
Kobe University Repository : Kernel

PDF issue: 2025-07-31

RESEARCH ON AUTOMATIC GENERATION OF DISPATCHING
RULES USING GENETIC PROGRAMMING FOR JOB SHOP
SCHEDULING PROBLEMS

(Degree)
博士（工学）

(Date of Degree)
2022-09-25

(Date of Publication)
2023-09-01

(Resource Type)
doctoral thesis

(Report Number)
甲第8466号

(URL)
https://hdl.handle.net/20.500.14094/0100477892

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

SHADY AMGAD AHMED AHMED SALAMA

DOCTORAL DISSERTATION

RESEARCH ON AUTOMATIC

GENERATION OF DISPATCHING RULES

USING GENETIC PROGRAMMING FOR

JOB SHOP SCHEDULING PROBLEMS

(ジョブショップスケジューリング問

題に対する GENETIC PROGRAMMINGを用

いたディスパッチングルールの自動生

成に関する研究)

By

SHADY AMGAD AHMED AHMED SALAMA

July 2022

Department of Systems Science

Graduate School of System Informatics

Kobe University, Japan

 i

DEDICATION

“This is in memory of my dad who always believed in me.

You are gone but your belief in me has made this journey

possible.

As you look down from heaven, I hope you are proud of

your son”

 ii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Professor

Toshiya Kaihara, for his patience, guidance, and support. He has been an ideal

teacher, and mentor who kindly provided knowledge and expertise in writing and

editing this thesis. His encouraging words, thoughtful, and detailed feedback

have been very important to me. Moreover, this endeavour would not have been

possible without the support, valuable suggestions and guidance of Associate

Professor Nobutada Fujii. I am also indebted to the continuous assistance of

Assistant Professor, Daisuke Kokuryo, who provided invaluable comments on

my analysis and writing as well as prompt responses to my late night and early

morning emails. His constructive comments and insights helped improve the

quality of the published papers and this thesis.

I would also like to express my deepest appreciation to Professor Takashi

Kamihigashi for giving me sufficient time and a comfortable working

environment while working on this thesis. I am also extremely grateful to

Japanese government for granting me the Monbukagakusho scholarship, both as

a research student and a doctoral student.

There are many people that I would like to thank. I am so grateful for the time

these people have given me. My sincere thanks go to Mrs. Mayuko Sakamoto for

her patience and presence in resolving challenges I encountered that made my

experience in Japan easier and more enjoyable. Also, I express special gratitude

to my dear friend Nursultan Nikhanbayev for the selfless help he has willingly

given since my admission to CS21 Lab that has helped me quickly adjust to my

new life in Japan. Many thanks go to Dr. Imen for her continuous encouragement

when I felt frustrated and unmotivated. Also, it is my pleasure to thank my

friends Mohamed, Mina, and Emeline whose constant support helped me to be a

better version of me. My accomplishments are because they believed in me.

Lastly, my family deserves endless gratitude. I am grateful to my mother and

sister for their unconditional and endless support and encouragement throughout

my PhD study.

Chapter 1: Introduction

 3

CONTENTS

CHAPTER 1. INTRODUCTION... 14

1.1 BACKGROUND ... 14

1.1.1 Job Shop Scheduling Problem ... 14

1.1.2 Solution Approaches .. 16

1.1.3 Automated Design of Dispatching Rules Using Genetic Programming....... 17

1.2 LIMITATIONS OF EXISTING STUDIES .. 22

1.3 RESEARCH OBJECTIVES .. 27

1.4 MAJOR CONTRIBUTIONS... 31

1.5 THESIS OUTLINE .. 34

CHAPTER 2. LITERATURE REVIEW ... 37

2.1 INTRODUCTION .. 37

2.2 JOB SHOP SCHEDULING .. 39

2.2.1 Problem Description.. 39

2.2.2 Classes of Schedules .. 42

2.2.3 Solution Approaches for JSSPs .. 44

2.3 HYPER-HEURISTICS .. 52

2.4 GP BASED HYPER-HEURISTICS ... 55

2.4.1 Representation ... 55

2.4.2 Population Initialization .. 57

2.4.3 Fitness Evaluation ... 58

2.4.4 Selection .. 59

2.4.5 Genetic Operators ... 61

2.4.6 Standard GP Algorithm ... 63

2.5 GENERATING DISPATCHING RULES USING GP .. 64

2.5.1 GP Applications for Scheduling Problems ... 65

2.5.2 Limitations and Corresponding Solution Methods in Related Studies 70

CHAPTER 3. MULTI-OBJECTIVE GENETIC PROGRAMMING

APPROACH FOR STATIC JOB SHOP SCHEDULING PROBLEMS 81

3.1 INTRODUCTION .. 81

3.2 PROPOSED APPROACH .. 82

3.2.1 Distance Metric ... 82

3.2.2 Multi-objective GP approach ... 84

3.3 EXPERIMENTAL SETUP ... 86

Chapter 1: Introduction

 4

3.3.1 Comparison Design ... 86

3.3.2 Genetic Programming Parameters ... 88

3.4 RESULTS .. 90

3.4.1 Parameter Analysis .. 90

3.4.2 Makespan Objective... 96

3.4.3 Mean Tardiness Objective ... 101

3.5 CHAPTER SUMMARY .. 106

CHAPTER 4. GENETIC PROGRAMMING WITH FEATURE

SELECTION FOR DYNAMIC JOB SHOP SCHEDULING PROBLEMS 107

4.1 INTRODUCTION .. 107

4.2 PROPOSED METHODS .. 108

4.2.1 Modified Attribute Vector .. 108

4.2.2 Genetic operators and Feature Selection Approach 110

4.2.3 Overall Algorithm Framework ... 112

4.3 EXPERIMENT DESIGN ... 114

4.3.1 Comparison Design ... 114

4.3.2 Dynamic Job Shop Simulation Model ... 117

4.3.3 GP Parameter Settings .. 119

4.4 RESULTS .. 119

4.4.1 Fine-tuning the Parameters of the Proposed Algorithm 120

4.4.2 Training Performance.. 122

4.4.3 Testing Performance .. 127

4.4.4 Feature Analysis of the GP Best Evolved Rules .. 133

4.4.5 Behaviour Analysis of the PGP Best Evolved Rules.................................. 135

4.4.6 Feature Selection Verification ... 138

4.5 CHAPTER SUMMARY .. 141

CHAPTER 5. GEP WITH FEATURE SELECTION FOR DYNAMIC JOB

SHOP SCHEDULING PROBLEMS.. 142

5.1 INTRODUCTION .. 142

5.2 GEP ALGORITHM WITH THE PROPOSED FEATURE SELECTION APPROACH 144

5.3 NUMERICAL EXPERIMENTS ... 147

5.3.1 Fitness Assessment Module .. 147

5.3.2 Design Of the Experiments .. 150

5.3.3 Parameter Settings .. 152

5.4 RESULTS .. 153

Chapter 1: Introduction

 5

5.4.1 Training Performance ... 153

5.4.2 Testing Performance.. 159

5.4.3 Insights Into the Best-Evolved Rules .. 163

5.4.4 Further analysis of the proposed approach .. 166

5.5 CHAPTER SUMMARY .. 170

CHAPTER 6. SURROGATE−ASSISTED GEP FOR DYNAMIC JOB SHOP

SCHEDULING PROBLEMS ... 171

6.1 INTRODUCTION .. 171

6.2 PROPOSED SURROGATE-ASSISTED GEP APPROACH .. 173

6.3 NUMERICAL EXPERIMENTS .. 175

6.4 RESULTS .. 178

6.4.1 Fine-tuning the Surrogate Model Parameters .. 178

6.4.2 Computational Time .. 184

6.4.3 Prediction Accuracy .. 186

6.5 SAMPLE OF THE PROPOSED SURROGATES .. 189

6.6 CHAPTER SUMMARY .. 190

CHAPTER 7. CONCLUSIONS ... 192

7.1 ACHIEVED OBJECTIVES & MAIN CONCLUSIONS .. 192

7.2 FUTURE RESEARCH DIRECTIONS .. 197

REFERENCE LIST .. 200

LIST OF PUBLICATIONS .. 220

Chapter 1: Introduction

 6

LIST OF FIGURES

FIGURE 1.1: EXAMPLE OF A JOB SHOP SCHEDULING PROBLEM .. 16

FIGURE 1.2: GP FRAMEWORK FOR THE AUTOMATED DESIGN OF DISPATCHING RULES 19

FIGURE 1.3: EXAMPLE OF A SIMPLE GRAMMAR AND A RANDOM GP INDIVIDUAL............. 20

FIGURE 1.4: CHALLENGES OF USING THE GP APPROACH FOR STATIC AND DYNAMIC JSSPS,

CURRENT SOLUTION APPROACHES (BULLETS), AND THEIR LIMITATIONS (NUMBERING)

 .. 23

FIGURE 1.5: RESEARCH OBJECTIVES THAT ARE ADDRESSED IN THIS THESIS WITH THE

PROPOSED SOLUTION APPROACH FOR EACH OBJECTIVE. ... 28

FIGURE 1.6: STRUCTURE OF THIS THESIS INCLUDING PROBLEM DOMAIN, LITERATURE

LIMITATIONS, AND PROPOSED APPROACHES USED IN EACH CHAPTER....................... 36

FIGURE 2.1: CLASSIFICATION OF CENTRALISED SCHEDULING ... 39

FIGURE 2.2: GENERALIZED SCHEDULE CONSTRUCTION ALGORITHM 43

FIGURE 2.3: SOLUTION APPROACHES FOR SCHEDULING PROBLEMS 44

FIGURE 2.4: META-HEURISTIC ALGORITHMS FOR SCHEDULING PROBLEM 48

FIGURE 2.5: CLASSIFICATION OF DISPATCHING RULES ... 50

FIGURE 2.6: GENERAL HYPER-HEURISTIC FRAMEWORK ... 53

FIGURE 2.7: CLASSIFICATION OF HYPER-HEURISTIC APPROACHES 54

FIGURE 2.8: GP SYNTAX TREE REPRESENTING THE FUNCTION: 𝑥 + 𝑦2 + 3 56

FIGURE 2.9: PSEUDOCODE FOR PROGRAM GENERATION ALGORITHM. 58

FIGURE 2.10: SUBTREE MUTATION IN GP .. 62

FIGURE 2.11: SUBTREE CROSSOVER IN GP .. 62

FIGURE 2.12: PSEUDOCODE FOR THE STANDARD GP ALGORITHM 64

FIGURE 2.13: STRUCTURE OF THE 5TH
 SUBSECTION OF SECTION 2. 65

FIGURE 3.1: EXAMPLE OF THE PROPOSED SIMILARITY MEASURE. 84

FIGURE 3.2: PSEUDOCODE OF THE PROPOSED MULTI-OBJECTIVE GP ALGORITHM 85

FIGURE 3.3: FLOWCHART OF THE FIVE DEVELOPED ALGORITHMS 88

Chapter 1: Introduction

 7

FIGURE 3.4: EFFECT OF CHANGING THE VALUE OF THE 𝑘 PARAMETER ON THE FOUR

PERFORMANCE MEASURES. ... 92

FIGURE 3.5: PERFORMANCE OF THE FIVE GP ALGORITHMS ON THE TA61 JSSP INSTANCE.

.. 96

FIGURE 4.1: EXAMPLE OF A RULE IN THE LITERATURE AND PROPOSED REPRESENTATIONS.

.. 110

FIGURE 4.2: THE PROPOSED GENETIC PROGRAMMING ALGORITHM 114

FIGURE 4.3: FRAMEWORK OF THE FOUR ALGORITHMIC EXPERIMENTS 115

FIGURE 4.4: IMPACT OF NUMBER OF SELECTED RULES 𝕊 ON THE PGP ALGORITHM 121

FIGURE 4.5: IMPACT OF INITIAL ACTIVATION PROBABILITY ON THE PGP ALGORITHM ... 122

FIGURE 4.6: THE PERFORMANCE OF THE GP ALGORITHMS DURING THE TRAINING PHASE

FOR THE THREE OBJECTIVES. FIGURES (A1), (B1), (C1), (D1), (E1) ARE FOR THE TWT

OBJECTIVES. FIGURES (A2), (B2), (C2), (D2), (E2) ARE FOR THE MT OBJECTIVES.

FIGURES (A3), (B3), (C3), (D3), (E3) ARE FOR THE MFT OBJECTIVES. 125

FIGURE 4.7: TERMINALS DISTRIBUTION IN THE BEST-EVOLVED RULES FOR THE SGP, HGP

AND PGP ALGORITHMS. (A): FOR THE TWT OBJECTIVE, (B): FOR THE MT OBJECTIVE,

(C): FOR THE MFT OBJECTIVE ... 134

FIGURE 4.8: THE PRIORITY FUNCTION OF THE BEST PGP RULES. (A1) FOR THE TWT

WITHOUT CONSIDERING THE ATTRIBUTE VECTOR, (A2) FOR THE TWT AFTER

CONSIDERING THE ATTRIBUTE VECTOR, (B1) FOR THE MT WITHOUT CONSIDERING

THE ATTRIBUTE VECTOR, (B2) FOR THE MT AFTER CONSIDERING THE ATTRIBUTE

VECTOR, (C1) FOR THE MFT WITHOUT CONSIDERING THE ATTRIBUTE VECTOR, (C2)

FOR THE MFT AFTER CONSIDERING THE ATTRIBUTE VECTOR 137

FIGURE 4.9: MATRIX PLOT OF FEATURE SELECTION RESULTS. (A1) THE FSGP FOR THE

TWT, (A2) THE PGP FOR THE TWT, (B1) THE FSGP FOR THE MT, (B2) THE PGP FOR

THE MT, (C1) THE FSGP FOR THE MFT, (C2) THE PGP FOR THE MFT 140

FIGURE 5.1: EXAMPLE OF A RULE USING THE LITERATURE AND PROPOSED

REPRESENTATIONS. .. 145

FIGURE 5.2: PROPOSED GENE EXPRESSION PROGRAMMING ALGORITHM WITH THE FEATURE

SELECTION APPROACH. ... 147

FIGURE 5.3: META-ALGORITHM OF SCHEDULING HEURISTICS. 149

Chapter 1: Introduction

 8

FIGURE 5.4: FRAMEWORK OF THE FOUR ALGORITHMIC EXPERIMENTS. 151

FIGURE 5.5: THE PERFORMANCE OF THE FOUR ALGORITHMS DURING THE TRAINING PHASE

FOR THE THREE OBJECTIVES. FIGURES (A1), (B1), (C1), (D1), (E1) ARE FOR THE TWT

OBJECTIVE. FIGURES (A2), (B2), (C2), (D2), (E2) ARE FOR THE MT OBJECTIVE.

FIGURES (A3), (B3), (C3), (D3), (E3) ARE FOR THE MFT OBJECTIVE. 159

FIGURE 5.6: TERMINALS DISTRIBUTION IN THE 20 BEST RULES FOR THE FOUR

ALGORITHMS. (A): FOR THE TWT OBJECTIVE, (B): FOR THE MT OBJECTIVE, (C): FOR

THE MFT OBJECTIVE .. 164

FIGURE 5.7: MATRIX PLOT OF THE FEATURE SELECTION RESULTS USING THE PGP AND

PGEP ALGORITHMS UNDER THE TWT, MT, AND MFT OBJECTIVES. 169

FIGURE 6.1: THE PROPOSED SURROGATE ASSISTED GEP APPROACH 174

FIGURE 6.2: THE FITNESS ASSESSMENT METHOD USED IN THE LITERATURE APPROACHES

COMPARED WITH THE PROPOSED APPROACH .. 175

FIGURE 6.3: THE EFFECT OF THE NUMBER OF TRAINING RULES ON THE ACCURACY FOR THE

MEAN TARDINESS OBJECTIVE .. 179

FIGURE 6.4: THE EFFECT OF THE NUMBER OF TRAINING RULES ON THE ACCURACY FOR THE

MEAN FLOW TIME OBJECTIVE .. 180

FIGURE 6.5: THE EFFECT OF THE NUMBER OF REFERENCE POINTS ON THE ACCURACY FOR

THE MEAN TARDINESS OBJECTIVE.. 182

FIGURE 6.6: THE EFFECT OF THE NUMBER OF REFERENCE POINTS ON THE ACCURACY FOR

THE MEAN FLOW TIME OBJECTIVE ... 183

FIGURE 6.7: COMPUTATIONAL TIMES OF THE SIX SURROGATE MODELS UNDER THE MEAN

TARDINESS OBJECTIVE .. 184

FIGURE 6.8: COMPUTATIONAL TIMES OF THE SIX SURROGATE MODELS UNDER THE MEAN

FLOW TIME OBJECTIVE .. 185

FIGURE 6.9: RANK CORRELATION COEFFICIENTS OF THE SIX SURROGATE MODELS UNDER

THE MEAN TARDINESS OBJECTIVE.. 187

FIGURE 6.10: RANK CORRELATION COEFFICIENTS OF THE SIX SURROGATE MODELS UNDER

THE MEAN FLOW TIME OBJECTIVE ... 188

Chapter 1: Introduction

 9

LIST OF TABLES

TABLE 2.1 OBJECTIVE FUNCTIONS FOR JOB SHOP SCHEDULING PROBLEMS...................... 41

TABLE 3.1 GP TERMINAL AND FUNCTION SETS .. 89

TABLE 3.2 PERFORMANCE OF THE FIVE GP ALGORITHMS IN TERMS OF OPTIMIZING THE

MAKESPAN OBJECTIVE ON THE TEN JSSP INSTANCES ... 97

TABLE 3.3 PERFORMANCE OF THE FIVE GP ALGORITHMS IN TERMS OF OPTIMIZING THE

MEAN TARDINESS OBJECTIVE ON THE TEN JSSP INSTANCES 102

TABLE 4.1 GP TERMINAL AND FUNCTION SETS .. 109

TABLE 4.2 AN EXAMPLE FOR ESTIMATING TERMINALS' WEIGHTS USING FIVE ATTRIBUTE

VECTORS .. 112

TABLE 4.3 BENCHMARK DISPATCHING RULES ... 116

TABLE 4.4 PARAMETER SETTINGS OF THE TRAINING AND TESTING SCENARIOS 119

TABLE 4.5 MEAN AND STANDARD DEVIATION OF THE PERFORMANCE MEASURES IN THE

TRAINING PHASE .. 123

TABLE 4.6 MEAN AND STANDARD DEVIATION OF THE CONSIDERED METHODS IN THE

TESTING PHASE. (A): THE TWT OBJECTIVE, (B): THE MT OBJECTIVE, AND (C): THE

MFT OBJECTIVE. .. 129

TABLE 5.1 PARAMETER SETTINGS OF THE TRAINING AND TESTING SCENARIOS 149

TABLE 5.2 PARAMETER SETTINGS FOR THE FOUR ALGORITHMS 152

TABLE 5.3 PERFORMANCE MEASURES IN THE TRAINING PHASE 154

TABLE 5.4 MEAN AND STANDARD DEVIATION OF THE CONSIDERED METHODS IN THE

TESTING PHASE. (A): THE TWT OBJECTIVE, (B): THE MT OBJECTIVE, AND (C): THE

MFT OBJECTIVE. .. 160

TABLE 6.1 JOB SHOP SETTINGS FOR THE SIX SURROGATE MODELS 176

TABLE 6.2 GEP TERMINAL AND FUNCTION SETS ... 177

TABLE 6.3 OBTAINED RESULTS FOR THE MT OBJECTIVE REGARDING COMPUTATIONAL

TIME .. 185

TABLE 6.4 OBTAINED RESULTS FOR THE MFT OBJECTIVE REGARDING COMPUTATIONAL

TIME .. 186

Chapter 1: Introduction

 10

TABLE 6.5 OBTAINED RESULTS REGARDING PREDICTION ACCURACY FOR THE MEAN

TARDINESS OBJECTIVE .. 187

TABLE 6.6 OBTAINED RESULTS REGARDING PREDICTION ACCURACY FOR THE MEAN FLOW

TIME OBJECTIVE ... 188

Chapter 1: Introduction

 11

ABSTRACT

This dissertation focuses on the automatic generation of high-quality dispatching

rules in compact structures and low computational requirements using the Genetic

Programming (GP) to solve static and dynamic Job Shop Scheduling Problems (JSSPs).

Precisely, the main objective is to reduce the computational burden required by the GP

algorithm to evolve high-quality dispatching rules for both static and dynamic JSSPs.

Five approaches are proposed in this thesis to address the limitations of the conventional

research. Two of these approaches are developed to generate scheduling rules for the

static JSSPs, whereas the other three approaches deal with the dynamic JSSPs.

Regarding the static JSSPs, two main limitations have been reported in the

literature. The first limitation is premature convergence caused by low diversity among

GP individuals that leads to low solution quality, whereas the second one is the high

computational costs of GP approaches due to significant growth in the size of generated

rules without a tangible return in fitness values, known as the bloat effect.

Consequently, a distance metric is introduced to measure the genotypic similarity

between the GP individuals and the best-evolved rule in this thesis. The proposed metric

overcomes the limitations of the current metrics by considering the interaction effect

between nodes and their parents, does not require additional simulation runs, and gives

higher priority to the nodes closest to the root node. The aim is to represent population

diversity in a numerical format that can be optimized and thus improve the exploration

ability of the GP algorithm by avoiding early convergence. Therefore, a multi-objective

GP framework is proposed by integrating Non-dominated Sorting Genetic Algorithm II

(NSGA-II) with the GP algorithm to optimize three objectives simultaneously. The

three considered objectives are diversity values estimated using the proposed metric,

rule length, and solution quality. To assess the effectiveness of the proposed distance

metric and multi-objective GP framework, two algorithms are developed and compared

with three algorithms from the literature across ten static JSSP instances using

makespan and mean tardiness as objective functions. Experimental results show the

effectiveness of the proposed methods in generating a diverse population of high-quality

rules with smaller sizes in a shorter computational budget compared with the

conventional methods.

Regarding the dynamic JSSPs, two major limitations have been reported in the

literature. The first limitation is similar to the static problems which is the high

Chapter 1: Introduction

 12

computational time of the GP algorithm due to the bloat effect. In contrast to the static

problems where benchmark instances are used for fitness assessment, a Discrete Event

Simulation (DES) model is the most common approach for the dynamic JSSPs.

Therefore, the second limitation is the high fitness evaluation costs to assess the fitness

values of evolved rules using a DES model. In order to address the first limitation, this

thesis proposes a feature selection approach to reduce the size of evolved rules. The

proposed approach uses a probabilistic selection scheme to estimate the weight of given

terminals instead of the binary discrimination usually used in conventional methods. In

addition, the proposed approach does not require pilot GP runs as the conventional

methods. Because it uses the evolutionary information collected from previous

generations in estimating the weights of the terminals in the next generation in an online

manner. The proposed approach (PGP) is compared with three GP algorithms and 30

manually-made rules from the literature under different job shop configurations and

scheduling objectives, including total weighted tardiness, mean tardiness, and mean

flow time. Experimentally obtained results demonstrate that the proposed approach

outperforms the other conventional methods in generating more compact rules in a

shorter computational time.

Gene Expression Programming (GEP) algorithm is a modified version of the tree-

based GP algorithm to evolve dispatching rules using a fixed-linear representation that

is less susceptible to the bloat effect. Therefore, this thesis modifies the feature selection

approach proposed for the GP algorithm to be applicable to the GEP algorithm for the

dynamic JSSPs. The aim is to evaluate the effect of imposing an additional constraint on

the size of evolved rules in the case of the contained GP representation. The proposed

approach adds two main points to the existing literature. First, it is the first attempt to

control the bloat effect for constrained GP representations in the literature on the

automated design of scheduling rules. Second, it increases the likelihood of using the

proposed approach in more complex manufacturing environments due to the significant

reduction in training time. The proposed algorithm is compared with three algorithms

from the literature using three objective functions namely total weighted tardiness, mean

tardiness, and mean flow time. Experimental results confirm the ability of the proposed

algorithm in evolving rules with smaller sizes in a shorter computational time without

sacrificing performance. The weight of terminals across generations of the proposed

algorithm is compared with the weights obtained using the PGP algorithm. Results

Chapter 1: Introduction

 13

demonstrate the ability of the proposed feature selection approach to identify the same

set of critical terminals regardless of the evolutionary algorithm used.

Finally, a surrogate assisted GEP approach is introduced to reduce the time of

expensive fitness assessments of dispatching rules generated for dynamic JSSPs.

Reducing fitness assessment times significantly speeds up the most computationally

demanding step of the GP algorithm. The proposed approach extends the conventional

methods through three main contributions. First, it is the first attempt to use machine

learning to abstract a DES model of DJSSPs. Second, it reduces fitness evaluation time

without significantly affecting prediction accuracy. Third, it is independent of the

structure of evolved rules, and thus it can be adopted with other hyper-heuristic

approaches. Three surrogate models are developed by integrating the proposed approach

with three simplified models from the literature. The proposed surrogates are compared

with their counterparts from the literature using mean tardiness and mean flow time

objective functions. Experimental results prove that the proposed surrogates have

significantly lower computational costs with a neglectable loss in prediction accuracy

across different training and testing scenarios.

It is verified that the proposed approaches significantly reduced the computational

time of the GP algorithm to automatically evolve high-quality scheduling rules in

compact structures compared to conventional methods. In addition, the performance of

the proposed approaches is evaluated under different job shop environments including

static and dynamic instances using a combination of the most common scheduling

objectives such as makespan, mean flow time, mean tardiness, and total weighted

tardiness. The behaviour of the best-evolved rules for each objective function is also

analysed and several useful insights are gained. Finally, experimental results

demonstrate that the proposed approaches enhance the performance of various stages of

the GP algorithm starting from representation, then selection, until fitness evaluations.

Chapter 1: Introduction

 14

Chapter 1. INTRODUCTION

This chapter begins by providing a background on job shop scheduling problems

from an academic and practical perspective. Then, the current solution approaches in the

literature, and their capabilities and limitations for solving job shop scheduling

problems are presented. Moreover, broad overviews are given in the field of the

automated design of scheduling rules using hyper-heuristic techniques with a major

focus on genetic programming methods. Literature limitations, research objectives, and

major contributions of this thesis are also shown in subsequent sections. Finally, the

organization of this thesis is illustrated.

1.1 Background

1.1.1 Job Shop Scheduling Problem

Industrial facilities strive to cope with unexpected market fluctuations, meet

customers' requirements, and utilize available resources in the best possible way. Most

manufacturers today have started with so-called “job shops” which are a type of small

manufacturing systems where customized products are made with a relatively small

production sequence (Pinedo, 2012). Typically, job shops make a variety of custom or

semi-custom parts for other businesses in small to medium-sized orders, for instance,

the automotive industry, semiconductor manufacturing facilities, and many others.

Although job shops increase the production flexibility in making a large variety of

customized products to meet customer demands, it is very challenging to efficiently

schedule the production processes due to high product variability and non-standard

production flow (Jones et al., 1998). Resulting in a decrease in the levels of utilization

Chapter 1: Introduction

 15

of production resources, an increase in the lead time of jobs, and an increase in

production costs. Therefore, solving production scheduling problems can help decision-

makers reduce inventory costs, increase throughput, and improve resource usage (Jones

et al., 1998). Over the past 60 years, the Job Shop Scheduling Problem (JSSP) has been

studied extensively in academia and industry because of its broad real-world

applications to manufacturing and cloud computing (Nguyen et al., 2013a). From the

academic point of view, most JSSPs are NP-hard problems. Therefore, the

computational time required to solve JSSPs increases exponentially with the increase in

the size of the problem (Pinedo, 2012). On the other hand, from a practical perspective,

there are many manufacturing facilities around the world that share the same

characteristics of the job shop models including semiconductor manufacturers and

automobile assembly lines (Jones et al., 1998). Therefore, developing effective models

for JSSPs may not only increase throughput and decrease costs in job shops, but also in

many related industries resulting in a significant impact on the global economy.

As shown in Figure 1.1, the job shop consists of a number of jobs (tasks) that need

to be processed by a limited number of machines (resources). Each job has a specific set

of operations that must be processed according to a set of technical and precedence

constraints (arrows with the same colour as their job). The objective of the JSSP is to

achieve a schedule of jobs that optimizes some predefined objectives related to

productivity (reducing completion time) or the level of customer satisfaction (meeting

due dates) (Pinedo, 2012). JSSPs can be categorized into two main classes of problems

depending on whether the operational information is available beforehand. They are

Static JSSPs (SJSSPs) and Dynamic JSSPs (DJSSPs). In static job shop scheduling, all

jobs are ready to process at time zero. Also, all the information related to all jobs and

machines on the shop floor is available when making a schedule. On the other hand, in

dynamic job shop scheduling, jobs constantly arrive following deterministic or

stochastic arrival patterns, and no operational information is known before the arrival of

the job (Jakobović and Budin, 2006). Although it is inevitable to avoid unexpected

events during the production process, static scheduling is more widely covered in the

literature as compared with dynamic scheduling. Stochastic nature is always inherent in

real job shops, for example, the processing time of operations varies due to different

skill levels among operators, urgent jobs can arrive at any moment, and machines may

suddenly breakdown (Ouelhadj and Petrovic, 2009).

Chapter 1: Introduction

 16

Figure 1.1: Example of a job shop scheduling problem

1.1.2 Solution Approaches

Due to the availability of knowledge in SJSSPs, exact optimization approaches have

been proposed to achieve optimal solutions such as integer linear programming (Simon

and Takefuji, 1988), branch-and-bound (Lawler and Wood, 1966), Lagrangian

relaxation (Kaskavelis and Caramanis, 1998), and dynamic programming (Gromicho et

al., 2012). However, the use of exact methods has been limited to solving small SJSSP

instances due to the exponential increase in computational cost with increasing problem

size (NP-hard problem). Therefore, approximate methods known as heuristics have been

developed to get satisfactory solutions in an acceptable computational budget.

Approximate methods can be classified into improvement and construction heuristics.

Although improvement heuristics such as genetic algorithms (Park et al., 2003),

simulated annealing (Akram et al., 2016), and ant colony algorithms (Flórez et al.,

2013) do not guarantee optimality, they are able to find quasi-optimal solutions for

static JSSPs within a reasonable computational time. In addition, improvement

heuristics are not suitable for handling dynamic events because it would be

computationally expensive to frequently modify the obtained schedule (running the

heuristic again with the new information) to any change that occurs in the system. In

contrast, construction heuristics such as dispatching rules are one of the most common

optimization approaches used to solve DJSSPs (Ouelhadj and Petrovic, 2009).

Moreover, Aytug et al. categorized existing strategies for solving DJSSPs into three

classes: completely reactive approaches, robust pro-active approaches, and predictive–

reactive approaches (Aytug et al., 2005). The authors reported that dispatching rules are

the most popular completely reactive approach used in many real-life production

systems.

Chapter 1: Introduction

 17

Dispatching rules are mathematical functions of attributes of the job shop and

machines used to prioritize all jobs awaiting processing on a given machine. In other

words, a dispatching rule determines which job must be processed next when a machine

becomes idle. The main reasons behind the popularity of dispatching rules are their

flexibility to incorporate domain knowledge, ease of implementation, scalability to

solve large problem instances, low computational cost, and prompt response to dynamic

events (Nguyen et al., 2017a). Moreover, dispatching rules have been integrated with

other optimization techniques in order to generate effective initial solutions. Many

efficient manually designed dispatching rules covering a wide variety of job shop

environments and objectives have been proposed in the literature. More details are

available in several surveys (Baker, 1984; Blackstone et al., 1982; Dominic et al.,

2004). In addition, there are several comparative studies in the literature to analyse the

performance of traditional scheduling rules under different manufacturing conditions,

for example (Mizrak and Bayhan, 2006) and (Sels et al., 2012a). Three main

conclusions were drawn from these studies as follows.

1) Scheduling rules are problem-specific solution methods developed to deal with

specific job shop settings under a certain objective function. Therefore, they

perform poorly on other system configurations or performance measures.

2) Dispatching rules which combine multiple attributes together (composite rules)

have better performance compared with simple rules with only one attribute.

3) Manual design of high-quality rules that usually include a large number of

attributes in complex formulas is a challenging task. Because it requires a

significant amount of time and code effort, great domain knowledge, and

extensive empirical testing.

1.1.3 Automated Design of Dispatching Rules Using Genetic Programming

In order to meet the limitations of manually designed dispatching rules, several

researchers have suggested taking advantage of advances in computational power and

machine learning methods to automate the process of generating heuristics for hard

optimization problems known as "hyper-heuristics". In other words, hyper-heuristics are

high-level search methodologies that explore the search space of low-level heuristics

rather than the search space of solutions to the underlying problem (Drake et al., 2020).

The objectives to be achieved through this approach are as follows.

Chapter 1: Introduction

 18

1) Raise the level of generality by discovering the right heuristic for a particular

problem instead of solving a single problem instance directly.

2) Reduce the time and effort needed by experts to design efficient heuristics for

different problem instances (job shop settings).

3) Gain useful insights by exploring widely diverse, undiscovered high-quality

heuristics.

Burke et al. proposed a classification of hyper-heuristic approaches based on their

search mechanism including heuristic selection and heuristic generation methods

(Burke et al., 2013). A brief discussion of hyper-heuristic applications covering a wide

range of scheduling and combinatorial optimisation problems was also presented.

Heuristic selection methods seek to choose a set of low-level heuristics for different

problem instances. Low-level heuristics can be simple operators (neighbourhood moves

or basic local search operations), metaheuristics, or even hyper-heuristics. On the other

hand, the goal of heuristic generation methods is to develop new high-level heuristics

by making use of the components (features or operations used in existing heuristics) of

known heuristics. In addition, hyper-heuristics can be categorized into supervised and

unsupervised methods based on the machine learning technique used. Regarding the

automatic design of scheduling rules, Genetic Programming (GP) has been shown to be

a promising unsupervised heuristic generation approach that dominates other hyper-

heuristic methods (Branke et al., 2015).

GP is a type of evolutionary computation method (a subset of machine learning)

derived from the model of biological evolution and its core mechanisms. GP algorithm

has been used in many areas, such as discovering the functional relationship between

features (symbolic regression) (Amir Haeri et al., 2017), grouping data into specific

classes (classification) (Jabeen and Baig, 2010), software engineering (Afzal and

Torkar, 2011), and even aiding in the design of antennas and electrical circuits (Lohn et

al., 2005). Regarding the use of the GP algorithm for the automatic generation of

scheduling heuristics, (Miyashita, 2000) is expected to be the first study that proposed

the GP approach to evolve dispatching rules for a JSSP using a multi-agent model,

where each agent dispatches the operations on the resources under its control. Since

then, there has been a growing interest among researchers in using the GP algorithm for

evolving scheduling rules. Because GP does not depend on any assumptions and can be

easily extended to deal with various production scheduling problems (Branke et al.,

2016a).

Chapter 1: Introduction

 19

The GP framework for the automated design of scheduling rules consists of two

main modules, the GP reasoning module and the fitness evaluation module, as shown in

Figure 1.2. The GP reasoning module is responsible for generating a candidate

population of dispatching rules whose fitness values have to be estimated using the

fitness evaluation module. The GP algorithm generates dispatching rules using

predefined sets of terminals and functions, and a specific representation. The terminal

set includes relevant jobs, machines, and shop floor attributes (features). Typically,

most of these attributes (features) are derived from manually designed rules in the

literature based on the nature of the scheduling problem under investigation. Also, the

functions set consists of a set of arithmetic functions such as addition, subtraction,

multiplication, and division, as well as some logical operators such as minimum,

maximum, IF conditions, etc. In terms of the GP representation, an expression tree

structure is the standard representation used in many previous studies (Đurasević et al.,

2016; Hildebrandt et al., 2010a; Shady et al., 2020a). To ensure the validity of the

generated rules and they are syntactically correct, certain grammar has to be imposed.

Grammar defines how the individual components (functions and terminals) can be

grouped to yield valid mathematical functions (dispatching rules) (Branke et al., 2016a).

Figure 1.2: GP framework for the automated design of dispatching rules

Figure 1.3 shows a simple grammar for constructing priority functions using three

terminals (PT: Processing Time, DD: Due Date, and CT: Current Time) and three

arithmetic functions. Also, an example of a GP individual that can be generated using

this grammar is shown in Figure 1.3 in both expression tree and mathematical forms.

Chapter 1: Introduction

 20

Figure 1.3: Example of a simple grammar and a random GP individual

The fitness values of the GP rules are estimated in the performance evaluation

model that consists of two main components, training instances, and a meta-algorithm.

In the case of static scheduling problems, a set of static training instances obtained from

real-world situations is used for fitness evaluation. There is a wide range of benchmark

static job shop instances in the literature including OR-library (Beasley, 1990), and

randomly generated instances of varying levels of difficulty (instance size) (Storer et al.,

1992; Taillard, 1993; Yamada and Nakano, 1992). In contrast, a discrete event

simulation model is the most common simulation technique used to estimate the

solution quality of scheduling rules (Nguyen et al., 2014a). Moreover, a meta-algorithm

must be defined that specifies the job shop logic and constraints for a given scheduling

problem. It also specifies how a particular dispatching rule will be used to create a valid

schedule (Shady et al., 2020b). After all GP individuals are evaluated, the GP reasoning

mechanism selects the best individuals (parents) using some selection techniques such

as the roulette method (Holland, 1992), tournament selection (Blickle and Thiele, 1995),

etc. to form the mating pool.

Afterward, genetic operators are applied to generate a new population of dispatching

rules (offspring). The standard genetic operators used in the GP literature are subtree

crossover and mutation operators (Willis et al., 1997). The crossover operator combines

the genetic information of two parents to evolve a new offspring, whereas the mutation

operator introduces new random information in one parent to get a new rule. The

aforementioned steps are considered as one evolutionary iteration (generation). The

Chapter 1: Introduction

 21

population evolves over a predefined number of generations depending on the available

computational time. Finally, if the stopping criteria are satisfied, then the algorithm

terminates and the best rule is returned; otherwise, another evolutionary iteration begins

by following the same steps (Tay and Ho, 2008).

The GP algorithm offers several major advantages compared with other hyper-

heuristics such as decision trees, logistic regression, and artificial neural networks,

which can be mentioned as follows (Branke et al., 2016a; Nguyen et al., 2017a).

1) Variable-length encoding representation: The main difference between the

GP algorithm and other optimization algorithms, such as a genetic algorithm that

uses the same evolutionary strategies, is the representation of solutions. The

common representation used in the GP algorithm is the tree structure with a

variable depth, as opposed to the genetic algorithm that uses a fixed string of

numbers to represent a solution (J. R. Koza, 1994a). This flexible representation

is able to simultaneously explore the structure and corresponding parameters of

a heuristic, thereby covering a larger area of the heuristic search area (Nguyen et

al., 2017a). Another key benefit of the GP variable representation is that the best

scheduling rule (structure and contents) for a given scheduling problem is

usually not known in advance, and therefore it is not reasonable to impose a

fixed structure on all generated rules (Hildebrandt et al., 2010a).

2) Availability of multi-objective optimization techniques: Although the GP

algorithm has a different encoding scheme compared with other evolutionary

algorithms, most of the current multi-objective optimization techniques available

in the evolutionary computation literature can be easily integrated with the GP

approaches. For instance, Tay and Ho provided the first work that aimed to solve

flexible multi-objective DJSSP with respect to minimizing makespan, mean

tardiness, and mean flow time objectives (Tay and Ho, 2008). In this study, the

objective function is constructed by combining the objectives into a linear

weighted sum in which all the objectives have the same priority. Moreover,

Nguyen et al. combined the GP approach with NSGA-II and SPEA2 methods to

evolve scheduling rules for multi-objective DJSSP under a single simulation

scenario (Nguyen et al., 2015a). Finally, the authors of one study (Masood et al.,

2016) have integrated the NSGA-III algorithm, which is one of the latest and

well-known multi-objective optimization methods, with the GP algorithm for

Chapter 1: Introduction

 22

creating dispatching rules under static job shop settings while optimizing five

performance measures.

3) The obtained results can be analysed and partially interpreted: Typically,

GP individuals are represented using the expression tress structure composed of

leaf nodes (features) and internal nodes (arithmetic functions and logic

operators). The tree structure is one of the most intuitive ways to represent

mathematical functions. Therefore, there is no need to use sophisticated

decoding methods to convert GP individuals into a human-readable format

(Branke et al., 2016a). The evolved rules can also be directly provided to a

discrete event simulation model of a given scheduling problem for fitness

assessment without any pre-processing.

4) An increasing number of GP articles for production scheduling problems

and promising results have been reported in the existing literature: Nguyen

et al. provided a comprehensive review of existing studies from 2000 to 2017 on

using GP for automated design of production scheduling rules (Nguyen et al.,

2017a). They reported that although there were only four papers between 2000

and 2004 on this topic, there has been significant growth in the number of

studies since 2010, reaching 69 papers between 2010 and 2017. Recently, a book

has been published reporting several successful applications of GP approaches

in developing high-quality dispatching rules that outperform common human-

made rules across a wide variety of job shop scheduling environments and

objectives (F. Zhang et al., 2021d).

1.2 Limitations of Existing Studies

Although the dispatching rules evolved using the genetic programming algorithm

have obtained better performance compared with manually made rules in the literature,

the use of the GP to automatically generate scheduling rules is relatively new.

Therefore, there are many limitations and research opportunities in existing GP

approaches. As shown in Figure 1.4, the current limitations can be categorized into two

key classes including limitations of using the GP approach in static scheduling

problems, and dynamic scheduling problems. Although the two classes share the same

problem with the high computational costs of GP, they differ with respect to population

diversity and the time required for fitness assessments.

Chapter 1: Introduction

 23

Figure 1.4: Challenges of using the GP approach for static and dynamic JSSPs,

current solution approaches (bullets), and their limitations (numbering)

1) The limitations of automatically generating dispatching rules in SJSSPs using the

GP approaches are as follows.

a) The first challenge is the premature convergence (low solution quality) caused

by the low diversity among GP individuals. Because all operational information

is available in static scheduling problems and no unexpected events occur during

the scheduling horizon, thereby the scheduling problem does not change during

the evolution generations. Consequently, a GP individual that gets a high fitness

value in one generation will achieve the same high performance in the upcoming

generations. Thus, this rule has a higher probability of survival in the following

generations and other individuals will copy its genetic information. Resulting in

a well-known phenomenon in the evolutionary computation literature called

“premature convergence” (Pandey et al., 2014). Premature convergence is

defined as the condition in which the GP individuals converge very early to a

suboptimal region due to a loss of diversity within the population leading to low-

quality solutions. In order to increase diversity between individuals, several

distance metrics have been developed. The type of metrics that measures

similarity (distance) between individuals based on their syntactic structure is

called “genotypic” metrics, whereas “phenotypic” metrics assess similarity based

on the actual performance of compared rules (Burke et al., 2002).

Chapter 1: Introduction

 24

There are two limitations in the existing genotypic metrics as follows.

• They only consider the position of the nodes in GP individuals while

neglecting the interaction effect between a specific node and its parents.

• Most distance metrics assume that all nodes have the same weight, which

is not the case in scheduling rules where nodes closer to the root have a

greater influence than nodes farther away.

 Regarding phenotypic metrics,

• They are computationally expensive compared with genotypic metrics

because they require fitness evaluations of individuals in measuring the

distance between them.

b) The second challenge is the high computational costs of GP approaches due to

the unjustified, significant growth in the size of generated rules across

generations without a tangible return in fitness values. This is a common

behaviour commonly observed in GP algorithms and other variable-length

genomes methods and is known as the "bloat effect" (Luke and Panait, 2006).

The bloating effect negatively affects GP searching ability in three ways.

• It shows down the search process by wasting computing resources in

evaluating large individuals (complex mathematical functions) with

many redundant elements.

• It reduces the probability that genetic operators will alter important parts

of evolved rules.

• It reduces the possibility of evolving rules being interpreted by decision-

makers, and thus reduces the chances of their use in industry (Mori et al.,

2008).

Therefore, two main methods are commonly used in the literature to impair

the bloating effect in the GP approaches. The first method is to specify the

maximum allowable size of evolved rules using the maximum tree depth or the

maximum number of nodes at each rule. The main drawback of this approach is

the lack of theoretical background (trial and error is the only technique

available) on how to determine the maximum size of evolved rules because the

size of the best base is not known in advance (Nguyen et al., 2017a). The second

method is to consider the size of evolved rules as an objective that can be

optimized using multi-objective optimization approaches. Generally, this

approach indirectly optimizes the size of the rules, that is, if there are two rules

Chapter 1: Introduction

 25

with the same fitness values in the selection stage, then the GP algorithm selects

the rule with a smaller size (tiebreaker) (Burks and Punch, 2015). The main

limitation of this approach is that in the case where the GP population is very

diverse (large range of fitness values), it will have no or minimal effect in

reducing the size of evolving bases.

2) The limitations of automatically generating dispatching rules in DJSSPs using the

GP approaches are as follows.

a) The first challenge is similar to that in the static scheduling problems which is

the high computational time of the GP approaches due to the bloating effect

caused by relatively different causes. In contrast to the case in SJSSPs, the GP

population in DJSSPs is highly diverse due to the influence of dynamic events.

Therefore, the fitness value of specific rule changes from one generation to the

next due to the use of a new random seed in each generation, which changes the

configuration of the job shop under study (processing times, due dates, job

arrivals, etc.) (Hildebrandt et al., 2010a). This reduces the benefit that can be

obtained from the use of the bloating control methods used in the static methods,

although the maximum depth of the tree is frequently used (Branke et al.,

2016a). Moreover, due to the large variability among evolved rules with

different tree structures and contents, it is difficult to distinguish between

significant and irrelevant terminals. Therefore, two approaches have been

proposed to reduce the size of evolved rules which are feature selection

methods, and constrained GP representations. Although the existing feature

selection methods have been successfully reduced the size of GP rules in several

studies without compromising the quality of generated rules, they suffer from

two major drawbacks (Mei et al., 2016, 2017a; F. Zhang et al., 2021a).

• Most of the current methods are offline feature selection methods which

means they require multiple expensive GP runs (pre-processing) to

determine the important terminals to be used in subsequent GP runs (F.

Zhang et al., 2021a). Therefore, they have huge overhead computational

costs. In addition, the use of an attribute vector to represent the

importance of each terminal on its corresponding rule is a promising

approach to reducing the size of the GP rules (Nguyen et al., 2018a). Its

main limitation is that attribute vectors do not provide accurate

information about their priority functions because they do not consider

Chapter 1: Introduction

 26

situations in which a particular attribute might not be present in the

priority function (Shady et al., 2021a).

• The existing feature selection methods use a binary discrimination

method, i.e., inclusion or exclusion of a particular feature from the

terminal set, which ignores the relative importance of the respective

terminals at different stages of the GP run (Nguyen et al., 2018a).

Regarding the use of constrained GP representations to control bloating

effect, the Gene Expression Programming (GEP) algorithm introduced in

(Ferreira, 2001) has been used as an alternative to the GP algorithm when the

size of evolved rules is significantly important. GEP algorithm uses fixed-length

linear strings (chromosomes) to represent expression trees of various shapes and

sizes, thereby the bloating effect is not as pronounced as in the GP algorithm.

However, the rules evolved using the GEP approach might contain irrelevant

terminals because there is no direct way to eliminate their occurrence. To the

best of our knowledge, there is no feature selection approach proposed in the

literature for the GEP representation.

b) The second challenge in the automatic generation of scheduling rules in DJSSPs

is the high fitness evaluation time that adds to the overall computational costs

of the GP algorithm. Discrete Event Simulation (DES) models of the dynamic

job shops are usually developed to introduce stochastic variables such as job

arrivals, due dates, processing times, etc. in an easier and more flexible way as

compared with analytical methods. However, DES models used in the case of

DJSSPs have much greater computational needs in contrast to static instances

used in SJSSPs. Therefore, computationally cheaper fitness evaluation models

known as “surrogates” have been introduced to reduce the fitness evaluation

time of DES models. Two surrogate models have been proposed to overcome

this challenge in the field of automated design of dispatching rules for DJSSPs

using GP. The literature surrogate models are:

• Phenotypic characterization model (Hildebrandt and Branke, 2015a).

• Simplified models (Nguyen et al., 2017d).

Regarding the phenotypic characterization model, the surrogate model is

based on a decision vector that estimates the fitness of a given rule by using the

same fitness value of the most similar rules generated in the previous generation.

One drawback is that the dimensions of the decision vectors must be large

Chapter 1: Introduction

 27

enough to adequately distinguish between evolving rules. Another limitation of

this surrogate model is that the prediction accuracy is very low, as reported in

(Nguyen et al., 2017d). In contrast, the simplified surrogate models do not use a

decision vector or any performance-related information from previous

generations. The main idea of these models in reducing computational time is to

use smaller versions of the actual job shop understudy, i.e., a smaller number of

jobs and machines. Although the simplified models achieved high prediction

accuracy with a significant reduction in computational costs, they do not use any

information collected during simulation evaluation.

1.3 Research Objectives

The overall objective of this thesis: is to automatically generate high-quality

dispatching rules in concise structures with low computational costs for the static and

dynamic job shop scheduling problems by enhancing the performance of the GP

algorithm. Although dispatching rules are widely used in real-world applications, it has

been noted that the main limitation on the widespread use of GP approaches to

automatically evolve rules is the high computational burden, which always takes hours

or even days of training time as well as the complexity in understanding the behaviour

of evolved rules. The size of GP rules is not only one of the main reasons for the high

computational time of GP approaches, but also has a direct impact on interpretability

because complex (large) rules are more challenging to interpret by decision-makers than

simple (short) rules. Thus, these rules are less likely to be adopted in the industry. It is

noteworthy that all GP approaches proposed in this thesis were developed and evaluated

in a specific problem domain of the GP algorithm, which is the automatic generation of

scheduling rules, and thus other GP applications are out of the scope of this work.

As shown in the previous section, the performance of the GP algorithm in

generating high-quality dispatching rules relies heavily on the problem under

investigation. In other words, the GP limitations in the field of automatic generation of

scheduling rules are different in the case of SJSSPs than in the case of DJSSPs.

Therefore, the overall research objective can be divided into five sub-objectives. In

addition, these objectives are categorized into two major groups in the same manner as

used in the literature limitations section, as shown in Figure 1.5:

1. Objectives related to the automatic generation of dispatching rules in SJSSPs

using the GP approach.

Chapter 1: Introduction

 28

2. Objectives related to the automatic generation of dispatching rules in DJSSPs

using the GP approach.

Figure 1.5: Research objectives that are addressed in this thesis with the proposed

solution approach for each objective.

Thus, the details of the objectives addressed in this thesis are presented as follows.

1) Objectives related to the automatic generation of dispatching rules in SJSSPs using

the GP approach:

a) The first objective is to increase diversity among GP rules to overcome the GP

premature conversion, and thus increase the quality of evolved rules. This

objective consists of two main challenges. The first challenge is how to measure

the similarity of GP individuals and represent them in numerical form. In other

words, a distance metric should be developed that captures the main

characteristics of generated rules and brings out the similarities between them in

an easy-to-optimize format. Second, the proposed distance metric needs to be

computationally efficient so as not to overburden the GP algorithm. Therefore,

this thesis develops a new distance metric to estimate the similarity between the

evolved rules considering these two challenges. The proposed distance metric

relies on the genotypic similarity between GP rules and the best rule evolved so

far, thereby it has lower computational costs compared with literature

phenotypic distance metrics. Also, it addresses the limitations in the existing

genotypic metrics by considering the interaction effect between nodes and their

parents, as well as giving a higher weight to nodes near the root than to more

Chapter 1: Introduction

 29

distant nodes. The distance metric estimates similarity between two individuals

with a numerical value between 0 and 1, where "0" indicates that the two rules

are completely different and "1" indicates they are identical. Therefore, in order

to increase population diversity, the similarity values of GP individuals have to

be maximized, which is addressed in the following objective.

b) The second objective is to reduce the computational time of the GP algorithm

by reducing the size of evolved rules. Controlling the bloating effect will also

increase the understandability of evolved rules, which increases the likelihood

that the best-generated rules will be used in real-world scheduling problems.

There is a major challenge in restricting the size of generated rules without

negatively affecting their performance. Specifically, when the size of evolved

rules alone is considered as an objective, then smaller rules will be generated

(selected through generations) even if they have poor performance. In contrast,

if the solution quality alone is considered as an objective, then high-quality rules

will be generated without any limitations regarding their size. Therefore, a

multi-objective GP framework is proposed for SJSSPs to simultaneously

optimize diversity value (using the proposed distance metric), solution quality,

and size of generated rule. The idea behind considering the three objectives

simultaneously with the same weight is due to the conflicting nature between the

solution quality and rule size, and between diversity value and rule size (small

rules have a smaller diversity range compared with large rules). Consequently,

rules with higher diversity values, smaller sizes, and higher performance have a

higher probability of surviving across generations. It is worth noting to consider

diversity value and solution quality at the same time when selecting rules helps

in balancing the exploration and exploitation ability of the GP algorithm (better

search space exploration).

2) Objectives related to the automatic generation of dispatching rules in DJSSPs using

the GP approach:

a) The first objective is to reduce the computational time needed for the tree-

based GP approach. Although the tree representation helps the GP algorithm to

obtain dispatching rules of different sizes and contents, it is the most susceptible

representation to the bloating effect. As mentioned in the literature limitations

section 1.2, maximum tree depth is the most widely used method to control

bloating in the existing studies although it cannot guarantee the quality of

evolved rules. In contrast, feature selection using attribute vectors proposed in

Chapter 1: Introduction

 30

(Nguyen et al., 2018a) and constrained GP representation used in (Ozturk et al.,

2019) achieved promising results regarding the performance and size of evolved

rules. Consequently, this thesis aims to enhance the performance of these two

promising methods. Regarding feature selection, the limitations in the existing

feature selection methods stated previously are addressed in the proposed

approach as follows.

• This thesis develops an online feature selection method for the GP

algorithm that uses the evolutionary information generated in previous

generations to select important terminals in an adaptive manner.

• The proposed feature selection method does not require any GP runs, and

uses a probabilistic discrimination scheme (probability of selecting a

specific terminal) to choose terminals instead of the binary method used

in the literature.

Regarding the constrained GP representations, this challenge is considered in

more detail in the following research objective.

b) The second objective is to reduce the computational time of the GP algorithm

in the case of using a GP constrained representation. In contrast to the first

objective, where the tree-based (variable-length representation) GP approach is

used, the fixed-linear representation of the GEP algorithm is used. Changing the

encoding scheme of individuals not only affects the tendency of the GP

individuals to increase in size, but also determines the set of genetic operators

that can be used based on the chosen representation (Ferreira, 2001). Therefore,

the feature selection approach that gets good results in the case of the tree-based

GP algorithm does not guarantee that similar performance will be achieved in

the case of the GEP algorithm; i.e., better, similar, or worse results might be

obtained. Therefore, this objective can be broken down into the following

research questions.

• How to propose a feature selection method applicable to the GEP

representation? To the best of our knowledge, there is no feature

selection method in the literature for the GEP algorithm.

• Is it effective to integrate feature section methods with a fixed-length GP

representation such as the GEP algorithm? and if yes, would they

negatively affect the GEP exploration ability as it is already restricted?

Chapter 1: Introduction

 31

In order to answer these questions, this thesis modifies the feature selection

approach proposed for the GP algorithm to be applicable to the GEP algorithm.

Afterward, the performance of integrating the modified feature selection

approach with the GEP algorithm is assessed across different DJSSP instances

and objective functions.

c) The third objective is to reduce the fitness evaluation time of generated

individuals. The main reason behind the high computational costs is the use of

DES models to imitate the behaviour of the dynamic job shop understudy.

Therefore, this objective is concerned with overcoming the following

challenges.

• Propose a surrogate model to reduce the simulation length (runtime) of

DES models used in fitness assessment without miss-ranking the

performance of evolved rules.

• The proposed model has to be independent of the structure of the GP

evolved rules in order to be applicable to other GP approaches.

The simplified models proposed in (Nguyen et al., 2017d) are the latest

models used to reduce fitness assessment in the field of automated design of

dispatching rules while maintaining high prediction accuracy. Therefore, this

thesis proposes an approach to reduce the computational costs of the simplified

models without sacrificing accuracy. Specifically, the proposed approach aims

to reduce the simulation length of the simplified models by collecting fitness-

related information during evaluating the performance of a small set of GP rules

(training rules). Then, a machine learning model is trained using the collected

information to develop a simple function (surrogate model) that will replace the

excluded simulation interval. Finally, the remaining rules are evaluated using the

simplified model with a shortened simulation length and the developed surrogate

model.

1.4 Major Contributions

In order to address the five aforementioned sub-objectives in the previous section,

this thesis offers five major contributions to the current literature on the automatic

generation of scheduling rules using the GP algorithm for JSSPs as follows.

1) In order to increase the diversity of generated rules that positively affect the

quality of their solutions in the case of SJSSPs, this thesis introduces a distance

Chapter 1: Introduction

 32

metric to measure the similarity between GP individuals based on their

genotypic characterization. The proposed metric differs from the similarity

metrics in the literature as follows:

a) It considers not only the positions of the nodes but also the interaction

effect between the nodes and their parents in estimating similarity values.

b) It is a genotypic-based similarity measure, thereby there is no need to

estimate fitness values for evolved rules using expensive simulation runs

as for phenotypic metrics.

c) It prioritizes the weight of the nodes closest to the root node compared

with those farthest to match the nature of the rules used in JSSPs.

2) For the sake of creating high-quality dispatching rules for SJSSPs in a smaller

computational budget and concise structures, this thesis proposes a multi-

objective framework by integrating NSGA-II with the GP algorithm to

simultaneously optimize diversity value, rule length, and solution quality in

static job shop settings. The proposed approach helps the GP algorithm avoid

premature convergence and reduce the size of evolved rules while maintaining

high fitness values. In contrast to the existing methods, the proposed approach

has the following advantages.

a) The framework considers the size of GP rules as a direct objective to be

optimized rather than using it as a “tiebreaker” when two rules have the

same fitness values. This reduces the size of generated rules which has a

significant impact on reducing computational time and increasing the

interpretability of the best rules.

b) The framework does not depend on the system settings of the job shop

understudy or the performance measures to be improved.

3) In order to increase the interpretability of evolved rules and speed up the process

of the automatic generation of scheduling rules, this thesis proposes a feature

selection approach to reduce the size of GP rules and reduce GP computational

costs by modifying the attribute vector proposed in (Nguyen et al., 2018a). The

proposed feature selection approach extends the GP literature by offering the

following advantages.

a) The attribute vector is strictly linked to its corresponding rule which

helps in gathering useful information from complex tree structures. In

addition, any change that might occur in the attribute vector of a specific

rule will have a direct impact on the performance of the rule.

Chapter 1: Introduction

 33

b) The attribute vector uses an adaptive selection scheme to estimate the

probability of selecting a particular terminal instead of the binary

discrimination usually used in literature methods.

c) The feature selection approach uses the evolutionary information

collected from previous generations using attribute vectors of rules to

estimate the weights of the terminals in the next generation.

4) In order to check the applicability of the proposed approach when using fixed

representation to encode dispatching rules, this thesis modifies the feature

selection approach proposed for the GP algorithm to be applicable to the GEP

algorithm where evolved rules are represented using linear chromosomes. The

integration of the proposed feature selection approach with the GEP algorithm

adds the following points to the existing literature.

a) The use of feature selection to control bloating in constrained GP

representations has not yet been reported in the literature on the

automated design of scheduling rules.

b) It increases the likelihood of using the proposed approach in more

complex manufacturing environments due to the significant reduction in

training time resulting from both restricted search space and the ability to

select important features only.

5) In order to speed up the automatic generation of dispatching rules, this thesis

proposes three surrogate models to reduce the time needed for fitness assessment

which is the most computationally demanding step. The surrogate models aim to

replace part of the simulation length of an expensive DES model with a simple

mathematical function. This significantly reduces computational times due to the

large number of generated rules that must be evaluated. Consequently, the

proposed surrogate models achieve the following advantages.

a) They are built on the simplified models that get higher prediction

accuracy compared with the phenotypic model (Nguyen et al., 2017d).

b) They have a low computational budget and the same prediction accuracy

compared with the simplified models (Nguyen et al., 2017d).

c) They only depend on the behaviour of the DES model, and therefore they

can be used with algorithms other than GP or GEP algorithms.

d) It is the first attempt to use machine learning to abstract a DES model of

DJSSPs. Therefore, there is a wide range of research opportunities to

develop other machine learning techniques using the same concept.

Chapter 1: Introduction

 34

1.5 Thesis Outline

The remainder of this thesis is organized as shown in Figure 1.6. Chapter 2 provides

a literature review of related work where problem domains are highlighted in blue, and

literature limitations are highlighted in red. Chapter 3 is the only chapter focusing on the

SJSSPs. The major contributions of this thesis are presented in four chapters from

Chapter 3 to Chapter 6 where the proposed solution approaches are highlighted in

green. Chapter 7 presents the conclusions and future directions for research. An

overview of each chapter is presented as follows.

Chapter 2 provides a review of production optimization techniques with an

emphasis on job shop scheduling. In addition, a detailed explanation of several solution

approaches that have been proposed for different job shop scheduling environments is

given, with the advantages and limitations of each method. The basic concepts of

dispatching rules, hyper-heuristics, and automated design of scheduling heuristics are

illustrated. Moreover, a review of current research articles related to the use of the GP

algorithm to automatically generate dispatching rules is presented. Finally, the

limitations of the existing literature are discussed in detail.

Chapter 3 covers the proposed distance metric for measuring similarities between

dispatching rules in case of static job shop scheduling problems. The multi-objective GP

framework is proposed to optimize the fitness, diversity, and size of the evolved rules.

Finally, the performance of the proposed framework is evaluated across multiple

instances (different sizes and difficulties) of SJSSP and two objective functions.

Chapter 4 proposes a feature selection approach for identifying important terminals

and excluding insignificant ones during GP runs. Existing articles that have developed

feature selection methods in the field of automated design of dispatching rules are also

briefly discussed. Moreover, the limitations of current feature selection methods are

analysed. Finally, the performance of integrating the proposed feature selection with the

GP algorithm is shown in terms of computational time, rule length, and solution quality.

Chapter 5 build on the work of Chapter 4 by modifying the feature selection

approach proposed for the tree-based GP algorithm to be applicable to the fixed-length

GEP algorithm. The effectiveness of the proposed approach is evaluated under different

dynamic job shop scheduling instances and three scheduling objective functions.

Moreover, the results obtained using the GEP feature selection approach are compared

Chapter 1: Introduction

 35

with those obtained using the literature approaches with respect to computational time,

the average size of evolved rules, and solution quality.

Chapter 6 proposes a surrogate assisted GEP approach to reduce the evaluation time

needed to estimate the performance of evolved rules. In addition, current surrogate

models from the literature are illustrated. Finally, the proposed surrogates are compared

with their counterparts from the literature regarding computational time and prediction

accuracy.

Chapter 7 provides a summary of the findings of this thesis as well as a list of

possible future research directions.

Chapter 1: Introduction

 36

Figure 1.6: Structure of this thesis including problem domain, literature

limitations, and proposed approaches used in each chapter

Chapter 2: Literature Review

 37

Chapter 2. LITERATURE REVIEW

This chapter begins by introducing the impact of the manufacturing sector on the

global economy. The definition of the production planning and control concept and its

main components are given, with the main focus on production scheduling activities.

Then, job shop scheduling problems are described, including terminologies, notations,

problem formulation, classes of schedules, etc. Moreover, a review of solution

approaches is provided for both static and dynamic job shop settings, in which a deeper

analysis is made of evolutionary algorithms and dispatching rules. Then, an overview of

the types of hyper-heuristics used to select or generate heuristics is provided. This

chapter also presents the main components of the GP algorithm, such as representation,

evaluation, selection, genetic operators, and pseudocode of a basic GP algorithm.

Afterward, the related work to the automatic generation of dispatching rules using the

GP algorithm under different scheduling environments is covered. In addition, the

limitations of the current literature are discussed, including premature convergence, GP

bloating effect, feature selection methods, and high computational time.

2.1 Introduction

Manufacturing facilities have a significant impact on the national economies of

countries, including gross domestic product, meaningful return on investment,

employment rate, the link between manufacturing and innovation, and national security

(Wang, 2018). Also, decision-makers seek to quickly adjust production systems to adapt

to fluctuations in market demand, individual customization, a globalized market, and

environmental pressures. Therefore, production planning is a necessity for

manufacturing facilities to make the production process as efficient as possible

Chapter 2: Literature Review

 38

according to customers and organizational needs. Production planning can be defined as

an administrative procedure that takes place within a manufacturing company to ensure

that enough raw materials, workers, and other resources are available to generate final

products according to the predetermined schedule (Kiran, 2019). Production planning

activities are categorized into three major planning levels based on the length of the

planning horizon as follows (Maravelias and Sung, 2009; Stadtler et al., 2015).

1) Long-term planning. Strategic decisions are made at this level which lay the

foundation for the future development of the manufacturing organization over

several years. Typically, decisions included in long-term planning are plant

location and layout, product development, process development, equipment

planning, material handling, employee welfare, etc.

2) Mid-term planning. It establishes a framework for routine operations, including

basic quantities and timings for the flows and resources in a specific

manufacturing system. The planning horizon extends from 6 to 24 months.

Material requirement planning, production planning, and distribution planning

are some examples of the tactical decisions involved in mid-term planning.

3) Short-term planning: All actions must be specified as comprehensive tasks for

immediate execution and control. As a result, short-term planning models need

the greatest level of precision as they have a great influence on the actual

performance. The planning horizon might range from a few days to three

months. Operational tasks include material control, quality control, machine

loading, production scheduling, transport planning, etc.

Over the last decades, short-term production scheduling has been studied from

various perspectives to develop efficient methods for a variety of manufacturing

environments to deliver on-demand products to customers in a cost-effective manner

(Dolgui et al., 2019). Production scheduling is a complex decision-making procedure

for assigning tasks to a limited number of production resources with the goal of

optimizing one or multiple objectives under constraints related to processes, resources,

and system settings. In 1954, Johnson proposed a two-machine flow shop scheduling

model with the objective of minimizing makespan (Johnson, 1954). This model is

considered the first work in the scheduling literature. Since then, multiple scheduling

approaches have been suggested for different manufacturing paradigms including

centralized scheduling, distributed scheduling (Toptal and Sabuncuoglu, 2010),

Chapter 2: Literature Review

 39

decentralized scheduling (Minguillon and Lanza, 2019), and cloud manufacturing

scheduling (Liu et al., 2019).

Job shop scheduling problems typically belong to centralized scheduling

environments. As shown in Figure 2.1, centralized scheduling approaches can be

classified based on five major factors (Jiang et al., 2021). They are the production

environment, processing characteristics of operations, resource constraints, objective

function, and system configuration. Regarding resource constraints, one-piece refers to

a manufacturing system where products can flow one by one through each step of the

process. Batch, on the other hand, refers to manufacturing methods in which products

are moved from one phase to the next in groups (batches). The scheduling problems

addressed in this thesis include one-piece resource constraints. In addition, the other

factors are explained in more detail in the upcoming sections.

Figure 2.1: Classification of centralised scheduling

2.2 Job Shop Scheduling

2.2.1 Problem Description

The notations used to describe general JSSP instances are as follows.

• There are a number of 𝑀 machines on the shop floor that need to process 𝑁 jobs.

• Each job 𝑗 that arrives on the job shop floor has a set of 𝑁𝑗 operations that have

to be processed in the same sequence to complete the job.

• The due date assigned to job 𝑗 is indicated as 𝑑𝑗.

Chapter 2: Literature Review

 40

• Each operation 𝑜𝑖𝑗 for a job 𝑗 , which is the 𝑖 th operation of job 𝑗 , has a

processing time 𝑝(𝑜𝑖𝑗), which determines how long the operation needs to be

processed by a particular machine 𝑚(𝑜𝑖𝑗).

• The time when an operation 𝑜𝑖𝑗 of a job 𝑗 is ready to be processed on a given

machine is referred to as operation ready time 𝑟(𝑜𝑖𝑗), which is the completion

time of its preceding operation (𝑜𝑖−1,𝑗).

• The release time of job 𝑗 denoted as 𝑟𝑗 is equal to the ready time of its first

operation 𝑟(𝑜1𝑗).

• The completion time of job 𝑗, when all operations finish processing, is referred

to as 𝐶𝑗.

• The weight of job 𝑗 denoted as 𝑤𝑗 represents the importance of the job in goals

related to customer satisfaction such as weighted tardiness objective.

The model parameters that remain constant from the moment a job 𝑗 arrives on the

shop floor are 𝑟𝑗, 𝑁𝑗, 𝑝(𝑜𝑖𝑗), 𝑚(𝑜𝑖𝑗), 𝑑𝑗, and 𝑤𝑗. In contrast, model variables that change

depending on scheduling decisions made during the production process are 𝑟(𝑜𝑖𝑗), and

𝐶𝑗. In order to obtain valid schedules for JSSPs, there are many constraints that have to

be taken into account as follows.

• Operation 𝑜𝑖−1,𝑗 must finish processing before operation 𝑜𝑖𝑗 can start

processing.

• No job can be processed on more than one machine at any time.

• Only one job can be processed by a machine at a time.

• No job can begin processing before its arrival in the shop.

• A job cannot be processed before it arrives on the shop floor.

• Job routing has to be maintained during the planning horizon and no alternative

routes are allowed.

In the absence of precedence relationships between operations, that is, operations

can be processed by machines in an arbitrary order, this problem is known in the

scheduling literature as an “open shop” scheduling problem. In contrast, if all jobs

follow exactly the same machinery sequence, then the problem is called a “flow shop”

scheduling problem. In addition, in a parallel machine environment or “flexible job

shop”, there is a collection of work centres where there are a number of machines in

each centre that can process a given operation.

Chapter 2: Literature Review

 41

There are two main classes of job shop scheduling problems, static and dynamic

problems. In static scheduling problems, the set of jobs on the shop floor does not

change over time. In contrast, new jobs can arrive on the shop floor at any time point

during the production process in dynamic scheduling problems. Another key factor to

consider in JSSPs is the uncertainty of the processing data, such as release times,

processing times, due dates, etc. If all the processing information is known in advance

before the production begins, then it is a deterministic scheduling problem, whereas

information uncertainty is inherent in stochastic scheduling problems. Specifically,

when a job arrives on the shop floor in either a static or dynamic pattern, it joins the

queue of the first machine, in its route, to process the first operation with a deterministic

or stochastic processing time. When the first operation is completed, the job moves to

the next machine in its operation sequence. After the last operation in a given job is

processed, the job exits the shop floor, and its completion time is updated. When all the

required number of jobs are processed, a schedule is obtained that determines the start

and finish time of each operation for all jobs. In order to assess the quality of the

obtained schedule, several objective functions have been developed and frequently used

in previous studies (Nguyen et al., 2015a; Shady et al., 2021b; Tay and Ho, 2008) as

shown in Table 2.1, where 𝑓𝑗 denotes the flow time of a job 𝑗. Set 𝕋 represents the

collection of tardy jobs; and ℂ stands for the set of completed jobs.

Table 2.1 Objective functions for job shop scheduling problems

Objective function Equation

Makespan 𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗∈ℂ {𝐶𝑗}

Mean Flowtime 𝐹 =
∑ 𝑓𝑗𝑗∈ℂ

|ℂ|

Maximum Flowtime 𝐹𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗∈ℂ {𝑓𝑗}

Mean Tardiness 𝑇 =
∑ (𝐶𝑗 − 𝑑𝑗)𝑗∈𝕋

|𝕋|
, 𝕋 = {𝑗 ∈ ℂ: 𝐶𝑗 − 𝑑𝑗 > 0}

Max Tardiness 𝑇𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗∈𝕋 {𝐶𝑗 − 𝑑𝑗}

Percentage of Tardy Jobs %𝑇 = 100 ×
|𝕋|

|ℂ|

Total Weighted Tardiness 𝑇𝑊𝑇 = ∑ 𝑤𝑗 (𝐶𝑗 − 𝑑𝑗)
𝑗∈𝕋

Chapter 2: Literature Review

 42

2.2.2 Classes of Schedules

Because there are an infinite number of ways to insert idle time in a given schedule,

there are an infinite number of potential schedules that can be generated for any job

shop scheduling problem. In other words, when a machine becomes idle at a certain

time (after the current process is finished), the scheduling algorithm must decide which

job to process. Therefore, there are three basic classes of schedules as follows (Pinedo,

2012).

1) Active schedule. It is a feasible schedule where it is not possible to create

another schedule where at least one operation completes earlier than the

original schedule while having at least one operation that finishes later than

the original schedule. In other words, an active schedule cannot be modified

to make one process finish early without making another process finish later.

2) Semi-active schedule. It is not possible to make an operation finish

processing earlier without changing the order of processing operations on

any of the machines on the shop floor.

3) Non-delay schedule. It is a feasible schedule where no machine is kept idle

while there is a job waiting in the machine queue. That is, a machine is

allowed to be idle if there are no waiting jobs, otherwise, the machine starts

processing one of the waiting jobs based on the scheduling algorithm

immediately upon completion of the current job.

Giffler and Thompson have proven that the optimal solution for job shop scheduling

in the case of minimizing the makespan objective must be an active schedule (Giffler

and Thompson, 1960). Figure 2.2 presents a generalized procedure to create active, non-

delay, or hybrid (active and non-delay) schedules for job shop scheduling problems with

a predefined scheduling rule (Nguyen et al., 2017a). This algorithm has been commonly

used in the scheduling literature to deal with a variety of production scheduling

problems. The algorithm begins by defining a set of unscheduled operations (Ω) that are

ready to be processed. Then, the algorithm determines the operation (𝜎∗) with the

earliest completion time 𝑆(𝑚∗) and its corresponding machine (𝑚∗). Accordingly, a set

of all operations with a ready time smaller than 𝑆(𝑚∗) + 𝛼(𝑡(Ω) − 𝑆(𝑚∗)) is created.

The 𝛼 parameter is a non-delay factor 𝛼 ∈ [0, 1] to control the look-ahead ability of the

procedure i.e., it restricts operations included in the set Ω′. In other words, if 𝛼 = 0,

only non-delay schedules can be created (operations that are waiting at the queue of

machine 𝑚∗), whereas if 𝛼 = 1, the algorithm creates an active schedule by considering

Chapter 2: Literature Review

 43

all operations ready to be processed (join the machine's queue) before the earliest

completion time of 𝑚∗. On the other hand, if the non-delay factor has a value between 0

and 1, then hybrid schedules are created of both active and non-delay schedules.

Figure 2.2: Generalized schedule construction algorithm

According to (Ouelhadj and Petrovic, 2009), the real-time events that can occur in

dynamic scheduling problems can be classified into two major categories as follows.

1) Resource-related events: Including unforeseen events that will influence the

performance of production resources, such as machine breakdowns,

maintenance, changes in job setup times, defective materials, delays in arrival,

shortages of materials, etc.

2) Job-related events: Including dynamic events affecting jobs, whether these

events occur due to a change in jobs' properties, for example, processing times,

number of operations, due dates, etc., or a change in the number of jobs expected

to arrive on the shop floor during processing, for example, the arrival of urgent

jobs, cancellation of jobs, early or late arrival of jobs, etc.

This thesis focuses on the job-related dynamic events, including dynamic arrival of

jobs, stochastic processing times, the number of operations at each job, and jobs' due

dates are stochastic.

Chapter 2: Literature Review

 44

2.2.3 Solution Approaches for JSSPs

This section gives an overview of solution approaches that have been proposed in the

scheduling literature based on the job shop environment, including static and dynamic

scheduling problems. As shown in Figure 2.3, there are five major solution approaches

in the scheduling literature. These approaches are exact methods (mathematical

programming methods), approximate methods including heuristics and meta-heuristic

algorithms, simulation methods, and artificial intelligence methods (Jiang et al., 2021).

Exact methods such as mixed-integer programming, lagrangian relaxation, branch and

bound, and dynamic programming are the most traditional optimization methods

proposed in the scheduling literature in order to obtain optimal schedules for static

problems. Typically, these methods rely on excessive assumptions to reduce the

complexity (simplification) of the underlying scheduling problem. Also, they are

computationally impractical for large problem instances because most scheduling

problems are NP-hard (Pinedo, 2012).

Figure 2.3: Solution approaches for scheduling problems

Approximate approaches have been developed to overcome the computational

burden of exact methods i.e., approximate methods aimed at obtaining good enough

solutions in an acceptable computational budget. Heuristic and meta-heuristic

Chapter 2: Literature Review

 45

algorithms are the main categories of approximate methods, although their nature is

different (Gao et al., 2020). Heuristic algorithms such as dispatching rules (Sels et al.,

2012a), NEH algorithm (Liu et al., 2012), Johnson's rule (Johnson, 1954), etc. are

problem-dependent methods developed to solve specific problems and usually include

domain knowledge in their searching mechanism. Therefore, Heuristic algorithms are

not applicable to other problem domains without significant modification. In contrast,

meta-heuristic algorithms, e.g., genetic algorithm, tabu search algorithm, simulated

annealing algorithm, etc., are problem-independent methods that can be used for a wide

variety of problems without the need for significant modification (Onar et al., 2016).

Simulation models have been widely used in dynamic scheduling to imitate

stochastic variables that occur in real-world problems because it is very challenging to

model them using analytical approaches (Ramasesh, 1990). Typically, simulation

models are combined with other optimization techniques either exact or approximate to

generate solutions that are evaluated using simulation models. Several simulations

software have been proposed with user-friendly interfaces to facilitate the modeling of

manufacturing systems under different production conditions such as Witness (Waller,

2012), Plant simulation (Bangsow, 2020), and Flexsim (Nordgren, 2002).

The use of artificial intelligence methods in the field of production planning and

scheduling has been very active since the 1960s (Çaliş and Bulkan, 2015). Since then,

artificial intelligence techniques have become powerful solution methods for many

combinatorial optimization problems including job shop scheduling. Frequently used

artificial intelligence methods include artificial neural networks (Weckman et al., 2008),

fuzzy logic (Bilkay et al., 2004), expert systems, multi-agent systems (Kouider and

Bouzouia, 2012), and hyper-heuristics (Burke et al., 2013). Most of these methods are

specially developed to solve dynamic scheduling problems with random job arrivals and

machine breakdowns as reported in (Çaliş and Bulkan, 2015; Mohan et al., 2019).

1) Approximate Methods for Scheduling Problems

This section provides more details on the most common heuristics and meta-

heuristic algorithms used to solve both static and dynamic JSSPs. Regarding heuristic

methods, Johnson's rule is used to minimize the completion time (makespan objective

function) for a set of jobs that has to be processed on a two-machine flow shop

(Johnson, 1954). Johnson's rule can achieve the optimal solution if some conditions are

met including job processing times are known and constant, job priorities are not taken

Chapter 2: Literature Review

 46

into account, and all jobs must follow the same sequence of the two machines. In a

follow-up study (Jackson, 1956), Jackson's algorithm uses Johnson's rule to minimize

the makespan objective function in the static two-machine scheduling problem. This

algorithm can also obtain an optimal solution in polynomial time 𝑂(𝑛 × 𝑙𝑜𝑔(𝑛)) if the

same conditions are satisfied. Afterward, Palmer's algorithm was introduced in (Palmer,

1965) for static scheduling problems where there are more than two machines, multiple

jobs, and Jonson's conditions are not met. Campbell Dudek Smith (CDS) algorithm

(Campbell et al., 1970) uses Johnson’s algorithm at each iteration to obtain optimal or

near-optimal schedules in terms of minimum completion time for multiple jobs, and

multiple machine scheduling problems. Also, Nawaz Enscore Ham (NEH) Algorithm

has been proposed in (Nawaz et al., 1983) and is known as the insertion algorithm to

reduce makespan objective for multiple jobs, and multiple machines flow shops. If the

number of machines on the shop floor greatly exceeds the number of jobs, then the CDS

algorithm is expected to outperform the NEH algorithm because the effectiveness of the

former depends on the number of machines and the latter depends on the number of

jobs. The aforementioned algorithms follow a set of rules for determining the sequence

of jobs on the available machines i.e., they prioritize the set of jobs waiting to be

processed on a machine based on specific characteristics. This idea has influenced

researchers to design scheduling heuristics known as “dispatching rules” to create

schedules for different job shop settings and objective functions. For many decades,

dispatching rules have been extensively studied in the scheduling literature leading to a

large number of dispatching rules developed for both static and dynamic problems.

Although dispatching rules is one of the approximate methods initially proposed for

static problems, they are more commonly used in dynamic environments than other

solution approaches as reported in (Dominic et al., 2004). Since Chapters 4, 5, and 6

focus primarily on dynamic settings, dispatching rules are converted in more detail in

the next section.

In the past two decades, research on the development of meta-heuristic algorithms

has been very active due to the high computational costs of exact methods and the

inability of heuristic methods to adapt to environments other than for which they were

developed (Garey et al., 1976). Meta-heuristics are higher-level problem independent

methods that guide the search process to find near-optimal solutions for optimization

problems. Metaheuristic methods are classified into two categories, local, and global

search-based algorithms as shown in Figure 2.4. Local search-based methods can find

Chapter 2: Literature Review

 47

the optimal solution for a specific area of the search space (local optima), or the global

optima where there is no local optima or the area being searched contains it.

Local search methods start with a complete candidate solution (schedule) and

iteratively make small changes (neighbourhood exploration) until there is an

improvement in the quality of the solution, and then they takes it as a new solution

(schedule) (Hussain et al., 2019). These methods include simulated annealing algorithm,

tabu search, iterated local search, variable neighbourhood search, and Greedy

Randomized Adaptive Search Procedure (GRASP). Teramoto et al. proposed a

scheduling method based on a simulated annealing algorithm for JSSP with the aim of

reducing the average flowtime (Teramoto et al., 2020). They developed two methods for

limiting the neighbourhood of a solution in order to overcome the drawback of

simulated annealing, where finding good solutions largely depends on the quality of the

initial solution. The proposed methods obtained higher probabilities of finding effective

solutions compared with the standard SA algorithm due to its ability to avoid updating a

solution in the wrong direction. The two identical parallel-machine scheduling problems

found in many real-world industries are investigated in (Xu et al., 2019). The authors

used Iterated Local Search (ILS) and a Tabu search method to find a near-optimal

solution to the problem, with the goal of optimizing the maximum total completion time

for each machine, that is, increasing the level of machine utilization and decreasing the

overall waiting time for jobs. The computational results on random instances showed

that the proposed Tabu search algorithm outperforms two existing (SPT and RSPT)

algorithms and the ILS method in instances with a small-to-medium number of jobs. In

contrast, the ILS method performs better than the two SPT and RSPT algorithms as well

as the Tabu search algorithm in instances with a large number of jobs. Zandieh and

Adibi introduced a scheduling approach based on a variable neighbourhood search for

dynamic job shop scheduling problems that take into account random job arrivals and

machine failures (Zandieh and Adibi, 2010). An artificial neural network was also used

to update the parameters of the variable neighbourhood search at any rescheduling point

according to the problem state. The proposed method was compared with the shortest

processing time, first in first out, and last in first out dispatching rules commonly used

in the dynamic scheduling literature to optimize the mean flowtime objective function.

The results demonstrated the efficiency of the proposed method in a variety of job shop

conditions.

Chapter 2: Literature Review

 48

Figure 2.4: Meta-heuristic algorithms for scheduling problem

Global search methods are typically used on relatively complex problems when

little information is known about the objective function response surface structure, or

when there are many local optima in the function (Hussain et al., 2019). Global search

meta-heuristics are categorized into two main categories, evolutionary computation, and

swarm intelligence. Evolutionary strategies, genetic algorithm, GP are the most

common evolutionary computational methods used in the scheduling literature. Horng

et al. proposed an evolutionary algorithm by embedding an evolutionary strategy in

ordinal optimization to get an acceptable schedule for stochastic job shop scheduling

problems with the objective of minimizing the expected sum of storage expenses and

tardiness penalties (Horng et al., 2012). Experimental results from comparing the

proposed approach with five dispatching rules demonstrated the efficiency of the

approach in achieving sufficiently good schedules in terms of solution quality and

computational efficiency. Zhou et al. developed a hybrid heuristic genetic algorithm

approach to improve the efficiency of the traditional genetic algorithm in reducing the

maximum completion time of job shop scheduling problems (Zhou et al., 2001). The

proposed approach integrated SPT and MWKR scheduling rules and neighbourhood

search technique into the genetic evolution process to improve the solution

performance. The achieved results demonstrated the superiority of the method over

literature methods including guided biology search, simulated annealing, and traditional

genetic algorithm. Since the focus of this thesis is the automatic generation of

dispatching rules using GP methods, the following sections are devoted to a detailed

explanation of dispatching rules, the GP mechanism, related studies, and current

challenges.

Chapter 2: Literature Review

 49

Swarm intelligence is a branch of evolutionary computing that makes use of the

collective behaviour of decentralized and self-organized systems represented in a swarm

or flow of organisms (Kennedy, 2006). Particle Swarm Optimization (PSO) and Ant

Colony Optimization (ACO) are the two most prominent methods of swarm

intelligence. Wang et. al proposed an improved particle swarm optimization algorithm

for DJSSPs with random job arrivals (Wang et al., 2019). The improvement strategies

include a modified decoding scheme, a population initialization approach, and a novel

particle movement method. They used a mixed integer programming model to generate

an initial schedule while minimizing three objective functions. When a new job arrives

on the job floor, the proposed PSO algorithm reschedules the new jobs to maintain the

performance and stability of the job shop schedule. Results showed that the improved

PSO algorithm has high performance compared with five variants of the standard PSO

algorithm and three meta-heuristics from the literature. Korytkowski et. al. developed an

approach by integrating a simulation model of a dynamic job shop with a heuristic

based on ant colony optimization to minimize four objective functions including mean

flow time, max flow time, mean tardiness, and max tardiness (Korytkowski et al.,

2013). The discrete event simulation model was used to evaluate the local fitness

function of ants, whereas the ACO algorithm was used to find a good assignment of

multi-attribute dispatching rules for each machine rather than using a single dispatching

rule for all machines. The results obtained using a case study demonstrated the ability of

the proposed approach to obtain better results than the case where only one dispatching

rule was used in an entire system.

2) Frequently Used Techniques for Dynamic Scheduling

According to the literature review of dynamic scheduling in manufacturing systems

proposed in (Ouelhadj and Petrovic, 2009), the solution approaches used for dynamic

scheduling problems can be classified into three major groups which are discussed in

detail below.

1) Completely reactive scheduling

No predetermined schedule is generated, and scheduling decisions are carried out in

real-time during processing. In other words, scheduling decisions are made as soon

as a specific machine becomes idle (Pinedo, 2012). Due to the short reaction time

(prompt response) required in completely reactive scheduling, dispatching rules are

the most widely used approach in practice. Dispatching rules, or scheduling policies,

Chapter 2: Literature Review

 50

are used to select the next job to be processed (highest priority) from the set of

awaiting jobs when a machine becomes free. A large number of dispatching rules

have been proposed in the literature that can be classified on the basis of structure

into four categories (Jones et al., 1998) as shown in Figure 2.5.

• Simple priority rules: It includes rules which are primarily developed using

job-related information. Examples of simple rules are those based on

processing times (SPT: shortest processing time), due dates (EDD: earliest

due date), arrival times (FIFO: first in first out), etc.

• Combinations of rules: they are used depending on the current situation on the

shop floor. An example of a combination of rules is the case where the SPT

rule is used until the number of jobs in a machine's queue exceeds 5, and

then the FIFO rule is used. This prevents jobs with large processing times

from being queued for long periods.

• Weighted priority indices: These rules usually have more than one piece of

information (attribute) in a linear combination for creating schedules. Each

attribute included has a weight (coefficient) that reflects its relative

importance. A common example of this kind of rule is as follows: 𝑟𝑢𝑙𝑒 =

 2 × 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝑤𝑜𝑟𝑘 𝑖𝑛 𝑛𝑒𝑥𝑡 𝑞𝑢𝑒𝑢𝑒 + 𝑛𝑒𝑥𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒.

• Composite dispatching rules: Scheduling information is combined into more

sophisticated structures rather than a linear combination used in weighted

priority indices. GP methods are usually used to automatically generate this

kind of dispatching rule as they usually show robust and high performance

under different scheduling problems (Nguyen et al., 2017a).

Figure 2.5: Classification of dispatching rules

Chapter 2: Literature Review

 51

 Dispatching rules can also be classified according to their characteristics as static

or dynamic. Static rules do not depend on the current time on the shop floor, e.g.,

SPT, FIFO, EDD, etc. In contrast, dynamic rules are time-dependent, which means

that their performance is affected based on the current time, for example, minimum

slack, critical ratio, cost over time, etc. Another classification is given in (Pinedo,

2012) where dispatching rules are categorized based on the information, used to

construct them, into local and global rules. Local rules use the processing

information available at the machine to choose the next job for processing, such as

SPT, FIFO, etc. On the other hand, global rules use processing information from

other machines, such as work in the next queue, apparent tardiness cost, etc. Several

comparative studies have been conducted in the literature to evaluate the

performance of existing dispatching rules under different job shop settings and

objective measures (Holthaus and Rajendran, 2000; Rajendran and Holthaus, 1999;

Sels et al., 2012a). Three major limitations of human-made dispatching rules found

in the literature are frequently reported as described below.

• The performance of dispatching rules is highly dependent on the scheduling

problem (system settings and processing characteristics) and the objective

function to be optimized.

• The more information about the processing and the considered objective

function is included in the dispatch rules, the higher their performance under

different system settings.

• Although composite dispatching rules have better performance compared

with other types of scheduling rules, the manual design of these rules is a

very challenging task.

2) Predictive-reactive scheduling

An initial schedule is generated before processing begins using the available

information. Then, when unexpected events occur during the actual processing, the

generated schedule is modified in response to the real-time events. Most of the

predictive–reactive scheduling approaches in the literature rely on simple schedule

modification, known as “rescheduling”, considering only job shop efficiency. The

goal of these approaches is to minimize deviation from the initial schedule because

significant changes might seriously affect other planning activities, resulting in poor

schedule performance. Several predictive–reactive scheduling methods have been

Chapter 2: Literature Review

 52

proposed in the literature, for example (Adibi et al., 2010; Duenas and Petrovic,

2008; Yang and Geunes, 2008).

3) Robust pro-active scheduling

Robust pro-active scheduling approaches attempt to predict unforeseen events that

might occur during processing, thus generating predictive schedules (robust

schedules) that can reduce the negative impact caused by these dynamic events (Al-

Hinai and ElMekkawy, 2011). This is accomplished by allocating idle time between

jobs processing so that jobs are less likely to be disrupted by new incoming jobs or

machine failures (Mehta and Uzsoy, 1998). A limited number of research articles

have been published on the generation of robust schedules because predictability

metrics are difficult to define and there is no universal definition of schedule

robustness (Ouelhadj and Petrovic, 2009).

2.3 Hyper-heuristics

Despite the fact that heuristic and meta-heuristic approaches have been successfully

applied in solving real-world computational search problems, there are still certain

challenges in applying them to new problems or even new instances of the same

problems (Burke et al., 2013). The reasons behind this are as follows:

a) There is a large range of parameters or algorithm options involved when using

these methods.

b) Developing and maintaining problem-specific methods (heuristics) is a costly

process in terms of time and effort.

c) There are no clear guidelines on how to choose them based on the problem

understudy and why different heuristics work efficiently, or not, in different

problem instances.

Therefore, many scholars have suggested using artificial intelligence techniques to

develop algorithms that are more applicable than many existing research approaches in

the literature, which are known as “hyper-heuristics”. In other words, the goal of using

hyper-heuristics is to raise the level of generality with which search algorithms can

operate by developing an easy-to-implement system that can operate on a wide range of

related problems rather than a single narrow class of problem instances (Burke et al.,

2003). A hyper-heuristic framework is a high-level methodology that, given a specific

problem instance(s) and a number of low-level heuristics (or their components),

Chapter 2: Literature Review

 53

automatically generates an appropriate solution by appropriately combining the

components available to solve the given problem(s). The term “hyper-heuristics” was

first coined in a conference paper by Cowling et. al in 2001 (Cowling et al., 2000). The

idea was further developed in (Cowling et al., 2002) and a genetic algorithm-based

hyper-heuristic was applied for scheduling geographically distributed training staff and

courses. Since then, numerous articles, tutorials, reviews, and books have been

published regarding this emerging search paradigm. For instance, an introduction of

hyper-heuristics concepts and a review of related articles are found in (Burke et al.,

2003). In addition, Burke et al. proposed a classification of hyper-heuristic approaches

based on their search mechanisms (Burke et al., 2013). A brief discussion of hyper-

heuristic applications covering a wide range of scheduling and combinatorial

optimisation problems was also presented. In a follow-up survey (Drake et al., 2020),

the authors expanded the survey on hyper-heuristic approaches published in 2013 by

considering recent advances in hyper-heuristic research frameworks, mainly selection-

based methods, current research trends, and future research directions.

Figure 2.6: General hyper-heuristic framework

Figure 2.6 shows the general framework of the hyper-heuristic approach (Burke et

al., 2011). The framework consists of two main layers, hyper-heuristic and domain

layers, separated by domain barrier to prevent any knowledge transfer between the

Chapter 2: Literature Review

 54

layers. The hyper-heuristic layer is responsible for selecting or generating a number of

heuristics from a set of low-level heuristics without having any prior knowledge of the

domain in which they are used. The domain layer includes problem-related information

such as a set of low-level heuristics, representation, problem instance, fitness function,

etc. Finally, the hyper-heuristic method has to accept or reject a solution based on the

results of the fitness assessment. Hyper-heuristic approaches can also be classified

according to three main criteria, the source of feedback, the type of low-level heuristics,

and the nature of the search space, as shown in Figure 2.7 (Burke et al., 2019).

According to the source of feedback information, three techniques are available,

including online, offline, and no-learning. In online hyper-heuristics, the learning

process takes place while the hyper-heuristic algorithm is solving a given instance of a

problem by sending instant feedback regarding performance, for instance, integrating

reinforcement learning with heuristic selection methods, and the use of meta-heuristics

to explore the search space of heuristics. In contrast, offline learning hyper-heuristics

collect performance-related knowledge by evaluating the performance of generated

heuristics over a set of training instances that generalize the nature of unseen instances

(Swiercz, 2017). Also, there are two types of low-level heuristics existing in the

literature including constructive and perturbation heuristics. Perturbative hyper-

heuristics start with complete solutions randomly generated or by following some

simple rules and then try to improve solution quality iteratively, whereas constructive

hyper-heuristics start with partial candidate solutions and build up a solution gradually

(iteratively) during the construction process. Finally, heuristic selection and generation

are the two types of hyper-heuristic methodologies based on the nature of the heuristic

search space. Heuristic selection approaches aim to select the right low-level heuristic

for each problem instance, whereas heuristic generation methods seek to combine low-

level heuristics to generate “new” heuristics for the problem under investigation.

Figure 2.7: Classification of hyper-heuristic approaches

Chapter 2: Literature Review

 55

2.4 GP Based Hyper-heuristics

GP is an evolutionary computational method for global optimization inspired by the

biological process of Darwinian evolution. In GP, computer programs are automatically

generated in different shapes and sizes to solve problems without requiring the user to

know or define in advance the shape or structure of the solution (J. R. Koza, 1994a). In

other words, since the optimal solution and its shape are usually unknown in most real-

world problems, the main advantage of using the GP approach is the variable length of

generated solutions which allow a large number of solutions to be explored compared

with fixed-length representations. The GP search mechanism can be briefly described in

the following steps (O’Neill, 2009).

• A population of programs (solutions) is randomly generated using a specific

representation and problem-related components.

• The performance of each program is assessed using a predefined fitness

function.

• The fitness value of each program determines its likelihood of surviving and

reproducing in the next generation.

• The average performance of generated programs evolves over generations until

stopping criteria are met and the best program is returned.

The remainder of this section presents the key concepts of the GP approach with a

detailed explanation of each step of the GP evolutionary process.

2.4.1 Representation

The syntax tree is the most popular GP representation (Nguyen et al., 2017a). However,

other representations exist in the GP literature such as linear GP (Nie et al., 2013a),

cartesian GP (Miller and Harding, 2008), and grammar-based GP (Hunt et al., 2016a).

An example of a GP individual in a tree-based representation is shown in Figure 2.8.

This tree structure represents the mathematical expression 𝑥 + 𝑦2 + 3 . Here the

arithmetic operators are {×, +} which is called the function set. Each element in the

function set requires a finite number of arguments (leaf nodes) with a minimum of one

argument, and thus cannot be placed at the leaves of a specific tree. The function set can

include other types of functions, including mathematical functions, trigonometric

functions, and logarithmic functions, depending on the nature of the problem (Branke et

al., 2016a). In contrast, the elements {𝑥, 𝑦, 3} represent the contents of the terminal set

and can be located only at the tree leaves (arguments). The variables 𝑥 and 𝑦 take

Chapter 2: Literature Review

 56

numerical values and represent the input of this expression. In addition, the terminal set

might include problem-related features (program’s external inputs) and constants that

can be predefined or randomly generated. Therefore, the search space consists of all

possible combinations created by selecting elements from the terminal (external nodes)

and function sets (internal nodes). The set of the functions and terminals together is

known as the primitive set of a GP. For the sake of convenience, GP individuals are

usually expressed in a user-friendly format such as LISP S-expression (Nguyen et al.,

2017a) because it is straightforward to see the relationship between sub-trees. For

example, the tree expression displayed in Figure 2.8 can be presented using the prefix-

notation expression as (+ 𝑥 (+ 3 (× 𝑦 𝑦))).

Figure 2.8: GP syntax tree representing the function: 𝒙 + 𝒚𝟐 + 𝟑

There are two requirements that terminal and function sets have to satisfy, namely

sufficiency and closure. The sufficiency characteristic assumes that the contents of the

terminal and function sets are sufficient to solve the problem under study. Because

usually the optimal solution is not known in advance, it is difficult to ensure that

included functions and terminals are enough to solve a given problem. However, the

contents of the terminal and function sets are extracted from high-quality solutions that

have been achieved in related studies. On the other hand, the closure property means

that any function or terminal can be used as an input for any function in the functions

set. Therefore, a protected division that returns zero (rather than undefined) in the case

of dividing by zero is commonly used in previous studies (Mei et al., 2017a; Nguyen et

al., 2018a; Shady et al., 2021b). In order to satisfy the sufficiency property, a large

number of terminals have to be included, which increases the size of generated

programs. Therefore, fixed length GP representation has been developed to resolve this

issue. Also, other GP representations, such as strongly typed GP approaches and

grammar-based GP approaches, have been developed to evolve syntactically and

Chapter 2: Literature Review

 57

semantically correct programs while satisfying the closure property. A brief description

of each of these representations is given below.

• Gene Expression Programming (GEP): has been proposed to overcome the

bloating effect that commonly occurs in tree-based GP approaches by using a

fixed linear structure in the evolution process. More details of the GEP approach

regarding the initialization process, genetic operators, and learning mechanism

are described in the next section and Chapter 6.

• Strongly typed GP: is an approach to enforcing type constraints where each

terminal has a specific data type, and each function accepts arguments of certain

types and will return its own type (Hunt et al., 2016a).

• Grammar-based GP: imposes some constraints on the structure or contents of

generated individuals by using some rules known as “grammar” in the

initialization process and genetic operators to ensure that the rules are logically

correct (McKay et al., 2010).

2.4.2 Population Initialization

Similar to other evolutionary computation methods, the GP approach begins by

randomly generating a population of programs. There are a number of different

approaches to generating this random initial population. Three main initiation methods

have been proposed in the literature for random population initialization. These

approaches are full, grow, and ramped half-and-half (John R. Koza, 1994). The

maximum depth is predefined for these methods in order to restrict generated

individuals from going beyond it. The depth of a node is the number of edges that must

be traversed to reach the root (the highest node in the tree with a depth of zero).

Therefore, the depth of the tree is the distance from the furthest node (leaf) to the root of

the tree. The full method generates full trees where all leaves have the same depth by

randomly selecting elements from the function set until the maximum tree depth is

achieved. Although the full method initializes programs with the same depth as the

maximum depth, this does not mean that these programs have an identical number of

nodes. Because the considered functions might require a different number of arguments

known as arity. In contrast, the grow method generates individuals of various sizes and

shapes because nodes are chosen from the primitive set (both function and terminal sets)

until the maximum depth is reached. In other words, once the required maximum depth

is achieved, only terminals can be chosen, similar to the full method. Consequently,

Chapter 2: Literature Review

 58

Koza proposed a combination of the two methods called ramped half-and-half because

neither the full nor the grow method obtains a sufficient variety of sizes and shapes on

its own (J. R. Koza, 1994a). Using the ramped half-and-half method, half of the initial

population is initialized by the full method while the other half is initialized by the

growth method. Figure 2.9 shows the pseudocode for a recursive implementation of

both the full and grow methods; where 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠: are the elements in the functions set,

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠: are the elements in the terminals set, max_depth: is the maximum allowed

depth, method: is either full or grow method, expr: is the generated expression, and

𝑟𝑎𝑛𝑑(): returns a random number uniformly distributed between 0 and 1 (O’Neill,

2009).

Figure 2.9: Pseudocode for program generation algorithm.

2.4.3 Fitness Evaluation

Fitness assessment is a crucial step in any evolutionary computation algorithm because

it represents the performance of generated individuals in a given task. Therefore, the

higher the performance of a program in the current generation, the more likely it is to

survive and reproduce, thus increasing its contribution to future generations. In other

words, fitness functions guide the GP algorithm to promising search regions (high-

quality programs) in the search space (Nguyen et al., 2017a). Fitness values are

estimated using a fitness function, which can be either static or dynamic as shown

below.

Chapter 2: Literature Review

 59

• Static fitness function: the fitness function does not change during the run.

Therefore, evaluating the fitness value of a rule multiple times using the same

static instance will always result in the same value.

• Dynamic fitness function: the function changes at any moment during the run.

Therefore, the fitness value of a specific program might change depending on

the time at which the program was evaluated.

Also, fitness functions might vary greatly depending on the problem domain.

Therefore, it is common to evaluate the performance of generated programs across a

range of different scenarios, i.e., by running the programs with different inputs. The set

of scenarios used during the learning phase of GP is known as the training set, whereas

the set of unseen scenarios used to evaluate the general performance of the generated

programs is known as the testing set. The reason why different combinations of

scenarios are used is that all possible inputs for a specific task are usually unknown,

thus the objective of the learning phase is to generate programs that can perform well on

unseen scenarios, i.e., their performance does not deteriorate on unseen scenarios

(overfitting). Therefore, two sets of scenarios are used to verify this objective (F. Zhang

et al., 2021d). In addition, fitness values can be used as termination criteria, such as

predetermining the desired fitness level where the algorithm ends, or the achieved best

fitness value does not change for a predetermined number of generations.

2.4.4 Selection

After the evaluation of all the individuals in a particular generation has been completed,

some individuals will be selected to be the parents of the next generation. Several

selection methods have been proposed in the literature, as shown below.

1) Tournament selection

2) Roulette wheel selection

3) Rank selection

4) Elitism selection

However, tournament selection and roulette wheel selection are the most popular

selection methods in the GP literature (Nguyen et al., 2017a). Using the tournament

method requires two main steps.

1) A number of programs equal to the tournament size are randomly chosen from

the population to form the tournament.

2) The individuals with the best fitness values (lowest value in the case of the

minimization problem) will be selected as parents.

Chapter 2: Literature Review

 60

The key merit of the wide use of the tournament selection method is the ease of

adjusting the selection pressure by changing the tournament size. Specifically, a higher

tournament size increases selection pressure, giving high-quality individuals a greater

chance of being selected, whereas a smaller tournament size decreases selection

pressure, giving a greater chance of poor individuals being selected. In addition, the

tournament method can operate on a parallel architecture that reduces the computational

time (Blickle, 2000).

The roulette wheel selection method is one of the methods known as fitness

proportionate selection, where individuals are selected randomly based on a distribution

proportional to their fitness values. In other words, individuals with higher fitness

values will be selected more often compared with lower individuals. Equation 2.1

shows the probability 𝑝𝑖 of selecting an individual 𝑖 as a parent according to its fitness

value 𝑓𝑖 , where 𝑁 represents the number of individuals in the current population

(Blickle, 2000). The main limitation of the roulette wheel selection is that it might

suffer from premature convergence caused by the loss of population diversity. Because

the selection pressure might become very high if there are prominent individuals, and

thus better individuals will be preferred over poor individuals. In contrast, if the

difference between the fitness values of the individuals is very small, then the roulette

wheel selection ability becomes similar to random selection (Yadav and Sohal, 2017).

 𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑁
𝑗=1

 2.1

Using the rank selection method, individuals are weighted based on their rank in

three steps, rather than their fitness values as used in the roulette wheel selection

method. First, individuals in a given generation are sorted according to their objective

values. Second, the fitness value assigned to each individual depends on their rank.

Third, the probability of selecting each individual depends on its fitness value

normalized by the total fitness values of the population (uniform selection scheme).

Therefore, the rank selection method offers an advantage over the roulette wheel

selection method by avoiding premature convergence by using more robust selection

pressure. However, it is computationally expensive because all individuals must be

sorted based on fitness value. Also, it might experience a slow convergence speed

because high-performing individuals do not differentiate sufficiently from others

(Kumar, 2012).

Chapter 2: Literature Review

 61

Finally, the elitism selection method copies a subset of the fittest individuals from

the current generation into the population of the following generation. In other words,

the elitism method reduces genetic drift during the evolution process by ensuring that

only the best individuals are allowed to pass their traits to the next generation. Although

the performance of the GP algorithm can be rapidly increased, the number of selected

rules using the elitism method must be carefully determined to avoid losing population

diversity and getting trapped in local optima (Du et al., 2018).

2.4.5 Genetic Operators

The rule of genetic operators is the formation of new individuals known as “offspring”

for the next generation based on selected individuals from the previous generation

(parents). Specifically, genetic operators help increase genotypic diversity within a

population to efficiently explore different regions of the search space (O’Neill, 2009).

Differences between individuals in real life occur for two main reasons: mutation of

genes within the individual and recombination of genes through the process of

reproduction. Similarly, two genetic operators have been proposed in the tree-based GP

literature, following the same concepts that occur in nature (Nguyen et al., 2017a). They

are subtree mutation and crossover operators, which are usually used with predefined

probabilities to create the population of the next generation. (Poli et al., 2007)

1) Subtree mutation operator: it only requires one parent to generate a new

program (offspring) following two steps. First, a random point, known as a

mutation point, is randomly chosen in the selected parent. Second, a randomly

generated subtree replaces the subtree rooted at this point (Poli et al., 2007). An

example of the subtree mutation operator is shown in Figure 2.10, where the

mutation point is highlighted by a dashed frame. Also, Figure 2.10 (a), Figure

2.10 (b), and Figure 2.10 (c) show the parent program, the randomly generated

tree, and the new program generated after mutation, respectively.

2) Subtree crossover operator: Two programs (parents) are randomly selected

from the current population. Then, a crossover point is randomly chosen for

each parent. Two offspring are created by swapping the subtree rooted at the

crossover point of the first parent with the subtree rooted at the crossover point

of the second parent (Poli et al., 2007). Figure 2.11 shows an example of the

subtree crossover operator applied to two parents to create two offspring;

swapped subtrees are highlighted in dashed frames. It has been noted that many

Chapter 2: Literature Review

 62

crossovers might only swap two leaves (insignificant effect on diversity). Thus,

Koza suggested randomly choosing function nodes 90% of the time and leaving

nodes 10% of the time to increase population diversity (John R. Koza, 1994).

Figure 2.10: Subtree mutation in GP

Figure 2.11: Subtree crossover in GP

Chapter 2: Literature Review

 63

2.4.6 Standard GP Algorithm

The pseudocode of the standard GP algorithm with a minimization objective function is

shown in Figure 2.12. The algorithm returns the best program evolved, i.e., the program

𝑝∗ that achieved the smallest fitness value 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝∗) in the given problem. The

algorithm begins by loading either static or dynamic problem data that is required for

fitness assessment, function, and terminal sets based on the problem domain. This

algorithm follows the four main steps discussed in the previous sections, including

population initialization, fitness evaluation, selection, and genetic operators.

• First, a population of candidate programs is randomly created using the

predefined function and terminal sets with a size equal to 𝑁 and an initialization

method that can be full, grow, or ramped half-and-half.

• At each generation in the evolutionary process, each program is evaluated using

the predefined fitness function. If a specific program 𝑝𝑖 has better performance

(smaller fitness value in the minimization problems) than the current best

program, it will replace the best program evolved so far and the best fitness

value will also be updated accordingly, as shown in steps 5–11.

• Afterward, parent programs 𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠 are selected using one of the previously

described selection methods to form the mating pool. Genetic operators are

applied to generate new individuals for the next generation according to

predefined probabilities until the desired population size is reached, as shown in

steps 14–17.

• Finally, if the maximum number of generations 𝑚𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is reached,

then the algorithm terminates and the best rule is returned; otherwise, another

evolutionary iteration begins by following the same steps.

 Inputs: problem data, function and terminal sets, and fitness function

 Output: the best evolved rule 𝑝∗

 1: 𝑃 ← {𝑝1, 𝑝2, … , 𝑝𝑁}

 2: Set 𝑝∗ ← 𝑛𝑢𝑙𝑙 and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝∗) ←= ∞

 3: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0

 4: while 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≤ max 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

Chapter 2: Literature Review

 64

 5: for all 𝑝𝑖 ∈ 𝑃 do

 6: evaluate 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖)

 7: if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝∗) then

 8: 𝑝∗ ← 𝑝𝑖

 9: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝∗) ← 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖)

10: end if

11: end for

12: 𝑝𝑛𝑒𝑤 ← {}

13: while | 𝑝𝑛𝑒𝑤 | < 𝑁 do

14: 𝑝𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← apply genetic operators to selected individuals from 𝑃

15: 𝑝𝑛𝑒𝑤 ← 𝑝𝑛𝑒𝑤 + 𝑝𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

16: end while | 𝑝𝑛𝑒𝑤 | < 𝑁 do

17: 𝑃 ← 𝑝𝑛𝑒𝑤

18: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1

19: end while

20: return 𝑝∗

Figure 2.12: Pseudocode for the standard GP algorithm

2.5 Generating Dispatching Rules Using GP

GP approach is the most popular hyper-heuristic approach in the field of automatic

generation of scheduling rules. According to the hyper-heuristic classification given in

Figure 2.7, using the GP approach to evolve dispatching rules is a hyper-heuristic

generation method based on offline learning feedback to generate new low-level

constructive heuristics. Several promising approaches to developing superior

dispatching rules as compared with manually designed ones have been proposed in the

literature for different job shop environments and manufacturing conditions (Branke et

al., 2016a). This section provides a review of literature articles related to the use of the

GP approach for scheduling problems, categorized based on the manufacturing

Chapter 2: Literature Review

 65

environment, as shown in Figure 2.13. Then, the challenges, their causes, and solution

approaches in the current literature are discussed in detail in the second subsection, as

illustrated in Figure 2.13, where GP limitations are highlighted in red, the reasons are

highlighted in blue, and the solution approaches considered in this thesis are highlighted

in green. Finally, a detailed explanation of how this thesis contributes to addressing

each of these limitations is also provided.

Figure 2.13: Structure of the 5th subsection of section 2.

2.5.1 GP Applications for Scheduling Problems

The GP approach has been used to generate dispatching rules for different

manufacturing settings such as single machine, flow shops, job shops, and flexible job

shop scheduling environments (Nguyen et al., 2017a), as described below.

a) Single machine scheduling

Yin et al. proposed a GP approach to generate predictive scheduling heuristics in

a single-machine environment with stochastic breakdowns while considering

two objectives, job tardiness, and stability (Yin et al., 2003). The proposed

approach uses bi-tree GP representation to evolve two components: dispatching

rules and a function to estimate the idle time that must be inserted before a given

job can be processed. Empirical results showed that the proposed approach can

efficiently generate high-quality dispatching rules and deal with uncertain

perturbations due to the inserted idle time. In the same context, a single machine

environment with a total weighted tardiness objective was investigated in

(Dimopoulos and Zalzala, 2001). The authors proposed a GP approach to train

Chapter 2: Literature Review

 66

dispatching rules to handle different levels of job tardiness and due dates. The

results showed that the nine dispatching rules evolved using the proposed

approach had high performance in many unseen scenarios. Specifically, the

automatically generated dispatching rules were at least as good as the current

human-made rules in the literature across different validation instances and

tardiness levels.

 Geiger et al. proposed a GP approach to generate dispatching rules for a

variety of single machine environments under three objective functions,

including minimizing total completion time, minimizing maximum lateness, and

minimizing total tardiness (Geiger et al., 2006a). The authors integrated the

proposed approach with a simulation model (fitness evaluation) to develop a

system for evolving dispatching rules called “scheduling rule discovery and

parallel learning system”. Dispatching rules generated using their system

showed better performance compared with a large set of literature rules. Finally,

the authors stated that although the man-made rules in the scheduling literature

are the results of decades of research, the rules generated using the GP approach

had better performance and could be created with a fraction of the time and

effort. Therefore, the use of machine learning techniques in production

scheduling is a promising research area with many opportunities to explore.

Also, Jakobović and Budin developed an interesting GP approach for a dynamic

single machine and job shop scheduling with bottleneck estimation capability

(Jakobović and Budin, 2006). The proposed approach generates three program

trees containing one discrimination function and two dispatching rules. The

discrimination function is used to determine whether a given machine is a

bottleneck. This function evolves using separate function and terminal sets.

Accordingly, if the machine is a bottleneck, then the first dispatching rule is

used, otherwise, the second rule is applied. Promising results were obtained by

comparing the evolved scheduling rules with the literature ones. Finally, the

authors reported that the proposed approach is particularly useful for scheduling

environments in which appropriate heuristics are not available or to facilitate the

design of high-quality heuristics.

b) Flow shop scheduling

Chen et al. proposed a GP approach to create heuristic rules for a k-stage hybrid

flow shop problem where one stage consists of non-identical batch processing

machines and the other contains non-identical single processing machines (Chen

Chapter 2: Literature Review

 67

et al., 2015). Then, the offline generated rules were selected by ant colony

optimization algorithm for each sub-problem in the equipment manufacturing

industry including part assignment, part sequencing, and batch formation. The

proposed algorithm showed better performance compared with other hyper-

heuristics in terms of reducing the total weighted tardiness. In the same vein,

Vázquez-Rodríguez and Ochoa proposed a GP framework to generate variants

of the Nawaz Enscore Ham heuristic for flow shop scheduling problems under

five objectives i.e., one variant of NEH was generated for each objective

(Vázquez-Rodríguez and Ochoa, 2011). The objective functions considered

were: makespan, total tardiness, total weighted tardiness, the sum of completion

time, and the sum of total weighted completion times. Experimental results

showed that the proposed approach outperformed the original and randomized

versions of the NEH heuristic across several benchmark problems. Shi et al.

introduced a scatter programming algorithm to generate composite rules in a

hybrid flow shop scheduling problem with the objective of reducing makespan

(Shi et al., 2015). The proposed approach included a local improvement method

to accelerate convergence. Simulation experiments demonstrated the

effectiveness of the proposed approach compared with the standard GP and the

scatter programming approaches in generating rules with higher scalability and

flexibility.

c) Job shop scheduling

Since dispatching rules typically suffer from a lack of global perspective (do not

consider the future state of the job shop when making scheduling decisions),

Hunt et al. proposed a GP algorithm to evolve less-myopic dispatching rules for

a dynamic ten machines job shop scheduling problem (Hunt et al., 2014a). The

proposed approach evolved robust rules regarding the total weighted tardiness

objective by incorporating features from the wider shop system. Regarding

numerical experiments, it was observed that including global features in the

terminal set improved the mean and reduced the standard deviation of the

performance of the best-evolved rules. The same findings were also reported in

(Shady et al., 2020b), where local and global features were included in the

terminal set of the GP approach used in evolving dispatching rules for a dynamic

job shop environment. The proposed approach had a lower mean flow time

compared with ten man-made rules from the literature under different job shop

utilization levels. In a follow-up study (Shady et al., 2020a), the authors

Chapter 2: Literature Review

 68

examined the GP approach with global features across a larger range of training

and testing scenarios. Two objectives were considered including mean flow time

and mean tardiness as well as 12 literature rules. The results showed the GP

best-evolved rule had an average relative increase in performance of about

5.85% and 45.56% compared with the best literature rules with respect to mean

flowtime and mean tardiness, respectively. In order to tackle the myopic nature

of traditional dispatching rules, Nguyen et al. proposed a GP approach to

generate a new type of dispatching rules called iterative dispatching rules

(Nguyen et al., 2013b). Different from traditional dispatching rules that create

one fixed schedule of jobs, these rules include look-ahead strategies to

iteratively improve schedules by utilizing the information of scheduled jobs in

previous steps. In other words, iterative dispatching rules can correct their

behaviour based on their mistakes in previous sequencing decisions. The

proposed approach had significantly better performance compared with the

standard GP algorithm with makespan and total weighted tardiness as objective

functions.

 Hunt et al. developed a GP-based hyper-heuristic approach to create

scheduling policies for a two-machine job shop scheduling problem in static and

dynamic conditions (Hunt et al., 2014b). The static problem was considered to

verify the ability of the GP approach to discover optimal scheduling rules. On

the other hand, two representations (evolve a single rule for the two machines

and evolve a specific rule for each machine) were used in the case of the

dynamic problem with the aim of reducing the total weighted tardiness. The

results showed that the GP algorithm was able to generate rules that could

achieve optimal schedules similar to Jackson's algorithm. Also, the performance

of the representations relied heavily on the testing instances (processing time

and utilization levels). Since real-life scheduling problems usually encounter

multiple conflicting objectives, Nguyen et al. developed four multi-objective GP

approaches to automatically generate dispatching rules and Due-Date

Assignment Rules (DDARs) in dynamic job shop scheduling problems (Nguyen

et al., 2014a). Three multi-objective approaches from the literature were used

namely Nondominated Sorting Genetic Algorithm II (NSGA-II), strength Pareto

evolutionary algorithm 2, and harmonic distance-based multi-objective

evolutionary algorithm. In addition, a new approach called diversified multi-

objective cooperative evolution was used. The authors compared the rules

Chapter 2: Literature Review

 69

evolved using the four developed approaches with existing rules created from

combinations of existing dispatching rules and DDARs with respect to

makespan, normalized total weighted tardiness, and mean absolute percentage

error. Experimental results showed that the evolved rules have dominated

popular literature rules in both training and testing scenarios. Also, the obtained

Pareto fronts helped in a better understanding of the trade-off between the

objectives.

 In the same context, Shady et. al proposed a GP for multi-objective DJJSP

considering machine breakdowns (Shady et al., 2021b). The proposed approach

combined the standard GP algorithm with NSGA-II to generate dispatching

rules that can handle different breakdown situations while reducing job mean

flow time and makespan. Regarding numerical experiments, the authors

compared the evolved non-dominated rules to 12 literature rules under 10 testing

scenarios generated by varying levels of machine breakdown. In addition, the

structure of the best-evolved rule and the distributions of attributes across GP

generations were analyzed to gain useful insight into the behavior of the evolved

rules.

d) Flexible job shop scheduling

The Flexible Job Shop Scheduling Problem (FJSSP) is an extension of the JSSP

where there are multiple copies of the most important machines (parallel

machines) in order to reduce the waiting time caused by busy machines

(bottlenecks) (Chaudhry and Khan, 2016). Therefore, two scheduling decisions

have to be performed; finding a suitable machine to process a given operation

(routing) and deciding the sequence of awaiting operations at each machine

(sequencing). Tay and Ho proposed a GP approach to evolve dispatching rules

for solving multi-objective FJJSPs where the weighted sum method was used to

construct an objective function by combining makespan, mean tardiness, and

mean flow time with the same weight (priority) (Tay and Ho, 2008). In addition,

the least waiting time assignment rule was used to select a machine to process a

given job. Five composite dispatching rules were evolved by the GP approach.

The evolved rules showed higher performance compared with five popular rules

from the literature. Hildebrandt et al. (Hildebrandt et al., 2010a) tested the rules

generated in (Tay and Ho, 2008) under various objectives. The authors found

that these rules performed poorly. In addition, two main reasons for this limited

Chapter 2: Literature Review

 70

performance were reported. First, a linear combination of objectives is not

appropriate where the weight of each objective is unknown, which is usually the

case. Second, the use of the fixed least waiting time assignment rule severely

affects scheduling decisions facing sequencing rules.

 Therefore, Yska et al. proposed the use of a cooperative co-evolution GP

framework to simultaneously evolve both routing and sequencing rules for static

and dynamic FJSSPs (Yska et al., 2018). Experimental results demonstrated the

effectiveness of the proposed approach in reducing max flow time, mean flow

time, and mean weighted flow time objectives compared with the standard GP

approach that generated only dispatching rules for both static and dynamic

scenarios. In the same context, Xu et al. developed a GP algorithm with delayed

routing for solving multi-objective dynamic FJSSPs that optimizes energy

efficiency and mean tardiness simultaneously (Xu et al., 2021). Three delayed

routing strategies were presented to define the subset of ready jobs for the idle

machine in order to make the sequencing decision. Therefore, every routing

decision can be delayed which helps in taking the most recent information into

consideration before assigning the ready jobs to machines.

2.5.2 Limitations and Corresponding Solution Methods in Related Studies

Although the GP approach has shown promising performance in generating dispatching

rules automatically under different manufacturing settings and objective functions as

described in the previous section, there are two general challenges in the existing GP

approaches (Branke et al., 2016a; Nguyen et al., 2017a). The literature limitations are:

• Premature convergence in the case of static scheduling problems

• High computational time for both static and dynamic scheduling problems.

The following subsections discuss the reasons for these challenges, the advantages and

disadvantages of the current solution methods in the literature, and a brief overview of

the approaches proposed in this thesis.

1) Premature Convergence due to Low Population Diversity

Because JSSPs are NP-hard optimization problems, thus the fitness landscape might

contain more than one optimum. Therefore, there is a higher chance that the GP

individuals converge very early to one of these local optima (sub-optimal solutions),

known as “premature convergence”. Premature convergence is a well-known

Chapter 2: Literature Review

 71

phenomenon in evolutionary computation that occurs due to the significant loss of

diversity among evolved individuals. Since high-quality individuals typically survive to

future generations and their traits are shared between individuals with crossover

operators at higher rates, thus a significant portion of individuals in future generations

(offspring) will have somewhat similar genotypic structures (Ekárt and Németh, 2000).

Therefore, it is necessary to maintain high levels of diversity among GP individuals to

prevent premature convergence towards the structure of a small number of high-

performance rules. Although a mutation genetic operator helps in increasing the genetic

diversity between individuals to a certain extent, its effect is limited because of the

following reasons (Hughes, 2021).

• The mutation rate, which determines how many individuals should be mutated,

is usually much lower than the crossover rate to avoid over-exploration.

• There is no direct method to determine mutation rates because it depends on the

problem under investigation, which requires many expensive GP runs.

Instead, distance metrics have been developed to define a straightforward technique

to numerically measure the diversity between GP individuals, thereby controlling for

desired diversity across generations. From a topological point of view, if two trees are

close to each other or identical, one can be easily converted to the other with a few

applications of genetic operators (Gustafson and Vanneschi, 2008). Accordingly, to

enhance the population diversity, the similarity (distance) between individuals must be

evaluated, and individuals with low similarity values must survive across generations.

a) Promoting population diversity

To enhance diversity among GP individuals, two major challenges must be considered:

• How to measure diversity between individuals?

• How to maintain diversity across evolving generations?

Regarding measuring the diversity between individuals, the distance between GP

individuals is determined using distance metrics that measure similarity based on the

individuals' structure (genotype) or performance (phenotype) (Burke et al., 2002).

Therefore, several distance metrics have been proposed in the literature, such as the

number of different structural individuals (genotypes) (Burks and Punch, 2015), fitness

values (phenotypes) (Jackson, 2010), edit distances (de Jong et al., 2001), and

composite measures (Kelly et al., 2019). In addition, Burke et al. examined the

relationship between several measures of diversity in GP and fitness values (Burke et

Chapter 2: Literature Review

 72

al., 2004). Moreover, a survey and analysis of different semantic methods used to

increase the phenotypic diversity between GP individuals were presented (Vanneschi et

al., 2014). The distance metrics in these literature reviews were analysed using standard

GP methods, such as artificial ants, even-5-parity, and symbolic regression. To the best

of our knowledge, research that addressed the applicability of distance measures in

measuring diversity among GP individuals in the JSS domain has not yet been reported.

Also, the distance metrics in the GP literature have certain limitations that make them

unsuitable for use in generating diverse rules for job shop scheduling problems, as

shown below.

• Genotypic distance metrics consider the position of a node while neglecting the

interaction effect between the node and its parents.

• Many distance measures assume that all nodes have the same weight, and this is

not the case in scheduling rules where nodes near the root have more impact

than nodes that are far away.

• The evolution of GP rules is computationally expensive, limiting the use of

phenotypic distance measures.

Regarding maintaining diversity across generations, multiple diversity mechanisms

are used to reduce the risk of high-performance individuals taking over the entire

population before effectively exploring the fitness landscape (Sareni and Krahenbuhl,

1998). Diversity mechanisms can be classified into two groups: niching and non-

niching. The most common niching methods are fitness sharing, clearing, and crowding.

Non-niching techniques include methods such as the removal of genotype or phenotype

duplicates, incest prevention, and island models (Hughes, 2021). The main intuition

behind fitness-sharing methods is to devalue each individual's fitness at a rate that is

proportional to the number of identical individuals in the population. Rather than

penalizing fitness values, some scholars have suggested using multi-objective methods,

where diversity is included as an explicit objective to be optimized along with fitness in

the GP algorithm. A multi-objective method called age-fitness Pareto optimization was

proposed in (Schmidt and Lipson, 2011) to promote population diversity by

simultaneously optimizing the age and fitness of individuals. Similarly, Burks and

Punch introduced a genetic diversity technique and employed the Pareto tournament

selection method to obtain a set of non-dominated GP individuals (Burks and Punch,

2015). Similarity among individuals was measured using tree fragments, and the

Chapter 2: Literature Review

 73

dominance relationship between individuals was determined using both the solution

quality and diversity values.

To the best of our knowledge, considering the diversity values among GP

individuals as an objective to be optimized has not been addressed in the field of

automated design of dispatching rules using the GP approach. Therefore, in the next

chapter, a new distance metric is proposed to measure diversity among GP evolved

scheduling rules in SJSSPs. The proposed metric prioritizes the nodes closest to the

root, takes into account the interaction effect between nodes, and is computationally

efficient. In addition, a multi-objective framework is introduced by integrating the GP

approach with the NSGA-II algorithm to maintain diversity across generations. Finally,

the proposed framework considers the rule size as an objective to be optimized rather

than the tie-breaker approach used in literature methods, thus reducing the

computational time of the GP algorithm.

2) High Computational Time due to the Bloating Effect and Fitness Evaluation

A well-established phenomenon in GP and other variable-length genome methods is the

tendency of evolved programs to grow rapidly over time without a significant return in

fitness. This phenomenon is referred to as “bloat” (Luke and Panait, 2006). This slows

down the search process by wasting computing resources in evaluating large individuals

and reduces the likelihood that genetic operators will alter important parts of the

evolved programs (Mori et al., 2008). From the practical point of view, larger

dispatching rules in complex mathematical structures have high computational costs and

are difficult to understand compared with simpler rules. Therefore, when the training

time of the GP algorithm becomes more affordable, it will lead to greater adoption in

more complex manufacturing environments with fewer assumptions and more

objectives to be optimized. Moreover, reducing the size of evolved rules increases the

chances of their use in the industry because smaller rules are easier to interpret by

decision-makers and to implement in real-world manufacturing systems (Nguyen et al.,

2017d; F. Zhang et al., 2021b). The most common way to control bloating is to impose

size limits on the evolved programs. The size constraint can be expressed using the

maximum allowable tree depth or the maximum number of tree nodes (Crane and

McPhee, 2006). Many bloat control methods have been reported in the literature to

mitigate the redundant growth of GP individuals, and ten bloat control techniques were

compared in (Luke and Panait, 2006). Other methods include code editing, modifying

genetic operators, parsimony pressure, and the removal of oversized individuals

Chapter 2: Literature Review

 74

(Alfaro-Cid et al., 2010). In addition, the size of the GP individuals is indirectly (tie-

breaker) optimized in parallel with fitness and diversity as proposed in (Alfaro-Cid et

al., 2010; Burks and Punch, 2015; de Jong et al., 2001).

In terms of using GP to develop scheduling rules, the bloating effect not only greatly

increases the computational time, but also evolving rules tend to be too complex for

decision-makers to understand, which limits their use in real-world applications (Branke

et al., 2016a). Therefore, many scholars have suggested the use of simplification

techniques to reduce the complexity and improve the readability of GP rules. These

methods are used to remove redundant parts of evolved heuristics using manual (Tay

and Ho, 2008) or online learning (Wong and Zhang, 2006) techniques, thereby making

heuristics more compact and easier to interpret. Moreover, since the GP computational

time and population diversity in the case of DJSSPs are significantly larger than that of

SJSSPs, the proposed multi-objective GP approach is not applicable to the dynamic

settings. In other words, integrating a multi-objective approach with the GP algorithm in

dynamic settings will increase the computational time without increasing the solution

quality of generated rules (prioritise smaller rules even with lower solution quality).

Instead, there are two main research themes commonly adopted to mitigate the impact

of bloating effect on the GP evolved rules for job shop scheduling problems.

• Feature selection methods have been used in several studies (Mei et al., 2016,

2017a; Shady et al., 2021a) to indirectly control the growth in GP rules by

selecting a subset of the most important features and eliminating non-critical

features, resulting in a reduction in the size of the generated rules.

• It has been reported that the GEP algorithm generates smaller rules compared

with the GP algorithm because it is not strongly affected by the bloat due to its

constrained representation (Nguyen et al., 2017a; Nie et al., 2010, 2011, 2013a).

a) Feature Selection

The ability of GP to generate superior rules relies on careful selection of the terminal set

that covers the most relevant job, machine, and job shop information (F. Zhang et al.,

2021a). However, it is very challenging to ascertain the most important features

manually from a large set of system attributes that may encounter interaction effects

(Zhang et al., 2019a). Some examples are due-date attributes, which are usually

worthless when minimising flowtime-related objectives. The inclusion of irrelevant

terminals engenders three main downfalls, as shown below (Mei et al., 2017a).

Chapter 2: Literature Review

 75

• It adversely affects GP searching ability by broadening the heuristics search

space and thereby hinders the achievement of promising search areas. Precisely,

if the tree structure is used with a maximum depth of 𝐷 and if all functions are

binary, then the GP search space size is |𝐹|2𝐷−1. |𝑇|2𝐷
, where 𝐹 and 𝑇

respectively stand for the function and terminal sets.

• Generated rules tend to be complex with a large variety of terminals, which

hinders the process of understanding how the evolved rules work and how any

change will alter the priority value of a given job.

• Longer rules require high computational costs to be evaluated, which can be

expected to increase the GP computational burden.

Although GP can perform feature selection automatically, its ability is limited. For

example, even the best rules usually include some redundant terminals (Zhang et al.,

2019a). The frequency analysis proposed in (Friedlander et al., 2011) is a commonly

used feature ranking method. Its main limitation is that the weight of the features can be

incorrectly estimated because some terminals might have a higher weight even if they

occur more frequently in redundant arithmetic operations than other terminals involved

in critical operations (Mei et al., 2017a). Therefore, Mei et al. suggested an offline

feature selection method based on the contribution of each terminal to the priority

function of the best rules (Mei et al., 2016). This approach regards feature selection as a

pre-processing step that requires several computationally expensive GP runs to obtain a

variety of good rules for estimating terminals’ weights from them. In a later study, Mei

et al. proposed an offline feature selection approach for identifying important features of

the GP algorithm in dynamic job shop settings (Mei et al., 2017a). The proposed

framework consists of three key steps. First, a niching-based search framework is used

to extract a diverse set of good rules. Second, a weighted voting method is used to

estimate the weight of each terminal and to identify a subset of significant terminals.

Finally, the significant terminal set replaces the original terminal set in future GP runs.

They reported two limitations associated with the proposed approach. First, although the

approach was sufficient to identify a compact set of features, it did not reduce the

program size of the evolved rules in later GP runs. Second, the output of feature

selection is binary and uses no evolutionary information collected from earlier

generations. Zhang et al. proposed a two-stage feature selection framework to evolve

routing and sequencing rules for the flexible DJSSP (F. Zhang et al., 2021a). They split

the whole GP process into two stages using a predefined checkpoint such as the number

Chapter 2: Literature Review

 76

of generations used in their work. For the first stage, they employed a niching method

and a surrogate model to identify a set of the most relevant terminals. Then, the new

terminal set replaced the original set, which is used in evolving individuals in the

generations following the checkpoint's generation. For one study, a new hybrid GP

approach based on a new representation, new local search heuristic, and efficient fitness

evaluators was developed (Nguyen et al., 2018a). Using this representation, GP rules

are defined using two parts: priority functions and attribute vectors. Attribute vectors

perform an explicit selection of attributes by deactivating irrelevant terminals, thereby

narrowing the search space and improving the interpretability of evolving rules. The

authors reported that, although the proposed approach reduced rule length, it obtained

more active terminals than the standard GP algorithm did. Earlier studies have revealed

some challenges in the current approaches, as described below:

• Most feature selection methods assess the effect of each terminal by the

frequency with which it occurs in the best-evolved rules (Riley et al., 2016). The

main shortcoming of this technique is that the results may be biased towards

irrelevant features because of the occurrence of redundant features.

• Feature selection methods usually adapt offline selection mechanisms (Mei et

al., 2016) or a checkpoint to obtain a promising subset of terminals, resulting in

additional simulation runs, making the GP algorithm too time-consuming and

impractical (F. Zhang et al., 2021a).

• Feature selection methods reported in the literature use a binary discrimination

method, i.e., inclusion or exclusion of a feature from the terminal set, which

ignores the relative importance of the respective terminals (Mei et al., 2017a).

In order to address the literature limitations, Chapter 4 includes the following

contributions.

• A reliable method to estimate the weight of each terminal without being affected

by the occurrence of redundant terminals or complex rule structures is

developed.

• An online feature selection approach that uses the estimated weights of terminals

from earlier generations to guide the search in the current generation is

proposed.

• Feature selection probability rather than the inclusion or exclusion method is

introduced to provide a broad preference scheme for each feature.

Chapter 2: Literature Review

 77

b) Gene Expression Programming

Gene Expression Programming (GEP) algorithm is a GP constrained representation

proposed to evolve programs of different sizes and shapes encoded in linear

chromosomes of fixed length (Ferreira, 2001). Typically, a GEP chromosome includes

one or more genes of equal length connected to each other using a linking function.

GEP genes are composed of a head and a tail. The elements in the head are selected

from the function set or the terminal set, while those in the tail are only selected from

the terminal set (Sabar et al., 2015). To ensure a valid tree expression, it is required that

the length of the head ℎ and the tail 𝑡 satisfy the equation 𝑡 = ℎ (𝑛 − 1) + 1, where

𝑛 is the maximum number of arguments for all functions in the function set. The K-

expression is used to decode strings into expression trees. The first element in the gene

corresponds to the root of the tree, and each function is attached to as many branches as

there are arguments to that function, following a depth-first fashion (Nie et al., 2010).

When the last node in a branch is a terminal, the branch stops growing, and thus it is

common for GEP genes to have a noncoding region (Ferreira, 2001). A variety of

genetic operators have been developed to introduce diversity in GEP individuals.

Transposition operators such as Insertion Sequence (IS) transposition, Root IS (RIS)

transposition, and gene transposition, have been introduced to select a fragment

(successive symbols) and insert it into a specific location in the chromosome. In

contrast to the RIS transposition where selected elements must start with a function

from the head portion of the GEP individual, IS elements can start with either terminal

or function and thus can be selected randomly at any position in the chromosome.

Moreover, recombination operators such as one-point, two-point, and gene

recombination can be employed to exchange some parts of the chromosomes of two

randomly selected parents (Nguyen et al., 2017a).

In (Nie et al., 2013a) and (Zhou et al., 2020a), the authors reported that the linear

representation used in the GEP algorithm was able to generate higher quality rules

compared with the tree-based GP in much less computational time and smaller sizes.

Moreover, the GEP algorithm has been used to evolve scheduling rules under various

operational settings, including single machine (Nie et al., 2010), DJSSP (Nie et al.,

2011), Flexible Job Shop (FJS) (Nie et al., 2013a), multi-objective FJS (Ozturk et al.,

2019), limited buffer spaces (Ozturk et al., 2020), and FJS with setup time (C. Zhang et

al., 2021). Since the GEP approach is relatively new compared with the GP algorithm

and there are many genetic operators that need fine-tuning before running, the number

Chapter 2: Literature Review

 78

of literature articles that have used the GEP for the automatic generation of dispatching

rules is very limited. Also, there is no feature selection approach proposed in the GEP

existing literature (Nguyen et al., 2017a). Although this is reasonable because the GEP

algorithm is less susceptible to the bloating effect, the GEP evolved rules might still

include some redundant features. Therefore, the research questions that can be derived

from the current GEP literature are as follows.

• Does integrating feature selection methods with the GEP algorithm help reduce

computational time? and if yes, will it negatively affect the GEP exploration

ability since it is already restricted?

• How can the proposed feature selection method for the tree-based GP approach

be modified for use in the GEP algorithm?

In order to find answers to these questions, Chapter 5 includes the following

contributions.

• The proposed feature selection approach for the tree-based GP approach is

modified to be applicable to the GEP algorithm.

• The performance of the proposed feature selection GEP algorithm is evaluated

under different DJSSP instances and objective functions.

• The GP feature selection approach proposed in (Nguyen et al., 2018a) is

modified to be applicable to the GEP algorithm to analyse its performance in the

case of the GEP algorithm and compare it with the proposed approach.

c) Surrogate Models for Expensive Fitness Evaluation

As mentioned earlier, there are a large number of dispatching rules (in the hundreds)

evolve in each generation, and each of these rules needs to be evaluated using a

simulation model that imitates a specific scheduling problem. During the evaluation of

each rule, thousands of scheduling decisions are made by estimating the priority values

of the waiting operations using the given rule (function). Therefore, the most

computationally expensive part of using the GP approach to generate dispatching rules

for dynamic problems is fitness assessment with simulation (Nguyen et al., 2017a).

Several surrogate models have been proposed in the evolutionary computation literature

to overcome the computational burden caused by fitness assessments (Jin, 2011).

Surrogate models are computationally affordable approximations of an expensive

fitness function derived from statistical or machine learning techniques that are trained

using samples of fully evaluated solutions (Jin, 2011). Integration of surrogate models

Chapter 2: Literature Review

 79

and evolutionary algorithms aids in the early identification of promising individuals

whose actual performance will subsequently be assessed using an expensive fitness

function. In addition, poor-quality individuals can be quickly discarded without

sacrificing high computational costs (Hildebrandt and Branke, 2015a). Two surrogate

models have been proposed in the literature to reduce the fitness evaluation time

required for the GP algorithm to evolve rules for DJSSPs as described below.

1) Hildebrandt and Branke proposed a surrogate model based on the phenotypic

characterization of evolved rules (Hildebrandt and Branke, 2015a). The

proposed model estimates the fitness value of a certain rule by using the fitness

of the most similar rule generated in the previous evolutionary generations.

Then, the rules with the highest approximate fitness values are selected to form

the next generation, and their real fitness values are obtained using the actual

simulation model. The results showed that the proposed surrogate assisted GP

approach had a higher convergence speed compared with the standard GP

approach given the same computational budget.

2) Nguyen et al. developed surrogate models based on simplified versions of the

original job shop; i.e., three simplified versions of the actual job shop settings

were introduced using a smaller number of machines, operations at each job, and

the total number of jobs required (Nguyen et al., 2017d). The results showed that

the simplified methods significantly reduce the computational costs of fitness

assessment while achieving higher accuracy levels compared with the

phenotypic surrogate model.

Although the existing surrogate assisted GP models have shown better performance

compared with the standard GP algorithm, there are some limitations that need to be

addressed as follows.

1) The decision vector used in the surrogate model proposed in (Hildebrandt and

Branke, 2015a) has to be adequately large to differentiate between GP rules,

resulting in an increase in computational time. In addition, the prediction

accuracy of this surrogate model is significantly lower compared with the

simplified model as reported in (Nguyen et al., 2017d).

2) Although the simplified models achieve high prediction accuracy with a

significant reduction in computational costs by reducing the job shop

complexity, all information obtained during simulation runs is discarded.

Chapter 2: Literature Review

 80

In order to address the above limitations, Chapter 6 includes the following

contributions.

• Three surrogate models are developed to reduce the computational time required

to evaluate the performance of GEP rules. The proposed models are built on the

simplified models that have higher prediction accuracy compared with the

phenotypic surrogate and do not use any decision vectors.

• The surrogate assisted GEP approach uses the information collected during

fitness assessment of a subset of rules, in training a simple mathematical

function to replace part of the simulation length (reduce simulation time).

• This is the first attempt to use machine learning methods to abstract a simulation

model of DJSSPs, which opens up a wide range of research opportunities to

develop other machine learning techniques using the same concept.

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 81

Chapter 3. MULTI-OBJECTIVE GENETIC

PROGRAMMING APPROACH FOR STATIC

JOB SHOP SCHEDULING PROBLEMS

3.1 Introduction

The first objective of this chapter is to propose a distance metric for measuring the

similarity between GP individuals to increase the solution quality of evolved rules.

Because static job shop scheduling problem instances do not change across evolutionary

generations, high-quality rules ensure that the same high performance is obtained in

subsequent generations, which is not the case in dynamic settings. Therefore, they have

a higher probability to take over the entire population before effectively exploring the

fitness landscape (premature convergence) (Nguyen et al., 2017a). Representing the

population diversity in numerical formats helps to track and control it across

generations. In other words, a higher selection probability can be given to distinct

individuals that have low similarity values regardless of their fitness values, and thus

can survive for the upcoming generations (Burke et al., 2004). In addition, promoting

population diversity enhances the exploration ability of the GP algorithm to explore

large regions of the solution's space without being trapped in local optima, which is

reflected in the quality of the obtained solutions. However, considering population

diversity only as an objective to be optimized leads to higher over-exploration and thus

computational budget might run out before the algorithm converges to a good solution.

Consequently, the solution quality of GP individuals must be taken into account while

optimizing their diversity values.

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 82

The second objective is to develop a multi-objective GP framework to

simultaneously optimize solution quality, diversity value, and rule length. Controlling

the growth in the size of the evolved rules significantly reduces the computation time of

the GP algorithm as stated earlier. In addition, the rules in simple structures are easier to

interpret by the decision-makers and to implement in real-world manufacturing systems

(Branke et al., 2016a). In most multi-objective GP methods in the literature, the size of

rules is indirectly considered. Meaning that when the two compared rules have the same

fitness value, the smaller rule is chosen in the next generation. The reason is that smaller

rules usually include limited information about the job shop floor and thus have low

performance compared with larger rules. Also, smaller rules have a smaller range of

potential changes (lower diversity) compared with larger rules. Finally, it is clear that

optimizing the three objectives simultaneously is suitable due to their conflicting nature.

The remainder of this chapter is organized as follows. Section 3.2 provides a

detailed explanation of the proposed distance metric and the multi-objective GP

approach. The experimental details are presented in Section 3.3 including comparison

design, static job shop scheduling problem instances, and GP parameters. Section 3.4

provides the results in terms of parameter tuning, makespan, and mean tardiness

objective functions. Finally, Section 3.5 presents the conclusions of this chapter.

3.2 Proposed Approach

3.2.1 Distance Metric

Because the purpose of developing this new distance metric is to promote diversity

among dispatching rules, a behaviour analysis was carried out for the scheduling rules

that were evolved using GP. The preliminary runs enabled four observations to be made

as follows.

a) The fitness evaluation of rules is computationally expensive, restricting the use

of phenotypic distance measures.

b) The structure of GP individuals converges to that of the best rule in a given

generation.

c) Not only does the location of the nodes greatly affect their performance, but the

interaction between the node and its parents also has a significant impact.

d) Not all nodes have the same weight, because it was noted that nodes near the

root had a greater impact on the fitness value of a given rule than distant nodes.

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 83

These findings were addressed in the proposed distance metric. To reduce the

computational requirements, a genotypic metric is proposed that does not require any

additional fitness evaluations. Moreover, instead of evaluating the similarity between

every pair of rules in a GP population, the similarity between each rule and the best rule

is evaluated, which reduces the similarity calculations from 𝑂(𝑛2) to 𝑂(𝑛). Finally, the

distance between the two rules is calculated in three steps as shown below:

I. The two trees 𝑖 and 𝑗 are brought to the same structure (depth) by adding 𝑛𝑢𝑙𝑙

nodes.

II. Weighted edge sets 𝑆𝑖 and 𝑆𝑗 for the two rules are generated using the following

equations:

𝑆𝑖 = {𝑤(𝑒𝑖) ∀ 𝑒𝑖 ∈ 𝐸𝑖}, 𝑆𝑗 = {𝑤(𝑒𝑗) ∀ 𝑒𝑗 ∈ 𝐸𝑗} 3.1

where e is an edge in the set of all Edges 𝐸 in a specific tree, and 𝑤(𝑒) is a

function that estimates the weight of edge 𝑒.

The weight 𝑤(𝑒) of an edge 𝑒 connecting nodes 𝑥 and 𝑦 is estimated using the

following equation:

𝑤(𝑒) =
𝑤𝑥 + 𝑤𝑦

2
 3.2

where 𝑤𝑥 and 𝑤𝑦 represent the weights of nodes 𝑥 and 𝑦 respectively, which can

be evaluated as follows:

 𝑤𝑥 = 𝑘(𝑑𝑚𝑎𝑥−𝑑𝑥+1), 𝑎𝑛𝑑 𝑤𝑦 = 𝑘(𝑑𝑚𝑎𝑥−𝑑𝑦+1)

where 𝑑𝑚𝑎𝑥 is the tree depth, 𝑑𝑥 and 𝑑𝑦 denote the depth of nodes x and y. 𝑘 is

a constant ≥ 1 to indicate that the difference at depth 𝑘 in the compared trees is

𝑘 times more important than the difference at depth 𝑘 + 1.

III. The similarity value 𝑆𝑖𝑗 between trees 𝑖 and 𝑗 are measured using the following

equation:

𝑆𝑖𝑗 =
∑ (𝑤(𝑒𝑖) + 𝑤(𝑒𝑗))𝑒∈𝐸𝑖∩𝐸𝑗

∑ (𝑤(𝑒𝑖) + 𝑤(𝑒𝑗))𝑒∈𝐸𝑖∪𝐸𝑗

3.3

An illustrative example of how the proposed distance metric measures the similarity

between two trees is shown in Figure 3.1. The two rules are presented in both the tree

structure and mathematical form. Three terminals are presented: processing time 𝑃𝑇,

work in the next queue 𝑊𝐼𝑁𝑄, and next processing time 𝑁𝑃𝑇. The depth of the first

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 84

rule (𝑑1 = 2) is incremented by one using a null node to obtain the same depth as the

second rule (𝑑2 = 3). The depth and weight for each node are shown in columns 𝑑 and

𝑤 next to the tree structure of rule 2. The weights of the nodes were assigned using 𝑘 =

2. Clearly, the set of common edges includes +𝑃𝑇, + ×,× 𝑁𝑃𝑇, 𝑎𝑛𝑑 × 𝑊𝐼𝑁𝑄 . The

similarity value between the two rules is estimated by dividing the sum of the weights

of the common edges by the total weight of all the edges in both rules. There is a

similarity value of 0.7 between the two rules. From this example, when 𝑘 = 2, the

weight of a node is half the weight of its parent node, that is, increasing the depth by

one will reduce the edge weight by half. In addition, the location of an edge (right or

left) does not affect its weight because edges at the same depth have the same weight

regardless of their position. In addition, the similarity value ranges from 0 to 1 and can

be evaluated even if the two trees have different depths or dissimilar root nodes. Finally,

the proposed metric utilizes the information available in the structure of the rules to be

compared; thus, additional fitness evaluations are not required.

Figure 3.1: Example of the proposed similarity measure.

3.2.2 Multi-objective GP approach

The aim of the proposed approach is to extend the standard GP algorithm (John R.

Koza, 1994) by enhancing diversity and reducing the bloat effect in the evolved rules.

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is one of the most popular

Pareto-based multi-objective algorithms used to obtain a set of well-spread Pareto-

optimal solutions (Deb et al., 2002a). In addition, Zhang et al. (Zhang et al., 2019b)

integrated the strategies of NSGA-II and SPEA2 into GP to solve the dynamic flexible

JSSP. The results showed that incorporating NSGA-II with GP generated more effective

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 85

rules with higher consistency than SPEA2. Therefore, the NSGA-II was integrated with

the GP algorithm to simultaneously optimize the three objectives at the same time. The

objectives considered were the fitness value, similarity value, and rule depth. The

pseudocode for the proposed algorithm is presented in Figure 3.2. The algorithm begins

by generating a population of dispatching rules using a predefined set of functions and

terminals. Evolutionary generation begins by using each of these rules to construct a

schedule for a given JSSP instance. The objective values of the rules are then estimated

from the constructed schedules, and the best rule in this generation is updated

accordingly. Parents and offspring are combined to ensure elitism, which guarantees

that the best individuals secure a place in the next generation. Then, the similarity value

between each rule and the best-evolved rule is assessed using the proposed distance

metric. NSGA-II is used to select rules with high ranks and smaller crowding distances

for new population formation. If the required number of generations is not reached,

another evolutionary iteration starts; otherwise, the algorithm terminates, and a set of

non-dominated scheduling rules is returned.

Figure 3.2: Pseudocode of the proposed multi-objective GP algorithm

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 86

3.3 Experimental Setup

This section presents the experimental setup used to compare the proposed approach

with the other methods. In addition, the parameter settings for both the GP algorithms

and JSSP instances are shown.

3.3.1 Comparison Design

To assess the effectiveness of the proposed distance metric and multi-objective GP

approach, two algorithms are developed. The first algorithm, referred to as “PGP_P,”

evaluates the ability of the proposed similarity metric to increase the quality of GP rules

by promoting population diversity. The second algorithm, denoted as “PGP_N,” follows

the same steps presented in Figure 3.2 and is used to verify whether the proposed

approach can optimize the solution quality, diversity, and size of evolved rules

simultaneously. The two proposed algorithms were compared with the following three

algorithms in the literature:

i. SGP: Standard GP algorithm (John R. Koza, 1994).

ii. EGP: SGP with Edit-distance metric (de Jong et al., 2001).

iii. MGP: SGP with genetic Marker metric (Burks and Punch, 2015).

The SGP algorithm was developed to evaluate the benefits of increasing the

population diversity and controlling the bloating effect compared with the standard

version of the GP algorithm. In addition, the EGP and MGP algorithms were considered

to enable the proposed algorithm to be compared with other GP algorithms that use

different distance metrics and bloat control techniques. The edit distance metric used in

the EGP algorithm measures the distance between two individuals as the shortest

number of editing operations required to convert one tree to the other. Specifically, the

edit metric works in three steps as follows (de Jong et al., 2001).

a) The distance between each individual in the GP population and the best

individual found so far is measured.

b) Two overlapping nodes get a distance of 1 when they are different, otherwise

(same), the distance is 0.

c) The distance between two trees is the sum of all different nodes divided by the

size of the smaller tree for normalizing.

In addition, the authors proposed a multi-objective GP optimization approach to

avoid bloat and prompt population diversity. Experimental results showed that the

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 87

proposed approach had better performance compared with the standard GP on the 3, 4,

and 5-parity problems both with respect to computational time and tree size. On the

other hand, the MGP algorithm uses a genetic marker distance metric that estimates the

similarity between individuals by comparing a small portion of each tree known as a

"genetic marker". In other words, the MGP algorithm enhances diversity by maintaining

an appropriate number of unique genetic markers (tree fragments) in the population

(Burks and Punch, 2015). The genetic marker distance metric promotes diversity using

the following steps.

i. Depth-first traverse is performed for each tree up to a predefined depth (end of

the genetic marker).

ii. The resulting Lisp expression becomes the genetic marker.

iii. The density of a genetic marker is used to determine the prevalence of a specific

genetic marker in a population.

Finally, the MGP algorithm outperformed three literature algorithms on benchmark

problems with respect to solution quality and convergence speed.

A flowchart of the five algorithmic experiments is shown in Figure 3.3. All

algorithms begin by initializing the same population of scheduling rules using the same

random seed. Subsequently, their fitness values were evaluated on a specific JSSP

instance using a predefined objective function. In the case of SGP, no diversity metric is

used, and the best rules are selected by the standard tournament method. For the EGP

and MGP algorithms, the similarity values of the rules were evaluated using the edit

distance and genetic marker distance metrics, respectively. The proposed distance

metric was used for both PGP_P and PGP_N. For the PGP_N algorithm, the Pareto

front rule with the lowest fitness value was used to measure the similarity values. The

Pareto tournament method (Schmidt and Lipson, 2011) was employed to select the

fittest rules for the EGP, MGP, and PGP_P algorithms. The same selection mechanism

was used to evaluate the performance of the proposed metric separately. In the case of

PGP_N, the best rules were selected using NSGA-II. Genetic operators were then

applied to create a new population of scheduling rules. If the stopping criterion is

satisfied, the algorithm terminates; otherwise, a new evolutionary iteration begins.

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 88

Figure 3.3: Flowchart of the five developed algorithms

3.3.2 Genetic Programming Parameters

Ten JSSP instances (ta61-ta70) based on previously proposed benchmark data (Taillard,

1993) were used for comparison purposes. These instances are chosen from the 80

available instances because they are the most complex instances with the largest number

of jobs and machines, and the optimal solutions are known for the makespan objective

(for validation). The job shop contains 20 machines, and 50 jobs are processed. Each

job must visit all machines following a predetermined routing path. The processing

times follow a uniform distribution U [1, 99]. Two objectives were investigated:

makespan and mean tardiness. These objectives are chosen because the makespan

represents the level of productivity that the system can achieve, whereas the mean

tardiness objective assesses its ability to meet customer due dates (customer satisfaction

level). Job due dates are estimated using the total work content method (Nguyen et al.,

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 89

2017a), where job due date = current time + tightness factor × total processing time, as

these dates are not available in the instances reported in the literature. A tightness factor

of 1.9 was used as proposed in a previous report (Sels et al., 2012a). Regarding the GP

parameters used for the five algorithms, a population of 250 rules was created using the

ramped-half-and-half method, with a maximum depth of 8. Table 3.1 lists the set of

functions and terminals used. In addition, the underlined terminals are used when

optimizing the mean tardiness objective, and are excluded in the case of the makespan

objective. The function set comprises basic arithmetic operations and logical functions.

The values of the crossover and mutation rates are set to 0.9 and 0.1. The algorithm

terminates after 30 generations are completed. Therefore, increasing the population

diversity will only affect the fitness value of the best-evolved rule at a specific

generation without affecting the computational time since the number of generations is

fixed. Because of the randomness inherent in the GP algorithm, 20 replications were

performed. Also, the Wilcoxon rank-sum test was used with a significance level of 5 %.

Table 3.1 GP terminal and function sets

Attribute Explanation

JR Job release date

OR Operation ready time

WR Work remaining of the job

PT Operation processing time

RO Number of remaining operations in a job

WT Operation waiting time

NPT Processing time of the next operation

WINQ Work in the next queue

APR Average processing time of queued job

DD Job due date

CT Machine ready time (current time)

SL Job slack

Function set +, −, ×, /, 𝑚𝑎𝑥, and 𝑎𝑏𝑠

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 90

3.4 Results

This section discusses the evaluation of the two proposed algorithms with respect to the

three approaches. In Section 3.4.1, parameter 𝑘 is fine-tuned by analysing its impact on

the performance of the proposed similarity metric. To gain in-depth insights into the

behaviour of the five algorithms, the quality of the GP individuals was tracked across

generations. Additionally, the results obtained by applying the five algorithms to the ten

job shop scenarios are presented in subsections 3.4.2 and 3.4.3 for the makespan and

mean tardiness objectives, respectively.

3.4.1 Parameter Analysis

The PGP_P algorithm is implemented using four values of the 𝑘 parameter 𝑘={1,2,3,4},

where 𝑘 = 1 represents the case in which a node takes a weight equal to its depth. In

addition, four performance measures were considered:

• Solution quality: average objective values of rules in a given generation.

• Mean rule length: the average number of terminals included in GP individuals.

• Genotypic diversity: the number of unique rules. Two rules are identical if they

have the same structure and content (Burke et al., 2004).

• Phenotypic diversity: the number of unique fitness values in a population.

The experiments in this subsection were performed in the ta61 instance, as similar

results were obtained in the other nine instances and presented numerically in the next

subsections. In addition, the aim of this analysis was to investigate the performance of

the algorithms across generations rather than their overall performance which is

presented in the next subsections. Figure 3.4 shows the results obtained by

implementing the PGP_P algorithm using the four values of the 𝑘 parameter, where the

mean values are shown as a solid line, and the standard deviations are depicted as a

shaded area around it. As shown in Figure 3.4 (a), changing the value of the 𝑘 parameter

does not affect the solution quality of the evolved rules, as there is no significant

difference between the four runs. In contrast, the average rule length is highly sensitive

to the 𝑘 value, as shown in Figure 3.4 (b). Similar observations are revealed for the

other two measures, as shown in Figure 3.4 (c) and (d), where altering the 𝑘 value had a

great impact on the population diversity. The interesting finding here is that even

though the population diversity changes according to the value of parameter 𝑘, the GP

reasoning ability can mitigate this effect on the quality of the generated rules (similar

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 91

makespan results). Specifically, when the value of 𝑘 is 4, if the node depth is decreased

by one, its weight increases fourfold. Thus, the GP search explores the search space of

small rules (higher impact on diversity), resulting in a reduction in the length of new

rules, as shown in Figure 3.4 (a) and (b), where 𝑘 = 4 has the smallest average rule

length with the same fitness values. The distance metric with 𝑘 = 3 was used in the next

GP runs because it yielded acceptable results for the four performance measures.

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 92

Figure 3.4: Effect of changing the value of the 𝑘 parameter on the four

performance measures.

In Figure 3.5, the behaviour of the two proposed algorithms is analysed against that

of the three algorithms from the literature on the ta61 instance with respect to the

quality of evolved rules, rule length, computational time, and population diversity.

Regarding the quality of the evolved rules, the PGP_N algorithm obtained the lowest

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 93

makespan value with a consistent improvement across generations, as shown in Figure

3.5 (a). In addition, the exploration ability of PGP_P was superior to that of the EGP

and MGP algorithms. It is noteworthy that although the SGP algorithm obtained higher

quality makespan results compared with the EGP, MGP, and PGP_P algorithms, these

results would be reversed if the computational time was used as a stopping condition

instead of the number of generations, as illustrated in Figure 3.5 (c). The use of the

Pareto tournament selection method in the EGP, MGP, and PGP_P algorithms

significantly decreased the average rule size by approximately 75% compared with the

SGP algorithm, resulting in a reduction in computational time of approximately 56.5%,

as shown in Figure 3.5 (b) and (c). Therefore, when comparing the other JSSP instances

in the next subsection, the average rule length was used as an indicator of the

computational time of the algorithm.

Regarding the diversity of GP individuals, the proposed PGP_N algorithm obtained

higher genotypic and phenotypic diversity values across generations compared with

other methods, especially in the first ten generations as depicted in Figure 3.5 (d) and

(e). In addition, although the SGP algorithm generated high-quality rules, it had the

lowest genetic and phenotypic diversity, which explains the exponential growth in the

mean rule length as SGP strives to escape from local optima by increasing the rule

sizes. Moreover, the use of the proposed distance metric increases the phenotypic

diversity of GP rules compared with the literature similarity measures without

sacrificing the performance or size of the rules. These results led to two main findings.

1. The PGP_N algorithm was able to generate rules with lower makespan values

compared with the other methods because of the high diversity levels, especially

in the early generations.

2. The use of NSGA-II as a section mechanism enhanced the exploration ability of

the GP algorithm compared with the standard or Pareto tournament selection

methods used in the other algorithms.

Finally, the PGP_N algorithm obtained a mean makespan value of 3315 with a 7.2%

deviation from the optimal solution (2868) of this JSSP instance, which proves that GP

is a promising approach for the automated design of scheduling rules.

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 94

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 95

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 96

Figure 3.5: Performance of the five GP algorithms on the ta61 JSSP instance.

3.4.2 Makespan Objective

The performances of the five GP algorithms for optimizing the makespan objective

were estimated. Ten instances from the literature were used and four performance

measures were evaluated. These measures were Makespan Value (MV), average Rule

Length (RL), Genotypic Diversity (GD), and Phenotypic Diversity (PD). The mean and

standard deviation of the obtained results as are listed in Table 3.2. The statistical

results achieved by comparing PGP_P with the three algorithms are represented by the

tuple next to the PGP_P results (PGP_P versus SGP, PGP_P versus EGP, and PGP_P

versus MGP). The symbols "+," "−," and "=" indicate that the corresponding result is

significantly better, worse than, or similar to its counterpart, respectively. In addition,

the performance of PGP_N is compared with that of the three literature methods, as well

as the PGP_P algorithm represented by the fourth element in the tuples next to its

results. The last row of the table summarizes the results counting the number of times a

certain method loses (significantly worse) or wins (significantly better) against the

PGP_P and PGP_N algorithms (lose/win).

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 97

Regarding the quality of the evolved rules, the PGP_N algorithm delivered similar

performance to the SGP with only one loss, whereas the PGP_P produced inferior

results in four instances. In contrast, the proposed algorithms significantly outperformed

the SGP algorithm in terms of the average size of the rules and diversity objectives. The

rules evolved using the proposed methods were able to achieve smaller makespan

values compared with the EGP and MGP algorithms with wins in almost all instances.

In addition, the population diversity of the PGP_P and PGP_N rules was significantly

larger than that of the EGP rules in the ten instances. In contrast, although the

phenotypic diversity of the PGP_P algorithm was greater than that of the MGP

algorithm in the nine scenarios, the genotypic diversity was significantly worse in all

instances. These results are consistent with those in the literature, as good fitness values

were reported to be correlated with high phenotypic diversity. Therefore, it is clear that

the phenotypic diversity among the GP evolved rules has a more pronounced effect on

solution quality compared with the genotypic diversity. The integration of NSGA-II and

the proposed distance metric greatly increased the genotypic diversity and reduced the

average length of rules compared with the PGP_P algorithm.

The following conclusions were drawn. The edit distance method used in the EGP

algorithm is clearly unsuitable for measuring the similarity between GP rules in JSSPs

because it produced the worst results for the GD and PD measures. In contrast, the

genetic marker diversity measure used in the MGP algorithm achieved high levels of

genotypic and phenotypic diversity among the GP rules. Finally, the rules evolved using

the PGP_N algorithm have the lowest makespan values, highest diversity, and smallest

average rule length, which demonstrates the usefulness of integrating NSGA-II with the

GP algorithm while using the proposed distance metric.

Table 3.2 Performance of the five GP algorithms in terms of optimizing the

makespan objective on the ten JSSP instances

Inst. Perf. SGP EGP MGP PGP_P PGP_N

ta61

MV
3078.15

± 16.4

3152.5

± 12.5

3129.55

± 17.2

3102.6 ± 11.6

(-, +, +)

3077.0 ± 13.0

(=, +, +, +)

RL
14.09

± 2.6

3.73

± 1.1

3.38

± 0.2

3.3 ± 0.8

(+, =, +)

3.19 ± 0.7

(+, +, =, +)

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 98

GD
89.82

± 6.3

103.33

± 13.3

155.82

± 3.4

145.68 ± 5.0

(+, +, -)

180.59 ± 8.3

(+, +, +, +)

PD
32.08

± 5.5

62.47

± 7.7

93.21

± 5.1

99.1 ± 5.9

(+, +, +)

103.9 ± 6.6

(+, +, +, =)

ta62

MV
3133.15

± 13.8

3188.75

± 28.0

3158.2

± 14.8

3142.3 ± 7.8

(-, +, +)

3135.2 ± 7.5

(=, +, +, =)

RL
11.61

± 2.2

3.07

± 0.6

3.15

± 0.2

3.08 ± 1.0

(+, =, +)

2.79 ± 1.1

(+, =, =, +)

GD
96.47

± 6.7

78.39

± 13.9

149.74

± 4.2

137.44 ± 6.0

(+, +, -)

164.35 ± 11.4

(+, +, +, +)

PD
25.35

± 4.0

41.48

± 7.1

74.75

± 4.8

84.34 ± 6.6

(+, +, +)

79.28 ± 9.7

(+, +, =, -)

ta63

MV
2960.9

± 10.3

3003.4

± 17.7

2984.65

± 8.8

2967.45 ± 11.6

(=, +, +)

2956.45 ± 10.1

(=, +, +, =)

RL
13.9

± 2.5

3.48

± 1.3

3.42

± 0.2

3.52 ± 1.2

(+, =, -)

3.16 ± 0.9

(+, =, +, +)

GD
95.28

± 6.5

101.24

± 10.7

156.87

± 3.3

143.83 ± 4.6

(+, +, -)

177.07 ± 9.6

(+, +, +, +)

PD
25.68

± 4.6

57.09

± 6.7

85.27

± 4.7

88.1 ± 6.7

(+, +, +)

86.99 ± 6.8

(+, +, =, =)

ta64

MV
2857.75

± 18.2

2912.5

± 15.0

2885.3

± 7.2

2861.2 ± 9.5

(=, +, +)

2853.5 ± 7.0

(=, +, +, =)

RL
13.85

± 3.0

3.16

± 0.7

3.11

± 0.2

3.19 ± 1.4

(+, -, -)

2.9 ± 1.0

(+, =, =, +)

GD
90.36

± 6.5

98.81

± 11.7

156.95

± 3.1

142.15 ± 5.4

(+, +, -)

178.88 ± 9.6

(+, +, +, +)

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 99

PD
25.95

± 4.7

42.52

± 6.5

65.93

± 4.7

76.51 ± 6.9

(+, +, +)

79.68 ± 8.7

(+, +, +, =)

ta65

MV
2988.9 ±

21.0

3035.6 ±

13.3

3024.85

± 17.9

2987.65 ± 16.8

(=, +, +)

2994.85 ± 14.1

(=, +, +, =)

RL
12.99

± 2.8

3.2

± 0.9

2.86

± 0.2

2.92 ± 1.2

(+, =, -)

2.56 ± 1.1

(+, +, =, +)

GD
86.92

± 7.8

75.58

± 15.3

147.65

± 3.9

132.8 ± 13.7

(+, +, -)

140.17 ± 17.0

(+, +, -, =)

PD
26.51

± 4.7

36.62

± 7.2

56.46

± 4.7

77.37 ± 8.6

(+, +, +)

65.22 ± 9.6

(+, +, +, -)

ta66

MV
3042.15

± 11.4

3099.25

± 10.4

3075.85

± 9.2

3056.95 ± 7.7

(-, +, +)

3050.0 ± 5.8

(=, +, +, =)

RL
14.08

± 3.4

3.58

± 0.9

3.44

± 0.2

3.31 ± 1.0

(+, =, +)

3.22 ± 1.2

(+, +, +, +)

GD
88.61

± 6.7

102.36

± 12.8

155.44

± 3.7

143.47 ± 4.9

(+, +, -)

173.65 ± 9.1

(+, +, =, +)

PD
28.48

± 4.4

60.68

± 8.2

94.49

± 4.8

95.21 ± 5.3

(+, +, +)

95.21 ± 6.9

(+, +, =, =)

ta67

MV
3024.95

± 19.8

3108.25

± 18.5

3084.15

± 16.2

3040.95 ± 10.1

(=, +, +)

3039.6 ± 11.6

(=, +, +, =)

RL
13.87

± 2.2

3.35

± 0.7

3.51

± 0.2

3.68 ± 1.3

(+, -, -)

3.49 ± 1.2

(+, -, +, +)

GD
91.13

± 5.5

109.15

± 9.6

157.55

± 3.1

143.85 ± 4.7

(+, +, -)

180.33 ± 7.0

(+, +, +, +)

PD
32.65

± 5.7

66.22

± 6.1

96.73

± 4.5

96.25 ± 5.7

(+, +, =)

104.62 ± 6.2

(+, +, =, =)

ta68 MV 2922.95 2985.15 2946.65 2936.35 ± 14.6 2922.1 ± 10.9

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 100

± 11.9 ± 15.8 ± 8.9 (=, +, +)
(=, +, +, =)

RL
11.57

± 2.0

3.24

± 0.7

3.4

± 0.2

3.21 ± 0.8

(+, +, =)

2.76 ± 0.6

(+, +, +, +)

GD
94.16

± 7.3

91.48

± 13.9

153.12

± 3.5

143.29 ± 5.0

(+, +, -)

166.0 ± 12.3

(+, +, =, +)

PD
25.19

± 4.7

48.27

± 8.1

83.4

± 4.4

85.65 ± 7.1

(+, +, +)

79.62 ± 7.9

(+, +, =, =)

ta69

MV
3211.35

± 6.6

3275.55

± 14.0

3268.9

± 11.7

3234.3 ± 12.3

(-, +, +)

3221.15 ± 9.0

(-, +, +, =)

RL
13.92

± 3.5

4.62

± 2.0

3.28

± 0.2

3.23 ± 1.1

(+, +, +)

3.11 ± 0.8

(+, +, +, +)

GD
91.14

± 5.6

111.56

± 10.2

155.88

± 3.5

140.8 ± 7.4

(+, +, -)

183.13 ± 8.1

(+, +, +, +)

PD
28.12

± 4.8

54.83

± 6.7

74.94

± 5.3

87.23 ± 6.0

(+, +, +)

94.44 ± 6.8

(+, +, +, +)

ta70

MV
3278.55

± 21.8

3334.65

± 16.9

3301.55

± 16.5

3289.55 ± 16.7

(=, +, =)

3258.85 ± 12.4

(=, +, +, +)

RL
13.82

± 2.4

3.51

± 0.8

3.46

± 0.2

3.59 ± 1.3

(+, -, -)

3.29 ± 1.1

(+, =, =, +)

GD
93.14

± 6.0

106.65

± 11.6

154.47

± 3.9

146.4 ± 4.7

(+, +, -)

169.31 ± 10.2

(+, +, =, +)

PD
28.55

± 5.0

63.56

± 7.5

86.05

± 4.9

92.52 ± 6.5

(+, +, +)

90.38 ± 7.5

(+, +, =, -)

Sum.

MV
0-4,

0-1

10-0,

10-0

9-0,

10-0
2-0

None

RL
8-1,

8-1

3-2,

6-1

4-4,

6-0
9-0

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 101

GD
10-0,

10-0

10-0,

10-0

0-10,

6-1
9-0

PD
10-0,

10-0

10-0,

10-0

9-0,

4-0
1-3

3.4.3 Mean Tardiness Objective

The five algorithms were evaluated in terms of their ability to optimize the Mean

Tardiness (MT) objective, which evaluates the ability of the job shop to meet customer

due dates. The results are presented in Table 3.3. The performance of the PGP_P and

PGP_N algorithms was superior to that of the SGP algorithm with respect to the RL,

GD, and PD objectives. Regarding the MT objective, both SGP and PGP_N had

relatively similar performances, except for one instance in which SGP outperformed

PGP_N. Compared with the EGP algorithm, the proposed algorithms achieved results

that are of a significantly higher quality for the MT, GD, and PD objectives in all

considered instances. The conclusion regarding the average length of the evolved rules

is not definitive because the PGP_P algorithm delivered superior performance in three

instances and inferior performance in four instances compared with the EGP algorithm.

The results in Table 3.3 indicate that the proposed algorithms were able to create

rules with higher solution quality and smaller sizes than the MGP algorithm.

Specifically, PGP_P and PGP_N have significantly lower mean tardiness values than

the MGP algorithm in nine and ten instances, respectively. In terms of the phenotypic

diversity of the evolved rules, both PGP_P and PGP_N outperformed MGP in nine and

two instances, respectively, without any loss. In contrast, the PGP_P algorithm yielded

poor GD results compared with the MGP results for the ten scenarios. In addition, it is

important to note that high genotypic diversity does not necessarily imply high

phenotypic diversity because rules with different structures and content may obtain the

same fitness values. The main reason for this phenomenon is the presence of redundant

operations, for example, even though the 𝑊𝐼𝑁𝑄 + 𝑃𝑇 rule and the 𝑊𝐼𝑁𝑄 +

((𝑃𝑇 × 𝑁𝑃𝑇)/𝑁𝑃𝑇)) rule have different structures and terminals (genomes), they will

return the same results (phonemes). Finally, the rules generated using the proposed

multi-objective approach had higher solution quality in two instances, shorter lengths in

seven instances, and higher genotypic diversity in nine instances compared with the

PGP_P algorithm.

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 102

Although the results obtained using the mean tardiness objective were consistent

with those obtained using the makespan objective, two additional observations were

noted. First, in most scenarios, the average rule length in the case of the mean tardiness

objective is greater than the average length of the rules generated for the makespan

objective. Second, the PD measure in the SGP algorithm did not change significantly

between the two objectives; in spite of this, the other algorithms had higher PD levels in

most instances in the case of the mean tardiness objective compared with the makespan

objective. Increasing the number of specified terminals related to job due dates by three

in the case of the mean tardiness objective might be the reason for the increase in the

average rule length and phenotypic diversity. When the number of terminals increases,

the heuristic search space increases exponentially; thus, the GP algorithm increases the

length of the generated rules to improve the exploration ability. In addition, as the

heuristic search space and average length of rules increase, distance metrics become

more efficient because the possibility of variability between the structure and fitness

value of evolving rules increases.

Table 3.3 Performance of the five GP algorithms in terms of optimizing the mean

tardiness objective on the ten JSSP instances

Inst. Perf. SGP EGP MGP PGP_P PGP_N

ta61

MT
492.14

± 5.0

514.54

± 5.4

507.98

± 5.5

498.37 ± 4.8

(=, +, +)

494.0 ± 3.4

(=, +, +, =)

RL
14.56

± 3.6

4.62

± 1.4

4.1

± 0.2

3.71 ± 0.7

(+, +, +)

3.59 ± 0.8

(+, +, +, +)

GD
94.25

± 5.5

113.1

± 12.5

155.83

± 3.1

142.63 ± 5.0

(+, +, -)

168.69 ± 9.6

(+, +, =, +)

PD
25.27

± 3.6

74.33

± 9.6

97.28

± 4.6

103.32 ± 6.4

(+, +, =)

100.04 ± 5.5

(+, +, =, -)

ta62

MT
463.19

± 7.6

485.07

± 4.9

478.94

± 4.3

470.15 ± 4.3

(=, +, +)

466.72 ± 4.2

(=, +, +, =)

RL
12.21

± 1.8

4.08

± 1.0

4.17

± 0.2

4.11 ± 1.0

(+, -, +)

3.68 ± 0.7

(+, +, +, +)

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 103

GD
89.34

± 6.4

117.38

± 10.4

158.15

± 3.3

145.08 ± 5.0

(+, +, -)

182.13 ± 8.1

(+, +, +, +)

PD
27.96

± 4.4

88.5

± 8.0

112.89

± 4.9

121.24 ± 6.9

(+, +, +)

128.05 ± 7.3

(+, +, =, =)

ta63

MT
461.61

± 4.0

486.55

± 5.5

475.17

± 3.1

468.75 ± 4.7

(-, +, +)

466.37 ± 4.1

(-, +, +, =)

RL
13.57

± 2.3

4.11

± 1.4

4.18

± 0.2

3.9 ± 0.9

(+, =, =)

3.99 ± 1.0

(+, =, =, =)

GD
91.78

± 7.5

106.42

± 11.4

157.02

± 3.5

143.86 ± 5.0

(+, +, -)

179.58 ± 8.8

(+, +, +, +)

PD
26.65

± 4.0

79.03

± 8.7

105.7

± 4.7

116.22 ± 6.3

(+, +, +)

125.12 ± 7.6

(+, +, =, =)

ta64

MT
455.9

± 7.3

479.64

± 7.0

467.02

± 6.5

457.33 ± 6.0

(=, +, +)

447.49 ± 7.0

(=, +, +, +)

RL
14.13

± 3.3

3.48

± 0.6

4.11

± 0.2

3.83 ± 1.0

(+, -, =)

3.88 ± 1.1

(+, -, =, =)

GD
95.07

± 6.6

99.75

± 11.5

157.64

± 3.1

145.97 ± 4.8

(+, +, -)

175.15 ± 8.7

(+, +, +, +)

PD
24.27

± 4.2

68.86

± 7.2

94.83

± 5.1

115.77 ± 6.6

(+, +, +)

112.81 ± 6.1

(+, +, +, -)

ta65

MT
443.85

± 5.9

459.51

± 5.9

454.9

± 4.8

449.91 ± 3.7

(-, +, =)

446.21 ± 4.9

(=, +, +, =)

RL
13.34

± 2.1

3.8

± 0.7

4.09

± 0.2

3.67 ± 0.8

(+, +, +)

3.51 ± 0.5

(+, +, +, +)

GD
92.07

± 6.1

114.4

± 9.5

157.6

± 3.1

144.45 ± 4.7

(+, +, -)

179.33 ± 9.8

(+, +, +, +)

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 104

PD
25.05

± 3.5

81.4

± 7.6

102.43

± 5.3

116.4 ± 6.0

(+, +, +)

123.65 ± 7.7

(+, +, =, =)

ta66

MT
470.19

± 7.4

499.12

± 6.2

490.54

± 4.9

476.14 ± 6.0

(=, +, +)

475.51 ± 6.0

(=, +, +, =)

RL
13.97

± 2.8

3.73

± 1.0

3.91

± 0.2

3.53 ± 1.0

(+, =, +)

3.16 ± 0.8

(+, +, +, +)

GD
90.77

± 7.1

96.24

± 10.0

153.67

± 3.6

141.62 ± 5.9

(+, +, -)

143.73 ± 13.2

(+, +, =, =)

PD
24.28

± 3.5

62.96

± 7.0

87.22

± 4.4

110.23 ± 6.6

(+, +, +)

90.11 ± 7.4

(+, +, =, -)

ta67

MT
488.62

± 6.6

515.9

± 7.1

502.96

± 3.9

494.27 ± 3.3

(=, +, +)

491.38 ± 4.3

(=, +, +, =)

RL
15.24

± 4.1

3.73

± 0.7

4.19

± 0.2

4.15 ± 1.3

(+, -, +)

3.72 ± 1.0

(+, =, +, +)

GD
90.96

± 6.8

107.05

± 9.8

155.82

± 3.5

144.88 ± 4.9

(+, +, -)

168.02 ± 9.0

(+, +, =, +)

PD
27.3

± 4.0

79.58

± 7.7

97.8

± 5.4

119.75 ± 6.3

(+, +, +)

114.54 ± 7.1

(+, +, =, -)

ta68

MT
476.26

± 7.6

496.38

± 6.5

491.58

± 4.5

481.2 ± 6.6

(=, +, +)

475.53 ± 5.8

(=, +, +, =)

RL
14.24

± 3.1

3.85

± 0.8

4.08

± 0.2

3.82 ± 1.1

(+, +, =)

4.0 ± 1.1

(+, -, =, =)

GD
91.7

± 6.9

103.03

± 12.6

155.09

± 4.0

144.81 ± 4.5

(+, +, -)

173.99 ± 8.6

(+, +, +, +)

PD
28.31

± 3.9

72.94

± 8.9

99.39

± 6.0

120.84 ± 6.9

(+, +, +)

123.42 ± 7.3

(+, +, +, =)

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 105

ta69

MT
523.12

± 8.2

546.72

± 5.6

538.03

± 5.6

527.85 ± 7.4

(=, +, +)

517.62 ± 4.3

(=, +, +, +)

RL
11.62

± 1.7

3.4

± 0.5

3.98

± 0.2

3.56 ± 0.8

(+, -, +)

3.46 ± 0.9

(+, -, +, +)

GD
92.87

± 5.6

96.1

± 10.3

155.46

± 3.1

142.01 ± 5.0

(+, +, -)

163.64 ± 11.9

(+, +, =, +)

PD
23.76

± 3.0

65.77

± 6.5

87.13

± 6.4

101.75 ± 7.5

(+, +, +)

99.83 ± 5.7

(+, +, =, -)

ta70

MT
505.36

± 6.0

526.77

± 5.5

521.24

± 3.4

514.11 ± 6.3

(-, +, +)

508.56 ± 5.1

(=, +, +, =)

RL
12.92

± 2.1

4.11

± 0.9

4.15

± 0.2

3.79 ± 0.9

(+, =, =)

3.39 ± 0.6

(+, +, +, +)

GD
98.77

± 7.2

110.45

± 13.1

158.48

± 3.0

141.31 ± 5.2

(+, +, -)

181.76 ± 8.7

(+, +, +, +)

PD
23.54

± 3.8

71.94

± 9.5

99.15

± 5.1

107.57 ± 7.7

(+, +, +)

113.43 ± 7.3

(+, +, =, =)

Sum.

MT
0-3,

0-1

10-0,

10-0

9-0,

10-0
2-0

None

RL
10-0,

10-0

3-4,

5-3

6-0,

7-0
7-0

GD
10-0,

10-0

10-0,

10-0

0-10,

6-0
9-1

PD
10-0,

10-0

10-0,

10-0

9-0,

2-0
0-5

Chapter 3: Multi-Objective Genetic Programming Approach For Static Job Shop Scheduling Problems

 106

3.5 Chapter Summary

This chapter proposed a distance metric to promote diversity among the scheduling

heuristics evolved using a genetic programming algorithm. The proposed distance

metric took into account four main characteristics of GP rules observed by behaviour

analysis. In addition, to mitigate the bloating effect, the proposed metric was integrated

with NSGA-II to optimize the solution quality, diversity value, and rule length

simultaneously. Two algorithms, PGP_P and PGP_N, were developed to assess the

effectiveness of the proposed distance metric and multi-objective GP approaches. In

addition, two objective functions were addressed: the makespan and mean tardiness. For

each objective, four performance measures were evaluated: the objective value,

genotypic diversity, phenotypic diversity, and average length of the evolved rules.

The impact of the newly introduced parameter 𝑘 was analysed by tracking the

performance of the proposed algorithm across evolutionary generations using several k

values 𝑘 = {1, 2, 3, 4} and the four performance measures. Afterward, the performance

of the two proposed algorithms was compared with that of three algorithms from the

literature namely, SGP, EGP, and MGP across ten benchmark job shop scheduling

problem instances. Regarding the literature methods, experimental results indicated that

the edit distance metric used in the EGP algorithm was not effective for measuring the

similarity between the GP evolved rules. In contrast, measuring similarity using the

genetic marker metric used in the MGP algorithm enhanced both genotypic and

phenotypic diversity among the GP rules. In addition, the obtained results demonstrated

the effectiveness of the proposed methods in generating a phenotypically diverse

population of scheduling rules with smaller sizes and higher solution quality compared

with other methods. Although one of the existing diversity metrics (MGP) obtained

higher quality genotypic diversity results compared with the PGP_P algorithm, the

evolved rules using PGP_P significantly outperformed the MGP rules in terms of the

other three objectives. The rules generated using the PGP_N algorithm produced

superior results compared with the literature approaches for the studied objectives.

Finally, it was noted that the average rule length in the case of the mean tardiness

objective was greater than that in the case of the makespan objective. This was expected

since the number of features in the mean tardiness objective had three more features in

the terminal set compared with the makespan objective. Reducing the number of

features in the terminal set in order to reduce the size of evolved rules is the motivation

behind the next chapter.

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 107

Chapter 4. GENETIC PROGRAMMING WITH

FEATURE SELECTION FOR DYNAMIC JOB

SHOP SCHEDULING PROBLEMS

4.1 Introduction

The ability of the GP algorithm to generate high-quality rules depends largely on the

features included in the terminal set that need to cover the most crucial characteristics of

the job, machine, and shop floor (F. Zhang et al., 2021c). However, there is a wide

range of features to choose from which varies depending on job shop settings, problem

constraints, and objective functions making the manual selection of features impractical

(Zhang et al., 2019c). In addition, the inclusion of insignificant terminals leads to three

major issues as follows (Mei et al., 2017b).

a) It greatly increases the search space for dispatching rules and thus negatively

affects the ability of the GP algorithm to reach the most promising areas.

b) The average size of evolved rules tends to be large which hinders their

understanding and implementation in real-world problems.

c) It increases the GP computational time greatly because complex rules require a

high computational budget for a fitness assessment compared with simpler rules.

Therefore, feature selection is an important issue in the GP literature which can

simplify the evolved rules and speed up the learning process (F. Zhang et al., 2021c).

Although GP can perform feature selection automatically, its ability is limited. For

example, even the best rules usually include some redundant terminals (Zhang et al.,

2019c).

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 108

The main objective of this chapter is to propose a new feature selection approach for

the GP algorithm to include significant features and exclude redundant ones from the

structure of evolved rules. In contrast with existing feature selection approaches in the

literature, the proposed approach is expected to offer the following advantages.

I. The proposed approach uses a modified attribute vector representation to

estimate the weight of each terminal without being affected by the occurrence of

redundant terminals or complex rule structures.

II. It is an online feature selection approach which means that it selects important

features during the GP runs using the estimated weights of terminals from earlier

generations to guide the search in the current generation.

III. It uses a probabilistic selection scheme rather than the inclusion or exclusion

method (binary selection) to provide a broad preference scheme for each feature.

The remainder of this chapter is organized as follows. Section 4.2 provides a

detailed explanation of the proposed attribute vector, and feature selection approach.

The experimental details are presented in Section 4.3 including comparison design,

dynamic job shop scheduling problem instances, and GP parameters. Section 4.4

provides the results in terms of parameter tuning, training performance, testing

performance, feature and behaviour analysis of evolved rules, and feature selection

verification. Finally, Section 4.5 presents the conclusions of this chapter.

4.2 Proposed methods

4.2.1 Modified Attribute Vector

The GP-evolved rules are usually complex tree structures that are difficult to analyse

and interpret. The authors of one study (Nguyen et al., 2018b) extended the tree

representation (𝑝𝑡𝑟𝑒𝑒𝑖) for each rule 𝑖 by an attribute vector (𝑎𝑣𝑒𝑐𝑖) with the goal of

increasing the interpretability of the rules by selecting relevant attributes. The attribute

vectors are binary arrays (1, 0) with a number of elements 𝑇 equal to the total number

of terminals. If the terminal state 𝑥𝑖𝑗 of a terminal 𝑗 in rule 𝑖 is 1 (active or important),

then the actual value of the attribute is used to evaluate the priority function. In contrast,

if 𝑥𝑖𝑗 is 0, then the attribute is regarded as irrelevant (inactive). Its value is set to 1 to

exclude its effect on estimating priority values for queued jobs. The key limitation is

that it ignores situations in which a particular attribute might not be present in the

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 109

priority function. Therefore, the attribute vector is not strictly linked to its

corresponding priority function, leading to the following challenges.

• Attribute vectors do not provide sufficient information about their priority

functions. Some examples are that elements in an attribute vector might take a

value of 1 (active) even if the rule includes only one terminal.

• Mutation operators in attribute vectors may not always provide a true influence

on how evolved rules estimate priority values (redundant operations). In other

words, changing the activation state of a terminal has no effect if this terminal is

not present in the rule. However, it might exert a future effect if any of these

terminals emerge after tree crossover or mutation, although this is not certain.

• The attribute vector mutation operator is applied to only one random terminal

with a fixed mutation rate that ignores the relative importance of the terminals.

Therefore, a new attribute vector representation is proposed by modifying the

representation proposed in that earlier paper (Nguyen et al., 2018b). The proposed

attribute vector extends the binary representation, where the terminal state 𝑥𝑖𝑗 of rule 𝑖

and terminal 𝑗 can be 𝑎𝑐𝑡𝑖𝑣𝑒 = 1 or 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 = 0 to a ternary array where three states

exist for each terminal. If terminal 𝑗 appears in the priority function of rule 𝑖, then its

state 𝑥𝑖𝑗 may be 𝑎𝑐𝑡𝑖𝑣𝑒 = 1 or 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 = −1; otherwise, it is 𝑎𝑏𝑠𝑒𝑛𝑡 with a state

equal to 0. For tree-based GP, priority functions are generated using a predefined set of

functions and terminals. The set of terminals and functions used is shown in Table 4.1.

Table 4.1 GP terminal and function sets

Terminal Description Terminal Description

WINQ Work in the next queue DD Due date of the job

OR Ready time of the operation CT Current time

RO Number of remaining operations SL Slack of the job

PT Operation processing time JR Release date of a job

WT Waiting time of the operation WR Work reaming of the job

Npt Processing time of next operation JW Weight of the job

Apr Average processing time of queued jobs # Random number from 0 to 4

Functions +, −,×,/, 𝑚𝑖𝑛, 𝑚𝑎𝑥, 𝑎𝑏𝑠

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 110

An example of a dispatching rule encoded using the proposed representation and the

literature representation is presented in Figure 4.1. Although both representations have

the same priority function (𝑝𝑡𝑟𝑒𝑒𝑖) for the function PT + Npt + WINQ / JW and the

similar simplified version (PT + Npt + WINQ), the main difference appears in the

attribute vectors (𝑎𝑣𝑒𝑐𝑖). In the case of literature representation, there are ten active

attributes, although only three of them exist in the rule. In addition, the WT, SL, and JW

terminals are encoded in the same way (inactive), even though JW is presented in the

priority function. In contrast, by using the proposed representation, one can readily

distinguish between active terminals (PT, Npt, and WINQ), inactive terminals (JW), and

absent terminals (remaining terminals). This concise abstraction engenders two main

advantages over the literature representation.

• It supports attribute vectors to be linked precisely to the structure of their

corresponding priority functions. Therefore, attribute vectors are useful to gain

useful insights into the structure of complex priority functions.

• It ensures that any change in the feature's state will have a direct effect on the

rule. This additional capability facilitates the feature selection mechanism

presented in the next subsection.

Figure 4.1: Example of a rule in the literature and proposed representations.

4.2.2 Genetic operators and Feature Selection Approach

Genetic operators are applied in a two-step procedure. In the first step, the standard

subtree crossover and mutation operators are applied to priority functions (J. R. Koza,

1994b). The second step represents the proposed feature selection mechanism as

follows.

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 111

a) A subset 𝕊 of the best-selected rules from the current generation is used to

estimate the weights of the terminals in the next generation. The weight of a

terminal 𝑗 is reflected by its activation probability 𝐴𝑃𝑗 in the attribute vector.

b) At the end of each evolutionary step, the weight of each terminal 𝐴𝑃𝑗 is

estimated as shown in Equation 4.1.

c) Attribute vectors are copied from the parents. Another mutation is applied using

Equation 4.2. For each rule 𝑖, in the absence of a certain terminal 𝑗 the value of

𝑥𝑖𝑗 in 𝑎𝑣𝑒𝑐𝑖 will be 0.

d) Conversely, if terminal 𝑗 is presented, then a uniform random number (𝑟𝑎𝑛𝑑)

between 0 and 1 is generated. Two situations can occur. If 𝑟𝑎𝑛𝑑 is less than or

equal to its activation probability 𝐴𝑃𝑗 , then 𝑥𝑖𝑗 is 1 (active), otherwise, the

terminal 𝑥𝑖𝑗 is inactive and takes a value of -1.

 The idea underlying this approach is that, if a particular terminal is active in most of

the selected rules, then it reflects its great weight. Therefore, the GP algorithm will be

directed to use that terminal heavily in the next generation. In other words, if the

activation probability of a terminal equals 1 (very important), then it will be active in all

the dispatching rules containing this terminal in the next generation. In contrast, if the

activation probability of a terminal is 0 (greatly irrelevant), then it will be inactive in the

next generation even if it is present in the priority function of some rules. Therefore, the

activation probability acts as an on-the-fly feature selection mechanism that uses past

evolutionary information to estimate the importance of each terminal based on its effect

on the best-generated rules. Finally, to address a special case in which a certain terminal

did not occur or in which it was inactive in all selected rules that rarely happen, a fixed

activation probability (revive) of 0.05 is used. The motive is to activate this terminal in

only 5% of newly generated rules because it might have a tangible effect on other

dispatching rules with different structures. Table 4.2 presents an illustrative example of

how terminals' weights are evaluated using attribute vectors of five arbitrary dispatching

rules.

𝐴𝑃𝑗 =
∑ 1 [𝑥𝑖𝑗 = 1]

|𝕊|
𝑖=1

∑ 1 [𝑥𝑖𝑗 = 1]
|𝕊|
𝑖=1 + ∑ 1 [𝑥𝑖𝑗 = −1]

|𝕊|
𝑖=1

 4.1

 𝑥𝑖𝑗 = {

 0, 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑗 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟 𝑖𝑛 𝑟𝑢𝑙𝑒 𝑖
 1, 𝑟𝑎𝑛𝑑 ≤ 𝐴𝑃𝑗

−1, 𝑟𝑎𝑛𝑑 > 𝐴𝑃𝑗
 4.2

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 112

Table 4.2 An example for estimating terminals' weights using five attribute vectors

Rules JR OR RO WR PT DD CT SL WT Npt WINQ Apr JW

Rule 1 1 1 1 -1 1 1 1 0 0 1 1 0 0

Rule 2 0 0 0 0 1 0 0 0 0 1 1 0 -1

Rule 3 -1 0 1 -1 -1 1 1 1 1 0 1 0 0

Rule 4 1 1 -1 -1 0 -1 0 1 -1 -1 1 0 -1

Rule 5 1 0 -1 1 -1 -1 1 1 1 1 1 0 -1

Weight 0.75 1 0.5 0.25 0.5 0.5 1 1 0.67 0.75 1 0.05 0.05

4.2.3 Overall Algorithm Framework

The proposed approach including the novel representation and feature selection is

presented as Algorithm 1 in Figure 4.2. The algorithm starts by initialising a random

population of dispatching rules. Each rule (𝑅𝑖) is represented by two parts: the priority

function in the tree structure (𝑝𝑡𝑟𝑒𝑒𝑖) and an attribute vector (𝑎𝑣𝑒𝑐𝑖). The activation

probabilities array 𝐴𝑃 is initialised with the same initial probability 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 for all

terminals. As suggested in an earlier paper (Zhou and Yang, 2019), the same random

seed is used for all individuals in the same generation, whereas the seed is changed

between generations to avoid overfitting to a specific problem instance. A DES model is

developed to evaluate the steady-state performance of scheduling policies. All the

generated rules are evaluated across a set of predefined training instances representing

different job shop settings. If the fitness of a certain rule is smaller than (in the case of

minimisation problems) the fitness of the best-recorded individual, then the best rule

and its fitness value are updated as shown in steps 7–13.

The mating pool is formed by high-quality rules that are chosen from the current

population using the tournament selection method. Moreover, a subset 𝕊 of the selected

rules is used to update features’ weights in the activation probability array. The standard

tree crossover and mutation operators are used. In addition, the proposed adaptive

mutation operator is applied to the attribute vectors of the newly generated rules as

described in steps 18–28. If the stopping criterion is met, then the algorithm terminates

and the best rule is returned; otherwise, another evolutionary iteration begins by

following the same steps.

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 113

Inputs: training simulation scenarios 𝑂 ← {𝑂1, 𝑂2, … , 𝑂𝑁}

Output: the best evolved rule 𝑅𝑏𝑒𝑠𝑡

1: Initialize population 𝑃1 ← {𝑅1, 𝑅2, … , 𝑅𝑛},

 𝑅𝑖 ← {𝑝𝑡𝑟𝑒𝑒𝑖, 𝑎𝑣𝑒𝑐𝑖}, 𝑎𝑣𝑒𝑐𝑖 ← {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑇}

2. Initialize activation probabilities array 𝐴𝑃 ← {𝑇 𝑣𝑎𝑙𝑢𝑒𝑠 𝑒𝑞𝑢𝑎𝑙 0 < 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 ≤ 1}

3: Set 𝑅𝑏𝑒𝑠𝑡 ← 𝑛𝑢𝑙𝑙 and the best fitness value 𝑓(𝑅𝑏𝑒𝑠𝑡) ← +∞

4: 𝑔𝑒𝑛 ← 1

5: while 𝑔𝑒𝑛 ≤ max 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do

6: reset the random seed

7: for all 𝑅𝑖 ∈ 𝑃𝑔𝑒𝑛 do

8: evaluate 𝑓(𝑅𝑖) by applying 𝑅𝑖 to each scenario 𝑂𝑘 ∈ 𝑂

9: if 𝑓(𝑅𝑖) < 𝑓(𝑅𝑏𝑒𝑠𝑡) then

10: 𝑅𝑏𝑒𝑠𝑡 ← 𝑅𝑖

11: 𝑓(𝑅𝑏𝑒𝑠𝑡) ← 𝑓(𝑅𝑖)

12: end if

13: end for

14: select the best |P| individuals of 𝑃𝑔𝑒𝑛 to join mating pool

15: estimate 𝐴𝑃 using a subset | 𝕊 | of the best rules

16: for all 𝑅𝑖 ∈ 𝑃𝑔𝑒𝑛 do

17: apply genetic operators on 𝑝𝑡𝑟𝑒𝑒𝑖

18: for all 𝑥𝑖𝑗 ∈ 𝑎𝑣𝑒𝑐𝑖 do

19: if terminal 𝑗 not in 𝑝𝑡𝑟𝑒𝑒𝑖 then

20: 𝑥𝑖𝑗 ← 0

21: else

22: if 𝑟𝑎𝑛𝑑 ≤ 𝐴𝑃𝑗 then

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 114

23: 𝑥𝑖𝑗 ← 1

24: else

25: 𝑥𝑖𝑗 ← −1

26: end if

27: end if

28: end for

29: end for

30: 𝑔𝑒𝑛 ← 𝑔𝑒𝑛 + 1

31: end while

32: return 𝑅𝑏𝑒𝑠𝑡

Figure 4.2: The proposed genetic programming algorithm

4.3 Experiment Design

To investigate the effectiveness of the proposed approach compared with other methods

that have been reported in the literature, a set of numerical experiments was performed.

4.3.1 Comparison Design

Four GP approaches are considered for evolving scheduling policies in the DJSSP. The

overall algorithm framework is shown in Figure 4.3. The exclusive operations of the

proposed approach are highlighted with a dashed frame. Three GP algorithms are

adopted from the literature including Standard Genetic Programming algorithm (SGP)

(Geiger et al., 2006b), Non-dominated Sorting Genetic Programming (NSGP) (Hunt et

al., 2016b), Hybrid Genetic Programming (HGP) (Nguyen et al., 2018b) to provide a

detailed comparison between the Proposed Genetic Programming (PGP) approach and

the current methods. The SGP algorithm is regarded as evaluating the usefulness of

extending the standard version of the GP algorithm with the proposed new

representation and feature selection capability. In addition, the HGP algorithm is

developed to check whether the modification proposed in the current representation

enhances the GP algorithm in evolving shorter dispatching rules without sacrificing

solution quality. From one earlier study (Hunt et al., 2016c), the authors suggested

integrating GP and a multi-objective algorithm to improve solution quality and rule

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 115

length simultaneously. In addition, the integration between GP and NSGA-II, denoted

as NSGP, obtained dispatching rules with better performance than that of SPEA2 for

multi-objective DJSSP (Nguyen et al., 2015b). Therefore, in order to ascertain whether

it is adequate to consider rule length as an explicit objective along with solution quality

rather than an implicit consideration that is achieved using the proposed framework.

Therefore, the NSGP algorithm is adopted to optimise both solution quality and rule

length in an explicit fashion.

Figure 4.3: Framework of the four algorithmic experiments

The four algorithms start by initialising a population of rules in the tree structure.

For the case of HGP, attribute vectors are initialised using the representation shown by

Nguyen et al. (Nguyen et al., 2018b), whereas PGP uses the modified representation

presented herein. In the case of the SGP, HGP, and PGP algorithms, the solution quality

of evolved rules is evaluated. The best rules are chosen using a tournament method

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 116

according to their fitness values for reproduction. For the NSGP algorithm, NSGA-II

(Deb et al., 2002b) is used as a selection mechanism to assign ranks and crowding

distance to each individual. Individuals with higher ranks and smaller crowding

distances are selected as parents. In addition, the fitness value for each rule is expressed

using both the rule length and solution quality, unlike the other three algorithms in

which the fitness value represents only the solution quality. Afterward, in the case of the

PGP method, the features’ weights are updated in the activation probability array.

For all algorithms, generic operators are conducted on priority functions to create

offspring. The additional mutation operator is used in the HGP algorithm, which selects

a single attribute in the attribute vector randomly and inverts its state. In the case of

PGP, attribute vector mutations are applied using activation probabilities estimated from

the prior generation. The new population is formed in the case of the NSGP by

combining both parents and offspring to ensure elitism, as recommended by Deb et al.

(Deb et al., 2002b). The evolutionary cycle is repeated for a predefined number of

generations. Finally, the algorithm terminates. The best-evolved rule is obtained. For the

sake of comparison, 30 literature dispatching rules are adopted to verify the superiority

of the GP reasoning mechanism in outperforming the standard rules commonly used in

industry. The chosen rules are shown in Table 4.3. These rules have obtained high-

solution quality in accordance with the considered objectives in previous studies

(Nguyen et al., 2013c; Zhou et al., 2020b).

Table 4.3 Benchmark dispatching rules

Rule Description Rule Description

SPT Shortest processing time SL Slack

LPT Longest processing time PW Process waiting time

EDD Earliest due date WATC
Weighted apparent tardiness

cost

FDD Earliest flow due date COVERT Cost over time

FIFO First in first out OPFSLK/PT
Operation flow slack /

processing time

LIFO Last in first out LWKR + SPT
Least work remaining +

processing time

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 117

LWKR Least work remaining CR + SPT Critical ratio + processing time

MWKR Most work remaining SPT + PW Processing time + waiting time

NPT Next processing time SPT+PW+FDD Processing time + PW + FDD

WINQ Work in next queue SL / MOR
Slack per most operation

remaining

CR Critical ratio SL / LWKR Slack per least work remaining

AVPRO
Average processing time /

operation
PT+WINQ Processing time + WINQ

MOD Modified due date 2*PT+WINQ+Npt
2Processing time + WINQ +

next processing time

MOR Most operation remaining PT+WINQ+SL Processing time + WINQ + SL

NSL Negative slack
2PT+WINQ+

NPT + WSL

2Processing time + WINQ +

next processing time + waiting

slack

4.3.2 Dynamic Job Shop Simulation Model

A simulation model of a symmetrical job shop was developed that was considered in

relevant earlier studies (Hildebrandt et al., 2010b; Shady et al., 2020c). The simulation

configurations are the following.

• Jobs arrive stochastically according to a Poisson distribution and at a rate that

engenders a predetermined utilisation level in the job shop.

• The job shop consists of 10 machines.

• Each job has 2–10 operations.

• Processing times follow a uniform distribution U [1, 49].

• Weights of jobs are assigned based on a 4:2:1 rule (Nguyen et al., 2013c).

• A tightness factor is used to estimate due dates using the total work content

method. 𝐷𝑢𝑒 𝑑𝑎𝑡𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 + 𝑡𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒.

At each simulation replication, the job shop starts empty. All the collected data up to

the 500th job are discarded. Statistics from the 501st job to the next finished 2500 jobs

are used to calculate the performance measures. Three objective functions are

investigated including Total Weighted Tardiness (TWT), Mean Tardiness (MT), and

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 118

Mean Flow Time (MFT). The TWT objective is chosen to assess not only the ability to

meet due dates, but also how to prioritise jobs with higher weights. In addition, the MT

objective is used to estimate the average delay, which indicates the level of customer

satisfaction. Finally, the MFT objective is used to verify the adaptability of the proposed

method in cases where increased throughput is the desired goal.

Generally, all hyper-heuristics including the GP approach generate new heuristics

by gathering reusable knowledge from a set of training instances either in a supervised

or unsupervised manner (Nguyen et al., 2017b). Therefore, defining a set of scenarios

that reflect the problem domain that the heuristics are likely to encounter in their future

use is a critically important step. Two factors are examined when selecting training

cases including the training set size and computational time, as recommended in an

earlier paper (Branke et al., 2016b). If a small training set is chosen, then the generated

heuristics are likely to suffer from overfitting leading to poor performance in unseen

scenarios. However, a large training set increases the runtime of the heuristics'

evaluation phase without ensuring better results. Training and testing scenarios are

shown in Table 4.4. Simulation scenarios are denoted by a tuple (𝑢, 𝑡) to represent a

combination of job shop utilisation 𝑢% and tightness factor 𝑡. It is noteworthy that, in

the case of the MFT objective, the tightness factor of 3 is set in all scenarios because

changing the value of the tightness factor does not affect the job flow time. In addition,

in the MT scenarios, tighter due dates are used to estimate the quality of generated

heuristics under more challenging scenarios compared with the job shop settings used

for the TWT objective. In the training stage, a single simulation replication is executed

for each configuration. In the testing stage, 20 simulation replications are performed for

each scenario. The objective value (𝑜𝑏𝑗𝑖,𝑛) of rule 𝑖 in an instance 𝑛 is estimated using

the developed DES model. Moreover, for each objective, a reference rule (𝑟𝑒𝑓) is

chosen to normalise the obtained results. The overall performance of a rule (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖)

is assessed through a set 𝑁𝑜 of training instances for a specific objective 𝑜, as shown in

Equation 4.3. The WATC, Covert, and PT + WINQ rules are used respectively as

reference rules to minimise the TWT, MT, and MFT objectives. These rules are chosen

because they have yielded superior results for the objectives under study (Mei et al.,

2017c; Sels et al., 2012b; Zhou et al., 2019). Finally, the percentage change 𝑃𝐶𝑜 in the

performance of a given method to a reference rule for an objective function 𝑜 is

estimated using Equation 4.4 where 𝑜𝑏𝑗𝑏𝑒𝑠𝑡,𝑛 denotes the best evolved rule.

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 119

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =
1

|𝑁𝑜|
∑

𝑜𝑏𝑗𝑖,𝑛

𝑜𝑏𝑗𝑟𝑒𝑓,𝑛

|𝑁𝑜|

𝑛=1
 4.3

𝑃𝐶𝑜 =
1

|𝑁𝑜|
∑

𝑜𝑏𝑗𝑟𝑒𝑓,𝑛 − 𝑜𝑏𝑗𝑏𝑒𝑠𝑡,𝑛

𝑜𝑏𝑗𝑟𝑒𝑓,𝑛

|𝑁𝑜|

𝑛=1
 × 100 4.4

Table 4.4 Parameter settings of the training and testing scenarios

Factor Training Testing

TWT

(80, 3), (80, 6), (80, 8),

(90, 2), (90, 6), (90, 8)

(80, 3), (80, 4), (80, 5), (80, 6), (80, 7), (80, 8), (85, 3),

(85, 4), (85, 5), (85, 6), (85, 7), (85, 8), (90, 3), (90, 4),

(90, 5), (90, 6), (90, 7), (90, 8), (95, 3), (95, 4), (95, 5),

(95, 6), (95, 7), (95, 8)

MT
(80, 1.5), (80, 3), (85, 4), (90,

1.5), (90, 3), (90, 4)

(80, 1.5), (80, 2), (80, 2.5), (80, 3), (80, 3.5), (80, 4),

(85, 1.5), (85, 2), (85, 2.5), (85, 3), (85, 3.5), (85, 4),

(90, 1.5), (90, 2), (90, 2.5), (90, 3), (90, 3.5), (90, 4),

(95, 1.5), (95, 2), (95, 2.5), (95, 3), (95, 3.5), (95, 4)

MFT (70, 3), (85, 3), (97.5, 3)
(70, 3), (72.5, 3), (75, 3), (77.5, 3), (80, 3), (82.5, 3),

(85, 3), (87.5, 3), (90, 3), (92.5, 3), (95, 3), (97.5, 3)

4.3.3 GP Parameter Settings

A population size of 750 rules is generated using the ramped-half-and-half method with

maximum depth of 8 in the four developed algorithms. The crossover, mutation, and

elitism rates are set respectively as 85%, 10%, and 10%. In addition, tournament

selection is used with size equal to 5. The algorithm terminates after completing 50

generations. These parameters have been addressed in earlier studies (Hildebrandt et al.,

2010b; Shady et al., 2020d). Regarding HGP, the attribute mutation probability of 0.5 is

used because it obtained the best results. In addition, it is recommended in another

earlier paper (Nguyen et al., 2018b).

4.4 Results

First, multiple experiments are conducted to tune the new parameters in the PGP

algorithm. Second, the proposed algorithm is compared with the literature methods

related to convergence speed, rule length, and computational time. Third, further

discussions are presented to analyse the structure of best-evolved rules and to elucidate

their internal mechanisms under the three considered objectives. Lastly, the set of

significant features obtained using the PGP algorithm is compared with the results

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 120

obtained using the Feature Selection Genetic Programming (FSGP) algorithm (Mei et

al., 2017c) to verify the validity of the proposed framework in the three objectives. It is

noteworthy that this chapter is not particularly addressing improvement of the solution

quality of evolved rules but on achieving more interpretable rules with shorter lengths

without sacrificing efficiency.

4.4.1 Fine-tuning the Parameters of the Proposed Algorithm

Because similar findings were obtained for the three objectives, the process of selecting

the suitable parameters for the PGP algorithm is presented for the TWT objective. Two

new parameters must be adjusted, including the number of selected individuals 𝕊 and

the initial activation probability 𝑃𝑟𝑜𝑏𝑖𝑛𝑡. Three values for the number of selected rules

are examined while fixing 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 to 0.5. The 𝕊 values are 150, 300, and 450 chosen

rules denoted respectively as 𝐸𝑥𝑝. 150 , 𝐸𝑥𝑝. 300 , and 𝐸𝑥𝑝. 450 . The proposed

algorithm is executed for 20 independent runs for each parameter setting.

The obtained results are shown in Figure 4.4: the mean values are shown as a solid

line; the standard deviations are depicted as shaded area. In addition, a Wilcoxon’s

rank-sum test with a significant level of 0.05 was conducted. As shown in Figure 4.4(a),

although no significant difference was found among the results of the three experiments

related to the number of active terminals, 𝐸𝑥𝑝. 150 had a larger number of active

terminals compared with the cases of 300 and 450 rules. One reason might be that when

the number of selected rules is small (𝕊 = 150), the feature selection mechanism does

not gain sufficient information to distinguish between terminals’ weights. It therefore

has low selective pressure. In contrast, high selective pressure is achieved by selecting a

larger number of rules (𝕊 = 300 and 500) resulting in fewer active terminals.

Regarding the average number of inactive rules, as shown in Figure 4.4 (b), the three

experiments obtained somewhat similar performance. Similar findings are presented in

Figure 4.4 (c), where 𝐸𝑥𝑝. 150 obtained larger values of mean rule length and wider

standard deviation than other experiments.

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 121

Figure 4.4: Impact of number of selected rules 𝕊 on the PGP algorithm

Regarding the quality of created rules, 𝐸𝑥𝑝. 150 shows a kind of stagnation after the

33rd generation, whereas 𝐸𝑥𝑝. 300 and 𝐸𝑥𝑝. 450 are gradually increasing until the

algorithm terminates as depicted in Figure 4.4 (d). These results demonstrate that,

although the algorithm selective pressure is influenced by the number of selected rules

𝕊 to some degree, this effect is not statistically significant. Therefore, the number of

selected individuals 𝕊 equal to 300 is chosen for the following PGP runs because it

achieved slightly better results.

The effects of different values of initial activation probability 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 were

assessed. The examined values are 0.1, 0.5, and 0.9 while fixing the number of selecting

rules to 300. As shown in Figure 4.5 (a), it appears that changing the initial activation

probability significantly affects the algorithm's computational time. Figure 4.5 (b)

illustrates these results because the use of 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 equal to 0.9 had the highest average

rule length among all experiments.

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 122

Figure 4.5: Impact of initial activation probability on the PGP algorithm

Statistical differences were found between 0.1 and 0.9, and between 0.5 and 0.9

with p-values equal to 0.011 and 0.017. Regarding the average number of active

terminals, no strong effect of changing the initial activation probability was found, as

depicted in Figure 4.5 (c). From Figure 4.5 (d), it is clear that a small change in the

𝑃𝑟𝑜𝑏𝑖𝑛𝑡 value has a negligible effect on the percentage deviation in all total weighted

tardiness. The only statistical difference was found between 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 equal to 0.1 and

0.9 (p=0.02). Consequently, 𝕊=300 and 𝑃𝑟𝑜𝑏𝑖𝑛𝑡=0.5 were chosen for the PGP algorithm

because they yielded acceptable results under all performance measures.

4.4.2 Training Performance

Results of statistical analyses by comparison of PGP with the three algorithms from the

literature in the three objective functions are represented by the tuple next to the PGP

results (PGP versus SGP, PGP versus NSGP, and PGP versus HGP), as depicted in

Table 4.5. Symbols "+", "-" and "=" respectively denote that the corresponding result is

significantly better, worse than, or similar to its counterpart. Figure 4.6 (a1), (a2), and

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 123

(a3) respectively show the percentage changes in the TWT, MT, and MFT objectives. In

terms of the solution quality of evolved rules, the PGP algorithm yielded similar

performance to those of the SGP and HGP algorithms for the TWT and MT objectives.

In addition, PGP showed significantly better performance than all algorithms from the

literature in the MFT objective. Obviously, the NSGP algorithm is adversely affected

more by premature convergence than the other methods, which confirms the claim that

it is beneficial to consider the rule length implicitly to not negatively affect the solution

quality.

For the computational budget, the NSGP algorithm experienced the highest

computational time because both parents and offspring must be evaluated, which is

twice the number of evaluations required in the other GP algorithms, as shown in Figure

4.6 (b1), (b2), and (b3). In contrast, the PGP algorithm significantly outperformed the

literature algorithms in terms of the TWT, MT, and MFT objectives because, as shown

in Figure 4.6 (c1), (c2), and (c3), the PGP algorithm has the second-lowest average rule

length, which significantly reduces the time necessary for fitness assessment of the

generated rules. Unlike the NSGP algorithm, only offspring individuals are evaluated in

the PGP algorithm. From these results, it is obvious that assigning the rule length equal

weight to that of the solution quality (the NSGP algorithm) helps shorter individuals

with lower solution quality to survive across generations, which negatively affects the

exploration capability of the GP algorithm.

Table 4.5 Mean and standard deviation of the performance measures in the

training phase

Perf. Meas. Objective SGP NSGP HGP PGP

Percentage

change

TWT 110.71± 21.67 39.77 ± 6.73 102.75 ± 21.18
108.92 ± 19.47

(=, +, =)

MT 125.65 ± 2.46 55.01 ± 10.91 124.35 ± 2.96
125.03 ± 3.53

(=, +, =)

MFT 56.72 ± 0.5 47.75 ± 12.49 55.5 ± 0.3
56.28 ± 0.45

(+, +, +)

Comp. time

TWT 181.73 ± 10.93 199.22 ± 2.94 162.17 ± 10.33
135.26 ± 6.82

(+, +, +)

MT 154.55 ± 12.79 179.15 ± 3.91 159.7 ± 14.15
129.66 ± 10.98

(+, +, +)

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 124

MFT 119.26 ± 8.2 138.43 ± 2.67 110.57 ± 6.3
92.16 ± 5.38

(+, +, +)

Mean rule

length

TWT 16.83 ± 3.16 6.12 ± 0.22 16.9 ± 3.36
14.32 ± 2.41

(+, -, +)

MT 14.62 ± 2.67 6.21 ± 0.23 15.44 ± 2.71
12.75 ± 2.41

(+, -, +)

MFT 11.87 ± 1.51 6.12 ± 0.23 12.11 ± 1.14
10.43 ± 1.15

(+, -, +)

Average

number of

absent

terminals

TWT 5.58 ± 1.84 8.48 ± 0.21 5.66 ± 1.7
6.4 ± 1.57

(+, -, +)

MT 6.05 ± 1.67 8.42 ± 0.23 5.79 ± 1.83
6.43 ± 1.57

(+, -, +)

MFT 7.5 ± 1.23 8.48 ± 0.22 7.2 ± 1.01
7.48 ± 1.02

(=, -, +)

Average

number of

active

terminals

TWT 7.42 ± 1.84 4.52 ± 0.21 5.37 ± 1.36
4.88 ± 1.32

(+, -, +)

MT 6.65 ± 1.67 4.58 ± 0.23 5.29 ± 1.4
4.54 ± 1.01

(+, =, +)

MFT 5.5 ± 1.23 4.52 ± 0.22 4.53 ± 0.63
3.45 ± 0.62

(+, +, +)

The main reason for using attribute vectors is to guide GP towards important

features and to deactivate or exclude irrelevant features resulting in shorter rules. To

verify whether the proposed approach meets this goal, the average number of active and

absent terminals across generations was traced. As shown in Figure 4.6 (d1), (d2), and

(d3), although the four algorithms had the same average number of absent terminals at

the first generation, PGP achieved significantly better results than those obtained using

the SGP and HGP algorithms for the TWT and MT objectives. For the MFT objective,

no significant difference was found between SGP and PGP algorithms, although PGP

significantly outperforms the HGP algorithm. Regarding the average number of active

terminals presented in Figure 4.6 (e1), (e2), and (e3), the PGP approach achieved the

fewest number of active terminals among the SGP and HGP methods for the three

objectives. In addition, the rules generated using PGP are significantly smaller than

those of NSGP in the MFT objective. Although the NSGP algorithm achieved the

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 125

greatest number of absent terminals and the fewest active terminals, these results were

achieved at the expense of the quality of evolved rules and high computation costs.

Figure 4.6: The performance of the GP algorithms during the training phase for

the three objectives. Figures (a1), (b1), (c1), (d1), (e1) are for the TWT objectives.

Figures (a2), (b2), (c2), (d2), (e2) are for the MT objectives. Figures (a3), (b3), (c3),

(d3), (e3) are for the MFT objectives.

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 126

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 127

4.4.3 Testing Performance

Testing experiments were performed to ascertain whether the reduction in the average

rule length suppresses the GP's exploration ability to form superior rules under unseen

scenarios. In addition, 30 manually made rules were used to provide more evidence that

the GP algorithm is a promising machine-learning technique capable of creating

scheduling heuristics under different configurations and objectives without direct

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 128

human intervention. Table 4.6 (a), (b), and (c) respectively show the means and

standard deviations of the studied methods in the TWT, MT, and MFT objectives.

Furthermore, the last row of each table provides a summary of the results obtained using

a tuple (k, l, m), where k, l, and m respectively represent the number of times a certain

method wins (significantly better), draws (no significant difference), and loses

(significantly worse) against the PGP method. The best literature rule (BLR) for each

scenario is included in parentheses along with its objective value. Because human-made

rules are designed to handle specific system settings, no single rule works well in all 24

scenarios. For the TWT objective, the PGP algorithm outperforms the BLR in 11

scenarios. It obtained the same performance in 13 scenarios. Compared with all other

literature methods, the PGP algorithm exhibited significantly poor performance in only

4 scenarios against the SGP algorithm while outperforming in 8 scenarios. The NSGP

algorithm had the worst TWT results compared with other GP algorithms: the PGP

algorithm significantly outperformed it in 18 scenarios and similar performance in 6

scenarios. Finally, HGP obtained significantly worse results compared with PGP in 7

scenarios, with no significant difference found in 17 scenarios.

For the MT objective, the PGP approach significantly outperformed the BLR in 11

scenarios while obtaining similar results in 13 scenarios, as shown in Table 4.6 (b). It is

worth noting that when due dates are very tight, the best human-made rule is the PT +

WINQ rule, which seems counterintuitive for minimising the MT objective. Similar

results have been described in earlier studies because, when the due date factor is very

small, numerous jobs become tardy. As a result, the objective becomes reduction of the

completion time of these jobs (Mei et al., 2017c). In contrast, the COVERT rule, which

is one dispatching rule that takes into account due-date-related information, became the

BLR when the tightness factors were large. Comparison of PGP with the other GP

literature algorithms shows that it achieved similar performance to that of SGP in all

scenarios, in addition to providing significantly better results than the HGP in two

scenarios. As expected, the generated rules using the NSGP algorithm had significantly

worse solution quality than that obtained using the PGP algorithm in the 24 system

configurations.

Regarding the MFT objective, as depicted in Table 4.6 (c), the PGP algorithm

significantly outperforms the results obtained from both the BLR and NSGP algorithms

in the 12 job shop settings. In addition, the gap widens in challenging scenarios with

high utilisation levels (high job arrival rates) compared with low utilisation scenarios.

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 129

No significant difference was found between the performance of the PGP algorithm and

both SGP and HGP algorithms because the PGP achieved better results in only one

scenario in the case of SGP and two scenarios in the case of HGP. Finally, in the three

considered objectives, the BLRs showed higher standard deviations than those of the

GP algorithms, indicating that the human-made rules have low robustness. Specifically,

manually designed rules lack the ability to obtain consistent performance across

different job shop settings. Therefore, the GP extensions proposed in this chapter do not

limit the solution quality of generated rules in favour of reducing the number of selected

features. In other words, the proposed approach is able to achieve a significant reduction

of the rule length and of the computational time without sacrificing the performance of

evolved rules.

Table 4.6 Mean and standard deviation of the considered methods in the testing

phase. (a): the TWT objective, (b): the MT objective, and (c): the MFT objective.

(a):

scenarios

BLR SGP NSGP HGP PGP

(3, 0.8)

88776.85 ± 30140.07

(COVERT)

56726.01 ±

11241.72

86159.32 ±

15250.35

57047.29 ±

8984.61

56635.67 ±

11655.13

(+, =, +, =)

(3, 0.85)

194286.4 ± 51664.4

(ATC)

149354.06 ±

28496.28

229690.39 ±

32785.38

149306.86 ±

21124.09

145764.9 ±

28602.55

(+, +, +, =)

(3, 0.9)

366232.85 ± 104891.17

(ATC)

363986.61 ±

69343.26

548164.46 ±

73156.71

361161.44 ±

57110.55

347100.0 ±

63449.15

(+, +, +, +)

(3, 0.95)

726419.3 ± 244325.95

(ATC)

865385.5

±177930.55

1229854.68 ±

162961.44

837916.48 ±

148150.41

788290.79 ±

148226.04

(=, +, +, +)

(4, 0.8)

9744.2 ± 10060.48

(SL/RO)

4945.72 ± 1895.55

7893.51 ±

3099.55

5443.52 ± 2260.1

5310.03 ±

2168.64

(=, +, +, =)

(4, 0.85)

55799.9 ± 34566.46

(COVERT)

28072.82 ±

8561.04

49798.54 ±

13309.3

29601.98 ±

9455.21

29088.92 ±

7867.44

(+, =, +, =)

(4, 0.9)

196604.95 ± 77786.43

(ATC)

134081.75 ±

34149.56

229520.81 ±

41327.15

134403.23 ±

27780.53

134109.43 ±

35477.9

(+, =, +, =)

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 130

(4, 0.95)

506982.85 ± 224807.64

(ATC)

531832.68 ±

120474.09

819903.53 ±

123725.86

517073.26 ±

94084.74

497311.42 ±

108193.34

(+, +, +, +)

(5, 0.8) 434.85 ± 99.66 (SL/RO) 277.4 ± 180.26 390.0 ± 346.2 393.06 ± 300.44

391.74 ±

286.37

(=, -, =, =)

(5, 0.85) 3733.4 ± 4094.16 (SL/RO) 2752.09 ± 1521.91
5241.06 ±

2755.81

3232.1 ± 1763.51

3137.53 ±

1629.79

(+, -, +, =)

(5, 0.9)

81346.85 ± 57911.32

(COVERT)

32349.83 ±

14163.97

67476.16 ±

22478.61

34694.23 ±

13783.61

33309.38 ±

12602.53

(+, =, +, =)

(5, 0.95)

338495.05 ± 193371.31

(ATC)

283197.38 ±

77804.52

481649.86 ±

90541.06

276233.92 ±

55507.91

270509.09 ±

71361.67

(+, +, +, =)

(6, 0.8) 51.25 ± 45.69 (SL/RO) 57.92 ± 41.88 68.69 ± 101.95 70.32 ± 68.77

59.68 ± 50.3

(=, =, =, =)

(6, 0.85) 93.65 ± 62.84 (SL/RO) 210.87 ± 143.39 199.58 ± 183.0 239.64 ± 226.55

231.75 ±

244.23

(=, =, =, =)

(6, 0.9)

14170.9 ± 22668.5

(SL/RO)

4876.26 ± 3278.33

12500.55 ±

8100.89

5467.22 ±

3181.07

5459.32 ±

3807.42

(=, -, +, =)

(6, 0.95)

221297.1 ± 164720.05

(ATC)

125112.34 ±

46205.63

238464.92 ±

62936.98

122721.71 ±

39602.29

121501.17 ±

31598.03

(+, =, +, =)

(7, 0.8) 24.95 ± 29.22 (SL) 33.18 ± 31.43 30.77 ± 43.68 33.6 ± 33.06
27.76 ± 25.37

(=, +, =, +)

(7, 0.85) 54.25 ± 76.95 (SL/RO) 32.9 ± 33.08 38.52 ± 59.84 48.68 ± 60.25

36.21 ± 38.45

(=, =, +, +)

(7, 0.9) 328.0 ± 570.32 (SL/RO) 417.13 ± 478.79 1001.46 ± 931.7 618.85 ± 610.8

622.45 ±

742.44

(=, -, +, =)

(7, 0.95)

122338.7 ± 94257.85

(2*PT+WINQ+Npt+WSL)

43338.93 ±

23040.37

96262.26 ±

38381.32

43405.94 ±

18589.56

42166.64 ±

18235.3

(+, =, +, =)

(8, 0.8) 23.2 ± 38.74 (SL/RO) 20.97 ± 23.14 23.86 ± 32.97 20.9 ± 22.62

20.0 ± 20.84

(=, =, =, =)

(8, 0.85) 16.45 ± 29.92 (ATC) 19.86 ± 22.81 21.78 ± 19.5 28.7 ± 40.24 20.25 ± 26.01

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 131

(=, =, =, +)

(8, 0.9) 30.9 ± 44.26 (SL/RO) 54.88 ± 80.95 61.47 ± 128.29 93.69 ± 174.95

36.76 ± 46.94

(=, +, +, +)

(8, 0.95)

32531.45 ± 56731.89

(SL/RO)

10388.34 ± 7859.3
26974.03 ±

17255.77

10957.37 ±

6329.87

10863.88 ±

7267.15

(=, =, +, =)

Summary (0, 13, 11) (4, 12, 8) (0, 6, 18) (0, 17, 7)

(b):

scenarios

BLR SGP NSGP HGP PGP

(1.5, 0.8)

128.19 ± 16.93

(PT+WINQ)

128.83 ± 6.24 158.54 ± 16.3 129.92 ± 5.89 127.2 ± 4.4 (=, =, +, +)

(1.5, 0.85)

175.23 ± 25.55

(PT+WINQ)

177.33 ± 8.26 218.2 ± 23.29 178.31 ± 7.76 175.39 ± 6.55 (=, =, +, =)

(1.5, 0.9)

253.34 ± 43.32

(PT+WINQ)

254.34 ± 12.31 316.05 ± 36.81 256.12 ± 11.7 252.32 ± 10.84 (=, =, +, =)

(1.5, 0.95)

395.69 ± 99.64

(2*PT+WINQ+Npt)

405.73 ± 21.63 504.41 ± 68.12 404.83 ± 20.45 400.7 ± 19.42 (=, =, +, =)

(2, 0.8)

77.09 ± 13.67

(PT+WINQ)

73.33 ± 4.76 100.52 ± 12.58 75.15 ± 5.08 72.96 ± 4.68 (=, =, +, +)

(2, 0.85)

117.9 ± 22.45

(PT+WINQ)

116.6 ± 7.15 158.19 ± 19.97 119.48 ± 7.56 116.32 ± 6.96 (=, =, +, =)

(2, 0.9)

189.99 ± 40.48

(PT+WINQ)

190.14 ± 10.8 256.06 ± 33.53 194.54 ± 11.91 189.65 ± 10.59 (=, =, +, =)

(2, 0.95)

328.34 ± 97.21

(2*PT+WINQ+Npt)

338.86 ± 20.42 444.7 ± 62.6 341.58 ± 20.97 336.16 ± 18.42 (=, =, +, =)

(2.5, 0.8)

42.52 ± 11.04

(COVERT)

34.61 ± 2.95 53.15 ± 8.32 36.1 ± 4.09 35.26 ± 4.14 (+, =, +, =)

(2.5, 0.85)

79.44 ± 18.22

(PT+WINQ)

68.93 ± 5.3 104.1 ± 14.93 72.39 ± 6.91 70.13 ± 6.77 (+, =, +, =)

(2.5, 0.9)

142.2 ± 35.88

(PT+WINQ)

135.36 ± 9.7 198.73 ± 28.76 141.2 ± 11.71 137.65 ± 11.25 (=, =, +, =)

(2.5, 0.95)

274.11 ± 92.69

(2*PT+WINQ+Npt)

280.03 ± 18.48 386.6 ± 57.42 285.14 ± 20.99 279.66 ± 19.41 (=, =, +, =)

(3, 0.8)

20.0 ± 6.8

(COVERT)

12.94 ± 1.88 21.68 ± 5.14 13.46 ± 2.82 13.37 ± 2.62 (+, =, +, =)

(3, 0.85)

46.69 ± 15.98

(COVERT)

35.52 ± 3.67 59.69 ± 10.51 38.0 ± 5.74 37.12 ± 5.35 (+, =, +, =)

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 132

(3, 0.9)

108.18 ± 30.73

(PT+WINQ)

91.04 ± 8.41 144.38 ± 22.64 96.21 ± 10.77 92.98 ± 10.49 (+, =, +, =)

(3, 0.95)

230.41 ± 84.13

(PT+WINQ)

226.65 ± 17.31 328.82 ± 50.91 233.6 ± 19.47 228.29 ± 19.67 (=, =, +, =)

(3.5, 0.8)

7.85 ± 3.75

(COVERT)

3.77 ± 1.01 7.01 ± 2.43 4.04 ± 1.5 4.02 ± 1.44 (+, =, +, =)

(3.5, 0.85)

25.56 ± 10.97

(COVERT)

15.65 ± 2.3 28.97 ± 6.91 16.77 ± 3.97 16.56 ± 3.57 (+, =, +, =)

(3.5, 0.9)

75.33 ± 32.59

(COVERT)

55.38 ± 6.06 97.64 ± 17.98 60.59 ± 9.53 58.06 ± 9.42 (+, =, +, =)

(3.5, 0.95)

195.05 ± 77.56

(PT+WINQ)

177.78 ± 15.2 272.48 ± 46.38 187.26 ± 18.83 181.47 ± 17.99 (=, =, +, =)

(4, 0.8)

2.19 ± 2.26

(SL/RO)

0.88 ± 0.56 1.66 ± 0.94 0.97 ± 0.72 0.97 ± 0.71 (=, =, +, =)

(4, 0.85)

12.33 ± 7.5

(COVERT)

5.72 ± 1.4 11.69 ± 3.75 6.26 ± 2.41 6.24 ± 2.23 (+, =, +, =)

(4, 0.9)

49.54 ± 27.48

(COVERT)

29.79 ± 4.73 59.92 ± 13.65 33.91 ± 8.29 32.45 ± 7.59 (+, =, +, =)

(4, 0.95)

166.99 ± 71.12

(PT+WINQ)

135.44 ± 13.76 218.29 ± 39.4 143.33 ± 17.46 138.76 ± 16.98 (+, =, +, =)

Summary (0, 13, 11) (0, 24, 0) (0, 0, 24) (0, 22, 2)

(c):

scenarios

BLR SGP NSGP HGP PGP

(3, 0.7) 286.17 ± 10.95 (PT+WINQ) 283.93 ± 1.62 284.82 ± 1.64 283.78 ± 1.63 283.97 ± 1.65 (+, =, +, =)

(3, 0.725) 298.55 ± 12.79 (PT+WINQ) 295.42 ± 1.92 296.27 ± 2.01 295.6 ± 1.79 295.36 ± 1.74 (+, =, +, +)

(3, 0.75) 312.78 ± 13.49 (PT+WINQ) 308.99 ± 2.05 310.0 ± 2.36 308.78 ± 2.13 308.88 ± 2.12 (+, =, +, =)

(3, 0.775) 328.34 ± 16.39 (PT+WINQ) 324.31 ± 2.23 325.56 ± 2.55 324.14 ± 2.38 323.88 ± 2.18 (+, +, +, =)

(3, 0.8) 348.07 ± 19.69 (PT+WINQ) 341.64 ± 2.45 343.94 ± 2.77 341.59 ± 2.53 341.55 ± 2.46 (+, =, +, =)

(3, 0.825) 370.3 ± 24.3 (PT+WINQ) 362.51 ± 2.81 365.23 ± 3.36 362.23 ± 2.96 362.3 ± 2.67 (+, =, +, =)

(3, 0.85) 396.63 ± 27.89 (PT+WINQ) 387.55 ± 3.34 390.99 ± 3.87 387.8 ± 3.45 387.2 ± 3.56 (+, =, +, +)

(3, 0.875)

431.19 ± 37.2

(2*PT+WINQ+Npt)

417.62 ± 3.69 422.24 ± 4.51 417.39 ± 4.04 417.69 ± 3.79 (+, =, +, =)

(3, 0.9) 475.83 ± 45.48 (PT+WINQ) 458.27 ± 5.0 464.75 ± 6.02 458.02 ± 5.0 458.26 ± 4.85 (+, =, +, =)

(3, 0.925) 532.32 ± 67.36 (PT+WINQ) 513.2 ± 6.19 523.33 ± 7.35 513.27 ± 6.74 514.11 ± 6.57 (+, =, +, =)

(3, 0.95)

618.97 ± 101.44

(2*PT+WINQ+Npt)

592.13 ± 8.97 607.27 ± 10.26 591.57 ± 9.06 592.9 ± 8.79 (+, =, +, =)

(3, 0.975) 728.07 ± 148.15 701.35 ± 13.6 723.83 ± 14.98 701.46 ± 11.58 702.07 ± 11.51 (+, =, +, =)

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 133

(2*PT+WINQ+Npt)

Summary (0, 0, 12) (0, 11, 1) (0, 0, 12) (0, 10, 2)

4.4.4 Feature Analysis of the GP Best Evolved Rules

Because the SGP, HGP, and PGP algorithms generated dispatching rules with similar

performance compared with those obtained using the NSGP, the best-generated rules

using the SGP, HGP, and PGP methods are considered for additional analysis. Figure

4.7 presents the distribution of the terminals of the 20 best-rules generated using the

three algorithms, where Figure 4.7 (a), (b), and (c) respectively represent the results

obtained for the TWT, MT, and MFT objectives. It is readily apparent that the PGP

algorithm evolved smaller rules, and that the gap separating relevant and irrelevant

terminals is wider than that of the literature methods. In addition, the number of

terminals in the rules created using the PGP algorithm is much smaller than that evolved

using other literature methods resulting in more compact and interpretable rules. For the

TWT objectives, the PGP rules achieved a reduction in the number of terminals by

32.53% and 15.38% compared with the SGP and HGP algorithms. In addition, the most

important terminals are PT, SL, JW, RO, and WINQ, whereas Npt, WT, JR, and OR

terminals are not significant.

Regarding the MT objective, the PGP rules have 31.19% and 10.36% fewer

terminals than the rules generated using the SGP and HGP algorithms. In contrast to the

TWT target, as expected, the GP algorithms considered the JW terminal as an irrelevant

feature, whereas the weights of the RO, WR, SL, and WINQ terminals increased

notably. In the case of the MFT objective, the PGP algorithm reduced the number of

terminals in the best rules by 26.52% and 18.65%, respectively, compared with the SGP

and HGP algorithms. The best rules generated using the three algorithms extensively

included the PT, Npt, and WINQ terminals, indicating their importance in reducing the

MFT objective. These findings are consistent with the claim that the weight of terminals

varies based on the objective. The selection ability of the GP methods in the literature is

limited. In addition, the proposed feature selection approach is able to identify

important features and to exclude irrelevant features in different objective functions,

resulting in smaller rules that positively affect GP computation costs.

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 134

Figure 4.7: Terminals distribution in the best-evolved rules for the SGP, HGP and

PGP algorithms. (a): for the TWT objective, (b): for the MT objective, (c): for the

MFT objective

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 135

4.4.5 Behaviour Analysis of the PGP Best Evolved Rules

To gain more knowledge about the PGP rule structure, two versions of the best-evolved

rules rule are developed for the TWT, MT, and MFT objectives. The first version

presents only priority functions, as shown in Figure 4.8 (a1, b1, and c1), whereas the

second version, shown in other panels of Figure 4.8 (a2, b2, and c2), includes

information presented respectively in their attribute vectors for the TWT, MT, and MFT

objectives. Regarding the TWT objective, all existing terminals are active, except that

the Npt and Apr terminals (highlighted by red frames) are deactivated. Therefore, the

attribute vector was able to eliminate three terminals from the current 17, as shown in

Figure 4.8 (a1) and (a2). In addition, the simplified version of the rule is represented in

a mathematical form in Equation 4.5. In the case of the MT objective, the proposed

representation was able to eliminate 13 terminals out of the 20 terminals that occurred in

the evolved rule. The disabled terminals were the JR, OR, WT, and JW terminals,

revealing their negligible effect on minimising the MT objective. Moreover, the

simplified version of the best-generated rule to minimise the MT objective is shown in a

mathematical form in Equation 4.6. Regarding the MFT objective, the attribute vector

deactivated 3 terminals from the current 12 terminals presented in the priority function.

Excluded terminals are the SL, Apr, and JW terminals. The included terminals are the

PT, WINQ, and Npt terminals. The best PGP rule generated for minimising the MFT

objective is presented mathematically in Equation 4.7.

𝑇𝑊𝑇 𝑟𝑢𝑙𝑒 =
𝑀𝑎𝑥(𝑀𝑎𝑥(𝑅𝑂, 𝑃𝑇) + 𝑃𝑅, 𝑃𝑇 + 𝑊𝐼𝑁𝑄)

𝐽𝑊

+ 𝑀𝑎𝑥 (𝑀𝑎𝑥 (
𝑆𝐿

𝑅𝑂
+ 𝑃𝑇, 𝑃𝑇) ,

𝑅𝑂 − 𝑆𝐿

𝐽𝑊
+ 𝑊𝐼𝑁𝑄)

4.5

𝑀𝑇 𝑟𝑢𝑙𝑒 = min (
𝑊𝐼𝑁𝑄 +

𝑆𝐿
𝑅𝑂

𝑃𝑇
, 𝑚𝑎𝑥(𝐶𝑇, 𝑃𝑇 𝑥 𝑁𝑃𝑇)) 4.6

𝑀𝐹𝑇 𝑟𝑢𝑙𝑒 = max(max(min(𝑁𝑝𝑡, 𝑊𝐼𝑁𝑄 + 𝑃𝑇) + 𝑊𝐼𝑁𝑄 , 𝑃𝑇) ,

𝑊𝐼𝑁𝑄 − max (𝑊𝐼𝑁𝑄 + 𝑃𝑇)) 𝑥 𝑃𝑇
4.7

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 136

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 137

Figure 4.8: The priority function of the best PGP rules. (a1) for the TWT without

considering the attribute vector, (a2) for the TWT after considering the attribute

vector, (b1) for the MT without considering the attribute vector, (b2) for the MT

after considering the attribute vector, (c1) for the MFT without considering the

attribute vector, (c2) for the MFT after considering the attribute vector

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 138

To elucidate the phenotypic characterisation of the PGP rules, 20 decision situations

were sampled from an actual DES run, as recommended in an earlier paper (Hildebrandt

and Branke, 2015b). The phenotypic behaviour helps to understand the internal

mechanism of evolved rules. It provides some insights into how these rules prioritise

operations and why they achieved superior performance. Technically, these experiments

are conducted to examine the influence of changing terminals’ values in estimating

priority values of jobs. The rule assigns high priorities to jobs with lower priority values

(higher rank) from the set of waiting jobs. Regarding the TWT objective, the best PGP

rule favours jobs with low processing time, high weight, low WINQ, low slack, and

numerous remaining operations. In addition, the order of the included features based on

their weight in descending order is: SL, PT, WINQ, JW, and RO. The best PGP rule

generated to minimise the MT objective assigns higher priority to jobs with less

processing time, less work in the next queue, less slack value, and more unprocessed

operations. Additionally, it appears that the current time and the next processing time

features have no direct effect on estimating the priority of a job. The order of the

included features according to their influence is the following: PT, WINQ, SL, RO, CT,

and Npt terminals. For the MFT objective, the evolved rule assigns higher priority

values to jobs with the following characteristics: less processing time, less work in the

next queue, and less processing time of the next operation. Moreover, the PT feature is

the most significant terminal in terms of the performance of the evolved rule followed

by the WINQ terminal, and finally the Npt terminal. It is noteworthy that experts may

take advantage of these findings to design superior rules manually in less complex

structures compared with PGP rules. However, the exact numerical estimation of

terminals' relations and interaction effects among them remains challenging and

requires further future investigation.

4.4.6 Feature Selection Verification

To verify the credibility of the proposed feature selection framework, an efficient

feature selection algorithm from the literature (Mei et al., 2017c) was developed for

comparison and designated as FSGP. In contrast to the proposed approach, which

selects important features during the GP run (online) using relative weights of terminals

(probabilistic), the FSGP algorithm considers feature selection as a pre-processing step

(offline) to select features used in future GP runs in a binary manner (include/exclude).

Therefore, it is unsuitable to compare it to the PGP algorithm using the same

performance measures used earlier. Instead, it is employed to ensure that the proposed

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 139

approach is able to identify the same critical terminals obtained using the FSGP

algorithm in an online manner. The activation probability of each terminal is tracked

during the PGP run to estimate the terminals' weights at a given generation. As shown

in Figure 4.9 (a2, b2, and c2), the colour of each cell in the heat maps represents the

average activation probability for a specific terminal during the PGP run. In contrast,

the results obtained using the FSGP algorithm are depicted in Figure 4.9 (a1, b1, and

c1), respectively, for the TWT, MT, and MFT objectives. Important terminals identified

at the end of the FSGP run are shown in bright cells, whereas irrelevant terminals are

shown in dark cells. Although the y-axis label differs between the two methods, they

express the same meaning because the proposed approach applies feature selection

during the run (generations), whereas the FSGP approach obtains the set of important

features when the GP run finishes (GP replications).

For the TWT objective results presented in Figure 4.9 (a2), similar findings were

obtained using the two algorithms as the most important terminals (bright columns) are

RO, WR, PT, SL, WINQ, Apr, and JW. Although the DD terminal is identified as an

important terminal in the PGP algorithm, it is regarded as an irrelevant terminal using

the FSGP algorithm. The inclusion of the SL terminal might be the reason because it

can substitute some DD and CT terminals and can therefore affect their weights

indirectly. Terminals of least importance (dark columns) include JR, OR, CT, WT, and

Npt terminals. Regarding the MT objective, the significant terminals are RO, PT, DD,

CT, SL, WINQ, and Apr terminals, whereas the non-significant terminals include JR,

OR, WR, WT, Npt, and JW. Finally, for the MFT objective, the set of important

terminals contains PT, Npt, and WINQ terminals. In addition, CT and Apr terminals are

medium-weight features, whereas the set of irrelevant terminals includes all the

remaining terminals. As the results showed, the proposed approach is efficient for

selecting significant terminals and for eliminating irrelevant ones using a probabilistic

selection mechanism during the GP run.

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 140

Figure 4.9: Matrix plot of feature selection results. (a1) the FSGP for the TWT,

(a2) the PGP for the TWT, (b1) the FSGP for the MT, (b2) the PGP for the MT,

(c1) the FSGP for the MFT, (c2) the PGP for the MFT

Chapter 4: Genetic Programming With Feature Selection For Dynamic Job Shop Scheduling Problems

 141

4.5 Chapter Summary

This chapter proposed a new GP representation and an online feature selection approach

for evolving more interpretable rules for the dynamic job shop scheduling problems

using the GP algorithm. The new attribute vector representation controlled complex GP

structures. It also extracted useful information related to the terminals’ contributions.

Then, evolutionary information gained from the current generation was used by the

feature selection mechanism to guide the GP to consider more important terminals and

neglect irrelevant ones. The newly introduced parameters were fine-tuned through some

pilot experiments. Then their effects were evaluated using various performance

measures. In addition, the proposed algorithm (PGP) was compared with three

algorithms (SGP, NSGP, and HGP) from the literature using rule length, computational

time, and solution quality as performance measures. Regarding the solution quality of

evolved rules, three objective functions were investigated, including total weighted

tardiness, mean tardiness, and mean flow time.

Experimentally obtained results demonstrated the effectiveness of the proposed

approach for generating compact rules while reducing computation time considerably

without compromising solution quality. The reduction in computation costs resulted

from a significant decrease in the average rule length and the average number of active

terminals in the PGP method compared with counterpart methods reported in the

relevant literature. In addition, the generality of evolved rules was evaluated through a

set of testing scenarios. Similar findings were achieved. Regarding the distribution of

the terminals in the best rules, the proposed approach obtained smaller rules with more

meaningful terminals. The best-evolved PGP rules were represented in both tree and

mathematical forms to gain useful insights into their structure, how the rules estimate

priority values, and the reasons underlying their superior performance. Finally, the

ability of the PGP algorithm to identify important features was evaluated by comparing

it with an offline feature selection algorithm from the literature in the three objective

functions. As the results showed, the PGP algorithm identified the same set of important

features in an online manner without additional GP runs.

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 142

Chapter 5. GEP WITH FEATURE SELECTION

FOR DYNAMIC JOB SHOP SCHEDULING

PROBLEMS

5.1 Introduction

As stated in previous chapters the variable representation of the tree-based GP approach

is the reason behind the exponential growth in the size of generated rules due to the

bloating effect. Therefore, in order to reduce the size of the GP search space, two

research directions have been proposed (Nguyen et al., 2017c).

I. Integrate the tree-based GP algorithm with a feature selection algorithm.

II. Develop other GP representations with specific restrictions rather than the

standard tree representation.

The key difference between the two methods is that the first approach guides the GP

algorithm to promising areas in the search space by focusing on the most significant

terminals, whereas the second approach reduces the GP search space by changing the

encoding scheme of heuristics and imposing several restrictions on the growth of

generated rules. In other words, the representation approach deals directly with the GP

bloating problem, while the feature selection approach handles the problem in an

indirect manner (Zhang, Mei, and Zhang 2019).

Regarding the integration between the tree-based GP algorithm and feature selection

approach, this research direction is the most common technique in the literature.

Therefore, the objective of the previous chapter was to develop a new feature selection

approach for the GP algorithm. Regarding the use of other GP representations to restrict

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 143

the search space, the GEP algorithm is used in a limited number of studies compared

with the GP algorithm to generate JSS rules as shown in (Nie et al., 2010, 2011, 2013a;

Ozturk et al., 2019). Although the GEP algorithm obtained higher quality dispatching

rules in a shorter computational time compared with the GP algorithm in previous

studies (Nguyen et al., 2017c), its use is still limited for two main reasons. First, the

GEP-generated rule usually contains a noncoding portion that is not used to estimate

priority values at the current generation, however, these terminals and functions might

have an impact on future generations when genetic operators alter their sequence.

Therefore, the GEP individual needs a decoding process in order to be converted to a

human-readable format (mathematical format) which is an additional process compared

with the tree-based GP representation. Second, there is a larger set of genetic operators

and several parameters that must be adjusted based on the problem understudy than the

standard GP algorithm which requires many computationally expensive experiments

(Ferreira, 2001). Specifically, there are ten genetic operators and parameters for the

GEP algorithm including head length, number of genes, linking function, mutation, IS

(Insertion Sequence) transposition, RIS (Root IS) transposition, gene transposition, one-

point, two-point, and gene recombination rates, whereas there are only three parameters

in the GP algorithm which are maximum tree depth, crossover, and mutation rates.

Because of the above reasons, a feature selection approach for the GEP algorithm

has not been proposed in the literature, whereas there are five approaches for the GP

algorithm even though both algorithms generate rules that might contain insignificant

terminals. Therefore, this chapter has three main objectives as follows.

a) Modify the feature selection approach proposed in the previous chapter to be

applicable to the GEP algorithm.

b) Study the impact of integrating the modified approach with the GEP algorithm.

c) Modify the GP feature selection approach introduced in (Nguyen et al., 2018a)

to be applicable to the GEP algorithm, and thus compare its performance with

the proposed GEP algorithm.

The rest of this chapter is organized as follows. Section 5.2 provides a detailed

explanation of the proposed GEP algorithm with the feature selection approach. Section

5.3 presents the numerical experiments including the fitness assessment module, design

of the experiments, and parameter settings. Training and testing results are given in

Section 5.4. Finally, Section 5.5 presents the conclusions of this chapter.

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 144

5.2 GEP algorithm with the proposed feature selection approach

Because there is a noncoding region in the GEP individuals, the attribute vector is

linked to the K-expression (valid portion) of a given individual rather than the whole

linear chromosome of the rule. An illustrative example is presented in Figure 5.1, where

a GEP rule is encoded using the proposed and literature attribute vector representations.

The length of the head is set to 5, and the maximum number of arguments in the

function set, shown in Table 4.1, equals 2. Then, the tail length 𝑡 = 5 × (2 − 1) + 1 = 6

(underlined elements). The 11-elements genotype is decoded into an expression tree (K-

expression) containing only 7 elements. Therefore, the proposed and literature attribute

vectors are modified to be linked to the K-expression part only instead of the original

genotype as in the case of the GP algorithm. For instance, although SL terminal

occurred in the linear chromosome (non-coding region), it is presented as an absent

terminal in both representations. However, the main difference between the proposed

and literature representations remains the same. The literature representation indicates

that there are ten active (important) attributes even though there are only three of them

in the K-expression. In contrast, with respect to the proposed representation, it is easy to

distinguish between active terminals (PT, Npt, WINQ), inactive terminals (JW), and

absent terminals (the rest) without reference to the expression tree. Therefore, the

proposed representation offers the following advantages.

I. It supports the attribute vector being precisely bound to the valid region of its

corresponding rule. Thus, attribute vectors can be used to abstract the complex

structure of DRs without being affected by noncoding regions.

II. It ensures that any change (mutation) of the feature’s state in the attribute vector

will have a direct effect on the performance of the priority function.

III. It enables the phenotype behaviour of evolved rules to change in response to

changes in attribute vectors without affecting their genotypes. This maintains the

evolutionary information presented in the structure of evolved rules across

generations.

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 145

Figure 5.1: Example of a rule using the literature and proposed representations.

The pseudocode of the proposed algorithm that integrates the GEP algorithm with

the attribute vector is shown in Figure 5.2. The algorithm starts by initializing a random

population 𝑃 of dispatching rules by using a predefined set of functions and terminals.

Each rule 𝑅𝑖 consists of two main parts, expression tree 𝐸𝑇𝑖 which is the K-expression

of the GEP chromosome, and an attribute vector 𝐴𝑉𝑖 using the proposed representation.

The activation probability array 𝐴𝑃 is initialized with the same initial probability

𝑃𝑟𝑜𝑏𝑖𝑛𝑡. for all terminals. After several pilot experiments, the 𝑃𝑟𝑜𝑏𝑖𝑛𝑡. is set to 0.5

since it obtained a robust performance regarding the considered objectives (Shady et al.,

2021c). In order to avoid overfitting to a specific problem instance, the same random

seed is employed to evaluate all individuals in the same generation while the seed value

changes between generations. A set of training instances 𝑁 is used to evaluate the

performance of the generated rules under different job shop settings.

For minimisation objectives, if the fitness value of a specific rule 𝑓(𝑅𝑖) is smaller

than the best individual found so far 𝑓(𝑅𝑏𝑒𝑠𝑡), the best rule and its fitness value are

updated as depicted in lines 7 through 13. Afterwards, the best-evolved rules are chosen

to represent the parents of the next generation. The weight of each terminal in the

activation probability array is estimated using a subset |𝕊| of the best individuals. Then,

the GEP genetic operators are applied to the genotypes of individuals to generate

offspring. Similar to the previous chapter, the proposed mutation operator (feature

selection) is applied to the attribute vector of evolved rules to activate critical terminals

and deactivate irrelevant ones, as shown in lines 18-28. The newly created rules

constitute the next generation, and this evolutionary process is repeated for several

generations until the termination condition is satisfied.

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 146

Inputs: training simulation scenarios 𝑁 ← {𝑁1, 𝑁2, … , 𝑁𝑡}

Output: the best evolved rule 𝑅𝑏𝑒𝑠𝑡

1: Initialize population 𝑃𝑖 ← {𝑅1, 𝑅2, … , 𝑅𝑛},

 𝑅𝑖 ← {𝐸𝑇𝑖 , 𝐴𝑉𝑖}, 𝐴𝑉𝑖 ← {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑇}

2. Initialize activation probabilities array 𝐴𝑃 ← {𝑇 𝑣𝑎𝑙𝑢𝑒𝑠 𝑒𝑞𝑢𝑎𝑙 0 < 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 ≤ 1}

3: Set 𝑅𝑏𝑒𝑠𝑡 ← 𝑛𝑢𝑙𝑙 and the best fitness value 𝑓(𝑅𝑏𝑒𝑠𝑡) ← +∞

4: 𝑔𝑒𝑛 ← 1

5: while 𝑔𝑒𝑛 ≤ max 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do

6: reset the random seed

7: for all 𝑅𝑖 ∈ 𝑃𝑔𝑒𝑛 do

8: evaluate 𝑓(𝑅𝑖) by applying 𝑅𝑖 to each scenario 𝑁𝑘 ∈ 𝑁

9: if 𝑓(𝑅𝑖) < 𝑓(𝑅𝑏𝑒𝑠𝑡) then

10: 𝑅𝑏𝑒𝑠𝑡 ← 𝑅𝑖

11: 𝑓(𝑅𝑏𝑒𝑠𝑡) ← 𝑓(𝑅𝑖)

12: end if

13: end for

14: select the best |P| individuals of 𝑃𝑔𝑒𝑛 to join mating pool

15: estimate 𝐴𝑃 using a subset | 𝕊 | of the best rules

16: for all 𝑅𝑖 ∈ 𝑃𝑔𝑒𝑛 do

17: apply genetic operators on 𝐸𝑇𝑖

18: for all 𝑥𝑖𝑗 ∈ 𝐴𝑉𝑖 do

19: if terminal 𝑗 not in 𝐸𝑇𝑖 then

20: 𝑥𝑖𝑗 ← 0

21: else

22: if 𝑟𝑎𝑛𝑑 ≤ 𝐴𝑃𝑗 then

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 147

23: 𝑥𝑖𝑗 ← 1

24: else

25: 𝑥𝑖𝑗 ← −1

26: end if

27: end if

28: end for

29: end for

30: 𝑔𝑒𝑛 ← 𝑔𝑒𝑛 + 1

31: end while

32: return 𝑅𝑏𝑒𝑠𝑡

Figure 5.2: Proposed gene expression programming algorithm with the feature

selection approach.

5.3 Numerical Experiments

5.3.1 Fitness Assessment Module

A simulation model for the symmetrical job shop used in previous studies (Nguyen et

al., 2014b; Shady et al., 2021d) was developed using the following settings:

• Jobs arrive stochastically according to a Poisson distribution.

• The job shop consists of ten machines (no breakdowns).

• A warm-up period of 500 jobs is used, and the statistics are collected from the

next 2000 jobs.

• Each job has 2 to 10 operations (re-entry is not allowed).

• Processing times follow a uniform discrete distribution with a range of [1, 49].

• The weights of 20%, 60%, and 20% of jobs are set as 1, 2, and 4 respectively.

• Job due dates are assigned using the total work content method with different

tightness factor values.

The meta-algorithm shown in Figure 5.3 is employed to generate non-delay

schedules for the evolved dispatching rules. Given specific job shop settings and a

dispatching rule, there are two events that increment the current time in the simulation

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 148

model. The first event is when a job is released, and the second event is when a machine

is idle, as shown in lines 3 and 10, respectively. A released job can be processed

immediately if the next machine on its route is idle; otherwise, it joins the machine's

queue, as illustrated in lines 3-8. When a machine becomes free and there are jobs in its

queue, the dispatching rule is used to prioritise the queued jobs. Then, the machine

starts processing the job with the highest priority, as depicted in lines 10-14. After

processing all the required jobs, the algorithm terminates, and the objective value is

estimated using the generated schedule, as shown in lines 17 and 18.

Inputs: job shop configuration (𝑛), dispatching rule (i)

Output: the objective value 𝑜𝑏𝑗𝑖,𝑛

1: Current time = 0

2: while 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑢𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑗𝑜𝑏𝑠 do

3: if there is a job released do

4: if the next machine in its route is idle then

5: Start processing the first operation of the job

6: else

7: The job enters the queue of the first machine in its route

8: end if

9: end if

10: if there is an idle machine do

11: Calculate priority values for all queued operations using the rule i

12: Start processing the operation with the highest priority value

13: Update the ready time of the machine and the job’s next operation

14: end if

15: Current time += 1

16: end while

17: Calculate the objective value 𝑜𝑏𝑗𝑖,𝑛

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 149

18: return 𝑜𝑏𝑗𝑖,𝑛

Figure 5.3: Meta-algorithm of scheduling heuristics.

Three job shop scheduling objectives are considered including Total Weighted

Tardiness (TWT), Mean Tardiness (MT), and Mean Flow Time (MFT). The training

and testing scenarios are illustrated in Table 5.1. The tuple (𝑢, 𝑡) represents the scenario

where the utilization level is 𝑢% and the tightness factor is 𝑡. The tightness factor in the

case of the TWT objective is slightly looser than in the case of the MT objective since

the TWT considers not only the job due date as in the MT objective but also the job

weight. Also, the utilization level varies greatly in the MFT scenarios compared with

the tightness factor, which remains constant.

Table 5.1 Parameter settings of the training and testing scenarios

Obj. Training scenarios Testing scenarios

TWT

(80, 3), (80, 6), (80, 8),

(90, 2), (90, 6), (90, 8)

(80, 3), (80, 4), (80, 5), (80, 6), (80, 7), (80, 8), (85, 3),

(85, 4), (85, 5), (85, 6), (85, 7), (85, 8), (90, 3), (90, 4),

(90, 5), (90, 6), (90, 7), (90, 8), (95, 3), (95, 4), (95, 5),

(95, 6), (95, 7), (95, 8)

MT

(80, 1.5), (80, 3), (85, 4),

(90, 1.5), (90, 3), (90, 4)

(80, 1.5), (80, 2), (80, 2.5), (80, 3), (80, 3.5), (80, 4),

(85, 1.5), (85, 2), (85, 2.5), (85, 3), (85, 3.5), (85, 4),

(90, 1.5), (90, 2), (90, 2.5), (90, 3), (90, 3.5), (90, 4),

(95, 1.5), (95, 2), (95, 2.5), (95, 3), (95, 3.5), (95, 4)

MFT (70, 3), (85, 3), (97.5, 3)
(70, 3), (72.5, 3), (75, 3), (77.5, 3), (80, 3), (82.5, 3),

(85, 3), (87.5, 3), (90, 3), (92.5, 3), (95, 3), (97.5, 3)

For a specific objective 𝑜, the average normalized objective value of a rule 𝑖 through

training scenarios 𝑁𝑜 is taken as the rule fitness value 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 as shown in Equation

5.1, where 𝑟𝑒𝑓 refers to a reference rule. The WATC, Covert, and PT + WINQ rules are

used as reference rules for the purpose of normalization as they are efficient human-

made rules in minimising the TWT, MT, and MFT objectives, respectively (Sels et al.,

2012b). For each testing configuration, 20 replications are used to assess the generality

of the evolved rules under unseen scenarios. Finally, the percentage change 𝑃𝐶𝑜 in the

performance of a given method with respect to a reference rule 𝑜𝑏𝑗𝑟𝑒𝑓,𝑛 is estimated by

Equation 5.2, where 𝑜𝑏𝑗𝑏𝑒𝑠𝑡,𝑛 is the objective value of the best-evolved rule.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =
1

|𝑁𝑜|
∑

𝑜𝑏𝑗𝑖,𝑛

𝑜𝑏𝑗𝑟𝑒𝑓,𝑛

|𝑁𝑜|

𝑛=1
 5.1

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 150

𝑃𝐶𝑜 =
1

|𝑁𝑜|
∑

𝑜𝑏𝑗𝑟𝑒𝑓,𝑛 − 𝑜𝑏𝑗𝑏𝑒𝑠𝑡,𝑛

𝑜𝑏𝑗𝑟𝑒𝑓,𝑛

|𝑁𝑜|

𝑛=1
 × 100 5.2

5.3.2 Design Of the Experiments

In order to assess the effectiveness of the proposed approach, four algorithms from

the literature are developed for the sake of comparison. The developed algorithms are

the standard genetic programming algorithm (SGP) (J. R. Koza, 1994b), the standard

gene expression programming algorithm (GEP) (Nie et al., 2013b), the GEP algorithm

with the literature feature selection approach (HGEP), and the GEP with the proposed

feature selection approach (PGEP). The framework of the four algorithms is depicted in

Figure 5.4, and the exclusive operations of the proposed approach are highlighted by a

dashed line. The reasons for choosing these four algorithms are as follows:

I. Comparing the GP with the GEP algorithms: to analyse the actual difference

between the two standard algorithms for the dynamic job shop scheduling

settings understudy.

II. Comparing the GEP with the PGP: to verify that the proposed feature selection

approach reduces the size of GEP rules and computational time.

III. Comparing the HGP with the PGP: to verify whether the proposed modification

in the current attribute vector and feature selection ability reduce the size of

evolved rules without sacrificing solution quality.

All algorithms start by generating a population of dispatching rules using the set of

terminals and functions given in Table 4.1. The SGP algorithm uses the tree-based

representation to initialise expression trees, while the HGEP, GEP, and PGEP adopt the

K-expression to obtain expression trees for fixed-length linear chromosomes. Moreover,

the proposed representation is employed to initialise attribute vectors for the individuals

created using the PGEP algorithm, whereas attribute vectors are initialised using the

representation given in (Nguyen et al., 2018c) for the HGEP algorithm. Then, the

performance of evolved rules is estimated through a set of training instances using the

developed simulation model. The rules with high solution quality are selected to form

the parents of the next generation using the tournament method. The offspring are

created by applying the GP genetic operators to the SGP individuals, and the GEP

genetic operators to the HGEP, GEP, and PGEP individuals. An additional mutation

operator is applied in the HGP algorithm to invert the state of a randomly selected

attribute from the attribute vector. In the case of the PGEP algorithm, attribute vector

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 151

mutations are applied using activation probabilities estimated from the prior generation,

where the activation probabilities (weights) of the terminals are updated using a subset

of the best-selected rules. If the maximum number of generations is met, the algorithm

terminates and returns the rule with the best objective value.

Figure 5.4: Framework of the four algorithmic experiments.

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 152

5.3.3 Parameter Settings

The algorithms were implemented in Python 3.7 on a system with an Intel(R) Xeon(R)

3.6GHz and 64 GB of RAM. In order to provide a fair comparison between the four

algorithms, similar parameters are shared between them. A population of 750

dispatching rules is initialised, and the tournament size is set to 5 for the four

algorithms. Table 5.2 shows the parameter settings for the four algorithms. Most of

these parameters are commonly used in previous studies (Nie et al., 2013b; Shady et al.,

2021c). Since the GP and GEP algorithms use different representations to express

dispatching rules, it is crucial to define appropriate initialisation parameters that can

create rules of the same size in the first generation. It has been observed from

preliminary experiments that using a maximum depth of 8 for the GP algorithms results

in the same average rule length as GEP rules generated with a chromosome comprising

two genes and a gene head length equal to 26. The activation probability at the initial

generation 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 and the number of selected individuals |𝕊| are the new parameters

introduced for the PGEP algorithm. The |𝕊| and 𝑃𝑟𝑜𝑏𝑖𝑛𝑡 parameters are set to 300 and

0.5, respectively. Regarding HGP and HGEP algorithms, the attribute mutation

probability of 0.5 is used because it had the best results and is also recommended in

(Nguyen et al., 2018c). Finally, the termination condition for all algorithms is set to 50

generations, and 20 independent runs of each algorithm are performed for each

objective.

Table 5.2 Parameter settings for the four algorithms

SGP Values GEP, HGEP, and PGEP Values

Maximum tree depth 8 Head length 26

Crossover rate 0.85

Number of genes

linking function

Two genes

Addition

Mutation rate 0.1

Mutation, IS, RIS, and

Gene transposition rates

0.03%, 0.1%, 0.1%,

and 0.1%

Elitism rate 0.05

One-point, two-point, and

Gene recombination rates

0.2%, 0.5%, and 0.1%

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 153

5.4 Results

Due to the stochastic nature of evolutionary algorithms, the Wilcoxon rank-sum test

with a significance level of 0.05 was used to examine the statistical difference in the

performance of the algorithms. In the following results, the statistical results obtained

from comparing PGEP with the other three algorithms are represented by a tuple next to

the PGEP results (SGP versus PGEP, GEP versus PGEP, and HGEP versus PGEP).

Also, the symbols "+", "-" and "=" indicate that the corresponding result is significantly

better, worse than, or similar to its counterpart. It is noteworthy that this chapter is not

primarily focused on improving the performance of evolved rules, but on generating

rules with small sizes and high interpretability without sacrificing efficiency. Smaller

rules are mathematically simpler than complex ones, and thus contribute positively to

reducing the computational expenses of evolutionary algorithms and are feasible to

implement in the industry

5.4.1 Training Performance

Five performance measures were considered to compare the performance of the four

algorithms across generations during the training phase. The performance measures are

the percentage change in objective value, computational time, mean rule length, the

average number of absent terminals, and the average number of active terminals. For all

performance measures used, a smaller value indicates better performance, except for the

percentage change objective, where larger values indicate better performance. Table 5.3

shows the mean and standard deviation of the four algorithms under the TWT, MT, and

MFT objectives. Figure 5.5 (a1), (a2), and (a3) show the percentage change in the TWT,

MT, and MFT objectives across generations, respectively. Regarding the performance

of evolved rules, there is no significant difference in the percentage change in the

objective values of the PGEP algorithm compared with the other methods under MFT

objectives, as shown in Table 5.3. In terms of the MT objective, the PGEP algorithm

had lower solution quality compared with the SGP algorithm, whereas it had the same

performance as GEP and HGEP algorithms. In addition, the PGEP algorithm obtained

significantly worse results compared with the SGP algorithm and better results

compared with the HGEP algorithm in the TWT objective. Finally, the rules generated

using the SGP algorithm had better solution quality compared with the GEP algorithm

for the MT and TWT objective.

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 154

In terms of computational costs, although the HGEP algorithm had a smaller

computational time compared with the GEP algorithm in the TWT and MT objectives,

this reduction was at the expense of the quality of evolved rules as the HGEP had

significantly worse results compared with the other algorithms related to the TWT and

MT objectives. In contrast, the computational time for the PGEP algorithm is

significantly smaller than the three other algorithms under all objective functions while

achieving high solution quality. This finding indicates that feature selection methods

that obtained promising results in the GP literature do not guarantee the same high

performance when integrating with the GEP algorithm. The computational time of the

PGEP algorithm is greatly smaller than the SGP and GEP, respectively, as shown in

Figure 5.5 (b1), (b2), (b3), and Table 5.3. These results demonstrate the ability of the

proposed feature selection approach to reduce the computational requirements of both

the GP and GEP algorithm. Finally, the compactional time of the GEP algorithm is

significantly smaller than the SGP algorithm in the three objectives.

Table 5.3 Performance measures in the training phase

Perf. Meas. Obj. SGP GEP HGEP PGEP

Percentage change TWT 110.71 ± 21.67 101.1 ± 25.86 85.47 ± 24.59 101.61 ± 28.68

(-, =, +)

MT 125.65 ± 2.46 122.11 ± 3.85 121.68 ± 5.7 122.54 ± 3.63

(-, =, =)

MFT 56.72 ± 0.5 56.2 ± 0.26 56.33 ± 0.3 55.5 ± 0.63

(=, =, =)

Computational time TWT 181.73 ± 10.93 119.53 ± 22.26 115.64 ± 12.66 100.52 ± 11.86

(+, +, +)

MT 154.55 ± 12.79 116.23 ± 22.56 107.84 ± 15.07 101.53 ± 11.65

(+, +, +)

MFT 119.26 ± 8.2 69.0 ± 8.55 71.78 ± 8.02 63.33 ± 11.72

(+, +, +)

Mean rule length TWT 16.83 ± 3.16 11.13 ± 2.24 9.07 ± 1.96 9.11 ± 1.61

(+, +, =)

MT 14.62 ± 2.67 10.76 ± 2.61 9.67 ± 1.71 8.77 ± 1.36

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 155

(+, +, +)

MFT 11.87 ± 1.51 5.78 ± 0.88 6.12 ± 0.89 5.71 ± 1.2

(+, +, +)

Average number of

absent terminals

TWT 5.58 ± 1.84 7.09 ± 1.71 7.67 ± 1.85 8.05 ± 1.25

(+, +, +)

MT 6.05 ± 1.67 7.0 ± 2.07 7.27 ± 1.4 7.77 ± 1.17

(+, +, +)

MFT 7.5 ± 1.23 9.08 ± 0.9 8.87 ± 0.93 8.96 ± 1.29

(+, -, +)

Average number of

active terminals

TWT 7.42 ± 1.84 5.91 ± 1.71 3.85 ± 1.23 3.31 ± 0.63

(+, +, +)

MT 6.65 ± 1.67 6.0 ± 2.07 4.11 ± 0.98 3.46 ± 0.6

(+, +, +)

MFT 5.5 ± 1.23 3.92 ± 0.9 3.39 ± 0.62 2.73 ± 0.78

(+, +, +)

As expected, the reduction in computational costs resulted from a decrease in the

average length of evolved rules, as illustrated in Table 5.3 and Figure 5.5 (c1), (c2), and

(c3). The rules evolved using the PGEP algorithm had the smallest length compared

with the three algorithms in the three objectives. This supports our hypothesis that

integrating the proposed approach with the restricted search space of the GEP algorithm

is beneficial in reducing the size of created rules. In addition, the GEP algorithm

generated rules with significantly smaller sizes compared with the SGP algorithm which

is similar to the findings in the literature. The evolved rules using the HGEP algorithm

were smaller than the GEP algorithm for the MT and TWT objectives. In contrast, GEP

evolved rules had smaller sizes compared with the HGEP algorithm with respect to the

MFT objective.

Since there are three states (active, inactive, and absent) for each terminal in the

proposed representation while there are only two states (absent and active) in the

representation of the SGP and GEP algorithms, the number of inactive terminals was

excluded from the comparison. Afterwards, the average number of absent and active

terminals of the evolved rules using the four algorithms is compared. As depicted in

Figure 5.5 (d1-e1), (d2-e2), and (d3-e3), the use of the proposed feature selection

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 156

approach supports the PGEP algorithm in increasing the number of absent terminals and

reducing the number of active terminals compared with the GEP algorithm. Specifically,

the proposed algorithm (PGEP) obtained significantly more absent terminals and fewer

active terminals compared with the other algorithms under the TWT, MT, and MFT

objectives. These results demonstrate the ability of the proposed feature selection

approach to reduce the size of evolved rules, which greatly reduces the training time of

the GP and GEP algorithms. In addition, the PGEP algorithm was able to evolve rules

with acceptable performance in more understandable structures and affordable

computational costs. Similarly, the HGEP algorithm had significantly larger number of

absent terminals and smaller number of active terminals compared with the GEP

algorithm in the TWT and MT objective. However, in the case of the MFT objective,

the GEP algorithm generated rules with more absent terminals compared with the

HGEP algorithm. Finally, the GEP algorithm evolved rules with larger number of

absent terminals and fewer active terminals in all objectives compared with the SGP

algorithm.

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 157

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 158

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 159

Figure 5.5: The performance of the four algorithms during the training phase for

the three objectives. Figures (a1), (b1), (c1), (d1), (e1) are for the TWT objective.

Figures (a2), (b2), (c2), (d2), (e2) are for the MT objective. Figures (a3), (b3), (c3),

(d3), (e3) are for the MFT objective.

5.4.2 Testing Performance

In order to ensure that the algorithms did not overfit the training data and evolved rules

are applicable to unseen scenarios, the performance of the best 20 dispatching rules for

each algorithm is evaluated through several testing scenarios. Table 4.6 (a), (b), and (c)

show the mean and standard deviation of the four algorithms in the TWT, MT, and

MFT objectives, respectively. The last row of each table provides a summary of the

statistical results using a tuple (𝑎, 𝑏, 𝑐) where 𝑎, 𝑏, and 𝑐 represent the number of times

a certain method wins (significantly better), draws (no significant difference), and loses

(significantly worse) respectively, against the PGEP algorithm.

Regarding the TWT objective, the PGEP algorithm showed better performance

compared with the results of SGP, GEP and HGEP in 3, 4 and 24 scenarios,

respectively. The rules evolved using the PGEP algorithm had similar performance to

the rules of the SGP, GEP and HGEP algorithms in 9, 17 and zero scenarios,

respectively. As expected from the training performance, the HGEP algorithm suffered

from premature convergence as the PGEP algorithm significantly outperformed it in all

testing scenarios related to the TWT objective. For the MT objective, The PGEP and

GEP algorithms had relatively similar mean tardiness results, where there was no

significant difference in 20 scenarios. In addition, the PGEP had significantly higher

solution quality in 4 scenarios compared with the GEP algorithm. In contrast, the SGP

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 160

rules significantly outperformed the PGEP rules in 13 scenarios and had the same

results in 11 scenarios. Moreover, the PGEP algorithm outperformed the HGEP

algorithm in 12 scenarios and had similar solution quality in the other 12 scenarios

without any loss.

Although the SGP algorithm got significantly smaller TWT values compared with

the PGEP algorithm in 12 scenarios and smaller MT values in 13 scenarios, these results

would be inverted if the algorithm running time was used as a stop criterion because the

PGEP had significantly smaller computational budget. It is noteworthy that the four

algorithms evolved rules with the same MFT values revealing that the MFT objective

was an easier objective to handle than the TWT and MT objectives. In other words,

although the MFT objective demonstrated the difference between the four algorithms

with respect to computational time, rule size, and the number of active and absent

terminals, it could not distinguish the difference in the quality of evolved rules in both

training and testing scenarios. Lastly, the obtained results demonstrate that the feature

selection approach proposed for the GEP algorithm does not compromise the solution

quality of generated rules in favour of reducing their sizes.

Table 5.4 Mean and standard deviation of the considered methods in the testing

phase. (a): the TWT objective, (b): the MT objective, and (c): the MFT objective.

(a): scenarios SGP GEP HGEP PGEP

(3, 0.8) 56726.01 ± 11241.72 58022.72 ± 15863.38 101253.44 ± 48089.76

57663.35 ± 12422.92

(=, =, +)

(3, 0.85) 149354.06 ± 28496.28 153799.87 ± 37593.35 208837.32 ± 71059.64

149419.37 ± 27099.19

(=, =, +)

(3, 0.9) 363986.61 ± 69343.26 377615.16 ± 86768.73 436724.15 ± 110828.44

362972.51 ± 64786.78

(=, +, +)

(3, 0.95) 865385.5 ±177930.55 879876.83 ± 231526.76 926905.66 ± 194164.66

871979.63 ± 168267.7

(-, =, +)

(4, 0.8) 4945.72 ± 1895.55 4927.19 ± 2385.55 37948.44 ± 35052.87

5578.71 ± 2543.36

(-, -, +)

(4, 0.85) 28072.82 ± 8561.04 29034.58 ± 11572.88 91360.33 ± 68176.96

30037.94 ± 10175.36

(-, =, +)

(4, 0.9) 134081.75 ± 34149.56 141619.04 ± 41753.05 245387.8 ± 123239.66

138129.97 ± 36348.15

(-, =, +)

(4, 0.95) 531832.68± 120474.09 546325.44 ± 138968.32 668262.88 ± 192167.13 541882.87 ± 110754.28

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 161

(-, =, +)

(5, 0.8) 277.4 ± 180.26 259.05 ± 197.47 19879.19 ± 21389.5

291.75 ± 253.13

(=, =, +)

(5, 0.85) 2752.09 ± 1521.91 2766.84 ± 1787.79 49617.1 ± 51215.34

3252.21 ± 1916.95

(-, -, +)

(5, 0.9) 32349.83 ± 14163.97 34221.21 ± 16185.79 143029.62 ± 119675.18

35265.81 ± 15445.64

(-, =, +)

(5, 0.95) 283197.38 ± 77804.52 292025.79 ± 77245.89 475756.62 ± 214144.53

294605.52 ± 74624.15

(-, =, +)

(6, 0.8) 57.92 ± 41.88 51.74 ± 39.73 11827.85 ± 13413.04

44.81 ± 43.71

(+, +, +)

(6, 0.85) 210.87 ± 143.39 153.31 ± 165.15 31947.81 ± 35641.5

155.32 ± 188.62

(=, =, +)

(6, 0.9) 4876.26 ± 3278.33 5124.12 ± 3746.84 94100.68 ± 98160.64

5880.26 ± 4082.97

(-, -, +)

(6, 0.95) 125112.34 ± 46205.63 127780.5 ± 40939.7 339214.12 ± 228857.15

133341.03 ± 45107.48

(-, =, +)

(7, 0.8) 33.18 ± 31.43 32.1 ± 29.57 7489.3 ± 8887.08

26.7 ± 27.43

(+, +, +)

(7, 0.85) 32.9 ± 33.08 29.12 ± 30.47 22435.81 ± 25958.95

32.09 ± 33.33

(=, =, +)

(7, 0.9) 417.13 ± 478.79 439.21 ± 538.48 71061.12 ± 80981.05

488.9 ± 528.63

(=, =, +)

(7, 0.95) 43338.93 ± 23040.37 43695.22 ± 20922.73 251006.94 ± 222340.49

47917.42 ± 23663.5

(-, =, +)

(8, 0.8) 20.97 ± 23.14 20.4 ± 20.88 4753.67 ± 6085.89

15.82 ± 17.65

(+, +, +)

(8, 0.85) 19.86 ± 22.81 19.63 ± 23.92 15989.11 ± 19053.37

21.81 ± 28.28

(=, =, +)

(8, 0.9) 54.88 ± 80.95 49.88 ± 82.99 55365.89 ± 64569.62

39.17 ± 61.37

(=, =, +)

(8, 0.95) 10388.34 ± 7859.3 10465.74 ± 6952.21 200628.42 ± 208898.31

12264.97 ± 8102.39

(-, =, +)

Summary (12, 9, 3) (3, 17, 4) (0, 0, 24)

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 162

(b): scenarios SGP GEP HGEP PGEP

(1.5, 0.8) 128.83 ± 6.24 133.3 ± 9.7 129.69 ± 6.35 129.47 ± 5.52 (=, +, =)

(1.5, 0.85) 177.33 ± 8.26 183.87 ± 13.59 178.53 ± 10.54 177.95 ± 7.39 (=, +, =)

(1.5, 0.9) 254.34 ± 12.31 265.97 ± 22.1 256.23 ± 16.01 255.02 ± 10.93 (=, +, =)

(1.5, 0.95) 405.73 ± 21.63 424.06 ± 40.31 404.81 ± 23.84 404.72 ± 18.21 (=, +, =)

(2, 0.8) 73.33 ± 4.76 76.53 ± 6.09 76.89 ± 7.27 74.78 ± 4.47 (=, =, =)

(2, 0.85) 116.6 ± 7.15 122.92 ± 10.01 120.55 ± 10.99 119.56 ± 6.88 (=, =, =)

(2, 0.9) 190.14 ± 10.8 201.47 ± 16.71 194.5 ± 15.99 194.7 ± 10.63 (=, =, =)

(2, 0.95) 338.86 ± 20.42 357.53 ± 35.73 339.87 ± 24.46 342.15 ± 17.79 (=, =, =)

(2.5, 0.8) 34.61 ± 2.95 36.28 ± 3.67 42.89 ± 9.12 36.46 ± 3.69 (-, =, +)

(2.5, 0.85) 68.93 ± 5.3 73.48 ± 6.41 78.17 ± 12.34 72.86 ± 6.4 (-, =, +)

(2.5, 0.9) 135.36 ± 9.7 145.85 ± 12.66 145.22 ± 17.41 142.51 ± 10.74 (-, =, =)

(2.5, 0.95) 280.03 ± 18.48 297.62 ± 28.92 285.35 ± 25.49 287.8 ± 17.74 (=, =, =)

(3, 0.8) 12.94 ± 1.88 13.9 ± 2.62 23.21 ± 10.74 14.17 ± 2.8 (-, =, +)

(3, 0.85) 35.52 ± 3.67 38.43 ± 4.99 49.36 ± 14.13 39.1 ± 5.49 (-, =, +)

(3, 0.9) 91.04 ± 8.41 98.49 ± 10.23 106.15 ± 19.35 97.89 ± 10.23 (-, =, +)

(3, 0.95) 226.65 ± 17.31 242.61 ± 23.49 237.91 ± 27.24 236.14 ± 17.66 (=, =, =)

(3.5, 0.8) 3.77 ± 1.01 4.21 ± 1.4 13.19 ± 9.67 4.43 ± 1.61 (-, =, +)

(3.5, 0.85) 15.65 ± 2.3 17.11 ± 3.64 30.91 ± 15.48 17.89 ± 4.02 (-, =, +)

(3.5, 0.9) 55.38 ± 6.06 60.97 ± 8.79 76.91 ± 21.79 62.09 ± 9.52 (-, =, +)

(3.5, 0.95) 177.78 ± 15.2 192.04 ± 19.5 197.69 ± 28.93 190.06 ± 18.25 (=, =, =)

(4, 0.8) 0.88 ± 0.56 1.03 ± 0.7 8.34 ± 7.92 1.14 ± 0.8 (-, =, +)

(4, 0.85) 5.72 ± 1.4 6.48 ± 2.2 20.1 ± 14.62 7.03 ± 2.48 (-, =, +)

(4, 0.9) 29.79 ± 4.73 34.38 ± 7.24 54.8 ± 24.09 35.81 ± 8.07 (-, =, +)

(4, 0.95) 135.44 ± 13.76 147.59 ± 16.95 162.72 ± 31.55 146.99 ± 17.04 (-, =, +)

Summary (13, 11, 0) (0, 20, 4) (0, 12, 12)

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 163

)c): scenarios SGP GEP HGEP PGEP

(3, 0.7) 283.93 ± 1.62 283.74 ± 1.56 284.15 ± 1.89 284.18 ± 1.56 (=, =, =)

(3, 0.725) 295.42 ± 1.92 295.31 ± 1.77 295.76 ± 2.32 295.56 ± 1.89 (=, =, =)

(3, 0.75) 308.99 ± 2.05 308.7 ± 1.84 309.19 ± 2.61 308.73 ± 2.06 (=, =, =)

(3, 0.775) 324.31 ± 2.23 324.12 ± 2.29 324.46 ± 2.84 324.43 ± 2.27 (=, =, =)

(3, 0.8) 341.64 ± 2.45 341.7 ± 2.25 342.52 ± 3.41 342.22 ± 2.6 (=, =, =)

(3, 0.825) 362.51 ± 2.81 362.55 ± 2.61 363.13 ± 4.39 363.13 ± 2.95 (=, =, =)

(3, 0.85) 387.55 ± 3.34 387.53 ± 2.96 388.72 ± 5.58 388.85 ± 3.26 (=, =, =)

(3, 0.875) 417.62 ± 3.69 417.96 ± 3.82 419.16 ± 7.42 418.8 ± 3.65 (=, =, =)

(3, 0.9) 458.27 ± 5.0 459.49 ± 4.78 460.43 ± 8.75 459.61 ± 5.33 (=, =, =)

(3, 0.925) 513.2 ± 6.19 515.09 ± 5.51 517.09 ± 11.8 516.63 ± 5.93 (=, =, =)

(3, 0.95) 592.13 ± 8.97 593.92 ± 6.45 597.46 ± 15.84 595.51 ± 8.24 (=, =, =)

(3, 0.975) 701.35 ± 13.6 704.52 ± 8.6 709.27 ± 22.26 705.08 ± 11.54 (=, =, =)

Summary (0, 12, 0) (0, 12, 0) (0, 12, 0)

5.4.3 Insights Into the Best-Evolved Rules

The distribution of the terminals of the 20 best rules evolved using the four algorithms

is plotted in Figure 5.6 (a), (b), and (c) representing the results obtained for the TWT,

MT, and MFT objectives, respectively. Typically, extensive use of a particular terminal

in high-performance rules indicates that it is extremely important to the objective used

in the training phase. The total number of terminals used in the best TWT rules for the

PGEP algorithm is smaller than those in the SGP, GEP, and HGEP by 58.13%, 29.91%,

and 15.14%, respectively. Also, the gap between relevant and irrelevant terminals is

wider in the PGEP results than in the other three methods. Similarly, the difference in

the number of terminals between significant and insignificant terminals in the best-

generated rules was more pronounced in the PGEP algorithm than in the GEP and

HGEP algorithms. The most important terminals in the case of minimizing the TWT

objective are PT, SL, JW, RO, and WINQ while Npt, WT, WR, JR, and OR terminals

are insignificant as depicted in Figure 5.6 (a).

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 164

Figure 5.6: Terminals distribution in the 20 best rules for the four algorithms. (a):

for the TWT objective, (b): for the MT objective, (c): for the MFT objective

Regarding the MT objective, the PGEP algorithm considered WT, Npt, and JW

terminals to be neglectable, while the weight of RO and Apr terminals was increased. In

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 165

addition, the PGEP algorithm reduces the number of terminals in the best rules by

51.07%, 39.85%, and 3.61% compared with the SGP, GEP, and HGEP algorithms,

respectively. In terms of the MFT objective, the PGEP rules have 63.08%, 13.45%, and

10.43% fewer terminals than the rules generated using the SGP, GEP, and HGEP

algorithms. The most important terminals to reduce the mean flow time objective are

PT, Npt, and WINQ, while redundant terminals include DD and SL. Consequently, four

main findings can be drawn:

a) The weight of terminals varies according to the objective under study, and the

selection ability of the GP and GEP algorithms without external feature selection

mechanisms is relatively limited.

b) Although the rules generated using the GEP algorithm have relatively lower

quality compared with the GP rules, the difference in computational time is

significantly large which might inverse the results if the time is used as a

stopping criterion.

c) The integration between the proposed feature selection approach and the fixed-

length representation of the GEP algorithm can identify important features and

exclude irrelevant features under different objective functions.

d) In contrast to the literature feature selection approach, the proposed approach

reduces the size of evolved rules and speeds up the GEP algorithm without

negatively affecting solution quality, and even improves quality in the case of

MT objective.

The simplified mathematical version of the best PGEP rule evolved under the TWT

objective is shown in Equation 5.3. The PT, WINQ, JW, SL, and RO terminals are

active terminals in the evolved rule while the WR terminal is inactive. The remaining

terminals are not used in the best TWT rule. Regarding the MT objective, Equation 5.4

shows the best PGEP rule in mathematical form. Four terminals are used to prioritize

queued operations which are PT, WINQ, SL and RO indicating their great impact in

minimizing the MT objective. The only disabled terminal is the JW terminal, while the

rest of the terminals have been excluded. Equation 5.5 presents the mathematical

function of the best PGEP rule used to minimize the MFT objective. The active

terminals are Npt, WINQ, PT, Apr, RO, and PT, whereas the deactivated terminals

include JR, DD, and JW.

𝑇𝑊𝑇 𝑟𝑢𝑙𝑒 = 3.6 × (𝑃𝑇 +
𝑊𝐼𝑁𝑄

𝐽𝑊
) +

2 × 𝑆𝐿

𝑅𝑂
 5.3

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 166

𝑀𝑇 𝑟𝑢𝑙𝑒 = 2 × 𝑃𝑇 + 𝑊𝐼𝑁𝑄 +
𝑆𝐿 − 1.84

𝑅𝑂
 5.4

𝑀𝐹𝑇 𝑟𝑢𝑙𝑒 = 𝑚𝑖𝑛(𝑁𝑝𝑡, 𝑊𝐼𝑁𝑄) + 𝑃𝑇 + 𝑚𝑖𝑛(𝐴𝑝𝑟 − 𝑅𝑂, 𝑃𝑇) 5.5

Visualizing the mathematical formulation of the best-evolved rules provides some

useful insights regarding important and irrelevant terminals for each objective.

However, it is still challenging to know which characteristics of the operations will take

the highest priority using these rules. Therefore, 20 decision situations were sampled

from an actual simulation run and used to understand the phenotypic characterization of

the best-evolved rules as recommended in (Hildebrandt and Branke, 2015a). The

phenotypic characterization of a given rule demonstrates the impact of changing the

values of the terminals of a set of jobs on their priority values. It is important to mention

that these rules give high priority to jobs with lower priority values from the set of

queued jobs. From these experiments, it was clear that the PGEP rule for the TWT

objective gives high priority to jobs with a large number of remaining operations, low

processing time, low slack, low work in the next queue, and high weight. Regarding the

MT objective, the best PGEP rule favours jobs that have the same characteristics as the

TWT objective except for job weight, which is an irrelevant factor. The PGEP rule that

obtained the smallest MFT objective values assigns high priority values to jobs with low

processing time, low average processing time of queued jobs, low processing time of

next operation, and low work in the next queue.

5.4.4 Further analysis of the proposed approach

The proposed feature selection approach is an online mechanism to guide GP and GEP

algorithms in generating superior dispatching rules in compact structures as described in

the previous and current chapters. Therefore, the activation probability (weight) of each

terminal is tracked during the execution of the PGP algorithm introduced in the previous

chapter and compared with the PGEP algorithm for two reasons.

I. To ensure that the proposed approach is able to select important features and

exclude redundant ones regardless of the evolutionary algorithm used. In other

words, PGP and PGEP algorithms can identify the same sets of significant and

redundant features for each objective.

II. To check whether the weights of the terminals differ across generations,

supporting the main hypothesis that the importance of each terminal is not fixed

throughout the run (binary discrimination is impractical).

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 167

The results obtained using the PGP and PGEP algorithms are shown in Figure 5.7.

For the sake of convenience, the title below each sub-figure is represented as (𝑎_𝑏),

where "𝑎" denotes the objective function considered and "𝑏" indicates the algorithm

used. The colour of each cell in the heat maps represents the average activation

probability of this terminal in 20 runs of the algorithm at a given generation. In addition,

the average activation probability (weight) of the terminal across all generations for the

PGP and PGEP algorithms under the three objectives is estimated and plotted in Figure

5.7 (summary).

Although all algorithms had the same weight in the first generation, their weights

varied greatly in subsequent ones. Regarding the TWT objective, the most important

terminals (bright columns or values close to 1) in the PGP and PGEP algorithms are

RO, PT, SL, WINQ, Apr, and JW. Although the DD terminal is an important terminal in

the case of the PGP algorithm (0.8), it had a low activation probability using the PGEP

algorithm (0.4). The inclusion of the SL terminal may be one of the reasons, as it can

substitute some DD and CT terminals and thus indirectly affect their weights. For the

MT objective, the most relevant terminals are RO, PT, SL, WINQ, and Apr while

insignificant ones include JR, OR, WR, WT, Npt and JW. Regarding the MFT objective

results shown in Figure 5.7 (MFT_PGP) and (MFT_PGEP), the set of significant

terminals includes PT, Npt, WINQ, and Apr, while insignificant terminals include most

of the due-date related terminals such as JR, OR, DD, SL, and WT. As shown in Figure

5.7 (summary), most terminals had the same or slightly different weight for both the

PGP and PGEP algorithms under the same objective function. The difference in

activation probability between the two algorithms for any terminal did not exceed 0.2,

except for the DD terminal in the MT and TWT objectives and the WR terminal in the

TWT objective. Therefore, it is clear that the proposed feature selection approach is able

to identify significant terminals regardless of the evolutionary algorithm or objective

function used.

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 168

 (TWT_PGP) (TWT_PGEP)

 (MT_PGP) (MT_PGEP)

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 169

 (MFT_PGP) (MFT_PGEP)

 (summary)

Figure 5.7: Matrix plot of the feature selection results using the PGP and PGEP

algorithms under the TWT, MT, and MFT objectives.

Chapter 5: GEP With Feature Selection For Dynamic Job Shop Scheduling Problems

 170

5.5 Chapter Summary

This chapter proposed an online feature selection approach for the gene expression

algorithm (PGEP) to evolve compact dispatching rules for the dynamic job shop

scheduling problems. The proposed algorithm accelerated the search process by

restricting the GP search space using the linear representation of the GEP algorithm as

well as guiding the search to the most promising regions using the feature selection

capability. This leads to generating high-quality scheduling rules at smaller sizes using

only the most relevant terminals to the objective to be optimized.

Three algorithms from the literature were developed and compared with the

proposed algorithm across various unseen job shop settings. The literature algorithms

are the standard GP algorithm (SGP), gene expression programming algorithm (GEP),

and GEP with the existing attribute vector (HGEP). In addition, three scheduling

objective functions were investigated, including total weighted tardiness, mean

tardiness, and mean flow time. Experimental results confirmed the ability of the PGEP

algorithm in evolving rules with smaller sizes in a shorter computational time without

sacrificing performance compared with literature methods. In addition, the distribution

of terminals in the best generated rules for the four algorithms was compared. It was

clear that the PGEP algorithm had the lowest number of terminals in the best rules,

which reflected its ability to identify the most important terminals.

The PGEP best evolved rules were presented in mathematical form and their

phenotypic characterizations were analysed using 20 decision situations sampled from

an actual simulation run. The weight of terminals across the evolutionary process of the

PGEP algorithm was recorded. Then, the obtained results were compared with those in

the previous chapter to verify whether the performance of the feature selection approach

changed based on the nature of the underlying evolutionary algorithm. Experimental

results demonstrate the ability of the proposed feature selection approach to identify the

same set of critical terminals regardless of the evolutionary algorithm used.

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 171

Chapter 6. SURROGATE−ASSISTED GEP

FOR DYNAMIC JOB SHOP SCHEDULING

PROBLEMS

6.1 Introduction

In contrast to chapters 3, 4, and 5 which focused on reducing the evolutionary training

time by reducing the size of evolved rules, this chapter speeds up the learning process

by reducing the computational time required to evaluate the performance of evolved

rules. In other words, the approaches presented and analysed in this chapter are

relatively independent of the GP and GEP algorithms and are primarily linked to the

simulation model used to imitate the DJSSP under study. Typically, there are a large

number of dispatching rules are generated at each evolutionary generation, and thus

their fitness values are estimated across a range of training scenarios representing

different job shop settings. Each of these scenarios is a DES model that simulates the

behaviour and constraints of a particular dynamic job shop setting. Due to the stochastic

nature of the DJSSP models, multiple replications of each simulation model are required

to obtain the steady-state performance of a given rule. Therefore, fitness evaluation is

the most computationally demanding component in any evolutionary computation

algorithm, and GP and GEP algorithms are not exceptions. In order to reduce the

computational burden of simulation models that significantly reduce the training time of

evolutionary algorithms, surrogate models have been developed. Surrogate models, also

known as metamodels, response surfaces, or emulators, are simplified approximations

of complex simulation models that are trained using input-output data at several

selected locations in the design parameter space (Jin, 2011).

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 172

Using surrogate models that can imitate the underlying simulation model as

accurately as possible with low computational costs is expected to offer several

advantages as follows.

I. It helps in the early identification of promising dispatching rules, and thus

directs the search to promising search regions.

II. Low-quality rules can be quickly discarded without sacrificing high

computational costs in evaluating their fitness values.

III. The time saved can be used to explore more dispatching rules (intermediate

population) resulting in achieving higher quality rules.

Therefore, the main objective of this chapter is to propose a surrogate assisted GEP

approach to reduce the computational time required for the fitness evaluation of evolved

rules without significantly affecting the prediction accuracy. Consequently, three

surrogate models are developed by integrating the proposed approach with three

surrogate models from the literature (Nguyen et al., 2017d) that showed a lower

computational budget and high accuracy. Moreover, this chapter assesses the efficiency

of the proposed surrogates using the following objectives.

I. The models have to be independent of the structure of evolved rules or the

evolutionary algorithm used, which will extend their application with other

algorithms and scheduling decisions (Hildebrandt and Branke, 2015b).

II. The proposed models should achieve a low computational budget while

maintaining the same level of prediction accuracy as the literature surrogates

(Nguyen et al., 2017d)

III. The computational time needed for training the surrogate models needs to be

affordable to reduce the overhead costs. In addition, it is preferable that the

developed surrogate model be somewhat explainable to increase confidence for

later use in real-world applications.

The rest of this chapter is structured as follows. Section 6.2 describes the proposed

surrogate assisted GEP approach. The numerical experiments are illustrated in Section

6.3. The obtained rules results are presented in Section 6.4. Finally, Section 6.5 presents

the conclusions of this chapter.

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 173

6.2 Proposed Surrogate-Assisted GEP Approach

To evaluate the performance of a given dispatching rule, a DES model is usually

used to estimate the absolute fitness value. The absolute fitness value means the fitness

value of a rule using the full simulation length. The DES length is determined by the

total number of jobs 𝑗𝑎 that need to be processed. Accordingly, the simulation time 𝑡(𝑗𝑎)

required to assess the performance of a population of 𝑛 rules is equal to 𝑛 × 𝑡(𝑗𝑎).

Therefore, the idea of the proposed surrogate model is to collect training data while

evaluating some selected rules 𝑚 (training rules). Afterward, the collected data is used

to develop an Machine Learning (ML) model that can reduce the simulation length

required in evaluating the remaining rules (𝑛 − 𝑚). In other words, the remaining rules

are partially evaluated using the DES model with fewer jobs 𝑗𝑓 i.e., until the number of

finished jobs is equal to 𝑗𝑓. Consequently, the surrogate model is used to predict the

absolute fitness values of the remaining rules. In this chapter, a multiple linear

regression is used as the ML method. Linear regression is selected for several reasons as

follows.

a) It is computationally affordable machine learning techniques compared with

other complex methods such as neural network, support vector machine, etc.

b) It provides useful information about design parameters and their weights.

c) The results obtained can be partially interpreted and analysed.

The amount of change in computational time (𝑟𝑡) required for fitness assessment is

shown in Equation 6.1, where 𝑠 indicates the surrogate model training time. It is clear

that the time required to evaluate the fitness values of evolved rules can be reduced by

reducing the number of training rules 𝑚, reducing the number of jobs used for early

termination 𝑗𝑓 , and reducing the training time of the surrogate model 𝑠 (model

complexity and machine learning technique used).

𝑟𝑡 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑒𝑣𝑎𝑙. 𝑡𝑖𝑚𝑒 − 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑒𝑣𝑎𝑙. 𝑡𝑖𝑚𝑒

𝑟𝑡 = 𝑛 × 𝑡(𝑗𝑎) − (𝑚 × 𝑡(𝑗𝑎) + (𝑛 − 𝑚) × 𝑡(𝑗𝑓) + 𝑠)
6.1

The proposed surrogate model is integrated with the GEP algorithm. The proposed

surrogate assisted GEP algorithm consists of six main steps, as shown in Figure 6.1. The

algorithm starts by initializing a population of dispatching rules using the GEP

representation and a predefined set of functions and terminals at Step 1. In Step 2, the

initialized rules are divided into two groups, training rules and the remaining rules. In

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 174

addition, design parameters or reference points R are selected within the design space.

In other words, fitness values at different percentages of finished jobs are used as

reference points. Then, the training rules are fully evaluated using the DES model and

training data is collected at the reference points as shown in Step 3. The training data

comprises the fitness values of the training rules at different values for the number of

completed jobs and absolute fitness values. In Step 4, a surrogate model is developed

using the collected training data and a supervised ML technique. The surrogate model is

in the form of a mathematical function that estimates the absolute performance of a

given rule using fitness-related values collected at the design parameters. Consequently,

the remaining rules are partially evaluated using the DES model with fewer jobs 𝑗𝑓 i.e.,

until the number of finished jobs is equal to 𝑗𝑓 as shown in Step 5. Finally, in Step 6, the

surrogate model predicts absolute fitness values of the remaining rules using the data

collected from the shortened DES runs.

Figure 6.1: The proposed surrogate assisted GEP approach

Figure 6.2 shows a comparison of the proposed fitness assessment procedure with

the fitness assessment method used in the literature, where 𝑗0 denotes the first job that

arrives at the job shop. Four equally spaced reference rules are used 𝑅 = {𝑟1, 𝑟2, 𝑟3, 𝑟4}

for the sake of clarification. In this example, if the number of completed jobs becomes

equal to 20%, 40%, 60%, and 80% of the total number of jobs 𝑗𝑎, then fitness values of

a given rule are calculated and used as the values of 𝑟1, 𝑟2, 𝑟3 , 𝑟4 respectively.

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 175

Afterward, the collected data is used to train a surrogate model. The remaining rules are

evaluated using the shortened DES model. Then, the surrogate model is used to predict

the absolute fitness values of the remaining rules. Consequently, there are two new

parameters in the proposed approach that must be investigated. They are the size of

training rules (𝑚) and the number of reference points (𝑅)

Figure 6.2: The fitness assessment method used in the literature approaches

compared with the proposed approach

6.3 Numerical Experiments

All experiments are carried out on a DES model of a symmetrical job shop. The

following are the common simulation settings used across all experiments:

• Jobs arrivals follow Poisson distribution.

• Job shop utilization level is 90%.

• Processing times follow uniform distribution U[1, 49].

• No machine break-down; pre-emption is not allowed.

• Job due dates are assigned using the total work content method with a tightness

factor of 1.5.

• Two objective functions are considered: mean tardiness and mean flow time.

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 176

At each simulation replication, the job shop starts empty. All the collected data up to

the warm-up period are discarded. Statistics from the warm-up period to the completion

of the total number of required jobs are used to calculate performance measures. Six

models are developed to assess the effectiveness of the proposed approach compared

with literature methods as shown in Table 6.1. A reference model is used to evaluate the

accuracy of the surrogate models. In the reference model, there are 10 machines, the

simulation length is 2500 jobs, and the warm-up length is 500 jobs. Also, three literature

models, namely OrigShort, HalfShop, and MiniShop are considered for the purpose of

comparison (Nguyen et al., 2017d). The proposed approach is integrated with the three

literature models referred to as ProShort, ProHalf, and ProMini. The reason behind this

integration is that the proposed surrogate in contrast to literature surrogates reduces the

simulation length without simplifying the job shop under study. Therefore, the proposed

surrogate is applicable not only to the actual job shop configuration but also to its

simplified versions. For OrigShort and ProShort models, the same job shop settings are

used as the actual model except that the simulation model length and warm-up period

are shorter. On the other hand, the other surrogate models have fewer machines and a

maximum number of operations per job as well as shorter simulation length and warm-

up period compared with the reference model.

Table 6.1 Job shop settings for the six surrogate models

Models No. of machines Max. no. of operations Model length Warm-up

OrigShort

& ProShort
10 10 1000 200

HalfShop

& ProHalf
5 5 500 100

MiniShop

& ProMini
2 2 250 50

The three proposed models are compared with their counterpart literature models

using two performance measures: computational time and accuracy. The prediction

accuracy is estimated using the rank correlation coefficient 𝜌 between the performance

of rules using the reference model and the performance of rules using a given model

(Nguyen et al., 2017d). The accuracy of a specific surrogate model is estimated as

follows:

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 177

1. A population of dispatching rules 𝑁 = {∆1, ∆2, … , ∆𝑛}.

2. Apply 𝑁 to the reference model to obtain actual fitness 𝛾 =

{𝑓(∆1), 𝑓(∆2), … , 𝑓(∆𝑛)} and the corresponding rank 𝛾𝑟 =

𝑓𝑟(∆1), 𝑓𝑟(∆2), … , 𝑓𝑟(∆𝑛)} sorted on descending order.

3. Apply the 𝑁 rules to the surrogate model to obtain predicted fitness 𝛾′ =

{𝑓′(∆1), 𝑓′(∆2), … , 𝑓′(∆𝑛)} and the corresponding rank 𝛾𝑟
′ =

{ 𝑓𝑟
′(∆1), 𝑓𝑟

′(∆2), … , 𝑓𝑟
′(∆𝑛)} sorted on descending order.

4. Estimate the correlation between the two models using the following function.

 𝜌 =
∑ (𝑓𝑟(∆𝑖)−𝑓�̅�)(𝑓𝑟

′(∆𝑖)−𝑓�̅�′)𝑛
𝑖=1

√∑ (𝑓𝑟(∆𝑖)−𝑓�̅�)𝑛
𝑖=1

2
∑ (𝑓𝑟

′(∆𝑖)−𝑓�̅�′)𝑛
𝑖=1

2

 6.2

The GEP algorithm is used to generate 300 rules represented as chromosomes. The

number of genes at each chromosome is set to two; and the addition is used as a linking

function. Moreover, the head length is set to 8. Table 6.2 shows the set of terminals and

functions used. In addition, the underlined terminals are used when optimizing the mean

tardiness objective, and are excluded in the case of the mean flow time objective.

Table 6.2 GEP terminal and function sets

Attribute Explanation

JR Job release date

OR Operation ready time

WR Work remaining of the job

PT Operation processing time

RO Number of remaining operations in a job

WT Operation waiting time

NPT Processing time of the next operation

WINQ Work in the next queue

APR Average processing time of queued job

DD Job due date

CT Machine ready time (current time)

SL Job slack

Function set +, −, ×, /, 𝑚𝑎𝑥, and 𝑎𝑏𝑠

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 178

6.4 Results

First, the effects of the size of training rules and the number of reference points on the

accuracy of the proposed model are examined. Second, the best values for the two

parameters are used in the three proposed surrogates when compared with their

counterpart in the literature.

6.4.1 Fine-tuning the Surrogate Model Parameters

In order to ensure that a certain model does not overfit the training data, the

performance of the model is tracked during the training and testing phases across

different settings. The training performance indicates the accuracy of a surrogate model

in predicting the rank of evolved rules using the same dynamic job shop problem

instances. In contrast, testing performance indicates the accuracy of a surrogate model

in predicting the rank of evolved rules using unseen instances. The parameters analysis

results obtained from the ProShort, ProHalf, and ProMini models are presented for each

objective function. Moreover, 20 simulation replications are used for each

configuration. Figure 6.3 (a), (b), and (c) respectively illustrate the accuracy of the

ProShort, ProHalf, and ProMini models using different sizes of training rules ranging

from 50 to 300 rules with the number of reference points set to 10 for the mean

tardiness objective. It is clear that the size of the training data does not greatly affect the

prediction accuracy of the proposed surrogates. One of the reasons might be that the

proposed approach uses training rules to understand the behavior of the job shop rather

than the rules' phenotypic characterization.

Although all models had a high prediction accuracy in the training instances, their

performance deteriorated in the testing scenarios. The ProShort model had the smallest

gap between the training and testing performance by about 10% on average, whereas the

ProMini model had the largest performance difference by about 40% on average. As

expected, the ProShort model had the highest prediction accuracy on the testing

instances because it used the same job shop settings except for the simulation length and

warm-up period. In contrast, the ProMini showed the lowest accuracy because it used a

highly simplified version of the job shop plus short simulation and warmup lengths. The

ProHalf model showed moderate performance compared with the other surrogates.

Similar prediction accuracy results were obtained for the mean flow time objective as

shown in Figure 6.4 (a), (b), and (c) for the ProShort, ProHalf, and ProMini models,

respectively.

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 179

 (a)

 (b)

 (c)

Figure 6.3: The effect of the number of training rules on the accuracy for the mean

tardiness objective

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 180

 (a)

 (b)

 (c)

Figure 6.4: The effect of the number of training rules on the accuracy for the mean

flow time objective

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 181

The main difference is that the testing performance of the ProShort and ProHalf

models for the mean flow time objective is relatively higher than in the case of the mean

tardiness objective. There are two reasons that might be the reason behind this

difference as follows.

a) It is noted that the mean flow time objective is more robust than the mean

tardiness, and hence its values are easier to predict (Pinedo, 2012).

b) More terminals were used in the MT objective compared with the MFT resulting

in more complex rules and more difficulty in predicting their behavior.

Several surrogate model runs were carried out to assess the prediction accuracy

using different reference point values ranging from 1 to 50 points and 100 training rules

for each objective function. It is worth noting that increasing the number of reference

rules increases the complexity of the ML model generated. This in turn may increase

training time, reduce the model understandability, and increase the risk of overfitting.

For instance, if 20 reference points are taken into account when developing a linear

regression model, then the model will have an intercept and 20 independent variables to

predict the fitness value of a given rule. Figure 6.5 (a), (b), and (c) respectively show the

accuracy of the ProShort, ProHalf, ProMini models across different values of reference

points for the mean tardiness objective. As expected, an increase in the number of

reference points increased training accuracy but negatively affected test accuracy.

Because the generated models became more complex and learned the details and noise

in the training instance, and thus had lower performance in the new instances.

Regarding the ProShort model, the accuracy during the training and testing phases was

stable at around 0.97, and 0.83 when the number of reference points was less than 30.

The gap between training and testing accuracies widens when R exceeded 30 points. For

example, when the number of points reached 50, the training accuracy was about 0.98

while the testing accuracy was 0.76. Similar behavior was observed in the ProHalf and

ProMini models but in a more pronounced way. The training and testing accuracies for

the ProHalf model were 0.98 and 0.62 when the number of reference points was set to

50. In addition, the training and testing accuracies for the ProMini model were 0.98 and

0.46 when the number of reference points was set to 50. Regarding the mean flow time

objective, Figure 6.6 (a), (b), and (c) respectively show the accuracy of the ProShort,

ProHalf, ProMini models for the same range of reference points. Similar to the mean

tardiness objective, the training accuracy increased as the number of reference points

increased, whereas testing performance decreased when the number exceeded 10 points.

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 182

 (a)

 (b)

 (c)

Figure 6.5: The effect of the number of reference points on the accuracy for the

mean tardiness objective

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 183

 (a)

 (b)

 (c)

Figure 6.6: The effect of the number of reference points on the accuracy for the

mean flow time objective

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 184

6.4.2 Computational Time

In the following experiments, 100 training rules and 10 reference points (best

settings) were used in the proposed surrogates. The three proposed models were

compared with their counterparts in the literature. Figure 6.7 shows the results obtained

with respect to computational time for the six surrogate models under the mean

tardiness objective. The OrigShort and ProShort models had the highest computational

costs compared with the other models, whereas MiniShop and ProMini models obtained

the lowest computational times. In addition, the proposed surrogates required a smaller

computational budget compared with the literature models. Table 6.3 shows the means

and standard deviations of the achieved results. Moreover, a Wilcoxon-signed-sum test

with a significant level of 0.05 was used to assess whether these differences were

statistically significant. Table 6.3 shows the p-values obtained from comparing the

proposed and the literature models as well as the percentage decrease in the

computational time for the two compared models. It was clear that the proposed

surrogate assisted GEP approach significantly reduced the computational time of the

literature surrogates. Specifically, the proposed approach reduced the computational

time of the OrigShort, HalfShop, and MiniShop models by about 5.56%, 5.24%, and

8.46% respectively.

Figure 6.7: Computational times of the six surrogate models under the mean

tardiness objective

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 185

Table 6.3 Obtained results for the MT objective regarding computational time

Surrogate Model

Computational Time for the MT objective

Obtained results % Decrease p-value

OrigShort 8.762 ± 1.188
5.563 0.008

ProShort 8.275 ± 1.242

HalfShop 2.745 ± 0.788
5.236 0.012

ProHalf 2.602 ± 0.681

MiniShop 0.976 ± 0.265
8.461 0.004

ProMini 0.894 ± 0.263

Similar results were achieved with respect to the mean flow time objective as the

proposed approach helped reduce the computational time significantly for the

OrigShort, HalfShop, MiniSHop models by about 8.33, 6.39, and 6.05%, respectively. It

is worth noting that the reduction in computational time was more pronounced in the

MFT objective compared with the MT objective.

Figure 6.8: Computational times of the six surrogate models under the mean flow

time objective

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 186

Table 6.4 Obtained results for the MFT objective regarding computational time

Surrogate Model

Computational Time for the MFT objective

Obtained results % Decrease p-value

OrigShort 8.807 ± 1.015
8.328 0.0

ProShort 8.073 ± 1.03

HalfShop 2.712 ± 0.774
6.385 0.0

ProHalf 2.539 ± 0.735

MiniSHop 0.953 ± 0.265
6.046 0.0

ProMini 0.895 ± 0.246

6.4.3 Prediction Accuracy

The results obtained regarding the prediction accuracy of the six surrogate models

for the mean tardiness objective are shown in Figure 6.9. Moreover, Table 6.5 illustrates

the percentage decrease in accuracy, and the estimated p-value from comparing the

proposed models with their counterparts in the literature. The was no significant

difference in prediction accuracy between the proposed models and the literature

models (p-values > 0.05). Specifically, the estimated p-values from comparing

OrigShort vs. ProShort, HalfShop vs. ProHalf, and MiniShop vs. ProMini were 0.53,

0.21, and 0.94, respectively. Integrating the proposed surrogate assisted GEP approach

with the OrigShort, HalfShop, and Minishop models reduced their accuracy by about

0.77 %, 1.84 %, and 0.35 % on average, respectively. Therefore, it is clear that the

proposed approach helped to significantly reduce the computational costs of fitness

assessment without causing a significant loss in prediction accuracy with respect to the

mean tardiness objective. Regarding the mean flow time objective, Figure 6.10

represents the prediction accuracy of the three proposed surrogates compared with their

counterparts from the literature. In addition, the statistical results are shown in Table

6.6. Similar results were obtained as the MT objective. Specifically, the estimated p-

values from the comparison of OrigShort vs. ProShort, HalfShop vs. ProHalf, and

MiniShop vs. ProMini were 0.53, 0.21, and 0.94, respectively. Moreover, integrating

the proposed approach with the OrigShort, HalfShop, and MiniShop models reduced

their accuracy by about 0.63 %, 1.25 %, and 1.63 % on average, respectively.

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 187

Figure 6.9: Rank correlation coefficients of the six surrogate models under the

mean tardiness objective

Table 6.5 Obtained results regarding prediction accuracy for the mean tardiness

objective

Surrogate Model

Prediction accuracy for the MT objective

Obtained results % Decrease p-value

OrigShort 0.84 ± 0.076
0.767 0.53

ProShort 0.834 ± 0.052

HalfShop 0.743 ± 0.052
1.836 0.21

ProHalf 0.73 ± 0.042

MiniSHop 0.518 ± 0.098
0.347 0.94

ProMini 0.517 ± 0.072

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 188

Figure 6.10: Rank correlation coefficients of the six surrogate models under the

mean flow time objective

Table 6.6 Obtained results regarding prediction accuracy for the mean flow time

objective

Surrogate Model

Computational Time for the MFT objective

Obtained results % Decrease p-value

OrigShort 0.838 ± 0.076
0.627 0.683

ProShort 0.832 ± 0.056

HalfShop 0.738 ± 0.055
1.254 0.791

ProHalf 0.728 ± 0.047

MiniSHop 0.511 ± 0.1
1.634 0.852

ProMini 0.503 ± 0.076

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 189

6.5 Sample of the Proposed Surrogates

The main reason behind the significant reduction in computational time is that the

proposed surrogate models are linear functions that are easy to train and evaluate.

Technically, using these functions in fitness assessment is computationally cheaper than

running a DES model which requires calculating the priority values of hundreds of

operations using non-linear functions (GEP dispatching rules). In addition, it is worth

noting that the collection of the training data used in the proposed surrogates does not

require any additional operations because the fitness value is updated at the same time

when there is a completed job. Equations 6.3, 6.4, and 6.5, respectively, represent the

surrogate models generated in the ProShort, ProHalf, and ProMini models using a single

replication for the mean tardiness objective. The p-values of most of the independent

variables in the three models were less than 0.05 indicating their significant influence

on the predicted fitness values. The R-squared values (Coefficient of determination) for

the ProShort, ProHalf, ProMini were 0.984, 0.963, and 0.891, respectively. In addition,

the adjusted R-squared values for the ProShort, ProHalf, ProMini were 0.982, 0.959,

and 0.879, respectively. These results proved the ability of the proposed surrogates to

capture most of the variations in the underlying simulation model.

𝑦1000 = 1.58 − 0.6 𝑥200 − 0.95 𝑥277 − 0.74 𝑥354 + 0.4 𝑥431 + 0.44 𝑥508

+ 0.63 𝑥585 + 0.08 𝑥662 + 0.58 𝑥739 − 1.06 𝑥816 + 1.15 𝑥893
6.3

𝑦500 = 63.83 − 0.32 𝑥100 + 0.56 𝑥138 + 0.2 𝑥176 − 0.28 𝑥214

+ 0.06 𝑥252 − 0.48 𝑥290 − 0.06 𝑥328 − 0.4 𝑥366 − 2.85 𝑥404

+ 4.57 𝑥442

6.4

𝑦250 = 28.04 + 0.22 𝑥50 − 0.63 𝑥69 + 0.44 𝑥88 + 0.16 𝑥107 + 0.15 𝑥126

− 3.93 𝑥145 + 2.69 𝑥164 + 0.21 𝑥183 − 0.12 𝑥202 + 1.7 𝑥221
6.5

Moreover, Equations 6.6, 6.7, and 6.8, respectively, represent the surrogate models

generated in the ProShort, ProHalf, and ProMini models using a single replication for

the mean flow time objective. Similar regression results were obtained where the R-

squared values for the ProShort, ProHalf, ProMini were 0.974, 0.964, and 0.906,

respectively. In addition, the adjusted R-squared values for the ProShort, ProHalf,

ProMini were 0.971, 0.96, and 0.895, respectively. Finally, most of the independent

variables had p-values less than 0.05 representing their significant impact on the

performance of a given model.

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 190

𝑦1000 = 6.17 − 0.04 𝑥200 − 0.05 𝑥277 − 0.04 𝑥354 + 0.19 𝑥431 + 0.08 𝑥508

+ 0.15 𝑥585 + 0.19 𝑥662 + 0.12 𝑥739 − 0.17 𝑥816 + 0.06 𝑥893
6.6

𝑦500 = −1.86 − 0.06 𝑥100 − 0.02 𝑥138 + 0.07 𝑥176 + 0.19 𝑥214

+ 0.07 𝑥252 + 0.24 𝑥290 + 0.11 𝑥328 + 0.08 𝑥366 + 0.21 𝑥404

+ 0.08 𝑥442

6.7

𝑦250 = 28.04 + 0.22 𝑥50 − 0.63 𝑥69 + 0.44 𝑥88 + 0.16 𝑥107 + 0.15 𝑥126

− 3.93 𝑥145 + 2.69 𝑥164 + 0.21 𝑥183 − 0.12 𝑥202 + 1.7 𝑥221
6.8

6.6 Chapter Summary

This chapter proposed a surrogate-assisted gene expression programming algorithm

to reduce the computational time required for fitness evaluations. The idea of the

approach is to reduce simulation length by early termination of the actual run and use a

computationally inexpensive model to replace the excluded simulation length. To

develop a surrogate model for a specific simulation model, fitness-related data must be

collected during expensive simulation runs of a subset of training rules. Afterward, the

collected data with their corresponding fitness values were used to train a machine

learning model, which is a multiple linear regression in this work. Three surrogate

models, ProShort, ProHalf, and ProMini, were developed by integrating the proposed

approach with three simulation models from the literature, OrigShop, HalfShop, and

MiniShop, respectively. The effect of the two new parameters used in the proposed

approach on prediction accuracy was analysed. In addition, two objective functions

were used including mean tardiness and mean flow time. Then, the proposed surrogate

models using the best achieved settings were compared with their counterparts in the

literature regarding computational time and prediction accuracy. A Wilcoxon-signed-

sum test with a significant level of 0.05 was used to assess whether the difference

between the proposed and literature models was statistically significant.

Experimental results showed that the proposed approach reduced the computational

time of the OrigShort, HalfShop, and MiniShop models by about 5.56%, 5.24%, and

8.46%, respectively, for the mean tardiness objective. In addition, the ProShort,

ProHalf, and ProMini models had smaller computational time compared with the

OrigShort, HalfShop, and MiniShop by about 8.33%, 6.39%, and 6.05%, respectively,

for the mean flow time objective. Regarding the prediction accuracy, there was no

Chapter 6: Surrogate−Assisted GEP For Dynamic Job Shop Scheduling Problems

 191

significant difference between both the proposed models and their counterparts in the

literature. Specifically, the percentage decrease in the prediction accuracy between

OrigShort vs. ProShort, HalfShop vs. ProHalf, and MiniShop vs. ProMini was about

0.77%, 1.84%, and 0.35%, respectively, in the case of the mean tardiness objective.

Regarding the mean flow time objective, the percentage decrease in the prediction

accuracy between OrigShort vs. ProShort, HalfShop vs. ProHalf, and MiniShop vs.

ProMini was about 0.63%, 1.25%, and 1.63%, respectively. Finally, several samples of

the proposed surrogates for each of the objective functions were represented in a

mathematical format with their regression results including R-squared and adjusted R-

squared values.

Chapter 7: Conclusions

 192

Chapter 7. CONCLUSIONS

This thesis focused on the automatic generation of dispatching rules for static and

dynamic job shop scheduling problems using the genetic programming algorithm.

Specifically, the overall objective of this thesis was to automatically generate high-

quality dispatching rules in concise structures (a smaller number of terminals and

functions) and low computational costs for different job shop scheduling problems

using the GP algorithm. In order to achieve this goal, several GP approaches were

proposed in this thesis to reduce the size of evolved rules and reduce the computational

burden during the GP training and evaluation phases. The effectiveness of each

approach was evaluated across a wide range of job shop configurations using static and

dynamic conditions, scheduling objectives, and performance measures.

The remainder of this chapter is organized as follows. Section 7.1 highlights the

achieved objectives and provides the main conclusions for each chapter. Potential

research directions for future work are presented in Section 7.2.

7.1 Achieved Objectives & Main Conclusions

This section describes the five research objectives that have been fulfilled in this

thesis as follows.

I. This thesis proposed a distance metric to measure the similarity between the GP

individuals with the aim of promoting diversity, which leads to the generation

of dispatching rules with better fitness values. The proposed metric was used to

numerically estimate the genotypic difference between the newly generated

rules and the best rule evolved so far in a computationally affordable manner

Chapter 7: Conclusions

 193

compared with other literature metrics. Promoting diversity among GP

individuals helped to avoid premature convergence that typically occurs when

the GP algorithm is used for SJSSPs. Therefore, higher quality rules were

generated by efficiently exploring different regions of the search space.

II. This thesis introduced a multi-objective framework by integrating NSGA-II

with the GP algorithm to simultaneously optimize diversity value (using the

proposed distance metric), rule length, and solution quality of GP individuals

for SJSSPs. Considering the three objectives simultaneously with the same

weight helped to deal with their conflicting nature. Finally, the proposed

approach increased selection pressure toward rules with high diversity values,

smaller sizes, and better fitness values resulting in better exploration of the

search space and a high reduction in GP computation costs.

III. This thesis developed a feature selection approach for the tree-based GP

algorithm with the aim to reduce the size of evolved rules using a smaller set of

GP terminals for the DJSSPs. The proposed approach consists of two main

components, an attribute vector to collect useful evolutionary information, and

an adaptive discrimination scheme to estimate the probability of selecting each

of the terminals during the GP run. Finally, reducing the size of evolved rules

using the proposed approach reduced the training time needed for the GP

algorithm because smaller rules are computationally less expensive to evaluate.

In addition, smaller rules are easier to understand and implement in the industry

than complex ones, and therefore have a higher probability of adoption in real-

world applications.

IV. This thesis modified the feature selection approach proposed for the GP

algorithm to be applicable to the GEP algorithm for the DJSSPs where a fixed-

linear representation was used. In addition, a GP feature selection approach

from the literature was modified and integrated with the GEP algorithm. The

aim was to evaluate the effect of imposing an additional constraint on the size

of evolved rules in the case of the contained GP representation that is less

susceptible to the bloating effect. Finally, using both the fixed GEP

representation in parallel with the feature selection capability enforced more

pressure towards generating smaller rules and reducing training time.

V. This thesis proposed a surrogate assisted GEP approach to reduce the fitness

evaluation time of evolved rules in dynamic job shop settings without

sacrificing accuracy. Consequently, the time saved from the fitness evaluation

Chapter 7: Conclusions

 194

phase was used to evaluate an additional number of dispatching rules, resulting

in achieving higher quality rules. The proposed approach replaced part of the

simulation length of an expensive DES model with a simple mathematical

function. This function was trained using fitness-related information collected

during the evaluation of some training rules. Then, the remaining rules were

evaluated using the simplified model with a shortened simulation length and the

developed surrogate model. The proposed approach depends only on the

behaviour of the underlying model, and therefore it can be used with

evolutionary algorithms other than GP or GEP algorithms.

The following are the main conclusions of this thesis, drawn from Chapter 3 to

Chapter 6.

• Technically, increasing diversity among the evolved rules helps avoid premature

convergence, and thus increases the solution quality of generated rules.

Therefore, Chapter 3 proposed a genotypic distance metric to measure the

similarity of scheduling rules evolved using the GP algorithm. The proposed

metric differs from the similarity metrics in the literature as follows:

a) It takes into account the location of the node as well as the edges

connecting it to its parents in estimating similarity values.

b) It does not require any simulation runs to estimate the fitness values of

the compared rules, as in the case of phenotypic metrics.

c) It gives more weight to the nodes closest to the root node than to the

farthest nodes.

In addition, a multi-objective framework was introduced to take advantage of the

proposed metric in increasing diversity among GP evolved rules as well as

reducing the computational burden of the GP algorithm. The proposed

framework integrated NSGA-II with the GP algorithm to optimize diversity

value, rule length, and solution quality for SJSSPs. Optimizing the three

objectives at the same time supports the automatic generation of high-quality

rules in concise structures and shorter computational time. Two versions of the

framework were compared with three algorithms from the literature using two

objective functions, makespan, and mean tardiness across ten benchmark SJSSP

instances. For each objective, four performance measures were taken into

account: fitness value, genotypic diversity, phenotypic diversity, and the average

length of the evolved rules. Experimental results demonstrated the effectiveness

Chapter 7: Conclusions

 195

of the proposed methods in generating a phenotypically diverse population of

scheduling rules with smaller sizes and higher solution quality compared with

the literature methods.

• For the sake of reducing the size of evolved rules in DJSSPs and thus speeding

up the process of automatically generating dispatching rules using the GP

algorithm, Chapter 4 proposed an online feature selection approach for the tree-

based GP algorithm. The proposed approach offered several advantages over the

approaches reported in the literature, as follows.

a) It uses a new attribute vector representation to estimate the weight of

each terminal without being affected by the occurrence of redundant

terminals or complex rule structures.

b) It is an online feature selection approach to select important features in

the current generation using the estimated weights of terminals from the

previous generation.

c) It uses a probabilistic selection method rather than the inclusion or

exclusion method to provide a broad preference scheme for each feature.

The proposed algorithm was compared with three algorithms from the literature

as well as 30 manually-made rules using three objective functions, TWT, MT,

and MFT objectives across training and testing scenarios. For each objective,

five performance measures were used including solution quality, computational

time, the average size of rules, the average number of active terminals, and the

average number of absent terminals. The best rules generated using the proposed

algorithm had fewer terminals than the rules generated using the other methods

for the three objective functions. Finally, the set of significant terminals obtained

during the GP run using the proposed approach was similar to that generated

using one of the best offline feature selection approaches in the literature.

• In order to verify whether the proposed feature selection approach can reduce

the size of evolved rules and computational time in representations other than

the tree structure, Chapter 5 developed a feature selection approach for the GEP

algorithm for DJSSPs. The proposed algorithm speeded up the search process by

restricting the GP search space using a fixed linear representation. In addition, it

directed the search to the most promising regions using the feature selection

capability. The proposed approach extended the current literature as follows.

Chapter 7: Conclusions

 196

a) It is the first attempt to propose a bloating control technique for constrained

GP representation in the field of automated design of scheduling rules.

b) It significantly reduces the training time and size of generated rules

compared with the current approaches, resulting in greater potential for use

in complex manufacturing environments.

The proposed algorithm was compared with three algorithms from the literature

using a large set of training and testing scenarios for three objective functions.

Results demonstrated the ability of the proposed approach to significantly

reduce the computational time of the GEP algorithm by evolving high-quality

rules in simpler structures compared with the literature approaches. Finally, to

ensure that the proposed approach is not significantly affected by the GP

representation or objective function used, the set of terminals selected across

generations using the proposed approach was compared with the one obtained

using the algorithm proposed in the previous chapter. The results showed that

the two algorithms have the same set of selected terminals except for two

terminals in the TWT objective and one terminal in the MT objective.

• Instead of reducing the size of evolved rules (considered in the previous

chapters) to reduce the time required for generating dispatching rules, Chapter 6

proposed a surrogate assisted GEP approach to achieve the same objective but

by reducing the fitness evaluation times. Three surrogate models were developed

by integrating the proposed approach with three literature models. The proposed

approach extended the existing literature through the following contributions:

a) It is the first attempt to use machine learning to abstract a discrete event

simulation model of DJSSPs.

b) It reduces fitness evaluation time without significantly affecting accuracy.

c) It is independent of the structure of GP evolved rules, and thus it can be

adopted with other GP approaches.

The three literature surrogates were compared with the three proposed ones

using several scenarios as well as MT and MFT objectives functions.

Experimental results proved that the proposed surrogates have significantly

lower computational costs with a neglectable loss in prediction accuracy under

the two considered objectives. Finally, regression results (R-squared and

adjusted R-squared) for the proposed surrogates supported the ability of the

proposed models to imitate the behaviour of the underlying DES model.

Chapter 7: Conclusions

 197

7.2 Future Research Directions

The field of automatic generation of dispatching rules using the GP algorithm is

relatively new, and there are many promising research directions to be considered. The

following points define the future research activities, motivated by the work presented

in each chapter. Future works are classified into two main groups, general and specific

research directions. The former includes broad directions that can extend most of the

methods proposed in this thesis, while the latter includes specific directions dedicated to

a particular approach.

General research directions:

• Centralized scheduling is the main problem domain investigated in this thesis.

Therefore, one possible extension of this work is to use the proposed approach

in other domains such as distributed scheduling, decentralized scheduling, and

cloud manufacturing scheduling.

• All scheduling problems considered in this thesis are one piece and identical

machines job shop. Therefore, possible extensions are to evaluate the

performance of the proposed approaches under other scheduling problems such

as batch processing, parallel machines, FJSSPs, manufacturing cells, etc.

• Dispatching rules developed in this thesis are used to solve one scheduling

decision, which is the job sequencing decision. Therefore, other types of

dispatching rules used for other decisions can be considered in future work,

including machine routing rules, due date assigning rules, etc.

• The proposed approaches in this thesis are developed mainly for the GP-based

hyper-heuristic algorithm. Therefore, future research work can be guided toward

integrating the proposed approaches with other global search-based hyper-

heuristic algorithms such as particle swarm optimization, ant colony

optimization, etc.

Specific research directions:

• A possible extension of the distance metric proposed in Chapter 3 is to consider

cluster similarity instead of the individual similarity currently used. In other

words, individuals are grouped into clusters with the aim of increasing the

distance between the cluster with the best individuals and other clusters rather

than increasing the distance between the best-evolved rule and other rules. This

idea might support increasing the exploration and exploitation ability of the GP

Chapter 7: Conclusions

 198

algorithm because a limited number of relatively similar rules are kept within

the cluster of the best rules (exploitation), while other clusters are compared

with it (exploration).

• The proposed GP feature selection proposed in Chapter 4 uses the information

collected from the previous generation in estimating the weight of terminals in

the current generation. Therefore, the next step of this work might be to utilize

attribute vectors from all the previous generations. Although, this may increase

the computational budget of the training phase, checking the trade-off between

improving performance measures (rule length & solution quality) and increasing

computational time is helpful. Another possible research direction is to propose

a local search mechanism to explore the search space of the attribute vectors of

evolved rules. The proposed mechanism changes the state of some terminals,

from active to inactive or vice versa, in a limited set of rules and evaluates the

rules' performance after these changes. If the rules achieve better solutions, then

these changes will be accepted, otherwise, other changes will be applied.

Because the time for fitness evaluations will be significantly increased, it is

recommended that a surrogate model should be used in this stage.

• Possible future work for the GEP feature selection approach proposed in Chapter

5 is to add some dynamics to the fixed-length representation used in the GEP

algorithm. Although the proposed approach obtained high-quality results in the

DJSSP instances studied, the fixed chromosome length might lead to low-quality

results in more complex environments. In other words, fixed-size rules include a

limited amount of related information that cannot be exceeded, and thus they

might get poor performance in more challenging problem domains. Therefore, it

may be useful to start with a very large chromosome size in the first generation,

and then select only a limited number of high-quality rules with large sizes for

the next generation. Consequently, the rules required to reach population size are

generated randomly with shorter sizes until a predetermined size limit is reached

i.e., the average size of individuals decreases with increasing generations.

• Regarding the surrogate models proposed in Chapter 6, future research activities

have to be geared towards implementing these models in actual GEP runs.

Although the proposed models do not significantly misestimate the performance

of evolved rules, this marginal error might negatively affect solution quality if it

occurs with the best rules. Therefore, it is necessary to assess the impact of

Chapter 7: Conclusions

 199

integrating the proposed models with the GEP algorithm instead of the original

simulation model. Then, the obtained results must be compared with the

standard GEP algorithm in which surrogates are not used. In addition, it might

be useful to use the original simulation model as well as the surrogate in an

interchangeable manner based on some predefined conditions.

Reference List

 200

REFERENCE LIST

Adibi, M.A., Zandieh, M., Amiri, M., 2010. Multi-objective scheduling of dynamic

job shop using variable neighborhood search. Expert Syst. Appl. 37, 282–287.

https://doi.org/10.1016/j.eswa.2009.05.001

Afzal, W., Torkar, R., 2011. On the application of genetic programming for

software engineering predictive modeling: A systematic review. Expert Syst. Appl. 38,

11984–11997. https://doi.org/10.1016/j.eswa.2011.03.041

Akram, K., Kamal, K., Zeb, A., 2016. Fast simulated annealing hybridized with

quenching for solving job shop scheduling problem. Appl. Soft Comput. 49, 510–523.

https://doi.org/10.1016/j.asoc.2016.08.037

Alfaro-Cid, E., Merelo, J.J., de Vega, F.F., Esparcia-Alcázar, A.I., Sharman, K.,

2010. Bloat Control Operators and Diversity in Genetic Programming: A Comparative

Study. Evol. Comput. 18, 305–332. https://doi.org/10.1162/evco.2010.18.2.18206

Al-Hinai, N., ElMekkawy, T.Y., 2011. Robust and stable flexible job shop

scheduling with random machine breakdowns using a hybrid genetic algorithm. Int. J.

Prod. Econ. 132, 279–291. https://doi.org/10.1016/j.ijpe.2011.04.020

Amir Haeri, M., Ebadzadeh, M.M., Folino, G., 2017. Statistical genetic

programming for symbolic regression. Appl. Soft Comput. 60, 447–469.

https://doi.org/10.1016/j.asoc.2017.06.050

Aytug, H., Lawley, M.A., McKay, K., Mohan, S., Uzsoy, R., 2005. Executing

production schedules in the face of uncertainties: A review and some future directions,

Reference List

 201

in: European Journal of Operational Research. North-Holland, pp. 86–110.

https://doi.org/10.1016/j.ejor.2003.08.027

Baker, K.R., 1984. Sequencing Rules and Due-Date Assignments in a Job Shop.

Manag. Sci. 30, 1093–1104. https://doi.org/10.1287/mnsc.30.9.1093

Bangsow, S., 2020. Tecnomatix plant simulation. Springer.

Beasley, J.E., 1990. OR-Library: distributing test problems by electronic mail. J.

Oper. Res. Soc. 41, 1069–1072.

Bilkay, O., Anlagan, O., Kilic, S.E., 2004. Job shop scheduling using fuzzy logic.

Int. J. Adv. Manuf. Technol. 23, 606–619. https://doi.org/10.1007/s00170-003-1771-2

Blackstone, J.H., PHILLIPS, D.T., HOGG, G.L., 1982. A state-of-the-art survey of

dispatching rules for manufacturing job shop operations. Int. J. Prod. Res. 20, 27–45.

https://doi.org/10.1080/00207548208947745

Blickle, T., 2000. Tournament selection. Evol. Comput. 1, 181–186.

Blickle, T., Thiele, L., 1995. A Mathematical Analysis of Tournament Selection., in:

ICGA. Citeseer, pp. 9–15.

Branke, J., Hildebrandt, T., Scholz-Reiter, B., 2015. Hyper-heuristic evolution of

dispatching rules: A comparison of rule representations. Evol. Comput. 23, 249–277.

https://doi.org/10.1162/EVCO_a_00131

Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M., 2016a. Automated Design of

Production Scheduling Heuristics: A Review. IEEE Trans. Evol. Comput. 20, 110–124.

https://doi.org/10.1109/TEVC.2015.2429314

Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M., 2016b. Automated Design of

Production Scheduling Heuristics: A Review. IEEE Trans. Evol. Comput. 20, 110–124.

https://doi.org/10.1109/TEVC.2015.2429314

Burke, E., Gustafson, S., Kendall, G., Krasnogor, N., 2002. Advanced Population

Diversity Measures in Genetic Programming, in: Guervós, J.J.M., Adamidis, P., Beyer,

H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (Eds.), Parallel Problem Solving

from Nature — PPSN VII, Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg, pp. 341–350. https://doi.org/10.1007/3-540-45712-7_33

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S., 2003. Hyper-

Heuristics: An Emerging Direction in Modern Search Technology, in: Glover, F.,

Reference List

 202

Kochenberger, G.A. (Eds.), Handbook of Metaheuristics. Springer US, Boston, MA, pp.

457–474. https://doi.org/10.1007/0-306-48056-5_16

Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., McCollum, B., Ochoa, G.,

Parkes, A.J., Petrovic, S., 2011. The Cross-Domain Heuristic Search Challenge – An

International Research Competition, in: Coello, C.A.C. (Ed.), Learning and Intelligent

Optimization. Springer, Berlin, Heidelberg, pp. 631–634. https://doi.org/10.1007/978-3-

642-25566-3_49

Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.,

2013. Hyper-heuristics: A survey of the state of the art. J. Oper. Res. Soc. 64, 1695–

1724. https://doi.org/10.1057/jors.2013.71

Burke, E.K., Gustafson, S., Kendall, G., 2004. Diversity in genetic programming: an

analysis of measures and correlation with fitness. IEEE Trans. Evol. Comput. 8, 47–62.

https://doi.org/10.1109/TEVC.2003.819263

Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R., 2019.

A Classification of Hyper-Heuristic Approaches: Revisited, in: Gendreau, M., Potvin,

J.-Y. (Eds.), Handbook of Metaheuristics. Springer International Publishing, Cham, pp.

453–477. https://doi.org/10.1007/978-3-319-91086-4_14

Burks, A.R., Punch, W.F., 2015. An Efficient Structural Diversity Technique for

Genetic Programming, in: Proceedings of the 2015 Annual Conference on Genetic and

Evolutionary Computation, GECCO ’15. Association for Computing Machinery, New

York, NY, USA, pp. 991–998. https://doi.org/10.1145/2739480.2754649

Çaliş, B., Bulkan, S., 2015. A research survey: review of AI solution strategies of

job shop scheduling problem. J. Intell. Manuf. 26, 961–973.

https://doi.org/10.1007/s10845-013-0837-8

Campbell, H.G., Dudek, R.A., Smith, M.L., 1970. A Heuristic Algorithm for the n

Job, m Machine Sequencing Problem. Manag. Sci. 16, B-630.

https://doi.org/10.1287/mnsc.16.10.B630

Chaudhry, I.A., Khan, A.A., 2016. A research survey: review of flexible job shop

scheduling techniques. Int. Trans. Oper. Res. 23, 551–591.

https://doi.org/10.1111/itor.12199

Chen, L., Zheng, H., Zheng, D., Li, D., 2015. An ant colony optimization-based

hyper-heuristic with genetic programming approach for a hybrid flow shop scheduling

Reference List

 203

problem, in: 2015 IEEE Congress on Evolutionary Computation (CEC). Presented at the

2015 IEEE Congress on Evolutionary Computation (CEC), pp. 814–821.

https://doi.org/10.1109/CEC.2015.7256975

Cowling, P., Kendall, G., Han, L., 2002. An investigation of a hyperheuristic

genetic algorithm applied to a trainer scheduling problem, in: Proceedings of the 2002

Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600). Presented at the

Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat.

No.02TH8600), pp. 1185–1190 vol.2. https://doi.org/10.1109/CEC.2002.1004411

Cowling, P., Kendall, G., Soubeiga, E., 2000. A hyperheuristic approach to

scheduling a sales summit, in: Selected Papers of the Third International Conference on

the Practice And Theory of Automated Timetabling. Lecture Notes in Computer

Science. Springer Verlag, pp. 176–190. https://doi.org/10.1007/3-540-44629-x_11

Crane, E.F., McPhee, N.F., 2006. The Effects of Size and Depth Limits on Tree

Based Genetic Programming, in: Yu, T., Riolo, R., Worzel, B. (Eds.), Genetic

Programming Theory and Practice III, Genetic Programming. Springer US, Boston,

MA, pp. 223–240. https://doi.org/10.1007/0-387-28111-8_15

de Jong, E.D., Watson, R.A., Pollack, J.B., 2001. Reducing bloat and promoting

diversity using multi-objective methods, in: Proceedings of the 3rd Annual Conference

on Genetic and Evolutionary Computation, GECCO’01. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, pp. 11–18.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002a. A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197.

https://doi.org/10.1109/4235.996017

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002b. A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197.

https://doi.org/10.1109/4235.996017

Dimopoulos, C., Zalzala, A.M.S., 2001. Investigating the use of genetic

programming for a classic one-machine scheduling problem. Adv. Eng. Softw. 32, 489–

498. https://doi.org/10.1016/S0965-9978(00)00109-5

Dolgui, A., Ivanov, D., Sethi, S.P., Sokolov, B., 2019. Scheduling in production,

supply chain and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art

Reference List

 204

and applications. Int. J. Prod. Res. 57, 411–432.

https://doi.org/10.1080/00207543.2018.1442948

Dominic, P.D.D., Kaliyamoorthy, S., Kumar, M.S., 2004. Efficient dispatching rules

for dynamic job shop scheduling. Int. J. Adv. Manuf. Technol. 24, 70–75.

https://doi.org/10.1007/s00170-002-1534-5

Drake, J.H., Kheiri, A., Özcan, E., Burke, E.K., 2020. Recent advances in selection

hyper-heuristics. Eur. J. Oper. Res. 285, 405–428.

Du, H., Wang, Z., Zhan, W., Guo, J., 2018. Elitism and Distance Strategy for

Selection of Evolutionary Algorithms. IEEE Access 6, 44531–44541.

https://doi.org/10.1109/ACCESS.2018.2861760

Duenas, A., Petrovic, D., 2008. An approach to predictive-reactive scheduling of

parallel machines subject to disruptions. Ann. Oper. Res. 159, 65–82.

https://doi.org/10.1007/s10479-007-0280-3

Đurasević, M., Jakobović, D., Knežević, K., 2016. Adaptive scheduling on

unrelated machines with genetic programming. Appl. Soft Comput. 48, 419–430.

https://doi.org/10.1016/j.asoc.2016.07.025

Ekárt, A., Németh, S.Z., 2000. A Metric for Genetic Programs and Fitness Sharing,

in: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (Eds.),

Genetic Programming, Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg, pp. 259–270. https://doi.org/10.1007/978-3-540-46239-2_19

Ferreira, C., 2001. Gene Expression Programming: a New Adaptive Algorithm for

Solving Problems. Complex Syst. 13, 87–129.

Flórez, E., Gómez, W., Bautista, L., 2013. An ant colony optimization algorithm for

job shop scheduling problem. Appl. Mech. Mater. 321–324, 2116–2121.

Friedlander, A., Neshatian, K., Zhang, M., 2011. Meta-learning and feature ranking

using genetic programming for classification: Variable terminal weighting, in: 2011

IEEE Congress of Evolutionary Computation, CEC 2011. pp. 941–948.

https://doi.org/10.1109/CEC.2011.5949719

Gao, K.Z., He, Z.M., Huang, Y., Duan, P.Y., Suganthan, P.N., 2020. A survey on

meta-heuristics for solving disassembly line balancing, planning and scheduling

problems in remanufacturing. Swarm Evol. Comput. 57, 100719.

https://doi.org/10.1016/j.swevo.2020.100719

Reference List

 205

Garey, M.R., Johnson, D.S., Sethi, R., 1976. The Complexity of Flowshop and

Jobshop Scheduling. Math. Oper. Res. 1, 117–129.

https://doi.org/10.1287/moor.1.2.117

Geiger, C.D., Uzsoy, R., Aytuğ, H., 2006a. Rapid modeling and discovery of

priority dispatching rules: An autonomous learning approach. J. Sched. 9, 7–34.

https://doi.org/10.1007/s10951-006-5591-8

Geiger, C.D., Uzsoy, R., Aytuğ, H., 2006b. Rapid modeling and discovery of

priority dispatching rules: An autonomous learning approach. J. Sched. 9, 7–34.

https://doi.org/10.1007/s10951-006-5591-8

Giffler, B., Thompson, G.L., 1960. Algorithms for Solving Production-Scheduling

Problems. Oper. Res. 8, 487–503. https://doi.org/10.1287/opre.8.4.487

Gromicho, J.A.S., van Hoorn, J.J., Saldanha-da-Gama, F., Timmer, G.T., 2012.

Solving the job-shop scheduling problem optimally by dynamic programming. Comput.

Oper. Res. 39, 2968–2977. https://doi.org/10.1016/j.cor.2012.02.024

Gustafson, S., Vanneschi, L., 2008. Crossover-Based Tree Distance in Genetic

Programming. IEEE Trans. Evol. Comput. 12, 506–524.

https://doi.org/10.1109/TEVC.2008.915993

Hildebrandt, T., Branke, J., 2015a. On using surrogates with genetic programming.

Evol. Comput. 23, 343–367. https://doi.org/10.1162/EVCO_a_00133

Hildebrandt, T., Branke, J., 2015b. On using surrogates with genetic programming.

Evol. Comput. 23, 343–367. https://doi.org/10.1162/EVCO_a_00133

Hildebrandt, T., Heger, J., Scholz-Reiter, B., 2010a. Towards improved dispatching

rules for complex shop floor scenarios - A genetic programming approach, in:

Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference,

GECCO ’10. ACM Press, New York, New York, USA, pp. 257–264.

https://doi.org/10.1145/1830483.1830530

Hildebrandt, T., Heger, J., Scholz-Reiter, B., 2010b. Towards improved dispatching

rules for complex shop floor scenarios - A genetic programming approach, in:

Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference,

GECCO ’10. ACM Press, New York, New York, USA, pp. 257–264.

https://doi.org/10.1145/1830483.1830530

Reference List

 206

Holland, J.H., 1992. Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence. MIT press.

Holthaus, O., Rajendran, C., 2000. Efficient jobshop dispatching rules: Further

developments. Prod. Plan. Control 11, 171–178.

https://doi.org/10.1080/095372800232379

Horng, S.-C., Lin, S.-S., Yang, F.-Y., 2012. Evolutionary algorithm for stochastic

job shop scheduling with random processing time. Expert Syst. Appl. 39, 3603–3610.

https://doi.org/10.1016/j.eswa.2011.09.050

Hughes, M., 2021. Investigating the effects Diversity Mechanisms have on

Evolutionary Algorithms in Dynamic Environments. cornell university.

Hunt, R., Johnston, M., Zhang, M., 2014a. Evolving “less-myopic” scheduling rules

for dynamic job shop scheduling with genetic programming, in: Proceedings of the

2014 Annual Conference on Genetic and Evolutionary Computation, GECCO ’14.

Association for Computing Machinery, New York, NY, USA, pp. 927–934.

https://doi.org/10.1145/2576768.2598224

Hunt, R., Johnston, M., Zhang, M., 2014b. Evolving machine-specific dispatching

rules for a two-machine job shop using genetic programming, in: Proceedings of the

2014 IEEE Congress on Evolutionary Computation, CEC 2014. Institute of Electrical

and Electronics Engineers Inc., pp. 618–625.

https://doi.org/10.1109/CEC.2014.6900655

Hunt, R., Richard, J., Zhang, M., 2016a. Evolving Dispatching Rules with Greater

Understandability for Dynamic Job Shop Scheduling Mark Johnston.

Hunt, R., Richard, J., Zhang, M., 2016b. Evolving Dispatching Rules with Greater

Understandability for Dynamic Job Shop Scheduling Mark Johnston.

Hunt, R., Richard, J., Zhang, M., 2016c. Evolving Dispatching Rules with Greater

Understandability for Dynamic Job Shop Scheduling Mark Johnston.

Hussain, K., Mohd Salleh, M.N., Cheng, S., Shi, Y., 2019. Metaheuristic research: a

comprehensive survey. Artif. Intell. Rev. 52, 2191–2233.

https://doi.org/10.1007/s10462-017-9605-z

Jabeen, H., Baig, A.R., 2010. Review of classification using genetic programming.

Int. J. Eng. Sci. Technol. 2, 94–103.

Reference List

 207

Jackson, D., 2010. Phenotypic Diversity in Initial Genetic Programming

Populations, in: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş.

(Eds.), Genetic Programming, Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg, pp. 98–109. https://doi.org/10.1007/978-3-642-12148-7_9

Jackson, J.R., 1956. An extension of Johnson’s results on job IDT scheduling. Nav.

Res. Logist. Q. 3, 201–203.

Jakobović, D., Budin, L., 2006. Dynamic scheduling with genetic programming, in:

European Conference on Genetic Programming. Springer, Berlin, Heidelberg, pp. 73–

84. https://doi.org/10.1007/11729976_7

Jiang, Z., Yuan, S., Ma, J., Wang, Q., 2021. The evolution of production scheduling

from Industry 3.0 through Industry 4.0. Int. J. Prod. Res. 0, 1–21.

https://doi.org/10.1080/00207543.2021.1925772

Jin, Y., 2011. Surrogate-assisted evolutionary computation: Recent advances and

future challenges. Swarm Evol. Comput. 1, 61–70.

https://doi.org/10.1016/j.swevo.2011.05.001

Johnson, S.M., 1954. Optimal two- and three-stage production schedules with setup

times included. Nav. Res. Logist. Q. 1, 61–68. https://doi.org/10.1002/nav.3800010110

Jones, A., Rabelo, L.C., Sharawi, A.T., 1998. Survey of job shop scheduling

techniques. NISTIR Natl. Inst. Stand. Technol. Gaithersburg MD.

Kaskavelis, C.A., Caramanis, M.C., 1998. Efficient Lagrangian relaxation

algorithms for industry size job-shop scheduling problems. IIE Trans. 30, 1085–1097.

https://doi.org/10.1023/A:1007515931780

Kelly, J., Hemberg, E., O’Reilly, U.-M., 2019. Improving Genetic Programming

with Novel Exploration - Exploitation Control, in: Sekanina, L., Hu, T., Lourenço, N.,

Richter, H., García-Sánchez, P. (Eds.), Genetic Programming, Lecture Notes in

Computer Science. Springer International Publishing, Cham, pp. 64–80.

https://doi.org/10.1007/978-3-030-16670-0_5

Kennedy, J., 2006. Swarm Intelligence, in: Zomaya, A.Y. (Ed.), Handbook of

Nature-Inspired and Innovative Computing: Integrating Classical Models with

Emerging Technologies. Springer US, Boston, MA, pp. 187–219.

https://doi.org/10.1007/0-387-27705-6_6

Reference List

 208

Kiran, D.R., 2019. Chapter 1 - Elements of production planning and control, in:

Kiran, D.R. (Ed.), Production Planning and Control. Butterworth-Heinemann, pp. 1–20.

https://doi.org/10.1016/B978-0-12-818364-9.00001-9

Korytkowski, P., Rymaszewski, S., Wiśniewski, T., 2013. Ant colony optimization

for job shop scheduling using multi-attribute dispatching rules. Int. J. Adv. Manuf.

Technol. 67, 231–241. https://doi.org/10.1007/s00170-013-4769-4

Kouider, A., Bouzouia, B., 2012. Multi-agent job shop scheduling system based on

co-operative approach of idle time minimisation. Int. J. Prod. Res. 50, 409–424.

https://doi.org/10.1080/00207543.2010.539276

Koza, J. R., 1994a. Genetic programming II: Automatic discovery of reusable

subprograms, Cambridge, MA, USA. ed, cs.bham.ac.uk. Cambridge, USA.

Koza, John R., 1994. Genetic programming as a means for programming computers

by natural selection. Stat. Comput. 4, 87–112. https://doi.org/10.1007/BF00175355

Koza, J. R., 1994b. Genetic programming II: Automatic discovery of reusable

subprograms, Cambridge, MA, USA. ed, cs.bham.ac.uk. Cambridge, USA.

Kumar, R., 2012. Blending roulette wheel selection & rank selection in genetic

algorithms. Int. J. Mach. Learn. Comput. 2, 365–370.

Lawler, E.L., Wood, D.E., 1966. Branch-and-Bound Methods: A Survey. Oper. Res.

14, 699–719. https://doi.org/10.1287/opre.14.4.699

Liu, G., Song, S., Wu, C., 2012. Two Techniques to Improve the NEH Algorithm

for Flow-Shop Scheduling Problems, in: Huang, D.-S., Gan, Y., Gupta, P., Gromiha,

M.M. (Eds.), Advanced Intelligent Computing Theories and Applications. With Aspects

of Artificial Intelligence, Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg, pp. 41–48. https://doi.org/10.1007/978-3-642-25944-9_6

Liu, Y., Wang, L., Wang, X.V., Xu, X., Zhang, L., 2019. Scheduling in cloud

manufacturing: state-of-the-art and research challenges. Int. J. Prod. Res. 57, 4854–

4879. https://doi.org/10.1080/00207543.2018.1449978

Lohn, J.D., Hornby, G.S., Linden, D.S., 2005. An Evolved Antenna for Deployment

on Nasa’s Space Technology 5 Mission, in: O’Reilly, U.-M., Yu, T., Riolo, R., Worzel,

B. (Eds.), Genetic Programming Theory and Practice II, Genetic Programming.

Springer US, Boston, MA, pp. 301–315. https://doi.org/10.1007/0-387-23254-0_18

Reference List

 209

Luke, S., Panait, L., 2006. A Comparison of Bloat Control Methods for Genetic

Programming. Evol. Comput. 14, 309–344. https://doi.org/10.1162/evco.2006.14.3.309

Maravelias, C.T., Sung, C., 2009. Integration of production planning and

scheduling: Overview, challenges and opportunities. Comput. Chem. Eng., FOCAPO

2008 – Selected Papers from the Fifth International Conference on Foundations of

Computer-Aided Process Operations 33, 1919–1930.

https://doi.org/10.1016/j.compchemeng.2009.06.007

Masood, A., Mei, Y., Chen, G., Zhang, M., 2016. Many-objective genetic

programming for job-shop scheduling, in: 2016 IEEE Congress on Evolutionary

Computation, CEC 2016. Institute of Electrical and Electronics Engineers Inc., pp. 209–

216. https://doi.org/10.1109/CEC.2016.7743797

McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M., 2010. Grammar-

based Genetic Programming: a survey. Genet. Program. Evolvable Mach. 11, 365–396.

https://doi.org/10.1007/s10710-010-9109-y

Mehta, S.V., Uzsoy, R.M., 1998. Predictable scheduling of a job shop subject to

breakdowns. IEEE Trans. Robot. Autom. 14, 365–378.

https://doi.org/10.1109/70.678447

Mei, Y., Nguyen, S., Xue, B., Zhang, M., 2017a. An Efficient Feature Selection

Algorithm for Evolving Job Shop Scheduling Rules With Genetic Programming. IEEE

Trans. Emerg. Top. Comput. Intell. 1, 339–353.

https://doi.org/10.1109/tetci.2017.2743758

Mei, Y., Nguyen, S., Xue, B., Zhang, M., 2017b. An Efficient Feature Selection

Algorithm for Evolving Job Shop Scheduling Rules With Genetic Programming. IEEE

Trans. Emerg. Top. Comput. Intell. 1, 339–353.

https://doi.org/10.1109/tetci.2017.2743758

Mei, Y., Nguyen, S., Xue, B., Zhang, M., 2017c. An Efficient Feature Selection

Algorithm for Evolving Job Shop Scheduling Rules With Genetic Programming. IEEE

Trans. Emerg. Top. Comput. Intell. 1, 339–353.

https://doi.org/10.1109/tetci.2017.2743758

Mei, Y., Zhang, M., Nyugen, S., 2016. Feature selection in evolving job shop

dispatching rules with Genetic Programming, in: GECCO 2016 - Proceedings of the

2016 Genetic and Evolutionary Computation Conference. Association for Computing

Reference List

 210

Machinery, Inc, New York, NY, USA, pp. 365–372.

https://doi.org/10.1145/2908812.2908822

Miller, J.F., Harding, S.L., 2008. Cartesian genetic programming, in: Proceedings of

the 10th Annual Conference Companion on Genetic and Evolutionary Computation,

GECCO ’08. Association for Computing Machinery, New York, NY, USA, pp. 2701–

2726. https://doi.org/10.1145/1388969.1389075

Minguillon, F.E., Lanza, G., 2019. Coupling of centralized and decentralized

scheduling for robust production in agile production systems. Procedia CIRP, 12th

CIRP Conference on Intelligent Computation in Manufacturing Engineering, 18-20 July

2018, Gulf of Naples, Italy 79, 385–390. https://doi.org/10.1016/j.procir.2019.02.099

Miyashita, K., 2000. Job-shop scheduling with genetic programming, in:

Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation.

pp. 505–512.

Mizrak, P., Bayhan, G.M., 2006. Comparative Study of Dispatching Rules in a

Real-Life Job Shop Environment. Appl. Artif. Intell. 20, 585–607.

https://doi.org/10.1080/08839510600779738

Mohan, J., Lanka, K., Rao, A.N., 2019. A review of dynamic job shop scheduling

techniques, in: Procedia Manufacturing. Elsevier B.V., pp. 34–39.

https://doi.org/10.1016/j.promfg.2019.02.006

Mori, N., McKay, B., Hoai, N.X., Essam, D., Takeuchi, S., 2008. A New Method

for Simplifying Algebraic Expressions in Genetic Programming called Equivalent

Decision Simplification. Scis Isis 2008, 1671–1676.

https://doi.org/10.14864/softscis.2008.0.1671.0

Nawaz, M., Enscore, E.E., Ham, I., 1983. A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem. Omega 11, 91–95. https://doi.org/10.1016/0305-

0483(83)90088-9

Nguyen, S., Mei, Y., Xue, B., Zhang, M., 2018a. A hybrid genetic programming

algorithm for automated design of dispatching rules. Evol. Comput. 27, 467–596.

https://doi.org/10.1162/evco_a_00230

Nguyen, S., Mei, Y., Xue, B., Zhang, M., 2018b. A hybrid genetic programming

algorithm for automated design of dispatching rules. Evol. Comput. 27, 467–596.

https://doi.org/10.1162/evco_a_00230

Reference List

 211

Nguyen, S., Mei, Y., Xue, B., Zhang, M., 2018c. A hybrid genetic programming

algorithm for automated design of dispatching rules. Evol. Comput. 27, 467–596.

https://doi.org/10.1162/evco_a_00230

Nguyen, S., Mei, Y., Zhang, M., 2017a. Genetic programming for production

scheduling: a survey with a unified framework. Complex Intell. Syst. 3, 41–66.

https://doi.org/10.1007/s40747-017-0036-x

Nguyen, S., Mei, Y., Zhang, M., 2017b. Genetic programming for production

scheduling: a survey with a unified framework. Complex Intell. Syst. 3, 41–66.

https://doi.org/10.1007/s40747-017-0036-x

Nguyen, S., Mei, Y., Zhang, M., 2017c. Genetic programming for production

scheduling: a survey with a unified framework. Complex Intell. Syst. 3, 41–66.

https://doi.org/10.1007/s40747-017-0036-x

Nguyen, S., Zhang, M., Johnston, M., Tan, K.C., 2014a. Automatic design of

scheduling policies for dynamic multi-objective job shop scheduling via cooperative

coevolution genetic programming. IEEE Trans. Evol. Comput. 18, 193–208.

https://doi.org/10.1109/TEVC.2013.2248159

Nguyen, S., Zhang, M., Johnston, M., Tan, K.C., 2014b. Automatic design of

scheduling policies for dynamic multi-objective job shop scheduling via cooperative

coevolution genetic programming. IEEE Trans. Evol. Comput. 18, 193–208.

https://doi.org/10.1109/TEVC.2013.2248159

Nguyen, S., Zhang, M., Johnston, M., Tan, K.C., 2013a. Dynamic multi-objective

job shop scheduling: A genetic programming approach. Stud. Comput. Intell. 505, 251–

282. https://doi.org/10.1007/978-3-642-39304-4_10

Nguyen, S., Zhang, M., Johnston, M., Tan, K.C., 2013b. Learning iterative

dispatching rules for job shop scheduling with genetic programming. Int. J. Adv.

Manuf. Technol. 67, 85–100. https://doi.org/10.1007/s00170-013-4756-9

Nguyen, S., Zhang, M., Johnston, M., Tan, K.C., 2013c. Dynamic multi-objective

job shop scheduling: A genetic programming approach. Stud. Comput. Intell. 505, 251–

282. https://doi.org/10.1007/978-3-642-39304-4_10

Nguyen, S., Zhang, M., Tan, K.C., 2017d. Surrogate-Assisted Genetic Programming

with Simplified Models for Automated Design of Dispatching Rules. IEEE Trans.

Cybern. 47, 2951–2965. https://doi.org/10.1109/TCYB.2016.2562674

Reference List

 212

Nguyen, S., Zhang, M., Tan, K.C., 2015a. Enhancing genetic programming based

hyper-heuristics for dynamic multi-objective job shop scheduling problems, in: 2015

IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings. Institute of

Electrical and Electronics Engineers Inc., pp. 2781–2788.

https://doi.org/10.1109/CEC.2015.7257234

Nguyen, S., Zhang, M., Tan, K.C., 2015b. Enhancing genetic programming based

hyper-heuristics for dynamic multi-objective job shop scheduling problems, in: 2015

IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings. Institute of

Electrical and Electronics Engineers Inc., pp. 2781–2788.

https://doi.org/10.1109/CEC.2015.7257234

Nie, L., Gao, L., Li, P., Li, X., 2013a. A GEP-based reactive scheduling policies

constructing approach for dynamic flexible job shop scheduling problem with job

release dates. J. Intell. Manuf. 24, 763–774. https://doi.org/10.1007/s10845-012-0626-9

Nie, L., Gao, L., Li, P., Li, X., 2013b. A GEP-based reactive scheduling policies

constructing approach for dynamic flexible job shop scheduling problem with job

release dates. J. Intell. Manuf. 24, 763–774. https://doi.org/10.1007/s10845-012-0626-9

Nie, L., Gao, L., Li, P., Zhang, L., 2011. Application of gene expression

programming on dynamic job shop scheduling problem, in: Proceedings of the 2011

15th International Conference on Computer Supported Cooperative Work in Design,

CSCWD 2011. pp. 291–295. https://doi.org/10.1109/CSCWD.2011.5960088

Nie, L., Shao, X., Gao, L., Li, W., 2010. Evolving scheduling rules with gene

expression programming for dynamic single-machine scheduling problems. Int. J. Adv.

Manuf. Technol. 50, 729–747. https://doi.org/10.1007/s00170-010-2518-5

Nordgren, W.B., 2002. Flexsim simulation environment, in: Proceedings of the

Winter Simulation Conference. IEEE, pp. 250–252.

Onar, S.Ç., Öztayşi, B., Kahraman, C., Yanık, S., Şenvar, Ö., 2016. A Literature

Survey on Metaheuristics in Production Systems, in: Talbi, E.-G., Yalaoui, F., Amodeo,

L. (Eds.), Metaheuristics for Production Systems, Operations Research/Computer

Science Interfaces Series. Springer International Publishing, Cham, pp. 1–24.

https://doi.org/10.1007/978-3-319-23350-5_1

Reference List

 213

O’Neill, M., 2009. Riccardo Poli, William B. Langdon, Nicholas F. McPhee: A

Field Guide to Genetic Programming. Genet. Program. Evolvable Mach. 10, 229–230.

https://doi.org/10.1007/s10710-008-9073-y

Ouelhadj, D., Petrovic, S., 2009. A survey of dynamic scheduling in manufacturing

systems. J. Sched. 12, 417–431. https://doi.org/10.1007/s10951-008-0090-8

Ozturk, G., Bahadir, O., Teymourifar, A., 2020. Extracting New Dispatching Rules

for Multi-objective Dynamic Flexible Job Shop Scheduling with Limited Buffer Spaces.

Cogn. Comput. 12, 195–205. https://doi.org/10.1007/s12559-018-9595-4

Ozturk, G., Bahadir, O., Teymourifar, A., 2019. Extracting priority rules for

dynamic multi-objective flexible job shop scheduling problems using gene expression

programming. Int. J. Prod. Res. 57, 3121–3137.

https://doi.org/10.1080/00207543.2018.1543964

Palmer, D.S., 1965. Sequencing Jobs Through a Multi-Stage Process in the

Minimum Total Time—A Quick Method of Obtaining a Near Optimum. J. Oper. Res.

Soc. 16, 101–107. https://doi.org/10.1057/jors.1965.8

Pandey, H.M., Chaudhary, A., Mehrotra, D., 2014. A comparative review of

approaches to prevent premature convergence in GA. Appl. Soft Comput. 24, 1047–

1077. https://doi.org/10.1016/j.asoc.2014.08.025

Park, B.J., Choi, H.R., Kim, H.S., 2003. A hybrid genetic algorithm for the job shop

scheduling problems. Comput. Ind. Eng. 45, 597–613. https://doi.org/10.1016/S0360-

8352(03)00077-9

Pinedo, M.L., 2012. Scheduling: Theory, Algorithms, and Systems, 4th ed.

Springer-Verlag, New York. https://doi.org/10.1007/978-1-4614-2361-4

Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R., 2007. Genetic programming:

An introductory tutorial and a survey of techniques and applications. Univ. Essex UK

Tech Rep CES-475 927–1028.

Rajendran, C., Holthaus, O., 1999. Comparative study of dispatching rules in

dynamic flowshops and jobshops. Eur. J. Oper. Res. 116, 156–170.

https://doi.org/10.1016/S0377-2217(98)00023-X

Ramasesh, R., 1990. Dynamic job shop scheduling: A survey of simulation

research. Omega 18, 43–57. https://doi.org/10.1016/0305-0483(90)90017-4

Reference List

 214

Riley, M., Mei, Y., Zhang, M., 2016. Improving job shop dispatching rules via

terminal weighting and adaptive mutation in genetic programming, in: 2016 IEEE

Congress on Evolutionary Computation (CEC). Presented at the 2016 IEEE Congress

on Evolutionary Computation (CEC), pp. 3362–3369.

https://doi.org/10.1109/CEC.2016.7744215

Sabar, N.R., Ayob, M., Kendall, G., Qu, R., 2015. Automatic Design of a Hyper-

Heuristic Framework With Gene Expression Programming for Combinatorial

Optimization Problems. IEEE Trans. Evol. Comput. 19, 309–325.

https://doi.org/10.1109/TEVC.2014.2319051

Sareni, B., Krahenbuhl, L., 1998. Fitness sharing and niching methods revisited.

IEEE Trans. Evol. Comput. 2, 97–106. https://doi.org/10.1109/4235.735432

Schmidt, M., Lipson, H., 2011. Age-Fitness Pareto Optimization, in: Riolo, R.,

McConaghy, T., Vladislavleva, E. (Eds.), Genetic Programming Theory and Practice

VIII, Genetic and Evolutionary Computation. Springer, New York, NY, pp. 129–146.

https://doi.org/10.1007/978-1-4419-7747-2_8

Sels, V., Gheysen, N., Vanhoucke, M., 2012a. A comparison of priority rules for the

job shop scheduling problem under different flow time- and tardiness-related objective

functions. Int. J. Prod. Res. 50, 4255–4270.

https://doi.org/10.1080/00207543.2011.611539

Sels, V., Gheysen, N., Vanhoucke, M., 2012b. A comparison of priority rules for the

job shop scheduling problem under different flow time- and tardiness-related objective

functions. Int. J. Prod. Res. 50, 4255–4270.

https://doi.org/10.1080/00207543.2011.611539

Shady, S., Kaihara, T., Fujii, N., Kokuryo, D., 2021a. A New Representation and

Adaptive Feature Selection for Evolving Compact Dispatching Rules for Dynamic Job

Shop Scheduling with Genetic Programming, in: Advances in Production Management

Systems. Artificial Intelligence for Sustainable and Resilient Production Systems, IFIP

Advances in Information and Communication Technology. Springer International

Publishing, pp. 646–654. https://doi.org/10.1007/978-3-030-85906-0_70

Shady, S., Kaihara, T., Fujii, N., Kokuryo, D., 2021b. Evolving Dispatching Rules

Using Genetic Programming for Multi-objective Dynamic Job Shop Scheduling with

Machine Breakdowns. Procedia CIRP, 54th CIRP CMS 2021 - Towards Digitalized

Manufacturing 4.0 104, 411–416. https://doi.org/10.1016/j.procir.2021.11.069

Reference List

 215

Shady, S., Kaihara, T., Fujii, N., Kokuryo, D., 2021c. A New Representation and

Adaptive Feature Selection for Evolving Compact Dispatching Rules for Dynamic Job

Shop Scheduling with Genetic Programming, in: Advances in Production Management

Systems. Artificial Intelligence for Sustainable and Resilient Production Systems, IFIP

Advances in Information and Communication Technology. Springer International

Publishing, pp. 646–654. https://doi.org/10.1007/978-3-030-85906-0_70

Shady, S., Kaihara, T., Fujii, N., Kokuryo, D., 2021d. Evolving Dispatching Rules

Using Genetic Programming for Multi-objective Dynamic Job Shop Scheduling with

Machine Breakdowns. Procedia CIRP, 54th CIRP CMS 2021 - Towards Digitalized

Manufacturing 4.0 104, 411–416. https://doi.org/10.1016/j.procir.2021.11.069

Shady, S., Kaihara, T., Fujii, N., Kokuryo, D., 2020a. Automatic Design of

Dispatching Rules with Genetic Programming for Dynamic Job Shop Scheduling, in:

IFIP International Conference on Advances in Production Management Systems.

Springer, pp. 399–407. https://doi.org/10.1007/978-3-030-57993-7_45

Shady, S., Kaihara, T., Fujii, N., Kokuryo, D., 2020b. A Hyper-Heuristic

Framework using GP for Dynamic Job Shop Scheduling Problem, in: Proceedings of

the 64th Annual Conference of the Institute of Systems, Control and Information

Engineers (ISCIE). pp. 248–252.

Shady, S., Kaihara, T., Fujii, N., Kokuryo, D., 2020c. Automatic Design of

Dispatching Rules with Genetic Programming for Dynamic Job Shop Scheduling, in:

IFIP International Conference on Advances in Production Management Systems.

Springer, pp. 399–407. https://doi.org/10.1007/978-3-030-57993-7_45

Shady, S., Kaihara, T., Fujii, N., Kokuryo, D., 2020d. A Proposal on Dispatching

Rule Generation Mechanism Using GP for Dynamic Job Shop Scheduling with

Machine Breakdowns, in: Scheduling Symposium 2020. Osaka, pp. 155–160.

Shi, W., Song, X., Sun, J., 2015. Automatic Heuristic Generation with Scatter

Programming to Solve the Hybrid Flow Shop Problem. Adv. Mech. Eng. 7, 587038.

https://doi.org/10.1155/2014/587038

Simon, F.Y.-P., Takefuji, 1988. Integer linear programming neural networks for job-

shop scheduling, in: IEEE 1988 International Conference on Neural Networks.

Presented at the IEEE 1988 International Conference on Neural Networks, pp. 341–348

vol.2. https://doi.org/10.1109/ICNN.1988.23946

Reference List

 216

Stadtler, H., Kilger, C., Meyr, H., 2015. Supply chain management and advanced

planning: concepts, models, software, and case studies. Springer.

Storer, R.H., Wu, S.D., Vaccari, R., 1992. New search spaces for sequencing

problems with application to job shop scheduling. Manag. Sci. 38, 1495–1509.

Swiercz, A., 2017. Hyper-Heuristics and Metaheuristics for Selected Bio-Inspired

Combinatorial Optimization Problems. Heuristics Hyper-Heuristics-Princ. Appl.

Taillard, E., 1993. Benchmarks for basic scheduling problems. Eur. J. Oper. Res.,

Project Management anf Scheduling 64, 278–285. https://doi.org/10.1016/0377-

2217(93)90182-M

Tay, J.C., Ho, N.B., 2008. Evolving dispatching rules using genetic programming

for solving multi-objective flexible job-shop problems. Comput. Ind. Eng. 54, 453–473.

https://doi.org/10.1016/j.cie.2007.08.008

Teramoto, K., Morinaga, E., Wakamatsu, H., Arai, E., 2020. A Neighborhood

Limitation Method for Job-Shop Scheduling Based on Simulated Annealing. システム

制御情報学会論文誌 33, 171–181. https://doi.org/10.5687/iscie.33.171

Toptal, A., Sabuncuoglu, I., 2010. Distributed scheduling: a review of concepts and

applications. Int. J. Prod. Res. 48, 5235–5262.

https://doi.org/10.1080/00207540903121065

Vanneschi, L., Castelli, M., Silva, S., 2014. A survey of semantic methods in

genetic programming. Genet. Program. Evolvable Mach. 15, 195–214.

https://doi.org/10.1007/s10710-013-9210-0

Vázquez-Rodríguez, J.A., Ochoa, G., 2011. On the automatic discovery of variants

of the NEH procedure for flow shop scheduling using genetic programming. J. Oper.

Res. Soc. 62, 381–396. https://doi.org/10.1057/jors.2010.132

Waller, A., 2012. Witness simulation software, in: Proceedings of the Winter

Simulation Conference. pp. 1–12.

Wang, B., 2018. The Future of Manufacturing: A New Perspective. Engineering 4,

722–728. https://doi.org/10.1016/j.eng.2018.07.020

Wang, Z., Zhang, J., Yang, S., 2019. An improved particle swarm optimization

algorithm for dynamic job shop scheduling problems with random job arrivals. Swarm

Evol. Comput. 51, 100594. https://doi.org/10.1016/j.swevo.2019.100594

Reference List

 217

Weckman, G.R., Ganduri, C.V., Koonce, D.A., 2008. A neural network job-shop

scheduler. J. Intell. Manuf. 19, 191–201. https://doi.org/10.1007/s10845-008-0073-9

Willis, M.-J., Hiden, H.G., Marenbach, P., McKay, B., Montague, G.A., 1997.

Genetic programming: an introduction and survey of applications, in: Second

International Conference On Genetic Algorithms In Engineering Systems: Innovations

And Applications. Presented at the Second International Conference On Genetic

Algorithms In Engineering Systems: Innovations And Applications, pp. 314–319.

https://doi.org/10.1049/cp:19971199

Wong, P., Zhang, M., 2006. Algebraic simplification of GP programs during

evolution, in: Proceedings of the 8th Annual Conference on Genetic and Evolutionary

Computation, GECCO ’06. Association for Computing Machinery, New York, NY,

USA, pp. 927–934. https://doi.org/10.1145/1143997.1144156

Xu, B., Mei, Y., Wang, Y., Ji, Z., Zhang, M., 2021. Genetic Programming with

Delayed Routing for Multiobjective Dynamic Flexible Job Shop Scheduling. Evol.

Comput. 29, 75–105. https://doi.org/10.1162/evco_a_00273

Xu, J., Liu, S.-C., Zhao, C., Wu, J., Lin, W.-C., Yu, P.-W., 2019. An iterated local

search and tabu search for two-parallel machine scheduling problem to minimize the

maximum total completion time. J. Inf. Optim. Sci. 40, 751–766.

https://doi.org/10.1080/02522667.2018.1468610

Yadav, S.L., Sohal, A., 2017. Comparative study of different selection techniques in

genetic algorithm. Int. J. Eng. Sci. Math. 6, 174–180.

Yamada, T., Nakano, R., 1992. A genetic algorithm applicable to large-scale job-

shop problems., in: PPSN. Presented at the Proceedings of the Second international

workshop on parallel problem solving from Nature, pp. 281–290.

Yang, B., Geunes, J., 2008. Predictive–reactive scheduling on a single resource with

uncertain future jobs. Eur. J. Oper. Res. 189, 1267–1283.

https://doi.org/10.1016/j.ejor.2006.06.077

Yin, W.J., Liu, M., Wu, C., 2003. Learning single-machine scheduling heuristics

subject to machine breakdowns with genetic programming, in: 2003 Congress on

Evolutionary Computation, CEC 2003 - Proceedings. IEEE Computer Society, pp.

1050–1055. https://doi.org/10.1109/CEC.2003.1299784

Reference List

 218

Yska, D., Mei, Y., Zhang, M., 2018. Genetic Programming Hyper-Heuristic with

Cooperative Coevolution for Dynamic Flexible Job Shop Scheduling, in: Castelli, M.,

Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (Eds.), Genetic Programming.

Springer International Publishing, Cham, pp. 306–321. https://doi.org/10.1007/978-3-

319-77553-1_19

Zandieh, M., Adibi, M.A., 2010. Dynamic job shop scheduling using variable

neighbourhood search. Int. J. Prod. Res. 48, 2449–2458.

https://doi.org/10.1080/00207540802662896

Zhang, C., Zhou, Y., Peng, K., Li, X., Lian, K., Zhang, S., 2021. Dynamic flexible

job shop scheduling method based on improved gene expression programming. Meas.

Control 54, 1136–1146. https://doi.org/10.1177/0020294020946352

Zhang, F., Mei, Y., Nguyen, S., Zhang, M., 2021a. Evolving Scheduling Heuristics

via Genetic Programming with Feature Selection in Dynamic Flexible Job-Shop

Scheduling. IEEE Trans. Cybern. 51, 1797–1811.

https://doi.org/10.1109/TCYB.2020.3024849

Zhang, F., Mei, Y., Nguyen, S., Zhang, M., 2021b. Evolving Scheduling Heuristics

via Genetic Programming with Feature Selection in Dynamic Flexible Job-Shop

Scheduling. IEEE Trans. Cybern. 51, 1797–1811.

https://doi.org/10.1109/TCYB.2020.3024849

Zhang, F., Mei, Y., Nguyen, S., Zhang, M., 2021c. Evolving Scheduling Heuristics

via Genetic Programming with Feature Selection in Dynamic Flexible Job-Shop

Scheduling. IEEE Trans. Cybern. 51, 1797–1811.

https://doi.org/10.1109/TCYB.2020.3024849

Zhang, F., Mei, Y., Zhang, M., 2019a. A two-stage genetic programming hyper-

heuristic approach with feature selection for dynamic flexible job shop scheduling, in:

GECCO 2019 - Proceedings of the 2019 Genetic and Evolutionary Computation

Conference. Association for Computing Machinery, Inc, New York, NY, USA, pp.

347–355. https://doi.org/10.1145/3321707.3321790

Zhang, F., Mei, Y., Zhang, M., 2019b. Evolving Dispatching Rules for Multi-

objective Dynamic Flexible Job Shop Scheduling via Genetic Programming Hyper-

heuristics, in: 2019 IEEE Congress on Evolutionary Computation (CEC). Presented at

the 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1366–1373.

https://doi.org/10.1109/CEC.2019.8790112

Reference List

 219

Zhang, F., Mei, Y., Zhang, M., 2019c. A two-stage genetic programming hyper-

heuristic approach with feature selection for dynamic flexible job shop scheduling, in:

GECCO 2019 - Proceedings of the 2019 Genetic and Evolutionary Computation

Conference. Association for Computing Machinery, Inc, New York, NY, USA, pp.

347–355. https://doi.org/10.1145/3321707.3321790

Zhang, F., Mei, Y., Zhang, M., 2019d. A two-stage genetic programming hyper-

heuristic approach with feature selection for dynamic flexible job shop scheduling, in:

GECCO 2019 - Proceedings of the 2019 Genetic and Evolutionary Computation

Conference. Association for Computing Machinery, Inc, New York, NY, USA, pp.

347–355. https://doi.org/10.1145/3321707.3321790

Zhang, F., Nguyen, S., Mei, Y., Zhang, M., 2021d. Genetic Programming for

Production Scheduling : An Evolutionary Learning Approach. Springer Verlag,

Singapore.

Zhou, H., Feng, Y., Han, L., 2001. The hybrid heuristic genetic algorithm for job

shop scheduling. Comput. Ind. Eng. 40, 191–200. https://doi.org/10.1016/S0360-

8352(01)00017-1

Zhou, Y., Yang, J., Huang, Z., 2020a. Automatic design of scheduling policies for

dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution

genetic programming. Int. J. Prod. Res. 58, 2561–2580.

https://doi.org/10.1080/00207543.2019.1620362

Zhou, Y., Yang, J., Huang, Z., 2020b. Automatic design of scheduling policies for

dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution

genetic programming. Int. J. Prod. Res. 58, 2561–2580.

https://doi.org/10.1080/00207543.2019.1620362

Zhou, Y., Yang, J.J., 2019. Automatic design of scheduling policies for dynamic

flexible job shop scheduling by multi-objective genetic programming based hyper-

heuristic, in: Procedia CIRP. Elsevier B.V., pp. 439–444.

https://doi.org/10.1016/j.procir.2019.02.118

Zhou, Y., Yang, J.J., Zheng, L.Y., 2019. Hyper-Heuristic Coevolution of Machine

Assignment and Job Sequencing Rules for Multi-Objective Dynamic Flexible Job Shop

Scheduling. IEEE Access 7, 68–88. https://doi.org/10.1109/ACCESS.2018.2883802

List of Publications

 220

LIST OF PUBLICATIONS

Journal papers:

1. Salama Shady, Toshiya Kaihara, Nobutada Fujii, and Daisuke Kokuryo. "A

novel feature selection for evolving compact dispatching rules using genetic

programming for dynamic job shop scheduling." International Journal of

Production Research, 2022: 1-24,

https://doi.org/10.1080/00207543.2022.2053603.

2. Salama Shady, Toshiya Kaihara, Nobutada Fujii, and Daisuke Kokuryo. "Multi-

objective Approach with a Distance Metric in Genetic Programming for Job

Shop Scheduling" International Journal of Automation Technology, Vol.16,

No.3, pp. 296-308, 2022., https://doi.org/10.20965/ijat.2022.p0296.

3. Salama Shady, Toshiya Kaihara, Nobutada Fujii, and Daisuke Kokuryo. "

Feature Selection Approach for Evolving Reactive Scheduling Policies for

Dynamic Job Shop Scheduling Problem Using Gene Expression Programming."

International Journal of Production Research 2022,

https://doi.org/10.1080/00207543.2022.2092041.

Conference papers:

4. Salama Shady, Toshiya Kaihara, Nobutada Fujii, and Daisuke Kokuryo. "A

hyper-heuristic framework using GP for dynamic job shop scheduling problem."

In Proceedings of the 64th Annual Conference of the Institute of Systems,

Control and Information Engineers (ISCIE), pp. 248-252. 2020.

5. Salama Shady, Toshiya Kaihara, Nobutada Fujii, and Daisuke Kokuryo.

"Automatic design of dispatching rules with genetic programming for dynamic

https://doi.org/10.1080/00207543.2022.2053603
https://doi.org/10.20965/ijat.2022.p0296

List of Publications

 221

job shop scheduling." In IFIP International Conference on Advances in

Production Management Systems, pp. 399-407. Springer, Cham, 2020,

https://doi.org/10.1007/978-3-030-57993-7_45.

6. Salama Shady, Toshiya Kaihara, Nobutada Fujii, and Daisuke Kokuryo. "A

Proposal on Dispatching Rule Generation Mechanism Using GP for Dynamic

Job Shop Scheduling with Machine Breakdowns." In Scheduling Symposium

2020, pp. 155-160. 2020.

7. Salama Shady, Toshiya Kaihara, Nobutada Fujii, and Daisuke Kokuryo.

"Evolving Dispatching Rules Using Genetic Programming for Multi-objective

Dynamic Job Shop Scheduling with Machine Breakdowns." Procedia CIRP 104

(2021): 411-416, https://doi.org/10.1016/j.procir.2021.11.069.

8. Salama Shady, Toshiya Kaihara, Nobutada Fujii, and Daisuke Kokuryo. "A New

Representation and Adaptive Feature Selection for Evolving Compact

Dispatching Rules for Dynamic Job Shop Scheduling with Genetic

Programming." In IFIP International Conference on Advances in Production

Management Systems, pp. 646-654. Springer 2021, https://doi.org/10.1007/978-

3-030-85906-0_70.

9. Salama Shady, Toshiya Kaihara, Nobutada Fujii, Daisuke Kokuryo,

SURROGATE ASSISTED GENE EXPRESSION PROGRAMMING FOR

AUTOMATED DESIGN OF JOB SHOP SCHEDULING RULES, Proceedings

of the 2022 International Symposium on Flexible Automation ‐ISFA2022,

pp.324-330.

https://doi.org/10.1007/978-3-030-57993-7_45
https://doi.org/10.1016/j.procir.2021.11.069
https://doi.org/10.1007/978-3-030-85906-0_70
https://doi.org/10.1007/978-3-030-85906-0_70

List of Publications

 222

Doctor Thesis, Kobe University

RESEARCH ON AUTOMATIC GENERATION OF DISPATCHING RULES USING

GENETIC PROGRAMMING FOR JOB SHOP SCHEDULING PROBLEMS”, 222

pages

Submitted on 7, 12, 2022

The date of publication is printed in cover of repository version published in Kobe

University Repository Kernel.

© Shady Amgad Ahmed Ahmed Salama

All Right Reserved, 2022

