average number of active terminals. For all 

performance measures used, a smaller value indicates better performance, except for the 

percentage change objective, where larger values indicate better performance. Table 5.3 

shows the mean and standard deviation of the four algorithms under the TWT, MT, and 

MFT objectives. Figure 5.5 (a1), (a2), and (a3) show the percentage change in the TWT, 

MT, and MFT objectives across generations, respectively. Regarding the performance 

of evolved rules, there is no significant difference in the percentage change in the 

objective values of the PGEP algorithm compared with the other methods under MFT 

objectives, as shown in Table 5.3. In terms of the MT objective, the PGEP algorithm 

had lower solution quality compared with the SGP algorithm, whereas it had the same 

performance as GEP and HGEP algorithms. In addition, the PGEP algorithm obtained 

significantly worse results compared with the SGP algorithm and better results 

compared with the HGEP algorithm in the TWT objective. Finally, the rules generated 

using the SGP algorithm had better solution quality compared with the GEP algorithm 

for the MT and TWT objective.  
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In terms of computational costs, although the HGEP algorithm had a smaller 

computational time compared with the GEP algorithm in the TWT and MT objectives, 

this reduction was at the expense of the quality of evolved rules as the HGEP had 

significantly worse results compared with the other algorithms related to the TWT and 

MT objectives. In contrast, the computational time for the PGEP algorithm is 

significantly smaller than the three other algorithms under all objective functions while 

achieving high solution quality. This finding indicates that feature selection methods 

that obtained promising results in the GP literature do not guarantee the same high 

performance when integrating with the GEP algorithm. The computational time of the 

PGEP algorithm is greatly smaller than the SGP and GEP, respectively, as shown in 

Figure 5.5 (b1), (b2), (b3), and Table 5.3. These results demonstrate the ability of the 

proposed feature selection approach to reduce the computational requirements of both 

the GP and GEP algorithm. Finally, the compactional time of the GEP algorithm is 

significantly smaller than the SGP algorithm in the three objectives. 

Table 5.3 Performance measures in the training phase 

Perf. Meas. Obj. SGP GEP HGEP PGEP 

Percentage change TWT 110.71 ± 21.67 101.1 ± 25.86 85.47 ± 24.59 101.61 ± 28.68  

(-, =, +) 

MT 125.65 ± 2.46 122.11 ± 3.85 121.68 ± 5.7 122.54 ± 3.63  

(-, =, =) 

MFT 56.72 ± 0.5 56.2 ± 0.26 56.33 ± 0.3 55.5 ± 0.63  

(=, =, =) 

Computational time TWT 181.73 ± 10.93 119.53 ± 22.26 115.64 ± 12.66 100.52 ± 11.86  

(+, +, +) 

MT 154.55 ± 12.79 116.23 ± 22.56 107.84 ± 15.07 101.53 ± 11.65  

(+, +, +) 

MFT 119.26 ± 8.2 69.0 ± 8.55 71.78 ± 8.02 63.33 ± 11.72  

(+, +, +) 

Mean rule length TWT 16.83 ± 3.16 11.13 ± 2.24 9.07 ± 1.96 9.11 ± 1.61  

(+, +, =) 

MT 14.62 ± 2.67 10.76 ± 2.61 9.67 ± 1.71 8.77 ± 1.36  
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(+, +, +) 

MFT 11.87 ± 1.51 5.78 ± 0.88 6.12 ± 0.89 5.71 ± 1.2  

(+, +, +) 

Average number of 

absent terminals 

TWT 5.58 ± 1.84 7.09 ± 1.71 7.67 ± 1.85 8.05 ± 1.25  

(+, +, +) 

MT 6.05 ± 1.67 7.0 ± 2.07 7.27 ± 1.4 7.77 ± 1.17  

(+, +, +) 

MFT 7.5 ± 1.23 9.08 ± 0.9 8.87 ± 0.93 8.96 ± 1.29  

(+, -, +) 

Average number of 

active terminals 

TWT 7.42 ± 1.84 5.91 ± 1.71 3.85 ± 1.23 3.31 ± 0.63  

(+, +, +) 

MT 6.65 ± 1.67 6.0 ± 2.07 4.11 ± 0.98 3.46 ± 0.6  

(+, +, +) 

MFT 5.5 ± 1.23 3.92 ± 0.9 3.39 ± 0.62 2.73 ± 0.78  

(+, +, +) 

As expected, the reduction in computational costs resulted from a decrease in the 

average length of evolved rules, as illustrated in Table 5.3 and Figure 5.5 (c1), (c2), and 

(c3). The rules evolved using the PGEP algorithm had the smallest length compared 

with the three algorithms in the three objectives. This supports our hypothesis that 

integrating the proposed approach with the restricted search space of the GEP algorithm 

is beneficial in reducing the size of created rules. In addition, the GEP algorithm 

generated rules with significantly smaller sizes compared with the SGP algorithm which 

is similar to the findings in the literature. The evolved rules using the HGEP algorithm 

were smaller than the GEP algorithm for the MT and TWT objectives. In contrast, GEP 

evolved rules had smaller sizes compared with the HGEP algorithm with respect to the 

MFT objective. 

Since there are three states (active, inactive, and absent) for each terminal in the 

proposed representation while there are only two states (absent and active) in the 

representation of the SGP and GEP algorithms, the number of inactive terminals was 

excluded from the comparison. Afterwards, the average number of absent and active 

terminals of the evolved rules using the four algorithms is compared. As depicted in 

Figure 5.5 (d1-e1), (d2-e2), and (d3-e3), the use of the proposed feature selection 
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approach supports the PGEP algorithm in increasing the number of absent terminals and 

reducing the number of active terminals compared with the GEP algorithm. Specifically, 

the proposed algorithm (PGEP) obtained significantly more absent terminals and fewer 

active terminals compared with the other algorithms under the TWT, MT, and MFT 

objectives. These results demonstrate the ability of the proposed feature selection 

approach to reduce the size of evolved rules, which greatly reduces the training time of 

the GP and GEP algorithms. In addition, the PGEP algorithm was able to evolve rules 

with acceptable performance in more understandable structures and affordable 

computational costs. Similarly, the HGEP algorithm had significantly larger number of 

absent terminals and smaller number of active terminals compared with the GEP 

algorithm in the TWT and MT objective. However, in the case of the MFT objective, 

the GEP algorithm generated rules with more absent terminals compared with the 

HGEP algorithm. Finally, the GEP algorithm evolved rules with larger number of 

absent terminals and fewer active terminals in all objectives compared with the SGP 

algorithm. 
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Figure 5.5: The performance of the four algorithms during the training phase for 

the three objectives. Figures (a1), (b1), (c1), (d1), (e1) are for the TWT objective. 

Figures (a2), (b2), (c2), (d2), (e2) are for the MT objective. Figures (a3), (b3), (c3), 

(d3), (e3) are for the MFT objective. 

5.4.2 Testing Performance 

In order to ensure that the algorithms did not overfit the training data and evolved rules 

are applicable to unseen scenarios, the performance of the best 20 dispatching rules for 

each algorithm is evaluated through several testing scenarios. Table 4.6 (a), (b), and (c) 

show the mean and standard deviation of the four algorithms in the TWT, MT, and 

MFT objectives, respectively. The last row of each table provides a summary of the 

statistical results using a tuple (𝑎, 𝑏, 𝑐) where 𝑎, 𝑏, and 𝑐 represent the number of times 

a certain method wins (significantly better), draws (no significant difference), and loses 

(significantly worse) respectively, against the PGEP algorithm.  

Regarding the TWT objective, the PGEP algorithm showed better performance 

compared with the results of SGP, GEP and HGEP in 3, 4 and 24 scenarios, 

respectively. The rules evolved using the PGEP algorithm had similar performance to 

the rules of the SGP, GEP and HGEP algorithms in 9, 17 and zero scenarios, 

respectively. As expected from the training performance, the HGEP algorithm suffered 

from premature convergence as the PGEP algorithm significantly outperformed it in all 

testing scenarios related to the TWT objective. For the MT objective, The PGEP and 

GEP algorithms had relatively similar mean tardiness results, where there was no 

significant difference in 20 scenarios. In addition, the PGEP had significantly higher 

solution quality in 4 scenarios compared with the GEP algorithm. In contrast, the SGP 
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rules significantly outperformed the PGEP rules in 13 scenarios and had the same 

results in 11 scenarios. Moreover, the PGEP algorithm outperformed the HGEP 

algorithm in 12 scenarios and had similar solution quality in the other 12 scenarios 

without any loss. 

Although the SGP algorithm got significantly smaller TWT values compared with 

the PGEP algorithm in 12 scenarios and smaller MT values in 13 scenarios, these results 

would be inverted if the algorithm running time was used as a stop criterion because the 

PGEP had significantly smaller computational budget. It is noteworthy that the four 

algorithms evolved rules with the same MFT values revealing that the MFT objective 

was an easier objective to handle than the TWT and MT objectives. In other words, 

although the MFT objective demonstrated the difference between the four algorithms 

with respect to computational time, rule size, and the number of active and absent 

terminals, it could not distinguish the difference in the quality of evolved rules in both 

training and testing scenarios.  Lastly, the obtained results demonstrate that the feature 

selection approach proposed for the GEP algorithm does not compromise the solution 

quality of generated rules in favour of reducing their sizes. 

 

Table 5.4 Mean and standard deviation of the considered methods in the testing 

phase. (a): the TWT objective, (b): the MT objective, and (c): the MFT objective.  

(a):  scenarios SGP GEP HGEP PGEP 

(3, 0.8) 56726.01 ± 11241.72 58022.72 ± 15863.38 101253.44 ± 48089.76 

57663.35 ± 12422.92 

(=, =, +) 

(3, 0.85) 149354.06 ± 28496.28 153799.87 ± 37593.35 208837.32 ± 71059.64 

149419.37 ± 27099.19  

(=, =, +) 

(3, 0.9) 363986.61 ± 69343.26 377615.16 ± 86768.73 436724.15 ± 110828.44 

362972.51 ± 64786.78  

(=, +, +) 

(3, 0.95) 865385.5 ±177930.55 879876.83 ± 231526.76 926905.66 ± 194164.66 

871979.63 ± 168267.7  

(-, =, +) 

(4, 0.8) 4945.72 ± 1895.55 4927.19 ± 2385.55 37948.44 ± 35052.87 

5578.71 ± 2543.36  

(-, -, +) 

(4, 0.85) 28072.82 ± 8561.04 29034.58 ± 11572.88 91360.33 ± 68176.96 

30037.94 ± 10175.36  

(-, =, +) 

(4, 0.9) 134081.75 ± 34149.56 141619.04 ± 41753.05 245387.8 ± 123239.66 

138129.97 ± 36348.15  

(-, =, +) 

(4, 0.95) 531832.68± 120474.09 546325.44 ± 138968.32 668262.88 ± 192167.13 541882.87 ± 110754.28  
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(-, =, +) 

(5, 0.8) 277.4 ± 180.26 259.05 ± 197.47 19879.19 ± 21389.5 

291.75 ± 253.13  

(=, =, +) 

(5, 0.85) 2752.09 ± 1521.91 2766.84 ± 1787.79 49617.1 ± 51215.34 

3252.21 ± 1916.95  

(-, -, +) 

(5, 0.9) 32349.83 ± 14163.97 34221.21 ± 16185.79 143029.62 ± 119675.18 

35265.81 ± 15445.64  

(-,  =, +) 

(5, 0.95) 283197.38 ± 77804.52 292025.79 ± 77245.89 475756.62 ± 214144.53 

294605.52 ± 74624.15  

(-, =, +) 

(6, 0.8) 57.92 ± 41.88 51.74 ± 39.73 11827.85 ± 13413.04 

44.81 ± 43.71  

(+, +, +) 

(6, 0.85) 210.87 ± 143.39 153.31 ± 165.15 31947.81 ± 35641.5 

155.32 ± 188.62  

(=, =, +) 

(6, 0.9) 4876.26 ± 3278.33 5124.12 ± 3746.84 94100.68 ± 98160.64 

5880.26 ± 4082.97  

(-, -, +) 

(6, 0.95) 125112.34 ± 46205.63 127780.5 ± 40939.7 339214.12 ± 228857.15 

133341.03 ± 45107.48  

(-, =, +) 

(7, 0.8) 33.18 ± 31.43 32.1 ± 29.57 7489.3 ± 8887.08 

26.7 ± 27.43  

(+, +, +) 

(7, 0.85) 32.9 ± 33.08 29.12 ± 30.47 22435.81 ± 25958.95 

32.09 ± 33.33  

(=, =, +) 

(7, 0.9) 417.13 ± 478.79 439.21 ± 538.48 71061.12 ± 80981.05 

488.9 ± 528.63  

(=, =, +) 

(7, 0.95) 43338.93 ± 23040.37 43695.22 ± 20922.73 251006.94 ± 222340.49 

47917.42 ± 23663.5  

(-, =, +) 

(8, 0.8) 20.97 ± 23.14 20.4 ± 20.88 4753.67 ± 6085.89 

15.82 ± 17.65  

(+, +, +) 

(8, 0.85) 19.86 ± 22.81 19.63 ± 23.92 15989.11 ± 19053.37 

21.81 ± 28.28  

(=, =, +) 

(8, 0.9) 54.88 ± 80.95 49.88 ± 82.99 55365.89 ± 64569.62 

39.17 ± 61.37 

(=, =, +) 

(8, 0.95) 10388.34 ± 7859.3 10465.74 ± 6952.21 200628.42 ± 208898.31 

12264.97 ± 8102.39  

(-, =, +) 

Summary (12, 9, 3) (3, 17, 4) (0, 0, 24)  
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(b): scenarios SGP GEP HGEP PGEP 

(1.5, 0.8) 128.83 ± 6.24 133.3 ± 9.7 129.69 ± 6.35 129.47 ± 5.52 (=, +, =) 

(1.5, 0.85) 177.33 ± 8.26 183.87 ± 13.59 178.53 ± 10.54 177.95 ± 7.39 (=, +, =) 

(1.5, 0.9) 254.34 ± 12.31 265.97 ± 22.1 256.23 ± 16.01 255.02 ± 10.93 (=, +, =) 

(1.5, 0.95) 405.73 ± 21.63 424.06 ± 40.31 404.81 ± 23.84 404.72 ± 18.21 (=, +, =) 

(2, 0.8) 73.33 ± 4.76 76.53 ± 6.09 76.89 ± 7.27 74.78 ± 4.47 (=, =, =) 

(2, 0.85) 116.6 ± 7.15 122.92 ± 10.01 120.55 ± 10.99 119.56 ± 6.88 (=, =, =) 

(2, 0.9) 190.14 ± 10.8 201.47 ± 16.71 194.5 ± 15.99 194.7 ± 10.63 (=, =, =) 

(2, 0.95) 338.86 ± 20.42 357.53 ± 35.73 339.87 ± 24.46 342.15 ± 17.79 (=, =, =) 

(2.5, 0.8) 34.61 ± 2.95 36.28 ± 3.67 42.89 ± 9.12 36.46 ± 3.69 (-, =, +) 

(2.5, 0.85) 68.93 ± 5.3 73.48 ± 6.41 78.17 ± 12.34 72.86 ± 6.4 (-, =, +) 

(2.5, 0.9) 135.36 ± 9.7 145.85 ± 12.66 145.22 ± 17.41 142.51 ± 10.74 (-, =, =) 

(2.5, 0.95) 280.03 ± 18.48 297.62 ± 28.92 285.35 ± 25.49 287.8 ± 17.74 (=, =, =) 

(3, 0.8) 12.94 ± 1.88 13.9 ± 2.62 23.21 ± 10.74 14.17 ± 2.8 (-, =, +) 

(3, 0.85) 35.52 ± 3.67 38.43 ± 4.99 49.36 ± 14.13 39.1 ± 5.49 (-, =, +) 

(3, 0.9) 91.04 ± 8.41 98.49 ± 10.23 106.15 ± 19.35 97.89 ± 10.23 (-, =, +) 

(3, 0.95) 226.65 ± 17.31 242.61 ± 23.49 237.91 ± 27.24 236.14 ± 17.66 (=, =, =) 

(3.5, 0.8) 3.77 ± 1.01 4.21 ± 1.4 13.19 ± 9.67 4.43 ± 1.61 (-, =, +) 

(3.5, 0.85) 15.65 ± 2.3 17.11 ± 3.64 30.91 ± 15.48 17.89 ± 4.02 (-, =, +) 

(3.5, 0.9) 55.38 ± 6.06 60.97 ± 8.79 76.91 ± 21.79 62.09 ± 9.52 (-, =, +) 

(3.5, 0.95) 177.78 ± 15.2 192.04 ± 19.5 197.69 ± 28.93 190.06 ± 18.25 (=, =, =) 

(4, 0.8) 0.88 ± 0.56 1.03 ± 0.7 8.34 ± 7.92 1.14 ± 0.8 (-, =, +) 

(4, 0.85) 5.72 ± 1.4 6.48 ± 2.2 20.1 ± 14.62 7.03 ± 2.48 (-, =, +) 

(4, 0.9) 29.79 ± 4.73 34.38 ± 7.24 54.8 ± 24.09 35.81 ± 8.07 (-, =, +) 

(4, 0.95) 135.44 ± 13.76 147.59 ± 16.95 162.72 ± 31.55 146.99 ± 17.04 (-, =, +) 

Summary (13, 11, 0) (0, 20, 4) (0, 12, 12)  
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)c): scenarios SGP GEP HGEP PGEP 

(3, 0.7) 283.93 ± 1.62 283.74 ± 1.56 284.15 ± 1.89 284.18 ± 1.56 (=, =, =) 

(3, 0.725) 295.42 ± 1.92 295.31 ± 1.77 295.76 ± 2.32 295.56 ± 1.89 (=, =, =) 

(3, 0.75) 308.99 ± 2.05 308.7 ± 1.84 309.19 ± 2.61 308.73 ± 2.06 (=, =, =) 

(3, 0.775) 324.31 ± 2.23 324.12 ± 2.29 324.46 ± 2.84 324.43 ± 2.27 (=, =, =) 

(3, 0.8) 341.64 ± 2.45 341.7 ± 2.25 342.52 ± 3.41 342.22 ± 2.6 (=, =, =) 

(3, 0.825) 362.51 ± 2.81 362.55 ± 2.61 363.13 ± 4.39 363.13 ± 2.95 (=, =, =) 

(3, 0.85) 387.55 ± 3.34 387.53 ± 2.96 388.72 ± 5.58 388.85 ± 3.26 (=, =, =) 

(3, 0.875) 417.62 ± 3.69 417.96 ± 3.82 419.16 ± 7.42 418.8 ± 3.65 (=, =, =) 

(3, 0.9) 458.27 ± 5.0 459.49 ± 4.78 460.43 ± 8.75 459.61 ± 5.33 (=, =, =) 

(3, 0.925) 513.2 ± 6.19 515.09 ± 5.51 517.09 ± 11.8 516.63 ± 5.93 (=, =, =) 

(3, 0.95) 592.13 ± 8.97 593.92 ± 6.45 597.46 ± 15.84 595.51 ± 8.24 (=, =, =) 

(3, 0.975) 701.35 ± 13.6 704.52 ± 8.6 709.27 ± 22.26 705.08 ± 11.54 (=, =, =) 

Summary (0, 12, 0) (0, 12, 0) (0, 12, 0)  

5.4.3 Insights Into the Best-Evolved Rules 

The distribution of the terminals of the 20 best rules evolved using the four algorithms 

is plotted in Figure 5.6 (a), (b), and (c) representing the results obtained for the TWT, 

MT, and MFT objectives, respectively. Typically, extensive use of a particular terminal 

in high-performance rules indicates that it is extremely important to the objective used 

in the training phase. The total number of terminals used in the best TWT rules for the 

PGEP algorithm is smaller than those in the SGP, GEP, and HGEP by 58.13%, 29.91%, 

and 15.14%, respectively. Also, the gap between relevant and irrelevant terminals is 

wider in the PGEP results than in the other three methods. Similarly, the difference in 

the number of terminals between significant and insignificant terminals in the best-

generated rules was more pronounced in the PGEP algorithm than in the GEP and 

HGEP algorithms. The most important terminals in the case of minimizing the TWT 

objective are PT, SL, JW, RO, and WINQ while Npt, WT, WR, JR, and OR terminals 

are insignificant as depicted in Figure 5.6 (a).  
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Figure 5.6: Terminals distribution in the 20 best rules for the four algorithms. (a): 

for the TWT objective, (b): for the MT objective, (c): for the MFT objective 

Regarding the MT objective, the PGEP algorithm considered WT, Npt, and JW 

terminals to be neglectable, while the weight of RO and Apr terminals was increased. In 
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addition, the PGEP algorithm reduces the number of terminals in the best rules by 

51.07%, 39.85%, and 3.61% compared with the SGP, GEP, and HGEP algorithms, 

respectively. In terms of the MFT objective, the PGEP rules have 63.08%, 13.45%, and 

10.43% fewer terminals than the rules generated using the SGP, GEP, and HGEP 

algorithms. The most important terminals to reduce the mean flow time objective are 

PT, Npt, and WINQ, while redundant terminals include DD and SL. Consequently, four 

main findings can be drawn:  

a) The weight of terminals varies according to the objective under study, and the 

selection ability of the GP and GEP algorithms without external feature selection 

mechanisms is relatively limited.  

b) Although the rules generated using the GEP algorithm have relatively lower 

quality compared with the GP rules, the difference in computational time is 

significantly large which might inverse the results if the time is used as a 

stopping criterion. 

c) The integration between the proposed feature selection approach and the fixed-

length representation of the GEP algorithm can identify important features and 

exclude irrelevant features under different objective functions. 

d) In contrast to the literature feature selection approach, the proposed approach 

reduces the size of evolved rules and speeds up the GEP algorithm without 

negatively affecting solution quality, and even improves quality in the case of 

MT objective. 

The simplified mathematical version of the best PGEP rule evolved under the TWT 

objective is shown in Equation 5.3. The PT, WINQ, JW, SL, and RO terminals are 

active terminals in the evolved rule while the WR terminal is inactive. The remaining 

terminals are not used in the best TWT rule. Regarding the MT objective, Equation 5.4 

shows the best PGEP rule in mathematical form. Four terminals are used to prioritize 

queued operations which are PT, WINQ, SL and RO indicating their great impact in 

minimizing the MT objective. The only disabled terminal is the JW terminal, while the 

rest of the terminals have been excluded. Equation 5.5 presents the mathematical 

function of the best PGEP rule used to minimize the MFT objective. The active 

terminals are Npt, WINQ, PT, Apr, RO, and PT, whereas the deactivated terminals 

include JR, DD, and JW.  

𝑇𝑊𝑇 𝑟𝑢𝑙𝑒 =  3.6 × (𝑃𝑇 +  
𝑊𝐼𝑁𝑄

𝐽𝑊
) +  

2 ×  𝑆𝐿

𝑅𝑂
 5.3 
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𝑀𝑇 𝑟𝑢𝑙𝑒 =  2 ×  𝑃𝑇 +  𝑊𝐼𝑁𝑄 + 
𝑆𝐿 −  1.84

𝑅𝑂
 5.4 

𝑀𝐹𝑇 𝑟𝑢𝑙𝑒 =  𝑚𝑖𝑛(𝑁𝑝𝑡, 𝑊𝐼𝑁𝑄) +  𝑃𝑇 +  𝑚𝑖𝑛(𝐴𝑝𝑟 −  𝑅𝑂, 𝑃𝑇) 5.5 

Visualizing the mathematical formulation of the best-evolved rules provides some 

useful insights regarding important and irrelevant terminals for each objective. 

However, it is still challenging to know which characteristics of the operations will take 

the highest priority using these rules. Therefore, 20 decision situations were sampled 

from an actual simulation run and used to understand the phenotypic characterization of 

the best-evolved rules as recommended in (Hildebrandt and Branke, 2015a). The 

phenotypic characterization of a given rule demonstrates the impact of changing the 

values of the terminals of a set of jobs on their priority values. It is important to mention 

that these rules give high priority to jobs with lower priority values from the set of 

queued jobs. From these experiments, it was clear that the PGEP rule for the TWT 

objective gives high priority to jobs with a large number of remaining operations, low 

processing time, low slack, low work in the next queue, and high weight. Regarding the 

MT objective, the best PGEP rule favours jobs that have the same characteristics as the 

TWT objective except for job weight, which is an irrelevant factor. The PGEP rule that 

obtained the smallest MFT objective values assigns high priority values to jobs with low 

processing time, low average processing time of queued jobs, low processing time of 

next operation, and low work in the next queue. 

5.4.4 Further analysis of the proposed approach 

The proposed feature selection approach is an online mechanism to guide GP and GEP 

algorithms in generating superior dispatching rules in compact structures as described in 

the previous and current chapters. Therefore, the activation probability (weight) of each 

terminal is tracked during the execution of the PGP algorithm introduced in the previous 

chapter and compared with the PGEP algorithm for two reasons.  

I. To ensure that the proposed approach is able to select important features and 

exclude redundant ones regardless of the evolutionary algorithm used. In other 

words, PGP and PGEP algorithms can identify the same sets of significant and 

redundant features for each objective.   

II. To check whether the weights of the terminals differ across generations, 

supporting the main hypothesis that the importance of each terminal is not fixed 

throughout the run (binary discrimination is impractical).  
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The results obtained using the PGP and PGEP algorithms are shown in Figure 5.7. 

For the sake of convenience, the title below each sub-figure is represented as (𝑎_𝑏), 

where "𝑎" denotes the objective function considered and "𝑏" indicates the algorithm 

used. The colour of each cell in the heat maps represents the average activation 

probability of this terminal in 20 runs of the algorithm at a given generation. In addition, 

the average activation probability (weight) of the terminal across all generations for the 

PGP and PGEP algorithms under the three objectives is estimated and plotted in Figure 

5.7 (summary).  

Although all algorithms had the same weight in the first generation, their weights 

varied greatly in subsequent ones. Regarding the TWT objective, the most important 

terminals (bright columns or values close to 1) in the PGP and PGEP algorithms are 

RO, PT, SL, WINQ, Apr, and JW. Although the DD terminal is an important terminal in 

the case of the PGP algorithm (0.8), it had a low activation probability using the PGEP 

algorithm (0.4). The inclusion of the SL terminal may be one of the reasons, as it can 

substitute some DD and CT terminals and thus indirectly affect their weights. For the 

MT objective, the most relevant terminals are RO, PT, SL, WINQ, and Apr while 

insignificant ones include JR, OR, WR, WT, Npt and JW. Regarding the MFT objective 

results shown in Figure 5.7 (MFT_PGP) and (MFT_PGEP), the set of significant 

terminals includes PT, Npt, WINQ, and Apr, while insignificant terminals include most 

of the due-date related terminals such as JR, OR, DD, SL, and WT. As shown in Figure 

5.7 (summary), most terminals had the same or slightly different weight for both the 

PGP and PGEP algorithms under the same objective function. The difference in 

activation probability between the two algorithms for any terminal did not exceed 0.2, 

except for the DD terminal in the MT and TWT objectives and the WR terminal in the 

TWT objective. Therefore, it is clear that the proposed feature selection approach is able 

to identify significant terminals regardless of the evolutionary algorithm or objective 

function used. 
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           (MFT_PGP)                                                (MFT_PGEP)                     

                            

 

    (summary) 

Figure 5.7: Matrix plot of the feature selection results using the PGP and PGEP 

algorithms under the TWT, MT, and MFT objectives. 
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5.5 Chapter Summary 

This chapter proposed an online feature selection approach for the gene expression 

algorithm (PGEP) to evolve compact dispatching rules for the dynamic job shop 

scheduling problems. The proposed algorithm accelerated the search process by 

restricting the GP search space using the linear representation of the GEP algorithm as 

well as guiding the search to the most promising regions using the feature selection 

capability. This leads to generating high-quality scheduling rules at smaller sizes using 

only the most relevant terminals to the objective to be optimized.  

Three algorithms from the literature were developed and compared with the 

proposed algorithm across various unseen job shop settings. The literature algorithms 

are the standard GP algorithm (SGP), gene expression programming algorithm (GEP), 

and GEP with the existing attribute vector (HGEP). In addition, three scheduling 

objective functions were investigated, including total weighted tardiness, mean 

tardiness, and mean flow time. Experimental results confirmed the ability of the PGEP 

algorithm in evolving rules with smaller sizes in a shorter computational time without 

sacrificing performance compared with literature methods. In addition, the distribution 

of terminals in the best generated rules for the four algorithms was compared. It was 

clear that the PGEP algorithm had the lowest number of terminals in the best rules, 

which reflected its ability to identify the most important terminals.  

The PGEP best evolved rules were presented in mathematical form and their 

phenotypic characterizations were analysed using 20 decision situations sampled from 

an actual simulation run. The weight of terminals across the evolutionary process of the 

PGEP algorithm was recorded. Then, the obtained results were compared with those in 

the previous chapter to verify whether the performance of the feature selection approach 

changed based on the nature of the underlying evolutionary algorithm. Experimental 

results demonstrate the ability of the proposed feature selection approach to identify the 

same set of critical terminals regardless of the evolutionary algorithm used. 
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Chapter 6. SURROGATE−ASSISTED GEP 

FOR DYNAMIC JOB SHOP SCHEDULING 

PROBLEMS 

6.1 Introduction 

In contrast to chapters 3, 4, and 5 which focused on reducing the evolutionary training 

time by reducing the size of evolved rules, this chapter speeds up the learning process 

by reducing the computational time required to evaluate the performance of evolved 

rules. In other words, the approaches presented and analysed in this chapter are 

relatively independent of the GP and GEP algorithms and are primarily linked to the 

simulation model used to imitate the DJSSP under study. Typically, there are a large 

number of dispatching rules are generated at each evolutionary generation, and thus 

their fitness values are estimated across a range of training scenarios representing 

different job shop settings. Each of these scenarios is a DES model that simulates the 

behaviour and constraints of a particular dynamic job shop setting. Due to the stochastic 

nature of the DJSSP models, multiple replications of each simulation model are required 

to obtain the steady-state performance of a given rule. Therefore, fitness evaluation is 

the most computationally demanding component in any evolutionary computation 

algorithm, and GP and GEP algorithms are not exceptions. In order to reduce the 

computational burden of simulation models that significantly reduce the training time of 

evolutionary algorithms, surrogate models have been developed. Surrogate models, also 

known as metamodels, response surfaces, or emulators, are simplified approximations 

of complex simulation models that are trained using input-output data at several 

selected locations in the design parameter space (Jin, 2011). 
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Using surrogate models that can imitate the underlying simulation model as 

accurately as possible with low computational costs is expected to offer several 

advantages as follows. 

I. It helps in the early identification of promising dispatching rules, and thus 

directs the search to promising search regions. 

II. Low-quality rules can be quickly discarded without sacrificing high 

computational costs in evaluating their fitness values. 

III. The time saved can be used to explore more dispatching rules (intermediate 

population) resulting in achieving higher quality rules. 

Therefore, the main objective of this chapter is to propose a surrogate assisted GEP 

approach to reduce the computational time required for the fitness evaluation of evolved 

rules without significantly affecting the prediction accuracy. Consequently, three 

surrogate models are developed by integrating the proposed approach with three 

surrogate models from the literature (Nguyen et al., 2017d) that showed a lower 

computational budget and high accuracy. Moreover, this chapter assesses the efficiency 

of the proposed surrogates using the following objectives. 

I. The models have to be independent of the structure of evolved rules or the 

evolutionary algorithm used, which will extend their application with other 

algorithms and scheduling decisions (Hildebrandt and Branke, 2015b).  

II. The proposed models should achieve a low computational budget while 

maintaining the same level of prediction accuracy as the literature surrogates 

(Nguyen et al., 2017d) 

III. The computational time needed for training the surrogate models needs to be 

affordable to reduce the overhead costs. In addition, it is preferable that the 

developed surrogate model be somewhat explainable to increase confidence for 

later use in real-world applications.  

The rest of this chapter is structured as follows. Section 6.2 describes the proposed 

surrogate assisted GEP approach.  The numerical experiments are illustrated in Section 

6.3. The obtained rules results are presented in Section 6.4. Finally, Section 6.5 presents 

the conclusions of this chapter. 
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6.2 Proposed Surrogate-Assisted GEP Approach 

To evaluate the performance of a given dispatching rule, a DES model is usually 

used to estimate the absolute fitness value. The absolute fitness value means the fitness 

value of a rule using the full simulation length. The DES length is determined by the 

total number of jobs 𝑗𝑎 that need to be processed. Accordingly, the simulation time 𝑡(𝑗𝑎) 

required to assess the performance of a population of 𝑛 rules is equal to 𝑛 ×  𝑡(𝑗𝑎). 

Therefore, the idea of the proposed surrogate model is to collect training data while 

evaluating some selected rules 𝑚 (training rules). Afterward, the collected data is used 

to develop an Machine Learning (ML) model that can reduce the simulation length 

required in evaluating the remaining rules (𝑛 − 𝑚). In other words, the remaining rules 

are partially evaluated using the DES model with fewer jobs 𝑗𝑓 i.e., until the number of 

finished jobs is equal to 𝑗𝑓. Consequently, the surrogate model is used to predict the 

absolute fitness values of the remaining rules. In this chapter, a multiple linear 

regression is used as the ML method. Linear regression is selected for several reasons as 

follows.  

a) It is computationally affordable machine learning techniques compared with 

other complex methods such as neural network, support vector machine, etc. 

b) It provides useful information about design parameters and their weights. 

c) The results obtained can be partially interpreted and analysed.  

The amount of change in computational time (𝑟𝑡) required for fitness assessment is 

shown in Equation 6.1, where 𝑠 indicates the surrogate model training time. It is clear 

that the time required to evaluate the fitness values of evolved rules can be reduced by 

reducing the number of training rules 𝑚, reducing the number of jobs used for early 

termination 𝑗𝑓 , and reducing the training time of the surrogate model 𝑠  (model 

complexity and machine learning technique used). 

𝑟𝑡 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑣𝑎𝑙. 𝑡𝑖𝑚𝑒 − 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑒𝑣𝑎𝑙. 𝑡𝑖𝑚𝑒 

𝑟𝑡 =  𝑛 × 𝑡(𝑗𝑎) − (𝑚 × 𝑡(𝑗𝑎) + (𝑛 − 𝑚) × 𝑡(𝑗𝑓) + 𝑠 )    
6.1 

The proposed surrogate model is integrated with the GEP algorithm. The proposed 

surrogate assisted GEP algorithm consists of six main steps, as shown in Figure 6.1. The 

algorithm starts by initializing a population of dispatching rules using the GEP 

representation and a predefined set of functions and terminals at Step 1. In Step 2, the 

initialized rules are divided into two groups, training rules and the remaining rules. In 
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addition, design parameters or reference points R are selected within the design space. 

In other words, fitness values at different percentages of finished jobs are used as 

reference points. Then, the training rules are fully evaluated using the DES model and 

training data is collected at the reference points as shown in Step 3. The training data 

comprises the fitness values of the training rules at different values for the number of 

completed jobs and absolute fitness values. In Step 4, a surrogate model is developed 

using the collected training data and a supervised ML technique. The surrogate model is 

in the form of a mathematical function that estimates the absolute performance of a 

given rule using fitness-related values collected at the design parameters. Consequently, 

the remaining rules are partially evaluated using the DES model with fewer jobs 𝑗𝑓 i.e., 

until the number of finished jobs is equal to 𝑗𝑓 as shown in Step 5. Finally, in Step 6, the 

surrogate model predicts absolute fitness values of the remaining rules using the data 

collected from the shortened DES runs. 

 

Figure 6.1: The proposed surrogate assisted GEP approach 

Figure 6.2 shows a comparison of the proposed fitness assessment procedure with 

the fitness assessment method used in the literature, where 𝑗0 denotes the first job that 

arrives at the job shop. Four equally spaced reference rules are used 𝑅 =  {𝑟1, 𝑟2, 𝑟3, 𝑟4} 

for the sake of clarification. In this example, if the number of completed jobs becomes 

equal to 20%, 40%, 60%, and 80% of the total number of jobs 𝑗𝑎, then fitness values of 

a given rule are calculated and used as the values of 𝑟1, 𝑟2,  𝑟3 , 𝑟4  respectively. 
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Afterward, the collected data is used to train a surrogate model. The remaining rules are 

evaluated using the shortened DES model. Then, the surrogate model is used to predict 

the absolute fitness values of the remaining rules. Consequently, there are two new 

parameters in the proposed approach that must be investigated. They are the size of 

training rules (𝑚) and the number of reference points (𝑅) 

 

Figure 6.2: The fitness assessment method used in the literature approaches 

compared with the proposed approach 

6.3 Numerical Experiments  

All experiments are carried out on a DES model of a symmetrical job shop. The 

following are the common simulation settings used across all experiments: 

• Jobs arrivals follow Poisson distribution. 

• Job shop utilization level is 90%. 

• Processing times follow uniform distribution U[1, 49]. 

• No machine break-down; pre-emption is not allowed. 

• Job due dates are assigned using the total work content method with a tightness 

factor of 1.5. 

• Two objective functions are considered: mean tardiness and mean flow time. 
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At each simulation replication, the job shop starts empty. All the collected data up to 

the warm-up period are discarded. Statistics from the warm-up period to the completion 

of the total number of required jobs are used to calculate performance measures. Six 

models are developed to assess the effectiveness of the proposed approach compared 

with literature methods as shown in Table 6.1. A reference model is used to evaluate the 

accuracy of the surrogate models. In the reference model, there are 10 machines, the 

simulation length is 2500 jobs, and the warm-up length is 500 jobs. Also, three literature 

models, namely OrigShort, HalfShop, and MiniShop are considered for the purpose of 

comparison (Nguyen et al., 2017d). The proposed approach is integrated with the three 

literature models referred to as ProShort, ProHalf, and ProMini. The reason behind this 

integration is that the proposed surrogate in contrast to literature surrogates reduces the 

simulation length without simplifying the job shop under study. Therefore, the proposed 

surrogate is applicable not only to the actual job shop configuration but also to its 

simplified versions. For OrigShort and ProShort models, the same job shop settings are 

used as the actual model except that the simulation model length and warm-up period 

are shorter. On the other hand, the other surrogate models have fewer machines and a 

maximum number of operations per job as well as shorter simulation length and warm-

up period compared with the reference model.  

Table 6.1 Job shop settings for the six surrogate models  

Models No. of machines Max. no. of operations Model length Warm-up 

OrigShort 

& ProShort 
10 10 1000 200 

HalfShop  

& ProHalf 
5 5 500 100 

MiniShop  

& ProMini 
2 2 250 50 

The three proposed models are compared with their counterpart literature models 

using two performance measures: computational time and accuracy. The prediction 

accuracy is estimated using the rank correlation coefficient 𝜌 between the performance 

of rules using the reference model and the performance of rules using a given model 

(Nguyen et al., 2017d). The accuracy of a specific surrogate model is estimated as 

follows: 
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1. A population of dispatching rules 𝑁 = {∆1, ∆2,  … , ∆𝑛}. 

2. Apply 𝑁  to the reference model to obtain actual fitness 𝛾 =

{𝑓(∆1), 𝑓(∆2), … , 𝑓(∆𝑛)} and the corresponding rank  𝛾𝑟 =

𝑓𝑟(∆1), 𝑓𝑟(∆2), … , 𝑓𝑟(∆𝑛)} sorted on descending order. 

3. Apply the 𝑁  rules to the surrogate model to obtain predicted fitness 𝛾′ =

{𝑓′(∆1), 𝑓′(∆2), … , 𝑓′(∆𝑛)}  and the corresponding rank  𝛾𝑟
′ =

{ 𝑓𝑟
′(∆1),  𝑓𝑟

′(∆2), … ,  𝑓𝑟
′(∆𝑛)} sorted on descending order. 

4. Estimate the correlation between the two models using the following function. 

 𝜌 =
∑ (𝑓𝑟(∆𝑖)−𝑓�̅�)( 𝑓𝑟

′(∆𝑖)−𝑓�̅�′)𝑛
𝑖=1

√∑ (𝑓𝑟(∆𝑖)−𝑓�̅�)𝑛
𝑖=1

2
∑ ( 𝑓𝑟

′(∆𝑖)−𝑓�̅�′)𝑛
𝑖=1

2
 

 6.2 

The GEP algorithm is used to generate 300 rules represented as chromosomes. The 

number of genes at each chromosome is set to two; and the addition is used as a linking 

function. Moreover, the head length is set to 8. Table 6.2 shows the set of terminals and 

functions used. In addition, the underlined terminals are used when optimizing the mean 

tardiness objective, and are excluded in the case of the mean flow time objective. 

Table 6.2 GEP terminal and function sets 

Attribute Explanation 

JR Job release date 

OR Operation ready time 

WR Work remaining of the job 

PT Operation processing time 

RO Number of remaining operations in a job 

WT Operation waiting time 

NPT Processing time of the next operation 

WINQ Work in the next queue 

APR Average processing time of queued job 

DD Job due date 

CT Machine ready time (current time) 

SL Job slack 

Function set +, −, ×, /,  𝑚𝑎𝑥, and 𝑎𝑏𝑠 
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6.4 Results 

First, the effects of the size of training rules and the number of reference points on the 

accuracy of the proposed model are examined. Second, the best values for the two 

parameters are used in the three proposed surrogates when compared with their 

counterpart in the literature. 

6.4.1 Fine-tuning the Surrogate Model Parameters 

In order to ensure that a certain model does not overfit the training data, the 

performance of the model is tracked during the training and testing phases across 

different settings. The training performance indicates the accuracy of a surrogate model 

in predicting the rank of evolved rules using the same dynamic job shop problem 

instances. In contrast, testing performance indicates the accuracy of a surrogate model 

in predicting the rank of evolved rules using unseen instances. The parameters analysis 

results obtained from the ProShort, ProHalf, and ProMini models are presented for each 

objective function. Moreover, 20 simulation replications are used for each 

configuration. Figure 6.3 (a), (b), and (c) respectively illustrate the accuracy of the 

ProShort, ProHalf, and ProMini models using different sizes of training rules ranging 

from 50 to 300 rules with the number of reference points set to 10 for the mean 

tardiness objective. It is clear that the size of the training data does not greatly affect the 

prediction accuracy of the proposed surrogates. One of the reasons might be that the 

proposed approach uses training rules to understand the behavior of the job shop rather 

than the rules' phenotypic characterization.  

Although all models had a high prediction accuracy in the training instances, their 

performance deteriorated in the testing scenarios. The ProShort model had the smallest 

gap between the training and testing performance by about 10% on average, whereas the 

ProMini model had the largest performance difference by about 40% on average. As 

expected, the ProShort model had the highest prediction accuracy on the testing 

instances because it used the same job shop settings except for the simulation length and 

warm-up period. In contrast, the ProMini showed the lowest accuracy because it used a 

highly simplified version of the job shop plus short simulation and warmup lengths. The 

ProHalf model showed moderate performance compared with the other surrogates. 

Similar prediction accuracy results were obtained for the mean flow time objective as 

shown in Figure 6.4 (a), (b), and (c) for the ProShort, ProHalf, and ProMini models, 

respectively.  
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     (a) 

 

      (b) 

 

     (c) 

Figure 6.3: The effect of the number of training rules on the accuracy for the mean 

tardiness objective 
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     (a) 

 

     (b) 

 

     (c) 

Figure 6.4: The effect of the number of training rules on the accuracy for the mean 

flow time objective 
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The main difference is that the testing performance of the ProShort and ProHalf 

models for the mean flow time objective is relatively higher than in the case of the mean 

tardiness objective. There are two reasons that might be the reason behind this 

difference as follows. 

a) It is noted that the mean flow time objective is more robust than the mean 

tardiness, and hence its values are easier to predict (Pinedo, 2012). 

b) More terminals were used in the MT objective compared with the MFT resulting 

in more complex rules and more difficulty in predicting their behavior. 

Several surrogate model runs were carried out to assess the prediction accuracy 

using different reference point values ranging from 1 to 50 points and 100 training rules 

for each objective function. It is worth noting that increasing the number of reference 

rules increases the complexity of the ML model generated. This in turn may increase 

training time, reduce the model understandability, and increase the risk of overfitting. 

For instance, if 20 reference points are taken into account when developing a linear 

regression model, then the model will have an intercept and 20 independent variables to 

predict the fitness value of a given rule. Figure 6.5 (a), (b), and (c) respectively show the 

accuracy of the ProShort, ProHalf, ProMini models across different values of reference 

points for the mean tardiness objective. As expected, an increase in the number of 

reference points increased training accuracy but negatively affected test accuracy. 

Because the generated models became more complex and learned the details and noise 

in the training instance, and thus had lower performance in the new instances. 

Regarding the ProShort model, the accuracy during the training and testing phases was 

stable at around 0.97, and 0.83 when the number of reference points was less than 30. 

The gap between training and testing accuracies widens when R exceeded 30 points. For 

example, when the number of points reached 50, the training accuracy was about 0.98 

while the testing accuracy was 0.76. Similar behavior was observed in the ProHalf and 

ProMini models but in a more pronounced way. The training and testing accuracies for 

the ProHalf model were 0.98 and 0.62 when the number of reference points was set to 

50. In addition, the training and testing accuracies for the ProMini model were 0.98 and 

0.46 when the number of reference points was set to 50. Regarding the mean flow time 

objective, Figure 6.6 (a), (b), and (c) respectively show the accuracy of the ProShort, 

ProHalf, ProMini models for the same range of reference points. Similar to the mean 

tardiness objective, the training accuracy increased as the number of reference points 

increased, whereas testing performance decreased when the number exceeded 10 points. 
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     (a) 

 

     (b) 

 

     (c) 

Figure 6.5: The effect of the number of reference points on the accuracy for the 

mean tardiness objective 
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     (a) 

 

     (b) 

 

     (c) 

Figure 6.6: The effect of the number of reference points on the accuracy for the 

mean flow time objective 
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6.4.2 Computational Time 

In the following experiments, 100 training rules and 10 reference points (best 

settings) were used in the proposed surrogates. The three proposed models were 

compared with their counterparts in the literature. Figure 6.7 shows the results obtained 

with respect to computational time for the six surrogate models under the mean 

tardiness objective. The OrigShort and ProShort models had the highest computational 

costs compared with the other models, whereas MiniShop and ProMini models obtained 

the lowest computational times. In addition, the proposed surrogates required a smaller 

computational budget compared with the literature models. Table 6.3 shows the means 

and standard deviations of the achieved results. Moreover, a Wilcoxon-signed-sum test 

with a significant level of 0.05 was used to assess whether these differences were 

statistically significant. Table 6.3 shows the p-values obtained from comparing the 

proposed and the literature models as well as the percentage decrease in the 

computational time for the two compared models. It was clear that the proposed 

surrogate assisted GEP approach significantly reduced the computational time of the 

literature surrogates. Specifically, the proposed approach reduced the computational 

time of the OrigShort, HalfShop, and MiniShop models by about 5.56%, 5.24%, and 

8.46% respectively. 

 

Figure 6.7: Computational times of the six surrogate models under the mean 

tardiness objective 
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Table 6.3 Obtained results for the MT objective regarding computational time 

Surrogate Model 

Computational Time for the MT objective 

Obtained results % Decrease p-value 

OrigShort 8.762 ± 1.188 
5.563 0.008 

ProShort 8.275 ± 1.242 

HalfShop 2.745 ± 0.788 
5.236 0.012 

ProHalf 2.602 ± 0.681 

MiniShop 0.976 ± 0.265 
8.461 0.004 

ProMini 0.894 ± 0.263 

Similar results were achieved with respect to the mean flow time objective as the 

proposed approach helped reduce the computational time significantly for the 

OrigShort, HalfShop, MiniSHop models by about 8.33, 6.39, and 6.05%, respectively. It 

is worth noting that the reduction in computational time was more pronounced in the 

MFT objective compared with the MT objective.  

 

Figure 6.8: Computational times of the six surrogate models under the mean flow 

time objective 



Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems 

     186 

Table 6.4 Obtained results for the MFT objective regarding computational time 

Surrogate Model 

Computational Time for the MFT objective 

Obtained results % Decrease p-value 

OrigShort 8.807 ± 1.015 
8.328 0.0 

ProShort 8.073 ± 1.03 

HalfShop 2.712 ± 0.774 
6.385 0.0 

ProHalf 2.539 ± 0.735 

MiniSHop 0.953 ± 0.265 
6.046 0.0 

ProMini 0.895 ± 0.246 

6.4.3 Prediction Accuracy 

The results obtained regarding the prediction accuracy of the six surrogate models 

for the mean tardiness objective are shown in Figure 6.9. Moreover, Table 6.5 illustrates 

the percentage decrease in accuracy, and the estimated p-value from comparing the 

proposed models with their counterparts in the literature. The was no significant 

difference in prediction accuracy between the proposed models and the literature 

models (p-values > 0.05). Specifically, the estimated p-values from comparing 

OrigShort vs. ProShort, HalfShop vs. ProHalf, and MiniShop vs. ProMini were 0.53, 

0.21, and 0.94, respectively. Integrating the proposed surrogate assisted GEP approach 

with the OrigShort, HalfShop, and Minishop models reduced their accuracy by about 

0.77 %, 1.84 %, and 0.35 % on average, respectively. Therefore, it is clear that the 

proposed approach helped to significantly reduce the computational costs of fitness 

assessment without causing a significant loss in prediction accuracy with respect to the 

mean tardiness objective. Regarding the mean flow time objective, Figure 6.10 

represents the prediction accuracy of the three proposed surrogates compared with their 

counterparts from the literature. In addition, the statistical results are shown in Table 

6.6. Similar results were obtained as the MT objective. Specifically, the estimated p-

values from the comparison of OrigShort vs. ProShort, HalfShop vs. ProHalf, and 

MiniShop vs. ProMini were 0.53, 0.21, and 0.94, respectively. Moreover, integrating 

the proposed approach with the OrigShort, HalfShop, and MiniShop models reduced 

their accuracy by about 0.63 %, 1.25 %, and 1.63 % on average, respectively. 
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Figure 6.9: Rank correlation coefficients of the six surrogate models under the 

mean tardiness objective 

 

Table 6.5 Obtained results regarding prediction accuracy for the mean tardiness 

objective 

Surrogate Model 

Prediction accuracy for the MT objective 

Obtained results % Decrease p-value 

OrigShort 0.84 ± 0.076 
0.767 0.53 

ProShort 0.834 ± 0.052 

HalfShop 0.743 ± 0.052 
1.836 0.21 

ProHalf 0.73 ± 0.042 

MiniSHop 0.518 ± 0.098 
0.347 0.94 

ProMini 0.517 ± 0.072 
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Figure 6.10: Rank correlation coefficients of the six surrogate models under the 

mean flow time objective 

 

Table 6.6 Obtained results regarding prediction accuracy for the mean flow time 

objective 

Surrogate Model 

Computational Time for the MFT objective 

Obtained results % Decrease p-value 

OrigShort 0.838 ± 0.076 
0.627 0.683 

ProShort 0.832 ± 0.056 

HalfShop 0.738 ± 0.055 
1.254 0.791 

ProHalf 0.728 ± 0.047 

MiniSHop 0.511 ± 0.1 
1.634 0.852 

ProMini 0.503 ± 0.076 



Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems 

     189 

6.5 Sample of the Proposed Surrogates 

The main reason behind the significant reduction in computational time is that the 

proposed surrogate models are linear functions that are easy to train and evaluate. 

Technically, using these functions in fitness assessment is computationally cheaper than 

running a DES model which requires calculating the priority values of hundreds of 

operations using non-linear functions (GEP dispatching rules). In addition, it is worth 

noting that the collection of the training data used in the proposed surrogates does not 

require any additional operations because the fitness value is updated at the same time 

when there is a completed job. Equations 6.3, 6.4, and 6.5, respectively, represent the 

surrogate models generated in the ProShort, ProHalf, and ProMini models using a single 

replication for the mean tardiness objective. The p-values of most of the independent 

variables in the three models were less than 0.05 indicating their significant influence 

on the predicted fitness values. The R-squared values (Coefficient of determination) for 

the ProShort, ProHalf, ProMini were 0.984, 0.963, and 0.891, respectively. In addition, 

the adjusted R-squared values for the ProShort, ProHalf, ProMini were 0.982, 0.959, 

and 0.879, respectively. These results proved the ability of the proposed surrogates to 

capture most of the variations in the underlying simulation model.  

𝑦1000 = 1.58 − 0.6 𝑥200 − 0.95 𝑥277 − 0.74 𝑥354 + 0.4 𝑥431 + 0.44 𝑥508

+ 0.63 𝑥585 + 0.08 𝑥662 + 0.58 𝑥739 − 1.06 𝑥816 + 1.15 𝑥893  
6.3 

𝑦500 = 63.83 − 0.32 𝑥100 + 0.56 𝑥138 + 0.2 𝑥176 − 0.28 𝑥214

+ 0.06 𝑥252 − 0.48 𝑥290 − 0.06 𝑥328 − 0.4 𝑥366 − 2.85 𝑥404

+ 4.57 𝑥442  

6.4 

𝑦250  = 28.04 + 0.22 𝑥50 − 0.63 𝑥69 + 0.44 𝑥88 + 0.16 𝑥107 + 0.15 𝑥126

− 3.93 𝑥145 + 2.69 𝑥164 + 0.21 𝑥183 − 0.12 𝑥202 + 1.7 𝑥221 
6.5 

Moreover, Equations 6.6, 6.7, and 6.8, respectively, represent the surrogate models 

generated in the ProShort, ProHalf, and ProMini models using a single replication for 

the mean flow time objective. Similar regression results were obtained where the R-

squared values for the ProShort, ProHalf, ProMini were 0.974, 0.964, and 0.906, 

respectively. In addition, the adjusted R-squared values for the ProShort, ProHalf, 

ProMini were 0.971, 0.96, and 0.895, respectively. Finally, most of the independent 

variables had p-values less than 0.05 representing their significant impact on the 

performance of a given model. 
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𝑦1000 = 6.17 − 0.04 𝑥200 − 0.05 𝑥277 − 0.04 𝑥354 + 0.19 𝑥431 + 0.08 𝑥508

+ 0.15 𝑥585 + 0.19 𝑥662 + 0.12 𝑥739 − 0.17 𝑥816 + 0.06 𝑥893  
6.6 

𝑦500 = −1.86 − 0.06 𝑥100 − 0.02 𝑥138 + 0.07 𝑥176 + 0.19 𝑥214

+ 0.07 𝑥252 + 0.24 𝑥290 + 0.11 𝑥328 + 0.08 𝑥366 + 0.21 𝑥404

+ 0.08 𝑥442  

6.7 

𝑦250  = 28.04 + 0.22 𝑥50 − 0.63 𝑥69 + 0.44 𝑥88 + 0.16 𝑥107 + 0.15 𝑥126

− 3.93 𝑥145 + 2.69 𝑥164 + 0.21 𝑥183 − 0.12 𝑥202 + 1.7 𝑥221 
6.8 

6.6 Chapter Summary 

This chapter proposed a surrogate-assisted gene expression programming algorithm 

to reduce the computational time required for fitness evaluations. The idea of the 

approach is to reduce simulation length by early termination of the actual run and use a 

computationally inexpensive model to replace the excluded simulation length. To 

develop a surrogate model for a specific simulation model, fitness-related data must be 

collected during expensive simulation runs of a subset of training rules. Afterward, the 

collected data with their corresponding fitness values were used to train a machine 

learning model, which is a multiple linear regression in this work. Three surrogate 

models, ProShort, ProHalf, and ProMini, were developed by integrating the proposed 

approach with three simulation models from the literature, OrigShop, HalfShop, and 

MiniShop, respectively. The effect of the two new parameters used in the proposed 

approach on prediction accuracy was analysed. In addition, two objective functions 

were used including mean tardiness and mean flow time. Then, the proposed surrogate 

models using the best achieved settings were compared with their counterparts in the 

literature regarding computational time and prediction accuracy. A Wilcoxon-signed-

sum test with a significant level of 0.05 was used to assess whether the difference 

between the proposed and literature models was statistically significant. 

Experimental results showed that the proposed approach reduced the computational 

time of the OrigShort, HalfShop, and MiniShop models by about 5.56%, 5.24%, and 

8.46%, respectively, for the mean tardiness objective. In addition, the ProShort, 

ProHalf, and ProMini models had smaller computational time compared with the 

OrigShort, HalfShop, and MiniShop by about 8.33%, 6.39%, and 6.05%, respectively, 

for the mean flow time objective. Regarding the prediction accuracy, there was no 
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significant difference between both the proposed models and their counterparts in the 

literature. Specifically, the percentage decrease in the prediction accuracy between 

OrigShort vs. ProShort, HalfShop vs. ProHalf, and MiniShop vs. ProMini was about 

0.77%, 1.84%, and 0.35%, respectively, in the case of the mean tardiness objective. 

Regarding the mean flow time objective, the percentage decrease in the prediction 

accuracy between OrigShort vs. ProShort, HalfShop vs. ProHalf, and MiniShop vs. 

ProMini was about 0.63%, 1.25%, and 1.63%, respectively. Finally, several samples of 

the proposed surrogates for each of the objective functions were represented in a 

mathematical format with their regression results including R-squared and adjusted R-

squared values.  
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Chapter 7. CONCLUSIONS 

This thesis focused on the automatic generation of dispatching rules for static and 

dynamic job shop scheduling problems using the genetic programming algorithm. 

Specifically, the overall objective of this thesis was to automatically generate high-

quality dispatching rules in concise structures (a smaller number of terminals and 

functions) and low computational costs for different job shop scheduling problems 

using the GP algorithm. In order to achieve this goal, several GP approaches were 

proposed in this thesis to reduce the size of evolved rules and reduce the computational 

burden during the GP training and evaluation phases. The effectiveness of each 

approach was evaluated across a wide range of job shop configurations using static and 

dynamic conditions, scheduling objectives, and performance measures. 

The remainder of this chapter is organized as follows. Section 7.1 highlights the 

achieved objectives and provides the main conclusions for each chapter. Potential 

research directions for future work are presented in Section 7.2. 

7.1 Achieved Objectives & Main Conclusions 

This section describes the five research objectives that have been fulfilled in this 

thesis as follows.  

I. This thesis proposed a distance metric to measure the similarity between the GP 

individuals with the aim of promoting diversity, which leads to the generation 

of dispatching rules with better fitness values. The proposed metric was used to 

numerically estimate the genotypic difference between the newly generated 

rules and the best rule evolved so far in a computationally affordable manner 
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compared with other literature metrics. Promoting diversity among GP 

individuals helped to avoid premature convergence that typically occurs when 

the GP algorithm is used for SJSSPs. Therefore, higher quality rules were 

generated by efficiently exploring different regions of the search space. 

II. This thesis introduced a multi-objective framework by integrating NSGA-II 

with the GP algorithm to simultaneously optimize diversity value (using the 

proposed distance metric), rule length, and solution quality of GP individuals 

for SJSSPs. Considering the three objectives simultaneously with the same 

weight helped to deal with their conflicting nature. Finally, the proposed 

approach increased selection pressure toward rules with high diversity values, 

smaller sizes, and better fitness values resulting in better exploration of the 

search space and a high reduction in GP computation costs. 

III. This thesis developed a feature selection approach for the tree-based GP 

algorithm with the aim to reduce the size of evolved rules using a smaller set of 

GP terminals for the DJSSPs. The proposed approach consists of two main 

components, an attribute vector to collect useful evolutionary information, and 

an adaptive discrimination scheme to estimate the probability of selecting each 

of the terminals during the GP run. Finally, reducing the size of evolved rules 

using the proposed approach reduced the training time needed for the GP 

algorithm because smaller rules are computationally less expensive to evaluate. 

In addition, smaller rules are easier to understand and implement in the industry 

than complex ones, and therefore have a higher probability of adoption in real-

world applications. 

IV. This thesis modified the feature selection approach proposed for the GP 

algorithm to be applicable to the GEP algorithm for the DJSSPs where a fixed-

linear representation was used. In addition, a GP feature selection approach 

from the literature was modified and integrated with the GEP algorithm. The 

aim was to evaluate the effect of imposing an additional constraint on the size 

of evolved rules in the case of the contained GP representation that is less 

susceptible to the bloating effect. Finally, using both the fixed GEP 

representation in parallel with the feature selection capability enforced more 

pressure towards generating smaller rules and reducing training time. 

V. This thesis proposed a surrogate assisted GEP approach to reduce the fitness 

evaluation time of evolved rules in dynamic job shop settings without 

sacrificing accuracy. Consequently, the time saved from the fitness evaluation 
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phase was used to evaluate an additional number of dispatching rules, resulting 

in achieving higher quality rules. The proposed approach replaced part of the 

simulation length of an expensive DES model with a simple mathematical 

function. This function was trained using fitness-related information collected 

during the evaluation of some training rules. Then, the remaining rules were 

evaluated using the simplified model with a shortened simulation length and the 

developed surrogate model. The proposed approach depends only on the 

behaviour of the underlying model, and therefore it can be used with 

evolutionary algorithms other than GP or GEP algorithms. 

The following are the main conclusions of this thesis, drawn from Chapter 3 to 

Chapter 6. 

• Technically, increasing diversity among the evolved rules helps avoid premature 

convergence, and thus increases the solution quality of generated rules. 

Therefore, Chapter 3 proposed a genotypic distance metric to measure the 

similarity of scheduling rules evolved using the GP algorithm. The proposed 

metric differs from the similarity metrics in the literature as follows: 

a) It takes into account the location of the node as well as the edges 

connecting it to its parents in estimating similarity values. 

b) It does not require any simulation runs to estimate the fitness values of 

the compared rules, as in the case of phenotypic metrics. 

c) It gives more weight to the nodes closest to the root node than to the 

farthest nodes. 

In addition, a multi-objective framework was introduced to take advantage of the 

proposed metric in increasing diversity among GP evolved rules as well as 

reducing the computational burden of the GP algorithm. The proposed 

framework integrated NSGA-II with the GP algorithm to optimize diversity 

value, rule length, and solution quality for SJSSPs. Optimizing the three 

objectives at the same time supports the automatic generation of high-quality 

rules in concise structures and shorter computational time. Two versions of the 

framework were compared with three algorithms from the literature using two 

objective functions, makespan, and mean tardiness across ten benchmark SJSSP 

instances. For each objective, four performance measures were taken into 

account: fitness value, genotypic diversity, phenotypic diversity, and the average 

length of the evolved rules. Experimental results demonstrated the effectiveness 
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of the proposed methods in generating a phenotypically diverse population of 

scheduling rules with smaller sizes and higher solution quality compared with 

the literature methods. 

• For the sake of reducing the size of evolved rules in DJSSPs and thus speeding 

up the process of automatically generating dispatching rules using the GP 

algorithm, Chapter 4 proposed an online feature selection approach for the tree-

based GP algorithm. The proposed approach offered several advantages over the 

approaches reported in the literature, as follows. 

a) It uses a new attribute vector representation to estimate the weight of 

each terminal without being affected by the occurrence of redundant 

terminals or complex rule structures. 

b) It is an online feature selection approach to select important features in 

the current generation using the estimated weights of terminals from the 

previous generation. 

c) It uses a probabilistic selection method rather than the inclusion or 

exclusion method to provide a broad preference scheme for each feature. 

The proposed algorithm was compared with three algorithms from the literature 

as well as 30 manually-made rules using three objective functions, TWT, MT, 

and MFT objectives across training and testing scenarios. For each objective, 

five performance measures were used including solution quality, computational 

time, the average size of rules, the average number of active terminals, and the 

average number of absent terminals. The best rules generated using the proposed 

algorithm had fewer terminals than the rules generated using the other methods 

for the three objective functions. Finally, the set of significant terminals obtained 

during the GP run using the proposed approach was similar to that generated 

using one of the best offline feature selection approaches in the literature. 

• In order to verify whether the proposed feature selection approach can reduce 

the size of evolved rules and computational time in representations other than 

the tree structure, Chapter 5 developed a feature selection approach for the GEP 

algorithm for DJSSPs. The proposed algorithm speeded up the search process by 

restricting the GP search space using a fixed linear representation. In addition, it 

directed the search to the most promising regions using the feature selection 

capability. The proposed approach extended the current literature as follows. 
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a) It is the first attempt to propose a bloating control technique for constrained 

GP representation in the field of automated design of scheduling rules. 

b) It significantly reduces the training time and size of generated rules 

compared with the current approaches, resulting in greater potential for use 

in complex manufacturing environments. 

The proposed algorithm was compared with three algorithms from the literature 

using a large set of training and testing scenarios for three objective functions. 

Results demonstrated the ability of the proposed approach to significantly 

reduce the computational time of the GEP algorithm by evolving high-quality 

rules in simpler structures compared with the literature approaches. Finally, to 

ensure that the proposed approach is not significantly affected by the GP 

representation or objective function used, the set of terminals selected across 

generations using the proposed approach was compared with the one obtained 

using the algorithm proposed in the previous chapter. The results showed that 

the two algorithms have the same set of selected terminals except for two 

terminals in the TWT objective and one terminal in the MT objective. 

• Instead of reducing the size of evolved rules (considered in the previous 

chapters) to reduce the time required for generating dispatching rules, Chapter 6 

proposed a surrogate assisted GEP approach to achieve the same objective but 

by reducing the fitness evaluation times. Three surrogate models were developed 

by integrating the proposed approach with three literature models. The proposed 

approach extended the existing literature through the following contributions: 

a) It is the first attempt to use machine learning to abstract a discrete event 

simulation model of DJSSPs.  

b) It reduces fitness evaluation time without significantly affecting accuracy. 

c) It is independent of the structure of GP evolved rules, and thus it can be 

adopted with other GP approaches. 

The three literature surrogates were compared with the three proposed ones 

using several scenarios as well as MT and MFT objectives functions. 

Experimental results proved that the proposed surrogates have significantly 

lower computational costs with a neglectable loss in prediction accuracy under 

the two considered objectives. Finally, regression results (R-squared and 

adjusted R-squared) for the proposed surrogates supported the ability of the 

proposed models to imitate the behaviour of the underlying DES model. 
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7.2 Future Research Directions 

The field of automatic generation of dispatching rules using the GP algorithm is 

relatively new, and there are many promising research directions to be considered. The 

following points define the future research activities, motivated by the work presented 

in each chapter. Future works are classified into two main groups, general and specific 

research directions. The former includes broad directions that can extend most of the 

methods proposed in this thesis, while the latter includes specific directions dedicated to 

a particular approach. 

General research directions: 

• Centralized scheduling is the main problem domain investigated in this thesis. 

Therefore, one possible extension of this work is to use the proposed approach 

in other domains such as distributed scheduling, decentralized scheduling, and 

cloud manufacturing scheduling. 

• All scheduling problems considered in this thesis are one piece and identical 

machines job shop. Therefore, possible extensions are to evaluate the 

performance of the proposed approaches under other scheduling problems such 

as batch processing, parallel machines, FJSSPs, manufacturing cells, etc.  

• Dispatching rules developed in this thesis are used to solve one scheduling 

decision, which is the job sequencing decision. Therefore, other types of 

dispatching rules used for other decisions can be considered in future work, 

including machine routing rules, due date assigning rules, etc. 

• The proposed approaches in this thesis are developed mainly for the GP-based 

hyper-heuristic algorithm. Therefore, future research work can be guided toward 

integrating the proposed approaches with other global search-based hyper-

heuristic algorithms such as particle swarm optimization, ant colony 

optimization, etc. 

Specific research directions: 

• A possible extension of the distance metric proposed in Chapter 3 is to consider 

cluster similarity instead of the individual similarity currently used. In other 

words, individuals are grouped into clusters with the aim of increasing the 

distance between the cluster with the best individuals and other clusters rather 

than increasing the distance between the best-evolved rule and other rules. This 

idea might support increasing the exploration and exploitation ability of the GP 
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algorithm because a limited number of relatively similar rules are kept within 

the cluster of the best rules (exploitation), while other clusters are compared 

with it (exploration). 

• The proposed GP feature selection proposed in Chapter 4 uses the information 

collected from the previous generation in estimating the weight of terminals in 

the current generation. Therefore, the next step of this work might be to utilize 

attribute vectors from all the previous generations. Although, this may increase 

the computational budget of the training phase, checking the trade-off between 

improving performance measures (rule length & solution quality) and increasing 

computational time is helpful. Another possible research direction is to propose 

a local search mechanism to explore the search space of the attribute vectors of 

evolved rules. The proposed mechanism changes the state of some terminals, 

from active to inactive or vice versa, in a limited set of rules and evaluates the 

rules' performance after these changes. If the rules achieve better solutions, then 

these changes will be accepted, otherwise, other changes will be applied. 

Because the time for fitness evaluations will be significantly increased, it is 

recommended that a surrogate model should be used in this stage.  

• Possible future work for the GEP feature selection approach proposed in Chapter 

5 is to add some dynamics to the fixed-length representation used in the GEP 

algorithm. Although the proposed approach obtained high-quality results in the 

DJSSP instances studied, the fixed chromosome length might lead to low-quality 

results in more complex environments. In other words, fixed-size rules include a 

limited amount of related information that cannot be exceeded, and thus they 

might get poor performance in more challenging problem domains. Therefore, it 

may be useful to start with a very large chromosome size in the first generation, 

and then select only a limited number of high-quality rules with large sizes for 

the next generation. Consequently, the rules required to reach population size are 

generated randomly with shorter sizes until a predetermined size limit is reached 

i.e., the average size of individuals decreases with increasing generations. 

• Regarding the surrogate models proposed in Chapter 6, future research activities 

have to be geared towards implementing these models in actual GEP runs. 

Although the proposed models do not significantly misestimate the performance 

of evolved rules, this marginal error might negatively affect solution quality if it 

occurs with the best rules. Therefore, it is necessary to assess the impact of 
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integrating the proposed models with the GEP algorithm instead of the original 

simulation model. Then, the obtained results must be compared with the 

standard GEP algorithm in which surrogates are not used. In addition, it might 

be useful to use the original simulation model as well as the surrogate in an 

interchangeable manner based on some predefined conditions. 
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