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Abstract

Modern supercomputers rely on clusters of many-core processors, bringing large amount

of parallelism both within a node and across nodes. Harnessing the potential of such

systems is a challenge for application developers, as a large amount of parallelism is

available both between and within compute nodes. Modern Partitioned Global Address

Space (PGAS) programming languages facilitate this task to a degree by introducing

elements representing the distributed nature of the program in the language itself. How-

ever, these features alone are not enough to handle the load unbalances that arise in

modern applications.

A successful global load balancing scheme is the lifeline-based global load balancer.

First implemented in X10, this scheme showed that it can e�ectively scale up to several

thousand compute nodes. A shortcoming of this scheme is that the task granularity,

i.e. the number of individual tasks processed in a single batch, greatly in�uences the

performance of the scheme. Without any method to predict what an appropriate setting

should be, users of this scheme therefore need to try many settings to �nd a satisfactory

value for their application, wasting much time and valuable computational resources.

Instead, we believe this kind of setting adjustments should be performed by the library

itself. We integrate a tuning mechanism to the scheme which automatically adapts

the granularity during execution to guarantee optimum performance. Our grain tuner

is implemented as a feedback mechanism and relies on runtime metrics to make its

adjustments, with no noticeable overhead. We show that it is capable of handling a

variety of tree traversal applications and is robust against changes in implementation.

A limitation of the lifeline-based global load balancer is that it only operates on

self-contained tasks, that is, all the data needed to perform the computation is dis-

carded as soon as the task has completed. For cases where the data persists after the

computation, other techniques are desired. Current PGAS languages generally support

distributed collections, mostly arrays, and allow these arrays to be distributed across

the processes taking part in the computation. However, they provide little support for

uneven distributions or for dynamic modi�cations to the distribution of a collection.

In this thesis, we introduce our answer to this issue in the form of relocatable dis-

tributed collections. The collections we propose are analogous to their shared-memory

counterparts but have been �tted with additional features to handle the distributed na-
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ture of the computation. In particular, we introduced a dynamic entry relocation system

which makes it easy for programmers to dynamically relocate entries of a distributed

collection between processes. We introduce the concept of teamed method to signify that

a method of the collection requires communication or synchronization between processes.

We demonstrate the productivity gains brought about by our distributed collections on

a complex �nancial market simulator and a well-known N-Body application.

We then consider the possibility for our distributed collections library to handle

the load balancing automatically, relieving application developers from the burden of

manually implementing such measures within their programs. Inspired by the lifeline-

based global load balancer, we adapt its principles to our distributed collections. We

provide a clear context within which it is allowed to operate, keeping the impact on the

legibility of programs to a minimum.

Overall, the concepts we introduce make it easier for both newcomers to the �eld

and more experienced programmers to develop dynamic distributed applications. In the

future, we think the facilities we introduce will make it possible to more easily develop

elastic applications where the number of running processes is dynamically adjusted to

match the actual parallelism needs of the application. Indeed a signi�cant hurdle in the

development of such applications is the need to relocate the data away from released

nodes, or o�oading data onto newly joined processes when decreasing or increasing the

number of running processes.
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Chapter 1

Introduction

1.1 Distributed & parallel computing

Modern supercomputers feature an unprecedented level of parallelism. For instance, the

current �agship supercomputer of Japan, Fugaku, is composed of over 158 thousand

compute nodes, each node containing a many-core 48 core processor [1]. Harnessing the

processing power of such large systems poses a challenge to application developers.

Borrowing the de�nition from van Steen and Tanenbaum [2]:

A distributed system is a collection of autonomous computing elements that appears
to its users as a single coherent system.

Programming models for distributed programming should therefore present a single co-

herent system for programmers to be able to reason and create distributed programs

with ease.

The second aspect to consider is how to handle the available intra-node parallelism.

The emergence of multi- and many-core processors has brought a large amount of paral-

lelism to be exploited within each node. Naturally, a plethora of frameworks, languages,

and compiler directives aiming at automatically paralyzing code for shared-memory ex-

ecution has emerged.

One possibility for programmers is to combine the techniques of distributed com-

puting and intra-node parallelism together in a hybrid manner. This approach means

that newcomers to the �eld of parallel and distributed programming need to familiarize

themselves with both distributed programming on one hand, and parallel programming

on the other to start developing applications. This comes as a signi�cant burden, ef-

fectively requiring from programmers that they become expert in both �elds to develop

applications for modern supercomputers.

Another approach may consist in using a higher-level framework or a language ded-

icated to distributed and parallel processing. Currently, a large variety of models and

programming languages implementing these models exist, each expressing their own point

of view of what a distributed program is. Some models completely hide the distributed

1
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nature of the hardware used to execute the program, while others allow programmers

to more �nely control how and when independent processes communicate via dedicated

primitives.

As we will develop in Chapter 2, the di�culty with such models is that a compro-

mise needs to be struck between control and ease of use. Programming models that

completely hide the distributed nature of the program make it di�cult for programmers

to leverage locality to make e�cient programs. On the other hand, techniques that allow

programmers to manage the locality of their data will place a signi�cant burden on the

programmer when it comes time to implement load balancing measures.

1.2 Motivation

We believe that with the appropriate abstractions and middleware to support them, the

barrier to entry into the �eld of distributed and parallel programming can be signi�cantly

reduced. In the work presented in this thesis, we strive to provide the middleware that

will help non-expert programmers accustomed to �traditional� shared-memory Object-

Oriented Programming transition to distributed computing. We also aim to provide

the high-level abstractions that will allow more experienced application developers to

create complex and dynamic applications. As such, we prioritize the productivity of the

high-level abstractions over pure performance. A program written with the facilities we

propose should run reasonably well �out of the box,� without the programmer needing

to spend much time re�ning it.

At its most fundamental level, distributed computing involves decomposing a large

computation into multiple smaller units and to assign these units to several indepen-

dent computers to be processed in parallel. Load balancing is the act of assigning these

units of work in a manner which matches the compute nodes available processing power,

maximizing the program's e�ciency. For instance, let us consider an hypothetical com-

putation composed of 20 independent units of work of equivalent load. If we were to

distribute these units between 4 compute nodes, a balanced load assignment would con-

sist in attributing 5 units of work to each compute node.

In practice however, things are not that simple. First, it may not be possible to a

priori estimate the required computation load of each fragment. As an example, take

the enumeration problem of N-Queens which consists in �nding the number of ways N

Queens can be arranged on a N -wide square board without any two Queens threatening

one another [3]. A solution to the 8-Queens problem is shown in Figure 1.1. This problem

can be solved using a backtrack-search algorithm in which the nodes of the exploration

tree consists in placing (or removing, when backtracking) a piece on the board. Sub-trees

of the exploration tree can be explored independently and in parallel, but there is no way

to precisely estimate the size of a sub-tree. If you were capable of correctly estimating

the number of nodes in a sub-tree without exploring it, you would have e�ectively solved
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Figure 1.1: One of 92 solutions to the 8-Queens problem

the problem.

Secondly, the performance of the computers hosting the processes used to perform

the computation may be uneven, either through di�erent hardware characteristics, or

competing processes from other programs running on the same host. As a result, a

�programmatically even� load distribution may result in unbalance in practice.

Without any measure taken, some processes will complete the units of work they were

assigned early and remain idle until the other processes also complete their part. It does

not appear reasonable to account for hardware discrepancies in a program as this would

imply modifying the program for every di�erent hardware con�guration encountered.

As for dealing with processes competing for resources on the same host, it is a dynamic

problem by nature and thus cannot be solved by static distribution adjustments.

For situations such as the ones mentioned above, dynamic load balancing techniques

appear to be an appropriate answer. Dynamic load balancing consists in modifying the

distribution of the computation units across processes during the computation as load

unbalances are detected. Multiple schemes and techniques can accomplish this goal, such

as pro�ling, and work-stealing schemes. It should be noted that since modern computers

rely on multi-core and now many-core processors, a large amount of parallelism is avail-

able both within and between hosts. Load balancing schemes therefore need to balance

the load both between processor cores and across processors.

In this thesis, we target two challenges facing distributed application developers. The

�rst one consists in �nding the appropriate task granularity in a dynamic load balancer.

The second one concerns the management of persistent data in a distributed program.

Automatic granularity tuning Programming models, schemes, and techniques nec-

essarily rely on a number of arbitrary settings and parameters. While expert application

developers may be able to spend the time to adjust and �ne-tune these parameters to

obtain optimal performance on speci�c applications, this is not the case for most peo-

ple. As one objective of our work is to provide simple abstractions and to guarantee

reasonable performance on a wide-range of applications, we �nd that leaving parameter

tuning up to users is not satisfactory. Instead, such tuning steps should be taken by
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the middleware itself, adjusting parameters on the �y to adapt to both the underlying

hardware and the supported program.

In this thesis, we consider the case of themulti-worker lifeline-based global balancer [4,

5, 6]. This framework allows programmers to provide some computation through a simple

abstraction. The scheme then takes care of distributing and balancing the load across

compute nodes. One setting critical for the performance of this scheme is the task

granularity, i.e. the number of unit tasks performed together in a single batch. We

explore the criteria that will allow us to automatically adjust this setting to guarantee

optimal performance.

Relocatable distributed collections Current languages and libraries for distributed

programming may allow programmers to distribute data structures such as arrays across

processes. However, little support is o�ered to allow this initial distribution to be mod-

i�ed dynamically as load balances appear.

In this thesis, we introduce the notion of relocatable distributed collections. The

facilities we introduce allow programmers to explicitly and easily manage the distributed

nature of their program. In particular, the high-level dynamic entry relocation system

makes it possible for programmers to implement load balancing strategies for their own

application with ease. We then explore the possibility for the programmer to temporarily

surrender the management of their collections' distribution to the runtime so that they

are load-balanced automatically. This allows less-experienced programmers to create

dynamically load-balanced programs with minimal e�ort.

1.3 Contributions

The contributions of this thesis are as follows. First, we claim the successful implementa-

tion of a hybrid dynamic load balancer and its application to combinatorial exploration

and optimization problems. We integrate a tuning mechanism into the scheme that au-

tomatically adjusts the task granularity to guarantee optimal performance. This tuning

mechanism is constructed as a feedback mechanism and relies on runtime information

to judge whether the granularity of the computation at hand should be either increased,

decreased, or kept as is.

Secondly, we claim the implementation of a distributed relocatable distributed col-

lections library. The collections provided are analogous to their shared-memory coun-

terparts, but with extra features handling their distributed nature. The introduction of

�teamed methods� o�ers a clear way to identify functionalities that require communica-

tion and/or synchronization between hosts to perform the desired computation. Entries

recorded into the distributed collections can be dynamically exchanged between pro-

cesses through a consistent set of high-level abstractions. This allows programmers to

control the object from from process to process with ease. It also allows load balanc-
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ing techniques to be implemented by the user. Using these facilities, we introduce a

load-balanced version of the PlhamJ �nancial market simulator.

Finally, we claim the implementation of a dynamic load balancer integrated into the

distributed collection library. The programming interface we propose allows program-

mers to temporarily surrender the control over the collections' distribution to the library,

which will in turn relocate entries of the underlying collections as unbalances appear.

This method allows programmers to automatically balance the load of their computa-

tion without having to craft and integrate their own load-balancing strategy into their

application.

1.4 Outline

The remainder of this thesis is organized in the following chapters. First, we recall

some useful background about programming models and paradigms for distributed and

parallel programs in Chapter 2. A particular focus is made on the Asynchronous Par-

titioned Global Address Space (APGAS) programming model and its use in the Java

programming language on which the work presented in this thesis is based.

Then, we discuss the problem posed by task granularity in global load balancers

in Chapter 3. The conditions necessary for the successful implementation of a hybrid

lifeline-based load balancer are discussed before introducing a tuning mechanism capa-

ble of dynamically adjusting the task granularity based on runtime metrics. The scheme

presented causes no detectable overhead and is robust against changes in problem im-

plementation.

In Chapter 4, we address the lack of inter-process communication in the APGAS

programming model by introducing our distributed relocatable collection library. Our

contribution comes as a complement to the APGAS for Java library and provides collec-

tions which mimic the Java standard library and provide support for common distributed

computation patterns through a consistent API.

In Chapter 5, we present the dynamic load balancer integrated into our distributed

collection library. The integrated global load balancer we propose relocates entries of

distributed collections within a clearly identi�able context. Internally, it borrows ideas

of the lifeline-based global load balancer discussed in Chapter 3 and adapts them to the

requirements of this situation.

Finally, conclusions and future perspectives are o�ered in Chapter 6.
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Chapter 2

Background

In this chapter, we �rst outline current techniques, languages, and programming models

used in distributed and parallel computing today in Section 2.1. We then lay out the

case as to why we believe APGAS for Java is a good candidate to ful�ll our objectives

and what it still lacks to achieve its full potential in Section 2.2.

2.1 Programming models for distributed & parallel com-

puting

There are many di�erent programming models available to programmers to create par-

allel and distributed programs. In this section, we lay out the di�erences between pro-

gramming models with respect to two speci�c areas of interest: locality and dynamic

distribution management.

Locality corresponds to how the programming model allows programmers to control

what computation is assigned to which process. This refers both to data and task man-

agement. As we will see, some models provide a higher-level abstraction of a distributed

program which is more detached from any execution consideration, relieving program-

mers from the need to manage locality. Other models require that all things distributed

be managed explicitly.

Dynamic distribution management refers to the capability for data to be redistributed

between processes after an initial allotment to processes has been made. Not all pro-

gramming models and languages used for distributed programming support this kind of

facilities, and the involvement of the programmer can vary greatly.

We should point out that any programming language is not precluded to a single

category. Frameworks built on top of a particular programming model may belong in

another category.
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2.1.1 MPI

The Message Passing Interface (MPI) is a standard for communication whose �rst version

was established in 1994 [7]. It has become a de-facto standard for many high-performance

programs either used directly or to support higher-level abstractions. MPI itself is merely

a standard de�ning the C calls that are available to programmers, with multiple existing

implementation. The standard itself has been revised a couple of times since its inception

to introduce new features such as process creation and management, parallel I/O, and

one-sided non-blocking communications [8]. The current version at the time of writing

stands at Version 4.0.

While the most essential use of MPI is done through calls to a C of Fortran inter-

face, multiple projects have introduced a compatibility layer with the Java programming

language. Use of the C �native� MPI calls can now be made from a Java program. The

conversion layer between the native C calls and the Java language either usually comes

in the form of a series of Java objects and methods organizing the MPI functions in a

Java-friendly class hierarchy. These Java calls are supported through the use of Java

Native Interface (JNI), which allows �native� C code to be called from a Java program.

The translation between C and Java arrays is done in this compatibility layer which

needs to be compiled and on top of an existing C language MPI implementation, as in

mpiJava [9] and the MPJ-Express [10] projects. Notably, OpenMPI [11] ships with its

own Java compatibility layer.

MPI o�ers a �same program multiple processes� view of a distributed system. This

means that the program's main will execute on every process spawned for the execution

of the program. It is possible to make processes perform di�erent computation by intro-

ducing conditions based on the number, or �rank� in MPI terminology, of the running

process. Control over which process executes what code over which data is therefore

explicit. If data needs to be dynamically relocated between processes, this will require

signi�cant programmer investment as no direct support for such features exist in the

MPI standard. Intra-host parallelism needs to be implemented with the help of external

libraries or compiler directives as MPI is solely focused on inter-host communication.

2.1.2 Charm++

At its core, Charm++ relies on over-decomposing the problem into many objects, �chares�

in the language's idiom [12, 13]. Communication is performed by sending �messages� be-

tween chares which correspond to a call to a method of this object. The programming

model is agnostic to distribution, meaning the programmer does not know how the var-

ious chares used in their program will be distributed across the processes actually used

to run the program.

The strength of Charm++ lies in its embedded load balancing strategies. Indeed,

the Charm++ runtime is capable of pro�ling the running program and relocating chares
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between processes to balance the load between processes. A consequence is that the

programmer remains quite removed from any locality concerns.

While the abstraction brought about by the Charm++ programming language are

expressive and powerful, they require some getting used to. In particular, the global

termination detection scheme which relies on quiescence is a signi�cant hurdle. Also, the

fact that the order in which messages are processed by the chares is not deterministic

may be problematic for some applications.

2.1.3 Map/Reduce frameworks

The main idea of the Map/Reduce framework is to use inputs of various nature, pro-

duce new data through a number of �map� operations, and aggregate this data through

�reduce� operations. The programmer is in charge of implementing what the map and

reduce actions on the data source consist in, while the scheduling and execution in a

large scale cluster or cloud environment is managed by the system. As this o�ers a sim-

ple framework for programmers, the barrier to entry is signi�cantly reduced compared

to other distributed computing approaches. The most popular implementations of this

framework are Hadoop [14] and Spark [15].

While the low barrier to entry of Map/Reduce frameworks make them appealing to

computer scientists dealing with large datasets that require a large amount of parallelism

to process them in reasonable time, the expressiveness of this model is somewhat limited.

No notion of locality or distribution management can be expressed by the programmers as

the system's runtime is solely in charge of scheduling the tasks on the processors. There

is however much research looking into how to make this as e�cient as possible [16, 17].

Admittedly, considering Map/Reduce in terms of programming model is quite reduc-

tive as their most appealing characteristic lie in their integration in a broader ecosystem

for big data analytics, comprising interoperability with database management systems,

distributed �le system, cluster resource management, job schedulers etc [18, 19].

2.1.4 (A)PGAS languages

The Partitioned Global Address Space [20] (PGAS) programming model is implemented

by multiple programming languages, including Coarray Fortran [21, 22], Uni�ed Par-

allel C (UPC) [23, 24], UPC++[25], Xcalable MP [26, 27], and PCJ [28, 29]. The

Asynchronous Partitioned Global Address Space (APGAS) extends the PGAS model

by introducing asynchronous tasks executing on one of the locality abstractions, with

languages such as X10 [30], Habanero-Java [31, 32], and Chapel [33] implementing this

model.

At its core, languages that implement these programming models embed an ab-

straction representing a running process within the language itself. Typically, processes

running the program are numbered from 0 to n−1 for an n-process execution, analogous
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to the notion of rank in MPI.

The �partitioned global address space� means that variables located on a process can

be accessed from a remote process through facilities provided by the language. Such

variables are therefore �global� in the sense that they can be accessed from any process

participating in the program through some form of globally unique identi�er. Depending

on the language, this identi�er may take the form of an index in a distributed array, a

global pointer, or a generic identi�er such as a globally unique key. The address space

is partitioned between the running processes, meaning that the variables that possess a

global address are actually handled by one of the processes. Depending on the process

considered, there are therefore �local� memory accesses if the process itself is handling

the data, or �remote� memory if the data is handled by another process.

Depending on the language, there are subtle variations on the implemented pro-

gramming model. For instance, UPC [23] introduces the notion of global pointers which

refer to some memory allocated on a process. Inside the program, if access is made to

a global pointer and the corresponding memory area belongs to a remote process, the

UPC compiler will automatically add the code to make the remote access during com-

pilation. Access to remote memory is therefore implicit to some degree. In the more

recent version of the UPC++ [25] language which is derived from UPC, dereferencing

global pointers needs to be performed through a speci�c call, forcing the programmer to

explicitly recognize the distributed nature of the program.

Chapel supports distribution of arrays through Block, Cyclic, and Cyclic Block dis-

tributions. With an initial array de�ned, the location of these pieces can be de�ned

using these pre-de�ned distributions. However, Chapel does not support this features

for maps, or associative domains per the Chapel idiom. Deitz et al. [34] explored im-

proving the programability and the performance of distributed scans and reductions in

Chapel and MPI. In particular, they supplement MPI with a set of preprocessor direc-

tives that automatically generate the code to make user-de�ned parallel and distributed

reductions.

PCJ brings the PGAS programming model to Java in a pure Java library, relying on

Java annotations to mark the variables that belong to the global address space in par-

ticularly elegant manner. The library also provides collective communications operating

on the variables of the global address space such as broadcast, scatter, reduce and

others in pattern similar to MPI but adapted to their programming model [29].

Another distinction depending on the model is the adoption of a �local view� or a

�global view.� In local view, the program is written from the point of view of one process

communicating with the other processes, while in global view the program is written

for the entire cluster as a single consistent entity. UPC, UPC++, Habanero-Java, and

X10 are examples of programming languages that adopt the �local� view, while Coarray

Fortran and Chapel adopt the �global view�. Xcalable MP can adopt both.

Managing locality with a PGAS language is made easy through the introduction of
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1 import stat ic apgas . Constructs . * ;
2 import apgas . Place ;
3 class HelloWorld {
4 public stat ic void main ( St r ing [ ] a rgs ) {
5 System . out . p r i n t l n ( "Running main at  " + here ( ) + " o f  " +
6 p l a c e s ( ) . s i z e ( ) + " p l a c e s " ) ;
7 f i n i s h ( ( ) => {
8 for ( Place p : p l a c e s ( ) ) {
9 asyncAt (p , ( ) => System . out . p r i n t l n ( "He l lo  from " + here ( ) ) ) ;

10 }
11 }) ;
12 System . out . p r i n t l n ( "Bye" ) ;
13 }
14 }

Listing 2.1: Distributed Hello World in Java

1 Running main at p lace (0 ) o f 4 p l a c e s
2 He l lo from place (0 )
3 He l lo from place (3 )
4 He l lo from place (2 )
5 He l lo from place (1 )
6 Bye

Listing 2.2: Possible output of the Listing 2.1 program running with 4 processes

some representation of a process within the language. However, dynamic relocation after

an initial distribution of a data structure has been made is generally not supported.

One exception is the case of X10 which allows any from of user-de�ned distribution

for its DistArray [35] if the programmer so desires it, but modi�cation of an existing

array is not supported. Instead, a new array can be created based on the contents of the

old one.

2.2 APGAS for Java

The X10 implementation of the APGAS programming model was later ported to Java

in the form of a library [36]. The keywords of the X10 language were converted to Java

static methods taking lambda-expressions as parameter. With the use of this library,

Java e�ectively becomes an APGAS language.

A distributed Hello World program demonstrating the use of the finish and asyncAt

constructs is presented in Listing 2.1. A possible output of this program shown in

Listing 2.2. In this example, the finish method is called on line 7 to 11, with an

asynchronous activity spawned on each place participating in the computation using a

for loop and the asyncAt method on line 9. The program will not progress beyond the

finish until every place prints its �hello� message.

First and foremost, Java is a popular programming language featuring an exten-
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sive standard library. A large number of third-party libraries is also available on public

repositories such as Apache Maven[37]. Unlike programming languages dedicated for

distributed computing that often rely on an intermediary compilation to another lan-

guage before producing the �nal binaries, the compilation toolchain for Java is rather

straightforward with good support in modern IDEs.

Secondly, Java has a clear memory model, independent from any hardware architec-

ture, in which the notions of threads and synchronization scheme between threads oper-

ating in shared-memory are de�ned [38]. In particular, the Java Memory Model allows

the JVM to re-order program instructions as long as the �happens-before� relationships

between threads that synchronize is preserved. This allows application developers to

reason on this model, rather than having to re-adjust for di�erent architectures.

As such, Java combined with the APGAS for Java library makes for an interesting

stepping stone into the world of distributed and parallel computing. For newcomers to

the �eld, it provides a familiar environment to Java programmers, with new features to

handle the distributed nature of the program. For more experienced programmers, the

high-level abstractions of the APGAS for Java library will support dynamic and complex

task schedules controlled by the finish/async constructs. One such application, the

lifeline-based global load balancer [4, 5, 6], is the subject of Chapter 3.

Although the APGAS for Java library appears promising, there are a number of

features desired for distributed computing not provided. Most notably, no method for

communication between activities running on di�erent processes is provided. A simple

approach could consist in combining APGAS for Java with a library which supports

communication between processes such as MPI. However, this would not be su�cient.

While many common communication patterns such as broadcast or reductions are

supported in MPI, these interfaces concern primitive types (int, double etc.) While this

may be satisfactory for numerical simulations, it does not support those same patterns

for object-oriented programs. Instead, higher level abstractions and features are desired,

with a communication library serving in a support role in the background. We develop

our vision for what these higher-level abstractions should be in Chapter 4 and 5.
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Chapter 3

Task Granularity Tuning for the

lifeline-based multi-worker GLB

The lifeline-based global load balancer [4] is a distributed load balancing scheme capable

of dynamically redistributing some computation implemented by users following a spec-

i�ed API. Its scaling and dynamic load balancing capabilities were demonstrated on the

Unbalanced Tree Search benchmark [39], a particularly di�cult tree traversal due to its

inherent irregularity and unpredictability.

In this chapter, we explore two challenges in the implementation of the multi-worker

lifeline-based global load balancer. The �rst one consists in a fairness issue between the

various activities used to implement the multi-worker variant of the scheme. The second

issue we tackle consists in determining an appropriate setting for the task granularity.

While this parameter is important for the general performance of the scheme, there

are no methods that can allow users to determine a priori what a good setting would

be. We propose a tuning mechanism embedded into the load balancing scheme which

dynamically adjusts the setting as the computation takes place based on recently sampled

runtime information.

This chapter is organized as follows. We �rst cover some background information

concerning this load balancing scheme in Section 3.1. In Section 3.2, we discuss the

conditions necessary for the successful implementation of this scheme in Java. We then

cover related work about task granularity tuning in Section 3.3 before introducing our

main contribution, the grain tuning mechanism, in Section 3.4. We present our conclusion

and perspectives in Section 3.5.

3.1 Background on the lifeline-based global load balancer

The lifeline-based global load balancer is a work-stealing scheme �rst introduced in

X10 [4, 5]. Its main feature consists in de�ning pre-determined channels for work stealing

between places, the so-called �lifelines.� When a place runs out of work and is unable to
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steal some from a randomly selected victim, it signals its �lifeline� counterparts that it

needs some work and passively waits until either work is sent to it, or the computation

completes. This mechanism allows the load balancing scheme to maintain high e�ciency

even for large cluster sizes up to several thousand processors [5].

In the original scheme, there is only one worker thread per process. In a later evolu-

tion we discuss in Section 3.1.3, this scheme was extended to support multiple workers

on the same process.

3.1.1 Abstraction for programmers

The abstractions provided to the programmer under both of these schemes are summa-

rized in the Bag abstraction. In our Java implementation of the load balancer, it comes

as an interface that programmers need to implement in their class that contain the data-

structures that represent the computation at hand. The methods that programmers

need to implement are the following:

� void process(int, R): processes a certain amount of computation, that amount

being speci�ed by the integer parameter of the method. An instance of the result

type R is also provided to the worker to read and/or write information shared with

the other workers on the same host during the computation.

� B split(boolean): returns a new bag instance containing a fragment of the com-

putation held by the current bag. The boolean parameter is here to indicate

whether or not all of its contents should be given away in the event the instance

cannot be split.

� void merge(B): merges the contents of the bag instance given as parameter into

this instance.

� boolean isEmpty(): indicates if this bag is empty, i.e. if it does not contain any

work.

� boolean isSplittable(): indicates if this bag can be further split, i.e. if work

can be taken from it without emptying it altogether.

� void submit(R): is called when the computation has ended and the result gath-

ering phase begins. This method gives the opportunity to the bag to put its

contribution to the �nal result into the instance provided as parameter.

To balance the load, a fragment of the computation can be obtained from a bag by

calling the split method before transferring and merging that fragment into another

bag instance. The split and merge methods' implementation is entirely left to the

programmer. This grants complete control over the internal data structure used to

represent the computation. The library remains oblivious to the data structure used by
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the bags, and while programmers are advised to program the split method such that

half of the contents of the bag are given away, there is no actual mechanism to enforce it.

The library guarantees that calls to the split and merge methods on any bag are made

sequentially. Programmers do not have to concern themselves about potential concurrent

accesses made to their Bag implementation as they do not occur in the multithreaded

lifeline-based global load balancer.

3.1.2 Lifelines

As mentioned above, the key innovation of the lifeline-based laod balancer scheme is

that it introduced preferential channels for work-stealing, the so-called lifelines. Taken

as a whole, the lifelines of all the processes combined form a directed graph of passive

stealing channels, the lifeline graph.

In the initial stage, all the lifelines between all the processes are established. The

initial bag containing the entire computation is arbitrarily given to the �rst process

(place 0). The worker process of the �rst process will split its task queue to provide

work to the processes which have lifelines established on place 0. These processes will in

turn do the same with the processes with lifeline established on them until work trickles

throughout the whole cluster. This scheme elegantly solves the problem of termination

detection as all asynchronous activities that carry work are transitively spawned from

the same superseding finish. When all the activities on all the hosts terminate, the

enclosing finish returns, guaranteeing that global termination was achieved.

It is generally understood that the lifeline graph needs to be connected for the work-

stealing scheme to be e�ective. Indeed, using a non-connected lifeline graph would cause

work not to trickle from the initial place 0 to the subset of non-connected processes,

causing them to remain idle throughout the computation.

Besides connectivity, two more desirable properties for the lifeline graph are listed by

the creators of the scheme: bounded out-degree, and low diameter [4]. A bounded out-

degree means the number of lifelines established (and received) by each process should

be limited so that processes with work do not spend too much time addressing lifeline

thieves when work becomes scarce. As for the low-diameter, it means that the maximum

number of hops needed to travel between any two nodes in the lifeline graph should be

limited. An extreme (but useful) example of a lifeline graph with high-diameter would

be the directed loop between all the processes in the program. In a situation with N

nodes, the average distance between nodes is N/2. When the number of processes used

remains small this approach can give satisfactory results. However, when using a larger

amount of processes, work takes too long to reach the last node in the graph, resulting

in much of the cluster to remain idle for prolonged periods of time.

Although the in�uence of the lifeline strategy selection has not been studied thor-

oughly, there is consensus on the fact that the family of cyclic hypercubes satisfy the

properties mentioned above. The cyclic hypercubes graphs can be de�ned as follows:
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Figure 3.1: Overview of the multithreaded global load balancer opeprations within a
place

Given a number of processes N,N ∈ N, choose a radix h, h ∈ N and a power z, z ∈ N
such that hz−1 < N ≤ hz. Each vertex p is represented as a number in base h with
z digits.

Each vertex has an outgoing edge to every other vertex at a distance +1 from it
in the Manhattan distance (in modulo h arithmetic). That is, the vertex p labeled
(a1, ..., az) has an outgoing edge to every vertex q such that for some i ∈ 1..z, q =
(a1, ..., (ai+ 1)%h, ..., az).

Using radix 2, the graph draws a 2-D square, a 3-D cube, and a 4-D hypercube for

4, 8, and 16 vertices respectively.

3.1.3 Multi-worker GLB

In the original X10 scheme, the lifeline-based global load balancer only supports one

worker per host. A later evolution of this scheme, the multithreaded lifeline-based global

load balancer [6] (multi-GLB) keeps the same computation abstraction and lifeline mech-

anism between places but makes each place run multiple worker threads in parallel in-

stead of a single one as per the original scheme.

With this scheme, it is no longer necessary to use multiple places (or processes) per

host to use all the cores of the hosts used for the computation. Instead, a single place

containing as many workers as there are cores on the underlying processor can be used.

This also brings the opportunity for workers on the same host to easily share information

as they operate in shared-memory. A graphical representation of the design including

the main load balance operations that occur within a host is depicted in Figure 3.1.

Instead of making remote steals when a worker runs out of work, the remote steals

are made when all the parallel workers on the host run out of work. Within a place,

each worker holds its own dedicated bag instance throughout the computation. Load

balance operations are achieved through the use of two additional bag instances that are

not processed by any worker. One bag - the intra-bag - is primarily used to handle load

unbalances within a host, while the second bag - the inter-bag- is used to handle steals

attempts coming from remote places. The workers on the place collaboratively maintain

some work available in both of these bags for a potential thief, be it a local worker or a
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remote place.

In its original X10 implementation, this load balancer su�ered from a few problems

concerning the scheduling of messages. These were resolved in our Java implementation.

3.2 Fairness between activities of the multi-worker load-

balancing scheme

3.2.1 Problem statement

For maximum processing power of the multi-GLB scheme, it makes sense to use as many

worker activities as there are cores on the underlying host. However, making such a

choice will prevent the scheme from operating as intended. The issue stems from the

fact that worker activities are long-running tasks.

In the implementation of the X10-style APGAS programming model in Java, asyn-

chronous activities are submitted for execution to a common thread pool on each process.

In the multi-worker lifeline-based global load balancer scheme, all the activities (worker

activity, lifeline-answer activity, steal activity), are therefore submitted to this unique

pool. As per the normal execution policy of thread-pools, tasks submitted execute until

completion.

Allowing as many worker activities as there are cores on the underlying host will result

in the worker activities monopolizing all the computing resources. As a result, incoming

steal requests coming in the form of stealing asynchronous activities will remain staged in

the thread pool until one of the worker activities terminates, as illustrated in Figure 3.2a.

This goes against the intent of the work-stealing scheme for two reasons. First, this

causes a signi�cant delay between the time the steal request of a remote host is sent and

the moment it is actually processed. In the meantime, the thief remains idle. Secondly,

the fact that a worker activity terminated on the host is a sign that work is getting

scarcer. Therefore, there is good chance that the fragment of work eventually stolen

turns out to be relatively small. As a result, the thief will soon run out of work again

and restart this ine�ective work-stealing process.

In the �rst implementation of the multi-worker lifeline-based global load balancer in

X10 [6], the choice was made to allocate 1 fewer worker than the available number of

cores on the running process. This helps scheduling the asynchronous activities coming

from remote hosts on the process as there remains one core available at all times for

other activities at the cost of reduced computing power.

3.2.2 Yielding worker mechanism

To resolve this scheduling issue, we introduced a yielding mechanism to the routine of

worker activities. This mechanism forces a worker activity to stop its progression to

allow other activities submitted to the process to execute before resuming execution.
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Figure 3.2: Scheduling of steal activities in the multi-GLB work stealing scheme

Internally, this is implemented using the ManagedBlocker feature provided by the

ForkJoinPool class [40]. Usually, a ManagedBlocker is used when a task in the pool

needs to perform some kind of long-waiting blocking operation or synchronization. Us-

ing the ManagedBlocker mechanism to perform such blocking operations allows the

ForJoinPool to put temporarily suspend this thread and schedule a new thread in its

place.

We exploit this mechanism by adding a step in the main routine of workers, consisting

of checking if there are any tasks submitted to the pool waiting to be scheduled. If the

maximum number of workers is currently running and tasks are pending, the worker

voluntarily blocks on a semaphore within a managed blocker, allowing the thread pool

to schedule the pending tasks.

Looking at a single worker activity, this yielding mechanism appears to go against

the �work �rst� principle generally observed in work-stealing schemes, but considering

the scheme as a whole draws a di�erent picture. First, the operation of this yielding

mechanism is only done when the maximum number of worker activities are running,

i.e. monopolizing the available cores of the processor. Also, a maximum of one worker

activity is allowed to yield at any time. Finally, all activities used in the load balancing

scheme proceed to unblock the potentially waiting worker activity before terminating.

This guarantees that as soon as any activity completes, be it a steal activity or an-

other worker activity, the yielding worker is immediately allowed to resume execution,

as illustrated in Figure 3.2b.
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The result is that worker activities and other activities are capable of sharing the

resources on the process and intertwine their execution. Steal activities coming from

remote hosts are addressed in a timely manner and the maximum available parallelism

on the host is used for computation.

3.3 Related work about granularity tuning

Parallel processing generally involves breaking down the computation into smaller parts

which can be independently and/or concurrently computed. However, breaking up the

computation at hand into the smallest unit possible is usually not the most e�cient

solution as there is a limit beyond which further exposing the inherent parallelism of

the computation does not provide any advantage. On the contrary, it may cause in-

creased management cost or memory footprint. To counter the undesirable e�ects of

over-decomposing computation units, these irreducible independent tasks get packed

into larger computation unit. This is referred to as grain coarsening. The number of

individual tasks aggregated into these individual units is called the grain size or grain.

One di�culty in precisely de�ning what the �grain� is stems from the fact that it de-

pends on the context considered. Di�erent programming paradigms introduce di�erent

nuances to this notion.

The most popular programming model for parallel computation relies on the Fork/Join

model. Typical implementations in shared memory processor rely on a pool of threads,

with each thread having its own queue of tasks to process. Tasks can generate new tasks

which are added to the worker's queue. When a worker runs out of work, it attempts to

steal tasks from a neighboring thread to resume its computation. Several works elaborate

on this scheme to reduce the overhead due to the task creation, such as Wang et al [41],

or in�uence the tasks stolen to favor cache consistency, as in LAWS[42] and Constrained

Work Stealing [43]. Min, Iancu and Yelick also present their own implementation of

a distributed task library over UPC in HotSLAW [44]. They de�ne a hierarchy that

matches the characteristics of the (distributed) hardware at hand (cache, socket, and

node level). Workers that run out of work try to steal on workers that are close to them

�rst, only stealing from workers further away in the hierarchy if failing to obtain some

from close workers. Moreover, they adapt the number of tasks stolen at each level, with

closest level steals stealing only 1 or 2 tasks and remote steals stealing half of the tasks

contained in the queue. This is a characteristic not supported under the lifeline-based

global load balancer as the grain is not related to the amount of work transferred when

a bag is split.

Our tuning mechanism bears some resemblance with the adaptive grain mechanism

presented by Cong et al. in XWS [45]. They reuse the task-parallelism model of Cilk [46]

and enhance it with the capabilities of the X10 language to target graph algorithms. In

their target applications, each node of the graph at hand represents one task. Coarsening
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is achieved by grouping the nodes in the workers' queues in batches. Working threads

always process and steal entire batches of tasks. The appropriate batch size for each

worker is dynamically adjusted following a heuristic on the current size of its queue. The

abstractions o�ered by the lifeline-based global load balancer are di�erent. First, while

programmers may choose to implement their bag as double-ended queue of tasks, there

is not obligation for them to do so. The load balancing routines remain oblivious to the

internal implementation of the Bag abstraction. Secondly, our library guarantees that

bags are only manipulated by a single thread at a time. In our scheme, load balance

operations using either of the work reserves are done in mutual exclusion whereas in

XWS, a worker is allowed to steal from a second worker while this second worker is

processing a batch. Again, in our case there is no relationship between the size of the

grain used and the amount of work which can be stolen from a bag.

3.4 Grain tuning mechanism

In the context of both the lifeline-based global load balancer and its multithreaded

variant, the task granularity corresponds to the number of individual tasks processed

during each iteration of the workers' main routine. This is a sensitive setting since this

integer parameter does not have any meaning outside the context of a speci�c application.

Setting an arbitrary value on the library side is not satisfactory. Also, we cannot expect

users of the library to be able to predict what a good value would be for their application.

The ideal grain size will vary depending on the problem at hand, as well as the size of

the cluster used. Changes to the implementation of a problem may also change the

performance characteristics of a problem.

We aim at eliminating the need for users to guesstimate this value by integrating a

tuning mechanism into the load balancer library that will automatically adjust the grain

size to achieve good performance. In Section 3.4.1 we detail how the grain size in�uences

the behavior of the load balancer. We then discuss the assumptions and heuristics on

which our tuning mechanism relies in Section 3.4.2. Implementation details are brie�y

discussed in Section 3.4.3 before the evaluation in Section 3.4.4.

3.4.1 In�uence of the granularity on the worker activity

The multithreaded global load-balancing scheme relies on several kinds of asynchronous

activities to handle the distributed computation [6]. In this section, we will discuss the

main routine of the �worker activity� along with some of the load-balancing mechanisms

within a host as they are directly relevant to how our tuning mechanism operates. The

main routine of the worker activity is presented in Listing 3.1. Note that some elements

pertaining to synchronization were removed for clarity.

When an idle host receives work, the computation received is merged into one of the

workers' bag and a �rst worker activity is spawned with that bag given as parameter.
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1 void workerAct iv i ty (Bag workerBag ) {
2 do {
3 do {
4 // Step 1 = i f ab le , spawn a worker a c t i v i t y
5 i f ( runningWorkers < maxWorkers && workerBag . i s S p l i t t a b l e ( ) ) {
6 Bag fragment = workerBag . s p l i t ( fa l se ) ;
7 idleWorkerBag . merge ( fragment ) ;
8 asyncAt ( here ( ) , ( )=> workerTask ( idleWorkerBag ) ) ;
9 }

10
11 // Step 2 = i f the in tra=bag i s empty and the worker ' s bag can
12 // be s p l i t , f e ed the in t ra=bag .
13 i f ( intraBagEmpty ) { // v o l a t i l e boo lean f l a g
14 i f ( workerBag . i s S p l i t t a b l e ( ) ) {
15 // Workers w i l l b l o c k here in case o f extreme conten t ion
16 synchronized ( intraBag ) {
17 Bag b = workerBag . s p l i t ( fa l se ) ;
18 intraBag . merge (b) ;
19 intraBagEmpty = fa l se ; // f l a g update
20 }
21 }
22 }
23
24 // Step 3 = i f f e e d in g the in t e r=bag i s needed and the
25 // workerBag can be s p l i t , f e ed the in t e r=bag
26 // Step 4 = Check i f t h e r e are remote t h i e v e s t ha t can be
27 // answered
28 // Step 5 = Yie ld to load=ba lanc ing a c t i v i t i e s i f needed
29
30 // Step 6 = Do some work
31 workerBag . p roce s s (n , sharedResu l t ) ;
32
33 // Repeat from s t ep 1 u n t i l the workerBag i s empty
34 } while ( ! workerBag . isEmpty ( ) ) ;
35
36 // Step 7 at tempt to s t e a l from the in tra=bag
37 i f ( the int ra=bag i s not empty ) {
38 workerBag . merge ( intraBag . s p l i t ( true ) ) ;
39 intraBagEmpty = intraBag . isEmpty ( ) ; // Update the f l a g
40 }
41 // Step 7=b i s i f unab le to s t e a l from the in t ra=bag at tempt to
42 // s t e a l from the in t e r=bag
43 else i f ( the in t e r=bag i s not empty ) {
44 workerBag . merge ( interQueue . s p l i t ( true ) ) ;
45 }
46 // I f work cou ld be obtained , repea t from s t ep 1 .
47 } while ( ! bag . isEmpty ( ) ) ;
48 // The worker cou ld not g e t work from e i t h e r bag , i t s t op s .
49 // I t may be spawned again by another worker performing s t ep 1 .
50 }

Listing 3.1: Worker activity main procedure
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While the worker has some work in its bag, they will loop through steps 1 to 6 of their

main procedure (lines 3 to 34 in Listing 3.1), with step 6 consisting in performing the

computation. In its �rst step, the worker checks if it is possible to spawn an additional

worker activity in the �rst step of its main routine. Provided this �rst worker's bag can

be split, another worker activity will be spawned, which will in turn (transitively) spawn

other workers until the maximum number of concurrent workers on the host is reached.

In steps 2 and 3, the workers try to maintain work in both shared bags on the place.

If a worker performing step 2 �nds that the intra-bag is empty and that it is capable of

splitting its bag, the worker splits a fragment from its bag and merges it in the intra-bag.

The inter-bag involved in step 3 follows a similar scheme. We do not detail steps 4 and 5

which are involved in guaranteeing the scheduling of work stealing activities as discussed

in Section 3.2

When a worker runs out of work after performing step 6 and exits the inner do-while

loop of its procedure, it will attempt to take some computation from the intra-bag in

step 7, or as a last resort from the inter-bag in step 7-bis, to immediately resume its

computation (lines 36 to 45 in Listing 3.1). If the intra-bag gets emptied as a result,

another worker performing step 2 will place some computation back into it. The next

worker to run out of work will therefore be able to take some computation from the

intra-bag again.

If a worker runs out of work when neither the intra-bag nor the inter-bag contain any

work, it will escape the outer do while loop (line 47 in Listing 3.1) and terminate. A

new asynchronous worker activity may be spawned back again by a worker performing

step 1 of its main routine.

The attentive reader will have noticed the parameter �n� of the process method in

step 6 of the worker's main procedure (line 31 in Listing 3.1). This integer determines

the grain size. In general, it should be seen by programmers as the number of indivisible

computation units to be performed in a call to method process before returning. As

a consequence, the grain size is correlated to how much time workers spend in step 6,

in�uencing how often they go through the inner do-while loop. If this parameter is

low, the worker activities will go through their loop more frequently. Conversely if the

chosen grain is large, workers will spend more time in step 6 and go through the loop

less frequently.

The purpose of the two shared bags on each host is for workers that run out of work

to steal from them and continue to participate in the computation. An issue that arises

when the grain is too large is that when these queues become empty, there is a delay

until a worker checks the queues status in steps 2 and 3 and puts some computation

back into them. As a result, workers that run out of work are more likely not to be

able to steal any work in step 7 and terminate, reducing throughput. These workers will

eventually be spawned back by other workers performing step 1, but for the same reason

this will also happen after a delay. A situation where the grain size is too large on a
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host will therefore be characterized by intervals of time where fewer than the maximum

number of concurrent workers are running.

As workers go through the inner loop of their procedure, various checks are made.

These consists of reading some volatile boolean �ags and calling methods of atomic data

structures. These are quite lightweight, but they will still generate some overhead if

they are made too often. Moreover, with many workers running in parallel, there is also

an increased risk of contention on the bags used for load balancing when load-balancing

operations are actually needed. Since the accesses to the bags are made in mutual

exclusion using synchronized blocks, we risk creating a bottleneck by using a grain size

too low.

3.4.2 Heuristics

The tuning mechanism we integrated into the multi-GLB relies on a pair of heuristics to

construct a basic feedback mechanism.

3.4.2.1 Diagnosis of a grain too large

As explained above, executions with a grain too large will cause workers that run out

of work to remain idle for prolonged periods of time. As an indicator that the task

granularity is too large, we use the proportion of the time spent with the maximum

number of workers. If this proportion drops below a certain trigger level, it is inferred

that the grain currently in use is too large. Based on the empiric characteristics of static

grain executions of the Unbalanced Tree Search benchmark, we deem the grain size to

be too large if less than 90% of the elapsed time is spent with the maximum number of

workers.

3.4.2.2 Diagnosis of a grain too small

We developed two heuristics to detect cases where the grain is too low. Both rely on a

subtle e�ect low grain executions have on the handling of the intra-bag.

When a worker empties the intra-bag, it sets the boolean intraBagEmpty �ag to true

in line 39 of Listing 3.1. The next worker to perform the second step of its main routine

will read the value of the �ag as true in line 13 and (if able), place some work back

into the intra-bag before setting the intraBagEmpty �ag back to false on line 19. Any

subsequent worker to perform the check in line 13 will read the updated value of the

boolean �ag and move on to the next step of its routine without placing work into the

intra-bag.

However, it is possible for multiple workers to place work back into the intra-queue

as a result of it being emptied once due to a data race between the �read� on the

intraBagEmpty �ag on line 13 and the �write� of the �rst worker placing work back

into the queue on line 19. Usually, data races are best avoided in concurrent programs.
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However in this particular case, it does not adversely a�ect the correctness of the pro-

gram thanks to the synchronized block protecting the access to the intra-queue spanning

lines 16 to 20.

This situation where the intra-bag is likely to be fed several times after getting

emptied only once is more likely to occur in situations where the grain is low. Our

tuning mechanism leverages that fact to detect this situation.

We could eliminate the redundant feeding of the intra-bag by changing our volatile

boolean �ag for an atomic integer. However, the redundant feeding isn't a performance

problem in itself. Rather, the fact that it occurs beyond a reasonable level is the sign

that workers go through their loop too often, creating overhead. In such a situation, the

performance su�ers more from the overhead created through excessive checking than from

the contention on the shared queue when it becomes empty. As our tuning mechanism

detects this situation and increases the grain size, any contention on the queues will

naturally disappears.

Early �split/merge� design In an early design we introduced, we used the ratio be-

tween the number of times work is split from the intra-bag and the number of times

work is merged back into the bag to determine if multiple workers were able to redun-

dantly feed the intra-bag. We call the tuner that relies on this criterion �split/merge

tuner.� This indicator, however, relies on the assumption that the programmer imple-

ments the split method of its bag such that successive calls to this method recursively

give away half of the contents of the bag. Under this assumption, if the intra-bag is fed

by multiple workers as a result of being emptied once, it will take comparatively fewer

split calls to empty it again than it would have if a single worker placed work into the

intra-bag each time it got emptied.

Using empiric data, we set the split/merge �trigger� level to 2, meaning that if fewer

than two workers are able to take work from the intra-queue for each time work is placed

back into the queue, the grain is deemed too small.

�merge/empty� design We have since departed from this criterion and designed a

new version of our tuning mechanism. We now directly measure the number of redundant

feedings of the intra-bag by comparing the number of times the intra-bag was emptied

in lines 39�41, with the number of times a worker puts work back into the intra-bag in

lines 17�19 of Listing 3.1.

We call this new criterion �merge/empty� because in the context of our global load

balancer library, it corresponds to the number of times workers merge work into the

intra-bag divided by the number of times the intra-bag is emptied. From a runtime

perspective, it is the ratio between the number of workers that go through the if block

in lines 13�22, and the number of times the boolean �ag which guards this if block is

set to true, allowing workers to enter it.
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3.4.3 Integration with the GLB runtime

The tuning mechanism is implemented as an extra asynchronous activity, the tuning ac-

tivity, on each place of the global load balancer's runtime. The tuner is called periodically

and remains inactive the rest of the time.

When the tuner is called, it directly reads the information accumulated in the load

balancer's local logger. By comparing the current values with the ones from the previous

time the tuner was called, the tuner is able to determine what took place during the last

interval. It can then evaluate the heuristics mentioned above, draw its conclusions, and

modify the grain size if necessary.

Initial experiments showed that the two indicators we use to detect if the grain is

too low or too high are not infallible. Throughout the execution, there are times when

the indicators draw the �wrong� conclusion or contradict themselves. As a moderation

mechanism, we choose to only modify the grain size if the same conclusion is drawn by

the tuner twice in a row.

When changing the value, we double (or divide) the current value by a factor 2.

Combined with a tuning interval of 1 millisecond, this allows us to cover the very large

range of values that the grain can take over a short period of time. In all our experiments,

we purposely set the initial grain size at a very low value of 10. The tuner activities

of each place are free to adjust the grain as soon as the computation starts, and do so

independently from one another. As a result, the chosen grain on two di�erent compute

nodes of the distributed computation may di�er.

We did not witness any overhead imputable to this extra activity. This was checked by

running distributed computations with the tuner activity active but keeping the chosen

grain �xed. These executions produced the same execution time as regular �xed grain

executions without this additional activity. This can be explained by the fact that the

decision making takes an insigni�cant amount of computing power.

3.4.4 Evaluation

3.4.4.1 Benchmarks used

To evaluate the performance of our tuning mechanism, we use four backtrack-search

applications: N-Queens, Pentomino, the Traveling Salesman Problem (TSP), and the

Unbalanced Tree Search (UTS).

We implemented these problems in a similar manner, using a pair of arrays to describe

ranges of branches at each level of the exploration tree. Splitting the exploration is

reduced to dividing this interval into two, matching the lowerbound of the thief to the

upper bound of the victim for each layer of the exploration. This operation is therefore

bounded in time and space by the depth of the exploration. As the branches are implicitly

described, the size of the data transfered from host to host during load balance operations

is independent from the actual amount of work transferred.
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Figure 3.3: A particular solution to the Pentomino and the One-sided Pentomino
problems

In this section, we brie�y introduce each application and discuss some selected details

about our implementations.

N-Queens The N-Queens problem consists in �nding all possible arrangements such

that a maximum number of Queens are placed on a chessboard of width N without any

two Queens threatening one another. We model the problem as an exact cover problem,

which consists in �nding all the di�erent subsets of rows of a matrix of 0s and 1s such

that for each column of the matrix, exactly one row has a 1 in that column. In the case

of the N-Queens problem, the columns of the cover matrix correspond to the �les, ranks,

and diagonals of the chessboard. Each row in the matrix corresponds to a possible queen

placement on the board and contains four 1s: one for the rank, the �le, the diagonal,

and the anti-diagonal that the piece occupies.

We use Knuth's �Dancing Links� data structure [47] to represent the sparse matrix

of the exact cover problem. This data structure exploits doubly linked lists to hide and

restore parts of the matrix as the backtrack exploration progresses. Exploration is made

in a depth-�rst manner. At each step in the exploration, the �rst column of the cover

matrix that remains to be covered is arbitrarily chosen. The various rows that can cover

this column represent the options available in the exploration and can be explored in

parallel.

Pentomino The pentominoes are the 12 di�erent shapes that can be formed by stitch-

ing 5 square tiles edge-to-edge. The Pentomino problem consists in enumerating all the

possible ways to arrange these 12 shapes to cover a 10x6 rectangle. The One-sided

Pentomino is an analogous problem but treats the face-down variations of the chiral

pentominoes as pieces of their own. As a result, the problem is signi�cantly larger, con-

sisting of arranging 18 pieces on a 10x9 rectangular board. A solution to the Pentomino

and the One-sided Pentomino problems are presented in Figure 3.3.

In our implementation, we use a single array with sentinels to represent the rectangu-

lar board. We recursively attempt to place every rotation of every piece on the top-most

and left-most unoccupied tile of the board. If the piece can be placed, the exploration
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proceeds and we attempt to place the remaining pieces of the board. If the chosen piece

cannot �t on the board, the next orientation and/or piece is selected as a candidate.

When all the candidates at a certain stage of the exploration have been attempted, the

exploration backtracks by removing the last piece that was placed and selecting a new

candidate. Some restrictions on piece placement and orientation can be made to elim-

inate the symmetries of the problem and only enumerate the fundamentally di�erent

solutions to the problem. This also reduces the size of the exploration tree. In terms of

scaling potential, this problem shows a wide exploration tree and a low computation cost

for exploring individual nodes. Of all our applications, the Pentomino has the greatest

potential for strong scaling on larger clusters.

Traveling Salesman Problem The Traveling Salesman Problem (TSP) is an opti-

mization problem which consists in �nding the shortest round-trip through a number of

cities. In our implementation, we use an exact Branch & Bound algorithm [48]. The

nearest neighbor heuristic is used to favor exploration of cities that are close to the cur-

rent city �rst. The length of the best round-trip found so far is kept in a shared object

on every place in the computation. Our library periodically checks on each place if a

better bound has been found and, if so, recursively propagates newly found bounds to

remote places using the same network as the lifeline graph.

We should note that the non-deterministic nature of the load balancer can introduce

great variations in the execution times of this problem as it in�uences how early better

solutions are found and how much of the exploration tree is trimmed. This problem is

also prone to poor scalability when tested in strong scaling due to the parallel exploration

of branches that would be trimmed out if a better bound had been found earlier.

UTS The Unbalanced Tree Search [39] consists in a depth-�rst traversal of a randomly-

generated tree. We use geometric trees in which the number of children of each tree

node follows a geometric distribution of average 4. The resulting tree is unbalanced by

construction as two nodes on the same level are unlikely to spawn similar size sub-trees.

The size of the exploration is adjusted by setting a maximum depth to the tree. The

shape and the size of the tree are entirely deterministic following an initial seed and

the maximum depth. Parallel traversal is done by exploring nodes that have not been

traversed yet and whose sub-trees have yet to be generated.

We conduct the evaluation of this problem in weak-scaling, that is, we use increasingly

larger trees for increasingly larger clusters.

3.4.4.2 On many-core clusters

We �rst perform an evaluation of the global load balancer library without the tuning

mechanism on the OakForest-PACS supercomputer to determine the best performance

achievable on each of our problems. As a sample, we show the relationship between the
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Figure 3.4: Relationship between the grain size and the execution time of our four
benchmarks when running on 16 hosts of the OakForest-PACS supercom-
puter

Table 3.1: Problem settings used for the experiments involving varying number of
workers on the Oakforest-PACS supercomputer and our Beowulf server

Problem Oakforest-PACS �harp� server

UTS Branching factor: 4, Depth:
18 on 4 hosts, 19 on 8 and 16
hosts, 20 on 32 hosts, 21 on 64
hosts

Branching factor: 4, Depth:
17

Pentomino One-sided, Board width: 9,
Board height: 10, with sym-
metry removal

One-sided, Board width: 9,
Board height: 10, with sym-
metry removal

N-Queens N = 19 N = 17

TSP 35 cities 24 cities

grain size and the execution times on our 4 application problems in Figure 3.4. On each

problem, we have a range of acceptable values grain values, which can be wide (such

as Pentomino) or more narrow (like TSP and UTS). Although the range of acceptable

grain sizes tend to overlap between di�erent clusters, they can shift or get narrower as

we increase the cluster size. We therefore conducted a thorough evaluation to identify

the best performing grain for each of our problem on every cluster con�guration. We

compare how both our tuning mechanisms fares against the best ��xed grain� executions.

The main characteristics of the OakForest-PACS supercomputer are summarized in

Table B.2. The problem parameters we used are shown in Table 3.1. The results are

summarized in Figure 3.5.

In general, both our tuning mechanisms operate as intended on NQueens, Pentomino,

the Traveling Salesman problems, and UTS, delivering close to the best �xed grain execu-

tions recorded. We even achieve slightly better performance on the TSP when running on

4 to 16 hosts with our �merge/empty� tuner. We also note that our new �merge/empty�

tuner shows identical performance (on Pentomino and UTS) or better performance (on

N-Queens and TSP) than the �split/merge� tuner. This is a net improvement over our

initial design and is not the only advantage brought about by the new criterion, as we
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will discuss in the following section.

3.4.4.3 Robustness

One concern with the early �split/merge� criterion used to detect cases where the grain

is too small is its reliance on the implementation of a reasonable �split-half� strategy by

the Bag implementation of the user program. In cases where the program received by

the multi-GLB does not follow this recommendation, this criterion may fail to correctly

recognize the situation. To con�rm this weakness and to demonstrate the robustness of

our �merge/empty� criterion, we implemented two variants of the UTS benchmark which

di�er in the implementation of the split method.

� UTS split 1 : The intra-bag gives away its entire contents when the split method

is called on it. As a result, the maximum split/merge ratio is 1, and lower if the

intra-bag is redundantly fed as is the case at lower grain sizes.

� UTS split 2 : The intra-bag successively gives away half of fragment received. The

number of split operation needed to empty the intra-bag is therefore proportional

to the number of times work was merged into it. As a result, the split/merge ratio

remains largely the same, regardless of if there were redundant merges made.

The relationship between the grain size, the execution time, and the two ratios that

we used in our tuning mechanisms to detect when the grain size is too low are presented

in Figure 3.6. We can see that the execution time depends on the proper balance of the

grain chosen for the execution. We can also recognize just how much the intra-bag is

redundantly fed at lower grain sizes by looking at the �merge/empty ratio� plot. We note

that the merge/empty curves of the regular UTS implementation and the two variants

are almost identical. We therefore expect our new tuning mechanism which relies on this

criterion to be able to accommodate for these vastly di�erent splitting implementations.

On the contrary, the split/merge ratio our previous design relies on shows great

disparity depending on the implementation. We had chosen to describe programs whose

split/merge ratio was below 2 as having a grain size too low. This worked for the original

splitting implementation (labeled �UTS� in Figure 3.6) but will not for the other two

implementations. With the split 1 and split 2 UTS variants, the �split/merge� ratio

remains respectively below or above 2 regardless of the grain size used. As a result, our

original �split/merge� tuner will fail to recognize the situation correctly for both of these

problems and yield poor performance.

Looking at the results on the two UTS variants in Figure 3.5, the limits of our

�split/merge� tuner become evident, sometimes presenting execution times more than

double the best �xed grain achieved. By contrast, our new design yields execution times

almost identical to the best �xed grain executions on the �split 1� variant. The largest

gap occurred on the 16 hosts con�guration with an execution time longer by just 30

seconds.
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On the �split 2� variant, our new tuner design clearly outperforms our �rst �split/merge�

design. However, we observe a certain performance gap to the best �xed grain executions

with run times about 20% longer (the largest gap being 40% on the 16 nodes execution).

This can be explained by the grain value chosen by our tuning mechanism. Figure 3.7

presents the evolution of the grain size as chosen my our �merge/empty� tuner on an

eight host execution of the TSP and the UTS �split 2� variant. On the TSP execution,

our tuner mechanism behaves as intended, increasing the grain size from its initial value

on all the hosts. However, on the UTS split 2 variant, place 0 keeps a very small value

for the �rst 5 minutes presented here. It is only in the last �ve seconds of this execution

(not shown in Figure 3.7) that the grain size on host 0 is �nally increased. We are able

to account for this phenomenon, which we discuss in Section 3.4.4.4.

3.4.4.4 Limitations

So far, we focused our analysis on clusters of many-core processors. However, nothing

is preventing us from using our library on clusters of ordinary multi-core processors. In

fact, this load-balancing scheme was �rst designed for such systems [6].

We were concerned that our tuning mechanism would not work with fewer workers

per place. In particular, the criterion that determines if the grain size is too low relies

on multiple worker threads entering the same branch of their main routine before one

of them completes it. As we arbitrarily chose to launch the computation with a small

grain value, our tuning mechanism may fail to raise the grain size to a satisfactory level

by lack of contention in the workers' main procedure.

We evaluated the performance of our tuning mechanisms on the �harp� server of

our Beowulf cluster. This server is �tted with two 12-core Intel Xeon processors. The

hardware details of this server are presented in Table B.1. We evaluate the performance

of our four benchmarks on this host in three di�erent con�gurations:

� 24x1: 24 workers per process, 1 process

� 12x2: 12 workers per process, 2 processes

� 6x4: 6 workers per process, 4 processes

The results are presented in Figure 3.8. With the exception of the UTS benchmark,

executions with either of our tuning mechanisms show a performance gap compared to

the best performance obtained with �xed grain executions. However, the cause of these

gaps was not what we anticipated.

A detailed look at the grain chosen by our tuning mechanisms allows us to obtain

more insights. Representative grain evolutions over time for each cluster con�guration

are presented in Figure 3.9. On the execution with a single process, the tuner keeps the

grain size at its initial value of 10 for a long time. On the particular execution shown
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Figure 3.8: Execution times of our four benchmarks in the three con�gurations on
our �harp� server

in Figure 3.9, the grain size is suddenly increased to the ideal range after 2 and a half

minute have elapsed.

We can explain this phenomenon by the nature of the criteria used to detect that

the grain is too low. In its current design, the intra-bag needs to be emptied for the

tuner to obtain data to be able to make its decision. In an execution where all the

work is concentrated on the single process participating in the computation, the workers

all obtain a large amount of work to begin with. They will therefore be able to keep

going through their loop without running out of work for a long time. Moreover, a large

amount of computation is likely to have been placed in the intra-bag. This means that

even when the workers start running out of work, it may also take a while to empty

the intra-bag for the �rst time. Only when load imbalance actually occurs on the single

process involved in the computation will the tuning mechanism be able to recognize that

the grain is too low and �nally raise it.

We see a similar pattern on the two- and four-process executions, with place 0 keeping

its grain value at its initial value of 10 up to the very end of the computation when it

�nally jumps. On the other places however, the grain size is increased by the tuning

mechanism from the start. This can be explained by the fact that these places obtain a

fragment of the computation held by place 0 through their lifeline steals. This fragment

being smaller, they need to perform load-balancing tasks operations sooner.

33



Chapter 3. Task Granularity Tuning for the lifeline-based multi-worker GLB

 10

 100

 1000

 10000

 100000

 0  90  180  270  360

g
ra

in
 s

iz
e

elapsed time (s)

24x1

 10

 100

 1000

 10000

 100000

 0  90  180  270  360

g
ra

in
 s

iz
e

elapsed time (s)

12x2

 10

 100

 1000

 10000

 100000

 0  90  180  270  360

g
ra

in
 s

iz
e

elapsed time (s)

6x4

place 0 place 1 place 2 place 3

Figure 3.9: Evolution of the grain size over time depending on the cluster con�gu-
ration of our Beowulf server using our �merge/empty� tuner on the TSP
problem

0

10

1000

100000

p
la

c
e
 0

0

10

1000

100000

p
la

c
e
 1

0

10

1000

100000

p
la

c
e
 2

0

10

1000

100000

 0  50  100  150  200  250  300

p
la

c
e
 3

elapsed time (s)

Figure 3.10: Evolution of the number of times the intra-bag is emptied on each place
of a four-place execution of the Pentomino problem on our Beowulf
server

34



3.5. Conclusion and future work

This is con�rmed by how frequently the intra-bag is emptied throughout the compu-

tation. If we focus on Figure 3.10, we can see that the places 1, 2, and 3 face situations

where the intra-bag is emptied from the start of the computation. By contrast, the intra-

bag is emptied on place 0 after 240 seconds have elapsed in the 270 second execution.

This reassures us in the capability of our tuning mechanism to operate on systems with

fewer concurrent workers as it appears that the reduced number of worker per place is

not what causes the tuner to fail. Rather, it is the lack of load imbalance that prevents

it from recognizing situations where the grain is too low.

We believe this also explains the performance gap we saw with our �merge/empty�

tuner design on the UTS split 2 variant on the OFP supercomputer. The particular

implementation of the UTS split 2 variant yields little work when the split method is

called. This causes the workload to have greater di�culty trickling down from the bags

used for load balancing on place 0. As a result, it will take longer for the intra-bag of

place 0 to get emptied and for the tuning mechanism to detect the overhead on this

process.

We have attempted to resolve this problem by spuriously setting the intraBagEmpty

�ag to true, making workers feed the intra-bag as if it had being emptied. However,

these e�orts have not to come to fruition. Another approach for multi-process executions

could consist in homogenizing the grain size used on the entire cluster. This would cause

the higher values of the remote hosts to raise the value used on the �rst process from

the start of the computation.

3.5 Conclusion and future work

Our tuning mechanism for the multi-threaded lifeline-based global load balancer is capa-

ble of correctly adjusting the grain size of the computation on both cluster of many-core

processors and on more common multi-core environments. It does so by sampling the

runtime of the load balancer, relying on a pair of heuristics to determine if the current

grain is either two small or too large. Cases of grain too small are diagnosed through the

occurrence of a data race in the worker's main loop, while the cases of grain too large are

diagnosed through the apparition of starvation between the workers. The mechanism is

robust against changes in the implementation of the computation being load-balanced

and incurs no noticeable overhead.

However, to be able to successfully achieve this, it requires some load balance oper-

ations to take place. In cases where the computation remains concentrated on a single

host, either through an inadvisable work splitting implementation or by running on a

small (maybe single-process) environment, it is possible for our current design to miss the

presence of overhead and keep grain sizes that are too low to deliver good performance.

We believe the mechanism relying on a data race has the potential to be re-used in

other contexts to help estimate the state of contention of a resource in cases where no
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obvious performance issue is detected. Some kind of probabilistic model may provide

further insights into this phenomenon such as the relationship between the number of

threads and the likelihood of a data race occurring.

The objective of the scheme presented here is to keep all the processes participating

in the computation busy for as long as possible. In Palirria [49], Varisteas and Brors-

son tackle the reverse problem consisting of matching the computing resources to the

(varying) degree of parallelism of an application. On single applications, they are able

to maintain ideal performance with higher e�ciency by adjusting the number of allo-

cated cores to the computation based on its potential for parallelization. Similar to our

approach, they are able to make a decision on whether to change the number of cores allo-

cated to their program based on the measurement of some selected runtime metrics over

the most recent elapsed interval. Their approach makes it possible to envision several

programs running concurrently and making the most of the available computing power

of a shared memory processor. More recently, Posner and Fohry transposed this idea to

our implementation of the multi-worker Lifeline-Based Global Load Balancer [50]. With

their modi�cations to the APGAS for Java library and their adaptations to the load

balancing scheme, the lifeline-based global load balancer becomes an elastic application

capable of dynamically reducing and increasing the number of processes it is running on

as the needs of the computation evolves.
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Chapter 4

Distributed Relocatable Collections

4.1 Introduction

Writing parallel and distributed programs is inherently di�cult, with many dedicated

languages, runtime libraries, and programming models attempting to reduce the di�culty

by introducing abstractions to programmers. In judging what makes a good language

and runtime for object-oriented distributed computation, we are interested in 3 criteria:

� support for local parallelism

� support for communication across processes

� dynamic data/work relocation

In the �rst aspect, X10 and APGAS for Java are quite successful. Indeed, the

asynchronous activity concept and the use of the finish/async constructs to manage

these activities allows programmers to launch as many independent tasks as they want.

Matching the number of threads to the available parallelism on a host is therefore trivial.

The introduction of the Place abstraction allows programmers to clearly indicate the

process on which computation is done.

In the latter two aspects, X10 and APGAS for Java are lacking. There is no o�cial

communication layer provided with the language, forcing programmers to rely on external

libraries. When it comes to load balancing capabilities, the lifeline-based global load

balancer discussed in the preceding chapter only applies to self-contained tasks. For

objects that persist across iterations, there are no obvious facilities provided with the

language.

To address these shortcomings, we introduce relocatable distributed collections in

the form of a library to complement APGAS for Java. Relying on a combination of the

APGAS for Java programming model [36] and MPI, our library makes it possible to write

complex distributed and parallel programs with ease. We introduce the notion of �teamed

operation� to describe computation or communication patterns that involve multiple
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processes. We also introduce a number of intra-node parallel patterns operating on these

collections, such as reductions and producer/receiver. Our distributed collections come

with an API close to that of the Java standard library, providing a sense of familiarity

to programmers who are then capable of reusing any prior knowledge.

The remainder of this chapter is organized as follows. We start by detailing how we

combined the runtimes of APGAS for Java with MPI in Section 4.2. We then formally

introduce key concepts of our relocatable distributed collections in Section 4.3. In Sec-

tion 4.4, we showcase the main features of our library using distributed programs taken

from well-known Java benchmark suites [51, 52] and a complex simulator [53, 54].We

then discuss speci�c design choices and select implementation details in Section 4.5. We

evaluate the performance of our library in Section 4.6. Finally, we conclude and discuss

future work in Section 4.7.

4.2 Combining APGAS for Java with MPI

The APGAS for Java and MPI runtimes are quite compatible. In fact, the X10 pro-

gramming language has a runtime implementation built on top of MPI. Each process

becomes the combination of an APGAS �Place� and an MPI �rank� and the terms �pro-

cess,� �Place,� and �rank� can therefore be used interchangeably in this context. One

di�erence when combining APGAS for Java and MPI is that unlike pure MPI programs,

only rank/place 0 runs the program �main�. Code is executed on other ranks through

asynchronous activities managed by AGPAS.

As part of our library, we introduced some classes that supplement the existing

APGAS constructs. While these additions have little technical merit on their own, they

bring some convenience to the programming model of APGAS and are use throughout

our library. The most signi�cant addition for the purposes of our library consists in class

TeamedPlaceGroup.

Class TeamedPlaceGroup represents a group of APGAS places. This class proposes

a broadcastFlat method taking a closure as parameter which will spawn the provided

closure in an asynchronous activity on each place within the group and returns when

the provided closure has completed on all places. A �world� group which contains all the

places participating in the computation is initialized by our library and can be obtained

through the TeamedPlaceGroup.getWorld() method. Other groups containing a subset

of the �world� can be created at will.

We introduce Listing 4.1 to illustrate the bene�t of using class TeamedPlaceGroup.

Notice that the broadcastFlat method call on line 3 replaces the �nish/asyncAt loop

used in Listing 2.1. Overall it is a practical shorthand which simpli�es programs by

mimicking the MPI programming style within a clearly identi�ed block. We use it

extensively when writing programs with our library.

Internally, the TeamedPlaceGroup carries an MPI communicator which is used by our

38



4.3. Relocatable distributed collections

1 TeamedPlaceGroup world = TeamedPlaceGroup . getWorld ( ) ;
2 world . broadcas tF lat ( ( )=> {
3 System . out . p r i n t l n ( "He l lo  from " + here ( ) ) ;
4 }) ;
5 System . out . p r i n t l n ( "Bye" ) ;

Listing 4.1: Equivalent program to Listing 2.1 using class TeamedPlaceGroup

library to communicate information between the places participating in the group. A

number of convenience methods that translate APGAS places into MPI ranks and vice-

versa are also provided. While the runtime we rely on combines APGAS for Java and

MPI, we cannot consider it to be an hybrid technique on the same level as MPI+OpenMP.

We rely primarily on APGAS to manage code execution locality and termination de-

tection, with MPI taking up the secondary role of supporting speci�c communication

patterns. Our library is structured in a way that would allow us to substitute MPI for

a di�erent communication layer with some adaptations.

4.3 Relocatable distributed collections

The concept of distributed collections is not new. The work we present here bears re-

semblance with earlier work from Lee & Gannon [55] in which they de�ne the Distributed

Collection Model for the pC++ programming language. Under this model, a distributed

collection contains elements that can be referenced through a globally unique handle. A

distribution describes how the elements are assigned to the virtual processors used at

runtime. Parallelism is supported by sending a message to the collection which will in

turn invokes the speci�ed method on all elements of the collection. It is also possible to

send such a message to a subset of the virtual processors. One peculiarity of this model

is the capability for individual elements to obtain information from the structure of the

collection (i.e. their position in a 1D array or 2D grid). One limitation of this program-

ming model is that there is a single main control thread for the program resulting in

calls on an entire collection to be synchronous. Under the APGAS programming model

this constraint is relaxed, with the progress of asynchronous activities on various hosts

being only halted if some communication between hosts is needed as part of the activity.

And while multiple distribution strategies are available in this language, there is also no

obvious mechanism that would allow to modify the distribution of a collection.

In the context of the APGAS programming model, a distributed collection consists in

a group of local handles linked by a globally unique identi�er. We say that a collection

is de�ned on a group of places to represent the fact that a collection has a handle on

each place belonging to this group. When creating a new distributed collection, the

TeamedPlaceGroup on which the collection will be de�ned is given to the constructor as

a parameter. Object entries can be recorded into the local handles of collections and
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be either kept in these handles, or a distributed collection may be used to temporarily

record information produced on a host before transfering this information to a single

process where it will processed. We also provide support for parallel computation taking

place on every instance recorded into a collection, taking the parallelism avaialble on

the underlying host. We also support common distributed computation patterns such

as reductions using the collections as the provider of input data and its de�nition the

subset of processes involved in the distribution computation. We also foresee situations

where some information updated by a process needs to be duplicated to the other hosts

participating in the computation.

4.3.1 Proposed collections

The main collections we provide with our distributed collections library are summarized

in Table 4.1.

Table 4.1: Collection classes proposed by our library

Collection Description

Bag<T> Iterable set
DistBag<T> Distributed variant of class Bag

CachableArray<T> Array used to share and replicate information across
processes

ChunkedList<T> Arbitrary long-index array
DistChunkedList<T> Distributed variant of ChunkedList
DistCol<T> Variant of DistChunkedList whose distribution is

tracked
CachableChunkedList<T> Variant of DistCol whose entries can be replicated on

multiple hosts

DistMap<K,V> Distributed map from K to V objects
DistConcurrentMap<K,V> Variant of DistMap with additional protections for con-

currency
DistIdMap<V> Distributed map from long indices to V objects, its

distribution is tracked
DistMultiMap<K,V> Distributed map from K objects to multiple V objects

Bag<T>

The Bag collection (and its distributed variant DistBag) consist in a (distributed) iterable

set. Duplicated entries are allowed. Special care was taken to its internal structure for

it to e�ciently receive elements from multiple concurrent threads.
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1 TeamedPlaceGroup world = TeamedPlaceGroup . getWorld ( ) ;
2 DistMap<Str ing , Str ing> dMap = new DistMap<>(world ) ;
3 dMap . put ( "main" , " running " ) ;
4 world . broadcas tF lat ( ( )=>{
5 dMap . put ( here ( ) , " says  h e l l o " ) ;
6 CollectiveMoveManager mm = new CollectiveMoveManager ( world ) ;
7 i f ( here ( ) == place (0 ) ) {
8 dMap . moveAtSync ( "main" , p lace (1 ) , mm) ;
9 }

10 mm. sync ( ) ;
11 }) ;

Listing 4.2: Distributed map creation, record insertion, and relocation example

CachableArray<T>

A cachable array takes the form of an array containing objects that need to be replicated

on each host and may be periodically updated. Custom serialization and deserialization

methods can be speci�ed to use a user-chosen object to transport the updates to replicas.

ChunkedList<T>

Class ChunkedList and its distributed variants propose a collection which handles ele-

ments in multiple one dimension arrays mapped from ranges of long indices. We call

each of these arrays mapped from a range of indices a �chunk�. Individual elements can

be accessed and set through their long index. Some computations and/or manipulations

on the distributed collections can be applied on ranges of entries.

We developed variants based on this class allow for more speci�c behaviors such as

guaranteeing that chunks are unique across all hosts, or for chunks to be replicated on

other hosts. This enables support of various distributed applications in which replication

of entries, entry distribution tracking, or other features are desired.

DistMap<K,V>

The distributed map DistMap is a generic distributed map taking K objects as keys and V

objects as values. DistMultiMap is similar, but allows for multiple values to be mapped

to a single key.

4.3.2 Local handle of a distributed collection

Before diving into speci�c features of our library let us �rst illustrate the notion of local

handle and teamed operation with the sample program of Listing 4.2 and the accompa-

nying Figure 4.1.

In Listing 4.2, a distributed map using String for both keys and values is created

on line 2. This distributed collection is de�ned on the entire �world,� i.e. it will have

a local handle on every process participating in the computation. Then, a �rst entry is
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Place 0 Place 1 Place 2 Place 3

“main” : “running”
“place(0)”: “says hello”

“place(1)”: “says hello” “place(2)”: “says hello” “place(3)”: “says hello”

: dMap handle

(a) before entry relocation

Place 0 Place 1 Place 2 Place 3

“main” : “running”
“place(0)”: “says hello”

“place(1)”: “says hello”
“main” : “running”

“place(2)”: “says hello” “place(3)”: “says hello”

dMap.moveAtSync(“main”, place(1), mm);

(b) after entry relocation

Figure 4.1: State of the distributed map �dMap� in a 4 processes execution of the
Listing 4.2 program

inserted on the running process on line 3. The call to method put only acts on the local

handle registered on this place. As such, the �main�:�running� entry is only registered

on the place 0 handle.

On line 5, a second call to method put registers new entries into the distributed

map. In this case however, since the call is contained in a broadcastFlat method call,

every place adds a new entry to their local handle. Contrary to ordinary objects, the

distributed collections used inside a closure are not copied to the remote processes but

instead allocated on the �y. As a result, the dmap handles on place 1 to 3 do not contain

the entry previously placed in the handle of place 0. We provide more details about this

topic in Section 4.5.1.

Note that the key used to place new entries on line 7 di�ers on each host due to

the APGAS method call here() which returns the Place object representing the cur-

rently running process. Each local handle therefore contains a di�erent key (�place(0),�

�place(1)� etc.) mapped to the String "says hello", as is re�ected in the contents of

each local handle of dmap in Figure 4.1a.

This illustrates the fact that conforming to the AGPAS programming model, all

accesses to our distributed collections are �local� in the sense that APGAS asynchronous

activities only ever interact with the handle of the distributed collection located on the

process they are running.

4.3.3 Teamed operations

Teamed operation is a generic term we use to describe operations or computations which

involve some form of coordination or communication between the processes participating

in the computation. They are clearly identi�ed as such in the documentation of our

collections.
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In principle, teamed operations operate on the set of processes on which the collection

(or the other object otherwise supporting the operation) is de�ned on. The method needs

to be called by an asynchronous activity on each of the processes for it to complete. As

such, teamed operations form natural synchronization points in the distributed program.

We demonstrate these characteristics in the following example.

Example

In Listing 4.2 from line 6 onwards, we present one of the teamed operation supported

by our library in the form of an entry relocation between the handles of the distMap

distributed collection.

A �collective move manager� is �rst created on line 6. This object is used to register

entries of our distributed collections to be transferred from a handle to another. In this

case, only the �rst place decides to relocate the main:running entry to place 1, with all

other places keeping their current entries. The transfer is performed on line 10 when the

mm.sync() method is called by all the places participating in the computation. The �nal

state of the distributed map dmap is what is presented in Figure 4.1b. In particular, note

that the main:running entry has been removed from the handle on place 0 and inserted

into the handle of place 1.

There are a variety of �teamed operations� implemented in our library supporting

various features, including reductions, entry relocation, replication etc. We will introduce

the most signi�cant of them in the next section.

In the example presented above, the group of processes participating in a teamed

relocation is determined by the TeamedPlaceGroup object passed given to the constructor

of the collective move manager on line 6. Here, the world place group is used, meaning

that every place in the computation needs an asynchronous activity to call mm.sync()

before they can respectively resume their progress, even if that place does not send or

receive any entry as part of the collective relocation.

Teamed operations pair nicely with the broadcastFlat method provided by class

TeamedPlaceGroup, whose purpose is precisely to launch an asynchronous activity on

each place of an identi�ed group. There is however no requirement to call �teamed oper-

ations� from within a matching broadcastFlat. This gives more experienced program-

mers the freedom to implement more complex synchronization patterns by combining

the �normal� �nish/asyncAt programming style of APGAS for Java with the teamed

operations proposed by our library. For instance, if we wanted to allow place 2 and

place 3 to continue their progress while place 0 and place 1 exchange entries, a di�erent

TeamedPlaceGroup containing only the �rst two places could be used when creating the

collective relocator on line 6, with only place 0 and place 1 calling the mm.sync() method

of that relocator on line 10.
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4.3.4 Support for intra-node parallelism

As we will demonstrate in the next section, all our distributed collections feature typical

forEach, reduce and other such methods that take a closure as argument. This closure

is then applied to the entries contained in the local handle of the distributed collection.

Parallel variations of these methods are also implemented, allowing programmers to

bene�t from a multithreaded runtime without having to manually schedule the required

threads.

Internally, we rely on the APGAS �nish/async pair of constructs to spawn and control

the threads needed for the parallel variants of these methods. For ChunkedList and its

variants, we allocate entries evenly between the threads available on the local host. This

is made trivial by the nature of this collection whose entries are recorded by ranges.

Spawning explicit activities on the library side also helps when objects dedicated to

a single thread are needed by the computation pattern. This is the case for instance

of the parallel producer/receiver pattern, reductions, and �accumulators," presented in

Section 4.4.1.2, Section 4.4.2.1, and Section 4.4.3.3 respectively.

In each of these computation patterns, our library handles to allocation of the nec-

essary objects for the threads to work in isolation from one-another. This lightens the

burden on programmers, re-focusing the program on the computation at hand rather

than the schedule needed to support intra-node parallelism.

4.4 Motivating cases

In this section, we develop the abstractions available to programmers using examples

taken from distributed programs written with our library. We rely on the distributed

implementation of the PlhamJ �nancial market simulator, a distributed K-Means im-

plementation, and the N-body simulation MolDyn.

Following a brief presentation of each program, we illustrate the abstractions and

features they rely on in dedicated subsections. The features are presented in order of

appearance in their respective applications, but the reader may choose to forego this

order and browse by feature category: intra-node parallelism, teamed relocation, and

replication.

4.4.1 PlhamJ

Plham is a �nancial market simulator �rst implemented in X10 [53, 54]. Simulations are

prepared using a JSON con�guration �le which details the agents, markets, sessions, and

events that will occur during the simulation. Users of this program can prepare trader

implementations by extending the included Agent class. The simulator produces con�g-

urable outputs based on the information available over the course of the simulation, with

the produced results deterministic following an initial seed. Internally several �runners�
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Place 0 Place 1 Place 2 Place 3

#2

#4

#7

#2
#4

#7
Ø

Ø

Order instance

AgentUpdate instance

Object relocation Computation

(1) Market information broadcast

(2) Order submission

(3) Order relocation to “master”

(4) Order handling

(5.1) Contracted trade info relocation

(5.2) Agent update

CachableArray<Market> markets 
handle (original / replica)

DistBag<Order> orderBag handle

DistMultiMap<Long,AgentUpdate>
contractedOrders handle

DistCol<Agent> handle Agent instance

(4 - optional) Balancing of agents between Places

Market instance

Figure 4.2: Figurative representation of the communications and computations pro-
cesses that take place during a round of the Plham simulation
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implementations are available (sequential, parallel ...).

A round of the Plham simulator comprises the following steps. First, agents place

orders based on the current market information. Secondly, buy and sell orders placed by

agents are matched to contract trades, updating the state of the market. Lastly, agents

that have contracted a trade during this round are informed. These steps then repeat

using the updated state of the markets for as many rounds as speci�ed in the simulation

con�guration.

To make use of larger-scale computer clusters, a distributed version of the Plham sim-

ulator is available. In this implementation traders are distributed over multiple processes

to leverage the greater parallelism of the underlying distributed runtime. However, this

poses a number of challenges as the computation in charge of matching buy and sell or-

ders needs to remain centralized on a single process (arbitrarily the �rst process, place 0)

to provide the opportunity for high-frequency traders to place orders based on the most

up-to-date market information.

As a consequence, we need to:

� propagate the updated state of the market to all the hosts participating in the

simulation

� relocate the Order objects placed by agents to the centralized order-processing host

� dispatch the contracted trade noti�cations to the processes that hold the intended

Agent recipient

To further complicate matters, if one of the processes takes longer than the others to

compute the orders of the agents it was assigned, the progress of the entire program is

delayed. In non-dedicated clusters, such a load unbalance can be caused by disparities

in the hardware used to support the distributed computation (di�erent CPUs, di�erent

frequencies or number of cores), or by other processes competing for resources. This

poses a challenge as it is not reasonable to create a speci�c initial distribution for each

cluster and/or simulation. Moreover, even �ideal� distributions would not be able to react

to dynamic changes in the cluster' performance. While we could implement dynamic

load-balancing of agent across hosts to resolve these situations as they occur, this poses

a problem when sending contracted trade information to agents as their location will

evolve dynamically over time.

PlhamJ is the Java implementation of Plham and was re-written using the features

of our distributed collection library. This gave us the opportunity to revisit the imple-

mentation of some communication patterns as well as integrating a simple dynamic load

balancer within the simulator. Under the distributed implementation of this simulator,

a round takes place in 5 main computation and communication steps represented in

Figure 4.2:
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1 CachableArray<Market> markets ;
2 world . broadcas tF lat ( ( ) => {
3 // (1) Broadcast the updated s t a t e o f markets
4 markets . broadcast (MarketUpdate : : pack , MarketUpdate : : unpack ) ;
5 }) ;

Listing 4.3: Replication of Market objects in the PlhamJ simulator

1. the updated state of the markets is broadcast to its replicas on the agent-handling

processes

2. the agent-handling processes collect the orders of the agents they hold

3. these orders are gathered on the order-handling process

4. the order-handling process tries to match sell orders with buy orders, creating an

AgentUpdate object for each agent involved in a trade. Meanwhile, the agents are

balanced between the other processes so that they all take roughly the same time

during the order submission step. In our load-balanced version, this is done every

few rounds.

5. the agent updates are dispatched to their respective Agent location (step 5.1) where

the targeted agents are informed are then informed of the trades they made (step

5.2)

In the following subsections, we detail with the accompanying code the various fea-

tures of our library that support this implementation.

In an e�ort not to overwhelm the reader, we chose to introduce the relevant code

piece-by-piece in each subsection. Listing A.1 in the appendix consolidates all of them

into a single Listing.

4.4.1.1 Replication: CachableArray

In the Plham simulator, the most up-to-date market information is located in Market ob-

jects located on the order-processing place. To replicate the updated state of the market

information to the other processes in the computation, we rely on class CachableArray

as shown in Listing 4.3.

The replicas on the other processes are updated using the teamed operation broadcast

of line 4. This method is called by all hosts participating in the computation and also

serves as a synchronizing mechanism between the asynchronous activities running the

simulation on each host.

The two methods given as parameter to this function, pack and unpack, are re-

spectively used to extract information from the market objects and record it into a
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1 DistCol<Agent> agents ;
2 DistBag<List<Order>> orderBag ;
3 world . broadcas tF lat ( ( ) => {
4 // (2) Submit agent orders
5 i f ( ! i sMaster ) {
6 agents . para l l e lToBag ( ( agent , o rd e rCo l l e c t o r ) => {
7 List<Order> orde r s = agent . submitOrders ( markets ) ;
8 i f ( o rde r s != null && ! orde r s . isEmpty ( ) ) {
9 o rd e rCo l l e c t o r . accept ( o rde r s ) ;

10 }
11 } , orderBag ) ;
12 }
13
14 // (3) Co l l e c t a l l orders on the ' ' master ' '
15 orderBag . team ( ) . gather ( p lace (0 ) ) ;
16 }) ;

Listing 4.4: Parallel Order collection and relocation in the Plham simulator

MarketUpdate object, and to update the market replica based on the information con-

tained in the MarketUpdate object. This allows the user to choose any object to carry

the data necessary to update the objects.

4.4.1.2 Intra-node parallelism: producer / receiver

In the second step of a PlhamJ iteration, every agent is asked to submit its orders

based on the current Market information. This consists in calling method submitOrders

on every Agent object participating in the computation. This method returns a list of

orders, with agents able to place a single, multiple, or no orders at all. In Figure 4.2, we

represented a total of 14 orders submitted by the agents during step (2). The order are

collected into the DistBag �orderBag�.

The corresponding code is shown in Listing 4.4. The method parallelToBag called

on line 6 relies on the internal features of class DistBag to allow multiple threads to

concurrently place the orders into the local handle of this collection. This method takes

two parameters. The �rst one is a closure taking an Agent and an �orderCollector� as

parameter. This closure will be applied to every agent in the local agents handle in

parallel, with the �orderCollector� taking the value Bag instance being used to collect

the orders. The second parameter to method parallelToBag is the Bag into which all

collected objects will be placed.

In this particular case, empty or null lists returned by agents that choose not to

place any new order for this round are discarded using the condition on line 8. In cases

where every entry in the collection produces an object to record in the speci�ed bag,

more simple signatures of method parallelToBag can be used.
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4.4.1.3 Teamed relocation: gather

After each place has gathered the orders placed by its agents, all the orders are relocated

to the order-processing place where they will matched to create trades.

This is performed when each host calls the gather method of class DistBag, as shown

on line 15 of Listing 4.4. This method is a teamed operation which needs to be called on

every handle of the distributed collection orderBag for the calling activities to progress.

As such, it is used as a synchronization point between place 0 (which does not produce

orders during the second step) and the other agent-processing places.

When the relocation has completed and all the orders produced during this rounds

have been relocated to place 0, the order-matching computation of step (4) begins on

place 0.

4.4.1.4 Teamed relocation: dispatch

During the order-handling process, each trade contracted results in two AgentUpdate

objects to be created, one for each Agent involved in the trade.

In Figure 4.2 we show 2 trades to be contracted: one trade between agent #2 and

#4, and a second trade between agent #2 and #7. These agent updates are placed

into the contractedOrders distributed multi-map at the index matching their intended

agent recipient.In other words, if agent #2 (contained in collection agents) contracts

a trade, the �agent update� containing this information is placed at index #2 in the

contractedOrders handle of place 0.

To inform the agents of the trades they contracted during this round, the entries of

contractedOrders �rst need to be relocated to the location of their intended recipient.

This is done as part of step (5.1) where the current distribution of collection agents is

used to determine the new location of each entry in the multi-map.

The corresponding code is shown in Listing 4.5. First, the current distribution of

agents is retrieved on line 6. This is possible thanks to the distribution tracking mech-

anism integrated in class DistCol which contains the agents participating in the simula-

tion. Then, the entries of collection contractedOrders are relocated at the place where

the corresponding agent is located by calling method relocate on line 7.

This method is a teamed operation which relocates the entries it contains to match

the distribution given as parameter. In this particular example, the location of Agent

is recorded in a mapping from ranges of indices to Place objects. This distribution is

assimilated as a distribution from long indices to Place object by class DistMultiMap

to determine the new location of each individual key recorded in contractedOrders.

For the illustration purposes of Figure 4.2, we assume that both agent #2 and #4

are located on place 1, while place 2 holds agent #7. The entries of the contracted trade

information are therefore relocated according to this distribution; contractedOrders

entries with key #2 and #4 are relocated to place 1, and the entry with key #7 is
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1 DistCol<Agent> agents ;
2 DistMultiMap<Long , AgentUpdate> contractedOrders ;
3 world . broadcas tF lat ( ( ) => {
4 // (5) Inform the agents o f the t rade s they made
5 // (5 . 1 ) Re locate con t rac t ed t rade in format ion
6 LongRangeDistr ibution agen tD i s t r i bu t i on = agents . g e tD i s t r i bu t i on ( ) ;
7 contractedOrders . r e l o c a t e ( agen tD i s t r i bu t i on ) ;
8 // (5 . 2 ) Update the agents
9 i f ( ! i sMaster ) {

10 contractedOrders . para l l e lForEach ( ( idx , updates ) => {
11 // Ret r i eve the agent t a r g e t e d by the update
12 Agent a = agents . get ( idx ) ;
13 // Apply each update to t h i s agent
14 for (AgentUpdate u : updates ) {
15 a . executeUpdate (u) ;
16 }
17 }) ;
18 }
19 }) ;

Listing 4.5: Dispatch of contracted order updates and agent update

relocated to place 2. place 3 holds no agents that were able to make a trade in this

round.

In step (5.2), each agent which contracted trades during the previous round receives

its updates in parallel using a typical parallelForEach shown from line 10 to 17 in

Listing 4.5. The signature used here takes both the index (idx) and the list of updates

(updates) contained in collection contractedOrders as parameter. This allows retrieval

of the targeted agent instance on line 12 by calling agents.get(idx).

4.4.1.5 Teamed relocation: load-balancing

In the situation presented in Section 4.4.1.2, the order submission of agents takes place

in parallel on several processes. Initially, agents are distributed evenly across processes.

However this may not be ideal as disparities in the hosts used or the presence of competing

processes on said host may introduce imbalance in the cluster.

As a result, some hosts take longer than other to process the agents they hold,

delaying progress of the entire simulation. We represented this in Figure 4.2 by di�erent

arrow lengths in step (2), with place 1 taking longer than all the other hosts to complete

the order submission.

Fortunately, our relocatable distributed collection library allows us to take measures

when such a case occurs. In the PlhamJ simulator, we introduced a load balancer mech-

anism shown in Listing 4.6. On each host, the amount of time dedicated to computing

the orders is accumulated into the local accumulatedOrderComputeTime variable (not

shown in previous listings, refer to line 16 and 23 of Listing A.1). After a chosen number

of iterations have elapsed, the optional load-balancing step is triggered on line 9. The
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1 DistCol<Agent> agents ;
2 long accumulatedOrderComputeTime = 0 ;
3 int lbPer iod = 10 ; // load=ba lance per iod
4 int i t e r ; // curren t i t e r a t i o n number
5
6 world . broadcas tF lat ( ( ) => {
7 f i n i s h ( ( )=>{
8 // (4 = op t i ona l ) ba lance the agents between p l a c e s 1 . . n
9 i f ( i t e r % lbPer iod == 0) {

10 async ( ( )=>{
11 // Exchange time in format ion between hos t s
12 CollectiveMoveManager mm = new CollectiveMoveManager ( world ) ;
13 long [ ] computationTime =
14 world . a l lGather1 ( accumulatedOrderComputeTime ) ;
15 performLoadBalance ( computationTimes , mm) ;
16 mm. sync ( ) ;
17 accumulatedOrderComputeTime = 0 ;
18 agents . updateDist ( ) ;
19 }) ;
20 }
21
22 i f ( i sMaster ) {
23 handleOrders ( ) ;
24 }
25 }) ;
26 }) ;

Listing 4.6: Load Balance step in PlhamJ simulator
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load-balancing is performed in a dedicated asynchronous activity spawned using AP-

GAS' async method. This means the load balancing (lines 11 to 18 in Listing 4.6) is

done concurrently to the order-handling on place 0 (method handleOrders on line 23).

The program progresses to the following step only when both the order handling and the

load-balancing have completed thanks to the finish opened on line 7 which contains

both of these operations.

The transfer of agents is made using a collective relocator, as was previously intro-

duced in Section 4.3.3. To determine the number of agents to transfer, the processes �rst

exchange the amount of time they each spent on the order-submission part of the main

loop using a allGather1 call on lines 14. This information serves as the basis for each

host to decide if it gives agents away inside the performLoadBalance method called on

line 15. In this method, the agent instances to relocate are registered into the collective

relocator previously created on line 12.

As a �rst approach, we chose to relocate agents from the most overloaded process

to the most underloaded process. We call this simplistic load-balancing strategy �level-

extremes�. We will be able to revisit this part in later work to implement more sophis-

ticated strategies.

The agents are then transferred between the handle of collection agents when the

teamed method sync is called on line 16. In Figure 4.2, we represented this by one agent

held by place 1 being relocated to place 2 to re�ect the load-balancing decision based

on previous iterations. In reality, entire ranges of agents will be relocated, depending

on how severely unbalanced the situation is. The counter which tracks the time spent

computing the agents' orders is then reset on line 17 so that the next load-balancing

round takes information relevant to this new distribution.

We o�er more details about the ways programmers can use to relocate entries of our

distributed collections in Section 4.5.2.

4.4.1.6 Distribution tracking

In the absence of an integrated entry location record, managing a distribution record

manually comes with tremendous e�ort. In essence, tracking the location of entries of a

distributed collection requires the active maintenance of a second distributed collection,

with each insertion, removal, and transfer of an entry in the �rst collection requiring an

update into the second. This would greatly obfuscate the code and increase the chances

of introducing bugs into the program.

In our library, we have implemented the facilities that allow for tracking of entry

location and relocation in two of our distributed collections, the distributed arbitrary

index array DistCol, and the distributed map DistIdMap. The premise of tracking the

location of a distributed collection's entries implies that there exists some way to uniquely

identify each entry. In both of these collections, individual entries can be identi�ed by

their unique long index.
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Our distribution tracking system associates each index with the location (Place) of

the associated record. However, in a concern for e�ciency, we do not keep a location

record for each individual index in the case of class DistCol. Instead, we rely on range

descriptions of locations to reduce the number of key/value pairs necessary to record of

the location of each entry in these distributed collection.

The information concerning entries relocated between handles, or entries added/re-

moved from a handle is not eagerly propagated to the other handles of the distributed

collection. Instead our distribution management proposes a teamed updateDist method

through which the local distribution records of a collection are reconciled to re�ect the

actual distribution at the moment of the call. We took care in the implementation of this

process to only communicate the distribution changes that occurred since the previous

updateDist call in order to minimize the amount of information exchanged.

In the PlhamJ simulator, we use class DistCol to contain the agents participating

in the computation. It is the distribution tracking facilities of this class that allow us

to dynamically relocate agents over the course of the simulation without compromising

the dispatch of contracted trades update as was laid out in Section 4.4.1.4. After agents

have been relocated, method updateDist is called on line 18 of Listing 4.6 to refresh the

distribution information contained in each handle. As a result, the distribution of agents

obtained on line 6 of Listing 4.5 during the subsequent contracted trade dispatch will

be up-to-date, guaranteeing that each agent involved in a trade receive their intended

updates in step (5) of the PlhamJ round.

4.4.2 K-Means

K-Means is an iterative clustering algorithm which separates points into a pre-de�ned

�k� number of clusters. There are three steps in a K-Means iteration. Starting with

randomly selected initial centroids, each point is assigned to the cluster of its closest

centroid. Then, the average position of each cluster is computed. Finally, the point

closest to each average position is chosen as the new centroid for the next iteration.

We chose to adapt the K-Means algorithm from the Java Renaissance benchmark

suite [51]. We rely on class DistChunkedList to contain the points subject to the algo-

rithm. In this distributed version, each place participating in the computation takes care

of the points it contains in its local handle. Listing 4.7 presents the main computation

loop of our distributed K-Means implementation. The assignment of each point to a

cluster is done in parallel using a parallelForEach method call on line 12. On the other

hand, the average cluster position and the selection of the next centroid are implemented

as teamed reductions on lines 17 and 22 respectively. We will discuss the implementation

of a reducer and its embedded support for parallelism in Section 4.4.2.1 �rst. Then, we

will discuss the di�erence between a �local� reduction and the �teamed� reduction used

in K-Means in Section 4.4.2.2.
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1 TeamedPlaceGroup world =
2 TeamedPlaceGroup . getWorld ( ) ;
3 DistChunkedList<Point> po in t s ; // i n i t ' omit ted
4 double [ ] [ ] i n i t i a lC l u s t e rC en t e r ; // randomly chosen
5
6 world . broadcas tF lat ( ( ) => {
7 double [ ] [ ] c l u s t e rCen t r o i d s = i n i t i a lC l u s t e rC en t e r ;
8 for ( int i t e r = 0 ; i t e r < r e p e t i t i o n s ; i t e r++) {
9 f ina l double [ ] [ ] c e n t r o i d s = c l u s t e rCen t r o i d s ;

10 // Assign each po in t to a c l u s t e r
11 po in t s . para l l e lForEach (p => p . a s s i gnC lu s t e r ( c en t r o i d s ) ) ;
12
13 // Compute the avg p o s i t i o n o f each c l u s t e r
14 AveragePos i t ion avgClus t e rPos i t i on =
15 po in t s . team ( ) . pa ra l l e lReduce (new AveragePos i t ion (K, DIM) ) ;
16
17 // Compute the new cen t ro i d o f each c l u s t e r
18 Close s tPo int newCentroids = po in t s . team ( ) . pa ra l l e lReduce (
19 new Close s tPo int (K, DIM, avgClus t e rPos i t i on ) ) ;
20
21 // Update the c en t r o i d s f o r the next i t e r a t i o n
22 c l u s t e rCen t r o i d s = newCentroids . c l o s e s tPo in tCoo rd ina t e s ;
23 }
24 }) ;

Listing 4.7: Distributed K-Means implementation with our collection library

4.4.2.1 Intra-node parallelism: reduction

To compute a reduction on the objects of one of our collection, a �reducer� object needs

to be prepared. This is the nature of classes AveragePosition and ClosestPoint which

are used on lines 15 and 19 of Listing 4.7. These classes are in charge of computing the

average cluster positions and the new centroids respectively. Both of these classes are

user-de�ned and extend the generic abstract class Reducer provided by our library.

As part of a Reducer implementation, programmers need to provide 3 methods:

� the R newReducer() method which creates a new instance of the reducer

� the void reduce(T) method which reduces the given T object into this reducer

instance

� the void merge(R) method which merges the contents of the reducer given as

parameter into this instance

When creating a custom reduction object, the programmer need not care about

concurrency. Our library ensures that no reducer object is used concurrently by multiple

threads.

When computing a parallel reduction, each thread participating in the computation

is given its own dedicated reducer instance obtained through the newReducer method of
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the reducer object supplied as parameter. Each thread then calls method reduce(T) on

the entries of the collection it was allocated with its dedicated reducer instance. When

all threads have reduced their attributed entries, the reducer objects are merged back

into a single instance using method merge(R) to obtain the �nal result.

4.4.2.2 Teamed reduction

A local reduction consists in a reduction computed on the entries contained in a single

local handle. A teamed reduction on the other hand, is a reduction which is computed

on all the entries contained in all the local handles of a distributed collection. They

are accessible through a special team() method to distinguish them from the reduction

which operates on the local handle only. In other words, method parallelReduce(R)

operates on the contents of the local handle of a distributed collection, while method

team().parallelReduce(R) used in the K-Means implementation shown in Listing 4.7

computes the reduction on the contents of the entire distributed collection.

A teamed reduction takes place in two stages. First, a �local� reduction is computed

following the process detailed in the preceding section. Then, the local results of each

handle are merged together into a single instance which is then returned as the result by

each of the calling activities. Internally, an MPI allReduce call is made to communicate

and compute the global result of the reduction across all running processes. The MPI

communicator used to make this call is the one of the TeamedPlaceGroup on which the

collection is de�ned. The registration of the user-supplied reducer object necessary to

use MPI object reductions is made automatically by our library.

The underlying use of MPI routines remains hidden from the user. The only prac-

tical consequence is that the teamed reduction call is blocking until all handles of the

distributed collection complete their local reduction and exchange their results, after

which each thread resumes its progress.

4.4.3 MolDyn

MolDyn is a molecular simulation part of the Java Grande benchmark suite [52] im-

plemented with the MPI/Java compatibility layer MPJ [10]. It consists in a N-body

simulation with all the force interaction between all the particles computed. The parti-

cles are replicated on every host, with each host responsible for computing a subset of

the force interactions. This information is then communicated between all hosts before

updating the position and velocity of each particle.

An iteration of the distributed MolDyn program takes place in three stages. First, a

subset of the force interactions between the particles is computed on each host. Then,

the force subjected to each particle are summed across hosts using an MPI allreduce call.

Finally, the position and velocity vectors of particles are updated.

We ported this benchmark using our distributed collections library to a hybrid im-
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1 TeamedPlaceGroup world = TeamedPlaceGroup . getWorld ( ) ;
2 LongRange par t i c l eRange = new LongRange (0 , nbPar t i c l e s ) ;
3 CachableChunkedList<Par t i c l e > p a r t i c l e s ;
4
5 world . broadcas tF lat ( ( ) => {
6 i f ( world . rank ( ) == 0) {
7 p a r t i c l e s . share ( par t i c l eRange ) ;
8 } else {
9 p a r t i c l e s . share ( ) ;

10 }
11 }) ;

Listing 4.8: Particule replication in MolDyn

plementation taking advantage of the multithreaded capabilities available within each

process. The arrays of double used in the original implementation were converted to

Particle objects managed by a CachableChunkedList.

Contrary to the previous examples we showed in this section, the computation pattern

brought by MolDyn is no longer strictly �owner-based�. Instead of a particle operating

based on its own information, it is the interaction between each pair of particles that

serves as the basis for the computation. To support such patterns, we introduced class

RangedListProduct. This class is used to represent combination pairs between the

entries of two ChunkedLists as depicted in Figure 4.3 and provides a number of iterators

and forEach methods that act on the pairs it contains.

As we did for PlhamJ, we will introduce the features needed to support this program

piece by piece in the following subsections. The consolidated MolDyn program can be

found in the appendix in Listing A.2.

4.4.3.1 Replication: CachableChunkedList

We use the CachableChunkedList distributed collection to contain the particles of the

simulation. Similar to the CachableArray previously discussed in Section 4.4.1.1, this

collections allows for entries to be replicated on multiple hosts. However, unlike the

CachableArray, CachableChunkedList allows for multiple handles to be the primary

owners of certain ranges of entries where the former only allows a single source to update

the replicas.

In the case of the MolDyn simulator, the particles are initialized on the �rst process

in the distributed system. At the start of the computation, these entries are replicated

on the other hosts by calling the share method on lines 7 and 9 in Listing 4.8. This

teamed method takes one or multiple ranges as parameter and replicates the matching

ranges of entries on the other hosts. In this particular case, only the �rst process shares

the range of initialized particles on line 7, while the other processes (that do not contain

any entries) merely receive the ranges shared by the other processes by calling the share

method without arguments on line 9.
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4.4.3.2 Product of ranged lists

Creating a product between two ranged lists is done by calling a factory methods pro-

vided by class RangedListProduct. In listing 4.9, this is done on line 10 where the

newProductTriangle method is called. The ranged list containing the particles is given

as argument to this method as it takes the role of both operands. We note that this

method eliminates the mirrored pairs as depicted in Figure 4.3: only the pairs residing

in the upper triangle are included in the product object.

In a second stage, the pairs of entries to process by each host are determined by

calling the teamedSplit method on line 11. This method performs two operations.

First, it splits the pairs contained in the product into tiles, creating as many columns

and lines as was speci�ed as parameter. If we assume that there are 100 particles in the

simulation and that 5 columns and 5 rows are created, each tile will cover and area of

20x20 pairs, as depicted in Figure 4.3.

Then, a new instance of RangedListProduct containing a subset of the created tiles

is returned. The TeamedPlaceGroup given as parameter is used to determine the number

of hosts involved in the �split�. The running process' position inside the group and the

seed are used to select the assignments returned by this method call.

Although not communication takes place, we still consider this operation to be

�teamed� as it needs to be called with the same parameters on all processes partici-

pating in the computation to operate correctly. This guarantees that every tile gets

processed by at least one host as depicted in the lower part of Figure 4.3.

We note that the use of tiles in our implementation di�ers from the original MolDyn

implementation where the rows of the upper triangle are allocated to each host in a cyclic

manner.

4.4.3.3 Intra-node parallelism: Accumulator

The conversion to an hybrid implementation which uses local parallelism to compute the

force interaction between the particles brings about an additional challenge compared

to the single-worker-per-host implementation of the Java Grande benchmark. In the

original implementation, the force sum can be written directly to the particles. However

in a hybrid implementation this is no longer possible as there would a risk that two

threads concurrently write the contribution of interactions involving the same particle.

To address this issue, we introduced what we call accumulators to our library.

This mechanism (no relation to the LongAccumulator or the DoubleAccumulator

classes from the standard atomic package) is used by threads participating in a parallel

computation to store information independently from one-another. The Accumulator

object serves as a factory for multiple �thread-local accumulators� which are objects

dedicated to an individual thread during a parallel computation. In turn, each of these

�thread-local accumulators� will contain individual objects of any user-chosen type into
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Figure 4.3: Illustration of the teamed split product used to allocate the particle in-
teraction pairs between processes in our MolDyn implementation
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1 TeamedPlaceGroup world = TeamedPlaceGroup . getWorld ( ) ;
2 LongRange par t i c l eRange = new LongRange (0 , nbPar t i c l e s ) ;
3 CachableChunkedList<Par t i c l e > p a r t i c l e s ;
4 int Ndivide = 5 ;
5 long seed = 0 ;
6
7 world . broadcas tF lat ( ( ) => {
8 RangedList<Par t i c l e > pr l = p a r t i c l e s . getChunk ( par t i c l eRange ) ;
9 RangedListProduct<Par t i c l e , Pa r t i c l e > prod =

10 RangedListProduct . newProductTriangle ( pr l , p r l ) ;
11 prod = prod . teamedSpl i t ( Ndivide , Ndivide , world , seed ) ;
12
13 Accumulator<Sp> acc =
14 new AccumulatorCompleteRange<>(part ic l eRange , Sp : : newSp) ;
15 prod . paral lelForEachRow ( acc ,
16 ( Pa r t i c l e p , RangedList<Par t i c l e > pa i r s , t l a ) => {
17 f o r c e (p , pa i r s , t l a ) ;
18 }) ;
19
20 p a r t i c l e s . p a r a l l e lAc c ep t ( acc , ( P a r t i c l e p , Sp a ) => p . addForce ( a ) ) ;
21 }) ;

Listing 4.9: MolDyn force interaction computation using RangedListProduct and
Accumulators

which information can be stored at a speci�ed index. These individual objects are

initialized using the function given as parameter at the time of the Accumulator creation.

An accumulator's lifecycle takes place in 3 phases: (1) creation, (2) accumulation of

information into the accumulator, and (3) acceptance of the accumulated information

by an existing collection. In the case of MolDyn, the accumulator used during the force

computation is created on line 14 of Listing 4.9. The type used to store information in

regards to each particle is class Sp, which contains 3 double members to represent the

�x,y,z� force components.

The force computation takes place on lines 15 through 18. Let us brie�y detail

what method parallelForEachRow does. The closure it takes as parameter will be

applied to each row of the tiles contained in the underlying RangedListProduct. The

�rst parameter of the closure Particle p consist in the �rst half of the particle pairs to

compute within this method, while the second half of the pairs are provided by the second

RangedList<Particle> pairs argument. Inside method force, the force resulting of

each interaction is stored into the Sp instance dedicated to the involved particles. The

thread-dedicated Sp instances are available through the third parameter of the closure:

tla. This parameter is populated by our library using the acc accumulator given as the

�rst parameter to the parallelForEachRow method on line 15.

Finally, the information stored in the various Sp objects is used to apply changes

to the particles using the parallelAccept method as demonstrated on line 20 of List-

ing 4.9. The closure given as parameter to the parallelAccept method sums the force
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vectors contained in the various Sp instances into the dedicated member of the particles.

Internally, this closure is applied to each Sp instances prepared for each thread that

participated during in the �accumulation� phase.

Here, we demonstrated the use of the accumulator for a single computation before

using it to modify a collection. It is also possible to perform multiple accumulations on

various collections before �accepting� the accumulator.

4.4.3.4 Replication: reduction

After the force contribution computed on each host has been completed and integrated

into the local replicas of each particule, the replicas all bear di�erent force components

due to the di�erent subset of interactions that was computed on each host. To reconcile

the force subjected to each particle, a reduction is made on each particle shared by the

local handles of the CachableChunkedList used to support the program.

This is done on lines 6 to 14 in Listing 4.10 using method allreduce. This is a spe-

ci�c feature of class CachableChunkedList operating on the entries shared across hosts.

Unlike the teamed reduction discussed in the context of K-Means in Section 4.4.2.2, in

this situation each particle replica of matching indices are reduced into a single instance

and stored back into the local handle of the particles collection.

We also demonstrate here the capability for our library to support primitive-type

communication patterns. In this case, the force information is converted from each

particle into three double numbers using the �rst closure running from line 6 to line 9.

Then the MPI operation MPI.SUM is used to reduce these raw types. Finally, the reduced

values are written back into the particle entries in each host using the second closure

running from line 10 to 13.

Internally, bu�er arrays of the appropriate length are automatically allocated based

on the number of entries shared between hosts and the number of raw types used to

describe each entry. This allows for more e�cient use of MPI functionalities as serializing

the entire particle object and implementing a custom reduction on this object is not

necessary here.

After the force subjected to each particle has been consolidated across all hosts, each

particle �moves� (i.e. updates its position and velocity vector) on line 16 of Listing 4.10,

concluding an iteration of the program.

4.5 Design & implementation

In this section, we detail select design elements and implementation topics of our dis-

tributed collection library that were not detailed in the preceding section. We also brie�y

demonstrate how to compile and execute programs with our library.
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1 TeamedPlaceGroup world =
2 TeamedPlaceGroup . getWorld ( ) ;
3 CachableChunkedList<Par t i c l e > p a r t i c l e s ;
4
5 world . broadcas tF lat ( ( ) => {
6 p a r t i c l e s . a l l r e du c e ( ( out , P a r t i c l e p) => {
7 out . writeDouble (p . x f o r c e ) ;
8 out . writeDouble (p . y f o r c e ) ;
9 out . writeDouble (p . z f o r c e ) ;

10 } , ( in , P a r t i c l e p) => {
11 p . x f o r c e = in . readDouble ( ) ;
12 p . y f o r c e = in . readDouble ( ) ;
13 p . z f o r c e = in . readDouble ( ) ;
14 } , MPI .SUM) ;
15
16 p a r t i c l e s . para l l e lForEach (p => move ( ) ) ;
17 }) ;

Listing 4.10: Force reduction on each particule in the MolDyn simulation

4.5.1 Lazy allocation of local handles

For every distributed collection whose classes we presented in Table 4.1, there is in

reality one instance of the corresponding class on each process on which the collection is

de�ned. These instances implement what we refer to as the �local� handles of distributed

collections.

When a distributed collection is created, a local handle bearing a globally unique

identi�er is created on the process on which the constructor was called. Handles on the

other processes are not created immediately. Instead, we implemented a �lazy� allocation

mechanism to create the handles of distributed collections on the other processes. Under

this mechanism, the local handle of a collection is allocated on remote hosts the �rst

time a distributed collection is used in an asynchronous activity executed on a remote

host.

This is implemented by customizing the serialization of our distributed collections

such that the table of global ids is checked upon deserialization. If there are no bindings

for the global id of the distributed collection being deserialized, the constructor is called

to create the local handle and bind it to this global id on this place. If there was already

an object bound to this global id (meaning this is not the �rst time a closure with

this distributed collection is called on this host), then the deserialization resolves to the

existing handle.

In the example presented in Listing 4.2, the local handle for the dmap collection on

place 0 is allocated during the construction on line 2. The handles on the other hosts

are created as part of the deserialization of the lambda-expression running from line 4

to 10, prior to its execution on these hosts.

Using this mechanism has the advantage of removing synchronizations over the entire
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cluster each time a collection is created. Instead, the local handles of every distributed

collection are created little by little as they become necessary. There is no risk of exe-

cuting an asynchronous activity on a collection whose local handle is not initialized, as

the mere fact that a collection is used in the activity guarantees that the local handle

will be created (if it doesn't already exist) as part of this activity deserialization process.

4.5.2 Registering entries for relocation

One of the key features of our distributed collections library lies in its ability to relocate

entries of a distributed collection between its handles. Our library builds on and expands

a scheme �rst developed in X10 [56].

As brie�y introduced as in example in Section 4.3.3, the CollectiveMoveManager

can be used to transfer entries belonging to one or multiple collections between all or

a subset of the processes participating in the computation, this group being speci�ed

at construction using a TeamedPlaceGroup instance. The transfer is initiated when the

sync method is called on all the places of the group it operates on. This call is blocking

until it is called on all places involved in the relocation. As such, the collective relocator

mechanism is a synchronization point between asynchronous activities participating in

the computation.

The novelty with our library compared to the original scheme lies in the variety of

ways programmers can register entries for relocation. These methods are de�ned through

modular interfaces implemented by our various collections, improving consistency and

reducing future development e�ort. They allow programmers to specify what entries

need to be relocated by specifying relevant arguments and the �move manager� used to

perform the transfer.

Let us introduce the program of Listing 4.11 to illustrate the various ways entries

of our distrubted collections can be marked for relocation. This program demonstrates

a single collective relocation used to relocate objects belonging to multiple collections.

For the sake of simplicity, we chose to make each process send entries to its neighboring

(rank + 1)%n process, but this is in no case a limitation of the relocation system as

entries originating from a process can be relocated to multiple other processes.

4.5.2.1 Relocation in bulk

Relocatin in bulk is available to all of our distributed collections. They feature a method

called moveAtSyncCount which is used to relocate the speci�ed number of entries. The

library decides which entries are relocated without the input of the programmer. In

Listing 4.11, this method is used to transfer 20 entries contained in each bag handle to

their neighbor on line 14. This is the only available relocation method for the distributed

set DistBag<T> as individual entries in this collection are devoid from any �identity.�
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1 f ina l DistBag<Integer> bag ;
2 f ina l DistChunkedList<Element> c l ;
3 f ina l DistMap<Str ing , Str ing> map ;
4
5 TeamedPlaceGroup world =
6 TeamedPlaceGroup . getWorld ( ) ;
7 f ina l int n = world . s i z e ( ) ;
8 world . broadcas tF lat ( ( ) => {
9 // Prepare the c o l l e c t i v e r e l o c a t o r

10 CollectiveMoveManager mm = new CollectiveMoveManager ( world ) ;
11 Place d e s t i n a t i on = place ( ( here ( ) . id + 1)%n) ;
12
13 // Re loca t ion in bu l k
14 bag . moveAtSyncCount (20 , de s t i na t i on , mm) ;
15
16 // Re loca t ion by range
17 for ( LongRange range : c l . ranges ( ) ) {
18 c l . moveRangeAtSync ( range , de s t i na t i on , mm) ;
19 }
20
21 // Re loca t ion by key=>de s t i n a t i on func t i on
22 Function<Str ing , Place> re l o ca t i onRu l e =
23 ( St r ing key ) => de s t i n a t i on ;
24 map . moveAtSync ( r e l o ca t i onRu l e , mm) ;
25 mm. sync ( ) ; // Perform the t r an s f e r
26 }) ;

Listing 4.11: Rotation of entries between processes using a collective relocator
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4.5.2.2 Relocation by range or by key

Relocation by range of by key is possible for distributed collection in which entries are

identi�ed by a unique identi�er. We distinguish between collections where entries can

be identi�ed by a key, such as DistMap and DistMultiMap, and collections where entries

can be designated through an entire range, such as DistChunkedList and its derivatives.

In our library, this is enforced using two generic interfaces RangeRelocatable<R> and

KeyRelocatable<K> which de�ne a number of signatures for methods moveRangeAtSync

and moveAtSync respectively.

We demonstrate the relocation using a range on line 18 of Listing 4.11. Using the

loop of lines 17-19, all the ranges contained in collection cl are marked for relocation

to the neighboring host. It is not an obligation to specify a range which corresponds

exactly to a �chunk� contained by the local handle. Programmers can specify a range

which either spans several of the �chunks� contained in the local handle or is a sub-range

of a single chunk. In this case, the existing chunks will be split as necessary before

relocation.

On line 24, the entries of the distributed map map are all marked for relocation us-

ing the relocationRule function de�ned just above. Internally, the relocationRule

function is applied to each key contained in the local handle to determine their respec-

tive destination. In this example, the �key� parameter is not used in relocationRule

which always return the same Place object as the destination, but more sophisticated

implementations are entirely possible.

4.5.3 Communication patterns for entry relocation

When registering some entries for relocation into a move manager, our library actually

registers a pair of serializer and deserializer into the move manager instance provided as

argument. When the sync method of the collective relocator is called, the serializer is

called to convert the targeted objects into bytes. The deserializers are also written to

the byte array.

In a collective relocation, each place therefore obtains an array of bytes (possibly

empty) to send to every other place participating in the computation. The transfer of

objects is then performed in two steps. First, the number of bytes to be sent by each

process participating in the transfer is exchanged with an MPI Alltoall call using the

underlying communicator of the TeamedPlaceGroup speci�ed with the constructor of

the CollectiveMoveManager. This allows each process to know how many total bytes

to expect and prepare bu�er arrays of the appropriate size. Then, the byte arrays are

exchanged between the processes using an MPI Alltoallv call. Each host then proceeds

to deserialize the bytes it received and place the entries into their respective collection

handle. Due to the blocking MPI calls used to perform the relocation, the sync method

of the CollectiveMoveManager is a synchronizing call between asynchronous activities
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running on di�erent processes.

The same general process is used to implement other features of the library. In the

case of the market replication in PlhamJ shown in Listing 4.3, the closures provided as

argument to the broadcast method are used to produce the objects being transferred

(in this case instances of class MarketUpdate) and to update the Market replicas located

on the remote host. Our library takes care of serializing and deserializing the objects

used as intermediary vessels. Then, MPI Bcast calls are used instead of Alltoall as the

order-handling process is the sole source of information. Similarly, the order relocation

performed in Listing 4.4 relocates all the entries of collection orderBag to the �rst process

of the distributed program. After the serialization of the entries to transfer, Gather and

Gatherv calls are used as there is only one �recipient� in this communication pattern.

4.6 Evaluation

The goal of our evaluation is threefold. First, we want to establish the greater pro-

grammability of our library when writing distributed programs. Secondly, we want to

establish the performance of programs written with our library against equivalent ones.

Lastly, we want to verify that load-balancing techniques made possible by our library

are capable of adapting distributions to match uneven or evolving cluster performance.

We use the three applications presented in Section 4.4: the K-Means benchmark

adapted from the Java Renaissance benchmark suite [51], the N-Body molecular simu-

lation MolDyn adapted from the Java Grande benchmark suite [52], and our �nancial

market simulator PlhamJ.

We �rst discuss matters related to programmability in Section 4.6.1. We then com-

pare the performance of the original K-Means and MolDyn implementation against the

versions we implemented with our library in Section 4.6.2. Finally, we establish the

capabilities of our high-level load-balancing features using PlhamJ in Section 4.6.3.

4.6.1 Programmability

Programmability is a di�cult criteria to judge. Comparing programs using quantitative

criteria such as lines of code (loc) can be done, but such criteria alone cannot be used

to determine whether some model or library is bene�cial. An abstraction supporting a

particular pattern may reduce the amount of code necessary, but if it is too speci�c or

convoluted to be used in other applications the claim of better programmability is weak.

On the other hand, qualitative criteria may be controversial or present a certain level of

subjectivity.

We believe our library brings signi�cant gains in programmability thanks to three key

characteristics: (1) its support for local parallelism, (2) the notion of �teamed operation,"

and (3) the high-level support for distribution management.
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Concerning the support for local parallelism, as we demonstrated in Section 4.4, our

distributed collections provide multiple parallel methods taking closures as arguments.

This approach re-centers programs on the actual computation at hand rather than how

the parallelism is supported. On this matter, the comparison between the K-Means im-

plementation with our library and the original Java Renaissance suite [51] is particularly

interesting.

In the Renaissance K-Means implementation, the points are managed by range ex-

plicitly in order to implement the �recursive task� implementation required by the Java

ForkJoinPool. By comparison, the range management remains totally internal to the

ChunkedList class we use in our implementation. The range management remains also

absent from the classes used to support the reductions needed by the algorithm. As

a result, the total size of the distributed K-Means written with our library (excluding

argument parsing and initialization) amounts to just over 200 lines of code compared

to over 400 lines of code for the Renaissance implementation. Moreover, the legibility

of the program is entirely preserved despite its distributed nature, as made evident by

Listing 4.7.

Moreover, the management by the library of thread-dedicated data structures greatly

simpli�es programs for what would otherwise become a cumbersome implementation.

Our library allocates just the necessary data structures to support the number of available

threads on the system. This remains entirely transparent to the programmer who may

use the various parallel methods knowing that the appropriate number of threads will

be spawned even if the number of threads available varies from a host to another.

The second gain brought by our library comes by the introduction of teamed opera-

tions on our distributed collections. These methods de�ne the scope of their intervention

by using either the group of processes on which the supporting collection is de�ned, or

by specifying the group explicitly in a constructor (as is the case for the collective relo-

cator). This contributes to the clear identi�cation of both the hosts that are involved in

said teamed operation and the synchronizing point between the asynchronous activities

running on di�erent host.

This is particularly evident in the case of PlhamJ, where the �rst host performs

di�erent tasks than the others. In this application, the teamed methods both serve

as the necessary communication support to implement the program but also as the

synchronization point used to determine completion of a remote procedure. For instance,

the computation of the agents' orders cannot start until the market information broadcast

is completed. Similarly, the order-handling on the �rst process cannot start until the

orders submitted by each agent for this round are received through the teamed gather

operation.

Finally, programmers have complete and dynamic control over the entry distribu-

tion of the distributed collections. The high-level relocation abstractions we provide

makes this management easy, with supporting features such as the distribution tracking

66



4.6. Evaluation

countering the challenging nature of a dynamic distribution where necessary. The most

prominent example of this lies in PlhamJ where agents are relocated from hosts to hosts

to balance the computational load while the distribution tracking ensures that informa-

tion meant for a speci�c agent reaches its destination. Internally, the management of

entries by range makes this both elegant and e�cient.

4.6.2 Performance comparison against original benchmark implemen-

tation

To verify that our distributed collections library provides reasonable performance, we

compare the performance of two programs written with our library against the reference

benchmark implementations of K-Means and MolDyn. We conduct our performance

evaluation on the OakForest-PACS supercomputer using up to 64 compute nodes. The

characteristics of the OakForest-PACS supercomputer are summarized in Table B.2.

4.6.2.1 K-Means

The original Renaissance benchmark operates on a single process. We compare it against

two implementations of K-Means prepared with our library: a �single-host� version, and

the distributed �teamed� version discussed in Section 4.4.

We perform our evaluation in weak scaling from 1 to 64 hosts, increasing the number

of points proportionally to the number of hosts involved in the computation. We run

the K-Means algorithm for 30 iterations and compare the iteration time between the

implementations. The details of the program parameters we used are shown in Table 4.2.

The results are presented in Figure 4.4 where we plot the minumum, �rst quartile,

third quartile, maximum, and average iteration time obtained with each program version.

With the "small" parameter con�guration, the average iteration time is kept just be-

low 500ms with the Renaissance benchmark. Our implementation on a single host is 20%

faster. This higher performance is maintained on 4 hosts (12% faster than Renaissance)

despite the communication needed by the reductions. However, our implementation is

not capable to scale further with such short iteration times. Over the course of the

�teamed� program executions we witnessed a few particularly long iterations, the longest

of which occurred on a 16 host execution and lasted just under 4 seconds. This drives

the average iteration time upwards despite the overwhelming majority of iterations com-

pleting within 500ms.

We are not certain as to what causes this phenomenon. We believe it could be

explained by some of the processes in the cluster performing garbage collection with

unfortunate timing and delaying the communication with the other processes during the

teamed reductions of the program. This would in turn delay the progress of the entire

program as the other processes are stuck waiting on the result of the reduction.

In the second "large" K-Means, the number of clusters is dramatically increased
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Table 4.2: K-Means benchmark parameters

Con�guration �small� �large�

Nb of points/host 10 million
Point dimension 3 5
Number of clusters 50 2000
Iterations 30

compared to the "small" parameter. As a result the computational load consisting of

assigning each point to a cluster becomes predominant over the two reductions and the

iteration times increase for the Renaissance version to an average of 28.3 seconds. Our

single host implementation however, maintains an average iteration time far below, just

under 11 seconds.

This performance gap between the Renaissance implementation and our Single Host

implementation can be explained by the higher memory consumption (and more frequent

garbage collection) of the Fork/Join implementation. While the Renaissance version is

capable of delivering short iteration times, as is made clear by the minimum iteration

time of 13.2s, it is not capable of sustaining them over the entire course of the execu-

tion. Our distributed implementation also shows better performance than the original

implementation, with the average iteration times kept below 15s up to 64 hosts. Under

this higher computational load, the performance trouble witnessed under the �small�

parameter con�guration is absorbed, with the iteration times of obtained in the 64 hosts

con�guration only 30% longer than our �single host� version, but still half that of the

Renaissance implementation.

4.6.2.2 MolDyn

The original Java Grande version of MolDyn built on MPI uses 1 thread per host.

We compare two versions implemented with our library against the original version:

a single-threaded version (Handist ST) similar to the original implementation, and a

multithreaded version (Handist MT) which uses multiple threads on each process.

We run the MolDyn benchmark in strong scaling (same problem size for increasing

cluster size) on the OakForest-PACS supercomputer from 1 to 64 hosts with 32,000

particles. We use 68 threads per process for our MT version, resulting in its parallelism

level with a single process to be slightly higher than the Java Grande and the ST version

running on 64 hosts. We measure the total computation time of the simulation after a

short warmup. The computation times and the e�ciency of each program version are

are presented in Figure 4.5. An ideal e�ciency of 100%, i.e. perfect scaling, would mean

that increasing the computational resources by a factor n yields execution times n times

shorter.

First, comparing the Java Grande version against our single-thread (ST) implementa-

tion, we note a 20% increase in computation time.We believe this is a reasonable amount
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Figure 4.4: K-Means iteration times

The brackets and boxes represent the minimum, 1st quartile, 3rd quartile, and
maximum values while the cross corresponds to the average value of 5 sample
runs of 30 iterations each.
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of overhead considering the fact we moved away from the primitive type arrays to use

objects to store the particles in our ST and MT implementations. The e�ciency for both

the ST and Java Grande versions follow the same pattern, decreasing down to 78% on

64 hosts.

This can be explained by the nature of the computation at hand. In all three versions

of MolDyn studied here, the time taken by the �allreduce� sum of the forces across hosts

takes a total of about 5 seconds of the total computation time, irrespective of the number

of hosts or threads used. On the Java Grande and Handist ST executions from 1 to 16

hosts, the computation time was dominated by the force computation. As can be seen

in Figure 4.6, this is no longer the case on 64 hosts where the �allreduce� part represents

about 15% of the computation time. As the parallelism increases and the force interaction

computation time decreases, this incompressible part of the program takes up a relatively

larger part of the total computation time, decreasing e�ciency.

Secondly, our MT implementation shows a slightly di�erent e�ciency pattern com-

pared to the other implementations. Its e�ciency for the 1 host/68 threads con�guration

loses an additional 17 percentage points of e�ciency compared to the similar level of par-

allelism of the ST version running on 64 hosts. This is mostly imputable to the overhead

brought about by the use of the accumulator mechanism in the MT version. Also, the

fact that we used an entire host for each single-threaded Java Grande and Handist ST

gives those versions a certain advantage. In future work, we hope to be able to reduce

the overhead brought by the use of the accumulator mechanism by introducing alterna-

tive implementations that would only allocate ranges on a per-need basis rather than

allocating the complete range from the start.

We are able to further reduce the execution time down to just over 10 seconds with the

MT version running on 16 hosts (1088 total threads), albeit with decreasing e�ciency.

The execution on 64 hosts shows it is counterproductive to stretch the program any

further, with the total computation time increasing from 10 to 12 seconds. As can be

seen in Figure 4.6, the computation time is dominated by the �allreduce� part of the

computation on executions with larger parallelism.

4.6.3 Dynamic load balancing in PlhamJ

The objectives of the evaluation conducted with our PlhamJ distributed �nancial simu-

lator is twofold. First, we want to demonstrate the capability of a distributed program

to adapt itself to the uneven performance of the cluster on which it is runs thanks to the

features of our library. Second, we want to verify that the load-balancing measures we

implemented in PlhamJ are able to react to dynamic changes in the cluster performance.

We perform the evaluation on our Beowulf cluster composed of two types of hosts:

�piccolo� hosts which are �tted with a 4-core CPU, and the higher-parallelism �harp� host

which contains two 12-core CPUs. The detailed hardware characteristics are outline in

Table B.1. We use up to 5 hosts in three di�erent cluster con�gurations summarized in
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Table 4.3: PlhamJ execution con�guration summary

Con�guration Description

Con�g A 4 processes on 4 piccolos (no load unbalance expected)
Con�g B 5 processes on 4 piccolos (piccolo 0 hosts the order-handling

process and one agent-handling process)
Con�g C 6 processes on 4 piccolos and 1 harp (piccolo 0 hosts the

order-handling process and one agent-handling process)

Table 4.3.

In Con�g A, we use a typical approach consisting of allocating one process on each

�piccolo�. The order-processing process is allocated on one host, while the three other

hosts are dedicated to agents' order submission.

In Con�g B, we allocate an additional agent-processing process on the host holding

the order-processing host (5 processes on 4 piccolos). This choice of allocation can be

justi�ed by the fact that the process which handles the orders remains idle while the

agents are making their submission. There is therefore some amount of computational

resources left untapped on the server hosting the handling of orders which we can tap

into with this second con�guration.

Finally, in Con�g C, we add the �harp� host as an order-handling process compared

to Con�g B. The challenge of Con�g C lies in the nature of this additional server which

brings more parallelism than the identical �piccolo� hosts used so far. It is therefore

di�cult to predict a priori what a good distribution of agents should be with such a

cluster con�guration.

To simulate dynamic changes in performance, we introduced a parasite program

called �Disturb�. This program runs concurrently to our simulator and computes an

arti�cial 20 seconds load on one of the hosts. When the 20 seconds have elapsed, another

host is chosen as the victim. The sequence of hosts �disturbed� by this program is

deterministic following an initial seed to allow us to reproduce its e�ects over multiple

executions.

We compare the performance of our �level extremes� load-balancing strategy previ-

ously discussed in Section 4.4.1.5 against the �xed uniform distribution without load

balance �no lb�. The results are presented in Figure 4.2.

We are able to draw two conclusions from the PlhamJ executions without the Disturb

program. First, our basic load-balancing incurs no overhead in our distributed PlhamJ

simulator as demonstrated under the �Con�g A� results. Execution times for the static

and the load-balanced version are almost identical at 75.3 and 76.0 seconds in this

con�guration where no load-balancing is required. This can be explained by the fact

that the (hypothetical) transfer of Agents between hosts takes place concurrently to the

order-handling on the �rst process. In our experience, the transfer of Agents completes

before the order-handling and thus does not negatively impact performance.
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Figure 4.7: Execution time of the PlhamJ simulation depending on the cluster con-
�guration

Secondly, this basic load-balancing technique is capable of handling an uneven cluster

con�guration, as can be seen in the execution time of PlhamJ under Con�g B and

Con�g C. Depending on the con�guration, our load balancing strategy delivers execution

times between 7 and 15% shorter than the �xed uniform agent distribution.

The distribution of agents over time during an execution under Con�g C is presented

in Figure 4.8a. The distribution becomes stable after only 30 iterations (4 seconds into

the simualtion). Seeing as piccolo 0 hosts both the order-handling process and an agent-

handling process, it ends up containing fewer agents than its piccolo 1-3 counterparts.

Also, the higher parallelism available to the process allocated on our �harp� server is

made evident by the fact it obtains over a third of the total agents in the simulation.

The experiments conducted in the presence of the parasite program presented show

that our basic load balancing strategy is capable of handling dynamic changes in the

cluster performance, with execution times between 8 and 15% shorter depending on the

con�guration. In Figure 4.8b, we show the evolution of the agent distribution under

Con�g A w/ Disturb. Under this con�guration, the only source of disparities between

the hosts performance is the presence of the parasite program on one of the hosts. At

the beginning of the simulation, the server hosting process piccolo 3 is being disturbed,

resulting in some of its agents to be o�oaded to the other processes. Then, starting

between the 70th and 80th iteration of the simulation, the disturb process moves to

piccolo 1. As a result, agent are moved away from piccolo 1 and the previously disturbed
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piccolo 3 is assigned more agents. In the last part shown on this graph, the disturb

program moves to piccolo 0 which hosts the process dedicated to processing the orders.

As a result, there is no longer a discrepancy in the available processing power between

the piccolo 1, 2, and 3. Our load balancer therefore gradually returns the agents to an

even distribution between hosts starting from the 160th iteration onwards.

4.7 Conclusion and future work

In this chapter, we introduced our relocatable distributed collections library for the

AGPAS for Java programming model. Our library allows users to write complex parallel

and distributed programs by providing clear abstractions to handle both parallelism

and distribution. We established the programmability gains and the performance of

our system using two well-known Java benchmarks. Using the PlhamJ �nancial market

simulator, we demonstrated the capability of programmers to balance the computational

load between hosts using the integrated relocation mechanisms of our library.

A key di�erence between the PGAS languages discussed in Section 2.1 and our dis-

tributed collections lies on how access to data located on a remote host is handled. With

our library, only asynchronous activities executing on the same process can access the

data, whereas in UPC, Coarray Fortran, and Chapel, remote data can be accessed some-

what implicitly through global pointers or the indices of the distributed array. XMP

also introduces the notion of �shadowing� where, in a nested for loop, if the computation

needs to access neighboring data the compiler directives will generating code to access

the data points which are on remote hosts. We can work around this limitation with our

library using �owner/replica� schemes, but not in a manner quite as elegant as the other

PGAS langages.

We did not cover topics related to resilience. This is a matter of importance because

large-scale systems are more prone to failure. We do plan to implement features that

will allow programmers to easily backup the (distributed) state of their collections into

checkpoints, making it possible to recover after a failure. For simulations, this would

also make it possible to restart a simulation from an intermediary stage to explore a

di�erent evolution of the system, rather than restarting the entire simulation from the

beginning, saving much computational resources.

A choice that we made early on in the development of our library was to use MPI

as the communication layer. One advantage of PCJ [28] over our approach lies in the

fact that it supports its collective communications using a pure Java-based implementa-

tion [29]. This means that PCJ is easily portable to non-traditional HPC infrastructures

such as the cloud [57]. In our case, users of our library need to install MPI and compile

the Java compatibility layer before they can start executing programs. This is not a

trivial operation and may discourage prospective users. In future work, we may try to

make the choice of the communication layer modular to allow programmers to switch
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between a pure Java implementation for easy development and program validation on

the workstation, and MPI for cluster environments that support it.

Finally, we are considering introducing support for elasticity to our library. We

believe our library would be a great help to programmers in such situations where the

number of running processes increases and decreases over time.Indeed, the bulk relocation

features would allow programmers to relocate the persistent objects of their program

away from a process before releasing it, or, on the contrary, to o�oad some computation

to a newly launched process with ease.
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Chapter 5

Integrated Global Load Balancer

5.1 Introduction

In Chapter 4, we introduced our distributed collections library which supplements AP-

GAS for Java [36] with the features necessary to write complex parallel and distributed

programs with new and dynamic schedules. In particular, the features we introduced

make it possible to dynamically relocate entries between processes using high-level ab-

stractions.

We envision cases where programs run on non-dedicated hardware with potentially

multiple processes competing for resources. This poses a challenge for programmers as

the performance and computing resources available on each host, and the workload at-

tributed to each process may vary over the course of an execution. Although manually

monitoring the (distributed) situation over the course of an execution can allow pro-

grammers to take measures of their own to balance the load, this comes as a signi�cant

burden and has to potential to greatly obfuscate programs. Instead, we believe such

load-balancing measures should be left to the library itself.

However, this poses a direct challenge to the principles implemented in our distributed

collections. Indeed, the distribution management was up until now entirely left up

to programmers. We therefore require a clear way for programmers to indicate the

collections whose distribution is to be managed by the library and those whose are not.

Furthermore, even if a collection's distribution is managed by the library, there are

applications which require that the location of each entry is known and remains �xed

to ensure correctness. The PlhamJ �nancial market simulator [53, 54] is one such case.

As we showed in the previous chapters, the agents may be relocated across processes to

balance the computational load. The di�culty comes when the noti�cations of contracted

trades need to be sent from the �rst process to the agents that have contracted that trade.

To be able to correctly implement this, the location of each agent must be known and

remain unchanged while this phase of the simulation takes place.

As a result, simply leaving the distribution of a collection up to the library throughout
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the program execution is not an option. Intervals within which entries of the collection

may be relocated by the library, and intervals during which the distribution of the

collection is wholly under the programmer's control need to be enforced and clearly

identi�able.

In this chapter, we introduce the load balancer integrated in our distributed collec-

tions library. The programming model we propose makes it easy for users to choose

which parts of their program are conducted under this load balancer and which are

not. Inspired by the lifeline-based global load balancer scheme discussed in Chapter 3,

our integrated load-balancer is capable of automatically relocating work along with the

entries of distributed collections to maintain the balance in an environment where the

performance of hosts evolves over time.

The remainder of this chapter is organized as follows. In Section 5.2, we present

the programming model and the semantics o�ered to programmers by our integrated

load balancer. In Section 5.3, we discuss the internal implementation, the termination

detection scheme, as well as the progress tracking system we developed. We present our

evaluation in Section 5.4 before concluding in Section 5.5.

5.2 Programming model

In this section, we present how the global load balancer presents itself to users of our

library. We �rst formal introduce the abstractions available to programmers in Sec-

tion 5.2.1 before detailing its usage in our applications in Section 5.2.2.

5.2.1 Integrated load balancer semantics

5.2.1.1 Load-balanced context

In programs written with the help of our distributed collections library, the (re-)distribution

of entries of distributed collections is normally entirely left up to programmers using the

facilities demonstrated in Chapter 4. Suddenly allowing the library to relocate entries

of distributed collections contradicts this principle.

To resolve this dichotomy, we introduce a speci�cally designed context within which

our integrated load balancer is allowed to operate. This takes the form of the static

method underGLB method which takes a closure as parameter as shown on line 5 of

Listing 5.1. This choice of a static method taking a closure as parameter was made to

minimize the impact on program legibility while allowing for some necessary internal

preparations.

This also has the added bene�t of de�ning a clear boundary within which entries of

the distributed collections manipulated inside this block may be relocated by the library.

Any computation which takes place outside of this context is ensured that the entries of

distributed collections will not be arbitrarily relocated by the library.
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Table 5.1: GLB operations currently implemented for class DistChunkedList<T>

,

Op Parameter Description

forEach Consumer<T> Applies the provided consumer on each T element in
the collection

map Function<T,U> Creates a new chunked list which contains the result
of the function given as parameter applied on this col-
lection at the matching index

reduce Reducer<T> Makes a global reduction, applying the reduction on
each element and merging the various reducer in-
stances created in the process back into a single in-
stance

toBag Function<T,U> Produces in parallel U instances from every T instance
in the collection and collects them into a parallel re-
ceiver given as parameter

5.2.1.2 Staging mechanism, batch submission

Having de�ned a context within which load-balance will occur, there remains the ques-

tion of with regards to which computation should the library be relocating distributed

collection entries. Here, we make a number of arbitrary design choices. We consider

load-balanced computation to be computation which applies in parallel to every entry

recorded into a distributed collection. Our load balancer attempts to relocate entries of

the targeted collection away from the hosts which take longer to process all their entries

and towards processes which complete the entries they hold early.

The load-balanced computations are accessible through a special GLB handle of the

targeted distributed collection class. They are analogous to the typical forEach and

teamed parallelReduce methods discussed in the preceding chapter. However, the

methods available through this handle can only be called from within the underGLB

context; calling them outside of this context will result in exceptions to be thrown. Cur-

rently, only class DistChunkedList (our distributed array collection) and its derivatives

are �tted with this feature. A summary of the computations supported is presented in

Table 5.1.

Inside the underGLB block, GLB computations do not start as soon as they are

called but are internally staged, with an instance of class GlbFuture representing that

computation returned to the user. This allows for multiple computations to be �staged�

before they start together. Our mechanism supports multiple computations on a single

collection and multiple collections being processed at the same time.

Load-balanced operations go through a four-stage lifecyle: Staged, Ready, Running,

and Terminated. All newly created operations initially start in the �Staged� state when a

�GLB� method of a collection is called. The computation will actually start when either
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1 import stat ic handis t . c o l l e c t i o n s . g lb . GlobalLoadBalancer . * ;
2
3 DistCol<Ele> e l eCo l = new DistCol <>() ; // Populat ion omit ted
4
5 underGLB ( ( )=>{
6 GlbFuture<DistCol<Integer>> fut1 = e l eCo l .GLB.map( e=>e . makeInt ( ) ) ;
7 DistCol<Integer> intCo l = fut1 . r e s u l t ( ) ; // Case 1
8 GlbFuture fu t2 = e l eCo l .GLB. forEach ( e=>e . update ( ) ) ;
9 GlbFuture fu t3 = intCo l .GLB. reduce (new Average ( ) ) ;

10 s t a r t ( ) ; // s t a t i c import , Case 2
11 GlbFuture<DistCol<Integer>> fut4 =
12 e l eCo l .GLB. toBag ( e=>return e . makeInt ( ) ) ;
13 }) ; // End o f underGLB block , Case 3
14
15 // Programmer i s back in f u l l c on t r o l

Listing 5.1: Program with a part operating under our library's integrated dynamic
load balancer

one of the following three cases is encountered:

1. the result of a load-balanced computation is called through method result of that

computation's GlbFuture object

2. the static method start() is called

3. the end of the underGLB block is reached

In all three cases, every �GLB� computation staged up until that point is moved to the

�Ready� state. If there are no already running operation on the same collection, all the

�Ready� operations for that collection are started immediately in a new batch and move

into the �Running� state. If operations from a previous batch are still being computed

at the time �Staged� operations transition into the �Ready� stage, the operations remain

in that stage until the last running operation on that collection completes. When an

operation has been computed on all the entries contained in the underlying distributed

collection, it reaches its �nal �Terminated� stage.

Each of these three cases are represented in Listing 5.1. The �rst case presents itself

on line 7. Up until that point, only the map operation on collection eleCol was staged

on line 6. This single computation is started. The call to fut1.result() of line 7 blocks

until this computation completes and the newly created DistCol<Integer> collection

created as a result of the computation is returned.

On line 10, we encounter the second case. Here, both the forEach and the reduce

operations staged on lines 8 and 9 are started. Note that in this case, two operations

operating on two di�erent collections are submitted to the load balancer. Method start

is non-blocking and progress inside the GLB block continues while the computation

takes place in the background. If it is later needed to wait on the completion of a

running operation, this can be done by calling fut2.result() or fut3.result(). This
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mechanisms allows programmers to perform other computation while the load-balanced

operations are ongoing in the background.

Finally, the third case consisting of reaching the end of the GLB block causes the

toBag operation staged on line 12 to start. In this case, the forEach operation previously

staged on line 8 which operates on the same collection eleCol may still be running. As

a result, the toBag operation staged on line 12 will be kept in the �Ready� state until

the operation operating on the same collection terminates. When the previous forEach

operation completes, it will trigger the start of the toBag operation. Progress of the

reduce operation staged on line 9 remains una�ected as it concerns a di�erent collection.

The underGLB method returns when all ongoing GLB operations (and any other non-

GLB code present in the block) has completed. This guarantees that no more entries of

the collections involved in a load-balanced operations are relocated by the library beyond

the underGlb block. User-control over the distribution of collections is therefore whole

again in the next part of the program.

There can be successive underGlb blocks opened in the same program. Programmers

may choose to place the load balanced part of the computation within a loop, or place the

main loop of their program inside the underGlb block. It is not allowed to transitively

open another underGlb block from inside the block, nor is it possible to concurrently

open two blocks from two concurrent asynchronous activities. Attempting to do so will

result in exceptions to be thrown.

5.2.1.3 Priority between operations

A priority mechanism is embedded into the load balancer. By default, the order into

which operations were staged is used to determine the relative priority between opera-

tions. If multiple operations are computed concurrently, workers will tend to take on the

operation with the highest priority �rst, taking on other computations if no fragment of

the highest priority operation can be obtained.

The current priority level of operations can be obtained through a method of the

GlbFuture object representing this operation. Users of the library may override this

value by specifying the priority of operations while they are �Staged� by calling the

GlbFuture.setPriority(int) method. This can be useful if some operation staged

later then others due to pending dependencies or other constraints needs to complete

with higher priority to ensure program progress. In our current implementation, the

priority to use for an operation can be modi�ed during the �Staged� phase. It can no

longer be modi�ed once the operation transitions into the �Ready� phase.

5.2.1.4 Completion dependencies

We also prepared a completion dependency mechanism. This allows programmers to in-

dicate that an operation cannot start before some other operation has completed. Unlike
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the staging mechanism which concerns operation that operate on the same collection,

this mechanism can be used on any operation regardless of the underlying operation.

Additional completion dependencies can be added to any �Staged� operation. Pre-

cautions need to be taken by the programmer to avoid inadvertently creating a circular

dependencies. Failing to do so will prevent all the operations involved to progress into

the �Ready� stage, resulting in none of the operations to be computed.

5.2.2 Examples

In this section, we demonstrate how our integrated load balancer is used on two appli-

cations, K-Means and the PlhamJ �nancial market simulator, and compare the version

implemented with out integrated load balancer against the usual �teamed� version intro-

duced in the previous chapter.

5.2.2.1 K-Means

The �teamed� implementation of the K-Means algorithm implemented with our li-

brary was previously presented in Section 4.4.2 We compare the versions with and with-

out the use of our integrated global load balancer.

In both our implementations, each point is recorded into an instance of class Point.

The cluster assignment step is implemented using a parallel �for each� method, while

the average cluster location and the new centroid location are implemented using a user-

de�ned reduction. The main program loop for both variants of the program are shown

in Listings 5.2 and 5.3.

The actual code is sensibly the same for both implementations. In the �teamed�

version, the broadcastflat method is used to launch the computation on all the hosts,

whereas in the version using our integrated load balancer, the load balanced context

underGLB is used. Similarly, the teamed reductions in Listing 5.2 are swapped for

their �GLB� counterpart in Listing 5.3. As discussed in Section 4.4.2.1, the instances of

AvgPosition and ClosestPoint given as parameter to the reduce methods are user-

de�ned classes which extend an abstract Reducer class provided by our library.

In this application, the previous step in the iteration needs to complete before starting

the next step. In the �glb� program, calling the blocking result to obtain the result in

preparation for the next step causes the computation to start immediately after staging.

5.2.2.2 PlhamJ

The general routine of the PlhamJ �nancial market simulator was previously introduced

in Section 4.4.1. Here, we compare the two di�erent runner implementations: the man-

ually load-balanced version discussed in the preceding chapter, and the version which

relies on the integrated global load balancer to balance the agents between processes.
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1 DistChunkedList<Point> po in t s ; // I n i t i a l i z a t i o n omit ted
2 double [ ] [ ] i n i t i a l C e n t e r s ;
3
4 world . broadcas tF lat ( ( ) => {
5 double [ ] [ ] c l u s t e rCen t r o i d s = i n i t i a l C e n t e r s ;
6 for ( int i t e r = 0 ; i t e r < reps ; i t e r++) {
7 double [ ] [ ] c e n t r o i d s = c l u s t e rCen t r o i d s ;
8 // Assign each po in t to a c l u s t e r
9 po in t s . para l l e lForEach (p => p . a s s i gnC lu s t e r ( c en t r o i d s ) ) ;

10 // Avg c l u s t e r p o s i t i o n computation
11 AvgPosit ion avgPos = po in t s . team ( ) . pa ra l l e lReduce (
12 new AvgPosit ion (K, DIMENSION) ) ;
13 // Compute the new cen t r o i d s
14 Close s tPo int c l o s e s tPo i n t = po in t s . team ( ) . pa ra l l e lReduce (
15 new Close s tPo int (K, DIMENSION, avgPos . c en t e r s ) ) ;
16 c l u s t e rCen t r o i d s = c l o s e s tPo i n t . c l o s e s tPo in tCoo rd ina t e s ;
17 }
18 }) ;

Listing 5.2: K-Means non-GLB implementation

1 DistChunkedList<Point> po in t s ; // I n i t i a l i z a t i o n omit ted
2 double [ ] [ ] i n i t i a l C e n t e r s ;
3
4 GlobalLoadBalancer . underGLB ( ( ) => {
5 double [ ] [ ] c l u s t e rCen t r o i d s = i n i t i a l C e n t e r s ;
6 for ( int i t e r = 0 ; i t e r < reps ; i t e r++) {
7 double [ ] [ ] c e n t r o i d s = c l u s t e rCen t r o i d s ;
8 // Assign each po in t to a c l u s t e r
9 po in t s .GLB. forEach (p => p . a s s i gnC lu s t e r ( c en t r o i d s ) ) . r e s u l t ( ) ;

10 // Avg c l u s t e r p o s i t i o n computation
11 AvgPosit ion avgPos = po in t s .GLB. reduce (
12 new AvgPosit ion (K, DIMENSION) ) . r e s u l t ( ) ;
13 // Compute the new cen t r o i d s
14 Close s tPo int c l o s e s tPo i n t = po in t s .GLB. reduce (
15 new Close s tPo int (K, DIMENSION, avgPos . c en t e r s ) ) . r e s u l t ( ) ;
16 c l u s t e rCen t r o i d s = c l o s e s tPo i n t . c l o s e s tPo in tCoo rd ina t e s ;
17 }
18 }) ;

Listing 5.3: K-Means GLB implementation
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1 DistCol<Agent> agents ; // I n i t i a l i z a t i o n omit ted
2
3 world . broadcas tF lat ( ( )=>{
4 // . . .
5 // prev ious s t e p s omit ted
6 agents . para l l e lToBag ( ( Agent a , Consumer<List<Order>> c o l l e c t o r )=>{
7 List<Order> orde r s = a . submitOrders ( markets ) ;
8 // some output=r e l a t e d par t omit ted
9 i f ( o rde r s != null && ! orde r s . isEmpty ( ) )

10 c o l l e c t o r . accept ( o rde r s ) ;
11 } , orderBag ) ;
12 // f o l l ow i n g s t e p s omit ted
13 // . . .
14 }) ;

Listing 5.4: Order submission of non-GLB program

1 DistCol<Agent> agents ; // I n i t i a l i z a t i o n omit ted
2
3 GlobalLoadBalancer . underGLB ( ( )=>{
4 // . . .
5 // prev ious s t e p s omit ted
6 agents .GLB. toBag ( ( Agent a , Consumer<List<Order>> c o l l e c t o r )=>{
7 List<Order> orde r s = a . submitOrders ( markets ) ;
8 // some output=r e l a t e d par t omit ted
9 i f ( o rde r s != null && ! orde r s . isEmpty ( ) )

10 c o l l e c t o r . accept ( o rde r s ) ;
11 } , orderBag ) ;
12 // f o l l ow i n g s t e p s omit ted
13 // . . .
14 }) ;

Listing 5.5: Order-submission of GLB program
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The �manually load-balanced� and the �glb� version of PlhamJ di�er in two points.

The �rst di�erence between the �manually load-balanced� and the �glb� version lies in the

order submission step. This step is an example of a �parallel producer/receiver� pattern

where each Agent returns the orders it wants to place in a list. The orders object returned

by the Agent's submitOrders method are then recorded in the orderBag distributed col-

lection. This collection is an instance of class DistBag<T>, which is speci�cally designed

to accept many �T� objects coming from multiple threads concurrently by supplying a

dedicated Consumer<T> handle to each thread. In this present case, the generic type T

accepted by the DistBag<T> resolves to a List<Order>, hence the rather lengthy type of

parameter collector which appears on line 6 in both Listing 5.4 and 5.5. To collect the

orders placed by agents, the integrated load balancer version relies on a �GLB� operation

while the �manually load-balanced� version calls a �local parallelism� implementation on

each process using the broadcastFlat method of the world TeamedPlaceGroup.

The second di�erence lies in the way load balance is performed in these two im-

plementations. The version with our integrated load balancer transfer Agents while

the order submission is taking place. On the other hand, the �manually load-balanced�

version measures the time taken by this step on each host over the course of a few iter-

ations. If disparities appear, agents are relocated between processes using the features

presented in Section 4.5.2 in a separate dedicated step. This is the reason we call this

version �manually load-balanced,� as the relocation of agents is written explicitly by the

programmer.

5.3 Implementation

The load-balancing scheme we have currently implemented is inspired by the lifeline-

based global load balancer of X10 whose key principles we recalled in Section 3.1.3. We

rely on the same general global termination detection mechanism in our integrated global

load balancer, with one enclosing finish per operation submitted. While this concept is

re-used as is, there are a number of key di�erences between the original implementation

and what we use in the context of our distributed collections library. We discuss the

internal implementation of the scheme and point out the di�erences with the original

scheme in this section.

5.3.1 Progress tracking with Assignment

In our scheme, accurately tracking the progress of each operation is necessary to guar-

antee that when relocating work becomes necessary, instances with some computation

left in them are transferred between processes. This is done through what we call an

�Assignment�. An assignment represents a subset of the underlying distributed collec-

tion and the progress of the various operations being performed on that subset of the

collection.
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Currently, we have only implemented the Assignment class for our distributed array

collections. For these collections, a pair of long integers is used to designate a range [a, b)

of entries in the array. The progress of each operation is tracked using a dedicated long

integer for each operation whose value evolves from a to b as the computation progresses

through the range designated by the assignment.

Only with an assignment is a worker of the integrated load balancer authorized to

access the underlying collection, and even then, restricted only to the entries targeted

by the assignment it holds. This guarantees that no concurrent accesses are made to

individual objects in the collection.

The number of assignments left to complete for each GLB operation is tracked on each

host using atomic counters. When a worker completes an operation on an assignment, it

decrements the corresponding operation counter. When this counter reaches 0, meaning

the last remaining assignment for this operation was completed, the worker unblocks the

witness activity of the corresponding operation, allowing it to terminate. The nature of

this �witness activity� and its purpose are discussed in Section 5.3.3.

5.3.2 Intra-host load-balancing

As part of the initialization process of the integrated load balancer, an initial assignment

is prepared for each range of the distributed array held by the local handle. We keep

these assignments in a single reserve on each host, as opposed to 2 in the multithreaded

lifeline-based global load balancer [6], and sort them according to their priority.

As part of their main routine, worker threads start by obtaining an assignment from

this centralized queue. They then progress the computation contained within this as-

signment by a �xed number of objects, the so-called �grain�, before checking if some

load-balancing measures need to be taken. When a worker completes the operation with

the higher priority in its assignment, the assignment is either discarded if no other op-

erations are present in the assignment, or placed back into the queue where it will be

sorted according to the priority of the remaining operations.

When the queue gets depleted (either by a worker or through a lifeline steal), all the

workers are asked to place some work back into it. In this case, workers that have enough

computation left (determined by a minimum assignment size) will split the assignment

they hold into 2 assignments targeting contiguous ranges. In the process, they appropri-

ately update the number of assignments left to complete for each operation tracked by

their assignment.

5.3.3 De-coupling of worker activities and computation

In the original lifeline-based scheme, all the workers are asynchronous activities managed

by the same superseding �nish. In our context this would imply running as many kinds

of worker activities as there are ongoing operations, signi�cantly obfuscating the scheme.
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We decided instead to de-couple the worker threads from the termination detection. This

allows us to spawn independent workers that can process any and all available assign-

ments on the host regardless of the computation undertaken. However, this requires a

number of changes to guarantee the proper global termination detection.

Termination detection of each ongoing operation is still achieved using the original

scheme by using what we call a witness activity. In our load-balancing scheme, there

is one such �witness� activity on each process for each operation ongoing on the host.

This activity does not perform any computation and remains blocked on a semaphore

throughout. When the last assignment of its corresponding computation has been com-

pleted by a worker, it gets unblocked and initiates the inter-host work stealing before

completing.

When work is received from a remote host, a new witness activity is spawned and

remain present until all the newly received assignments complete. When all witness ac-

tivities of a given computation have terminated, their superseding �nish returns, marking

the completion of the corresponding computation.

5.3.4 Inter-host load balancing and termination detection

In the original lifeline-based global load balancer scheme, the computation at hand is self-

contained within asynchronous activities. In the context of our distributed collections

library, the assignments contain the information about the computation to perform, but

they are not self-contained anymore. When inter-host load-balancing is performed, the

entries of the distributed collection targeted by the assignments also need to be relocated.

This is done using the relocation features of our distributed collection library.

One di�erence with the original lifeline-based load balancer is that we chose not to

implement the random victim selection. This was initially done to simplify the imple-

mentation of the scheme. One consequence of not using any random steals is that it gives

us a new perspective on the lifelines in the context of our integrated load balancer. As

discussed in Section 3.1.2, the use of non-connected lifeline graphs is discouraged in the

original scheme as it prevents work from trickling down to would-be idle hosts. In our

situation where work is present on all hosts where entries of the distributed collection

are present, this is not a concern.

Instead, using a non-connected lifeline network will guarantee that the entries of

the distributed collection remain located with the subset of hosts connected by the

lifelines. In the PlhamJ version implemented with our integrated load balancer discussed

in Section 5.2.2.2, we rely on this property to ensure that no agents are relocated to the

order-handling process. The lifeline strategy used in this application still consists in an

hypercube, but with the �rst process excluded from the lifeline network.

Another subtle di�erence lies in the lifelines' nature. While the network of lifelines

remains con�gurable as was the case for the original scheme, lifelines are established on

a �per-collection� basis rather than a �per-computation� basis. This is necessary to pre-
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serve the integrity of the global termination detection. As mentioned in the preceding

section, the asynchronous activity used to answer the steal request needs to spawn a

new �witness� activity on the thief. However it is possible that transferred assignments

contain work pertaining to multiple GLB operations. In such a case, the activity trans-

ferring the assignments will have to spawn multiple �witness� activities registered into

di�erent ��nish� constructs, something which is not possible under the normal APGAS

finish/async semantics.

To resolve this issue, we extended the APGAS for Java library to allow any thread

to spawn an activity registered into one or multiple arbitrary finish. The additional

constructs we introduced have the potential to disrupt the termination detection mech-

anisms of the original library. Let us detail under which conditions this is agreeable and

why it is possible in our particular situation.

Arbitrarily registering an asynchronous activity into multiple ��nish� does not com-

promise the �nish/async termination detection of APGAS if for every �nish into which

the answer activity is registered, there exists another running activity on the host. In

our case, if work coming from multiple computation is transferred as part of an answer,

then there necessarily exists a corresponding �witness� activity for each computation.

It was therefore �possible� that this asynchronous activity was spawned by this witness

activity. A problematic case would consist in registering an asynchronous activity into

a �nish which does not contain any ongoing activity on the local host, but this does not

occur in our situation.

This extension of the APGAS library also allows us to somewhat simplify the load

balancing scheme. In previous implementation of the multi-worker lifeline load-balancing

scheme discussed in Chapter 3, a dedicated �lifeline answer� activity was blocked for

most of the time and unblocked when lifeline answers became needed. In this present

scheme, worker activities (which are not registered into any �nish) can now directly

answer thieves by spawning the appropriate asynchronous activity using our extended

APGAS construct. Similarly, on the thief, a new witness activity is spawned for each

finish the steal answer is registered into, re-instating a witness for each operation in

the process.

5.3.5 Chunk splitting

One of the challenges of the inter-host work relocation is the potential for relocated

assignments to target a portion of a chunk. In such cases, the �original� chunk registered

into the distributed collection is split into two (or three) chunks before the targeted

chunk is removed to be transferred over to the thief.

This poses a number of problems for our load balancing scheme, as other workers may

be processing assignments targeting another portion of the original chunk and attempt

to read portions of the original array while the splitting is taking place. Moreover, there

may be multiple remote thieves being answered at the same time, and therefore multiple
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chunks being split concurrently.

To preserve performance, we would like to avoid blocking the progress of any task as

much as possible. We achieve this through the implementation of an algorithm which

guarantees that all entries of a chunk undergoing a split remains readable. Multiple

chunk splitting procedures may occur concurrently as long as the same underlying range

is not already being split by another thread.

5.3.5.1 Range ordering

Inside of the arbitrary-rage distributed arrays, the chunks are kept in a concurrent and

sorted map provided by the Java standard library, ConcurrentSkipListMap. In this

map, index ranges [a, b) represented by instances by object LongRange are mapped to

Object arrays. The keys of the map are sorted in a total order through increasing a and

decreasing b, i.e.

[0, 100) < [0, 50) < [0, 0) < [1, 100) < [50, 70)

This method of sorting the chunks simpli�es the common operation consisting of

accessing a single index, or a sub-range of entries in the arbitrary range array. Indeed, if

the targeted range is contained in the ChunkedList, then it will necessarily be registered

in the mapping to the left of the range looked for it. Using the perhaps more intuitive

ordering consisting of sorting ranges through increasing a and increasing b actually re-

quires additional checks to determine whether the targeted range is located to the left

or to the right.

5.3.5.2 Splitting procedure

The algorithm used to split chunks is presented in Listing 5.6. The key idea is to add

new mappings to the map before removing the original ones. As a result, the map

transitively contains multiple arrays mapped from intersecting ranges (something which

is normally not allowed). As the split entries are added, the original mapping sees its

contents progressively shadowed by the mappings, until it becomes entirely hidden. Due

to the key ordering in the map, inserting the newly created mappings from the right is

critical as it guarantees that all object entries remain visible throughout this process,

either through the newly created mappings or the original mapping. Figure 5.1 presents

the gradual shadowing of the original mapping as the new chunks are inserted.

5.3.6 Restrictions

There are a number of conditions that need to be observed for programs to run success-

fully with our integrated global load balancer. First, no two handles of our distributed

array collection can contain ranges that overlap. While this is in general possible, it is
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1 Acquire a lock on the key o f the range to s p l i t
2 Check i f the key i s s t i l l r e g i s t e r e d in the d i s t r i b u t e d array
3 I f not , r e l e a s e the lock and r e s t a r t the procedure
4 Prepare 2 ( or 3) ar rays to r ep l a c e the e x i s t i n g mapping
5 I n s e r t the newly c rea ted ar rays in to the map
6 Remove the o r i g i n a l mapping
7 Release the lock

Listing 5.6: Chunk-splitting procedure

[500,1000)

[500,1000)

[800,1000)

[500,1000) [800,1000)

[700,800)

[500,1000) [800,1000)

[500,700)

[700,800)

[500,1000) [800,1000)[700,800)[500,700)

[800,1000)[700,800)[500,700)

Split 
[700,800)

Figure 5.1: Chunk splitting guaranteeing concurrent read access
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not compatible with our integrated load balancer as ranges relocated to the same process

as part of inter-host load balancing may clash.

Secondly, no new entries can be recorded or removed from the distributed array

while a computation is ongoing. More precisely, any new range added into a local

handle of the distributed array would be ignored by any ongoing GLB computation as

it will lack the corresponding assignment. Removing ranges from the collection while

the computation is ongoing would result in unpredictable behavior as the assignments

on which the removed ranges may or may not have been processed prior to removal. If

entries need to be added or removed from a collection, it should be done outside of any

ongoing GLB computation. Subsequently staged operation batches will re-generate the

assignments based on the contents of the collection at that time and take into account

the changes.

5.4 Evaluation

To evaluate the capabilities of our integrated global load balancer, we evaluate its per-

formance on the 2 applications we presented in Section 5.2.2, K-Means and PlhamJ. For

both of these applications, we compare the version of the program which relies on the

integrated GLB presented in this article against the one which does not.

We have two objectives here. First, we want to estimate the amount of overhead

created by our integrated load-balancing scheme in situations where no load-balance

measures are necessary. Secondly, we want to check the capability of our scheme to

react to dynamic changes in performance on the hosts on which it is running. For this,

we repeat the experiment we performed in Section 4.6.3, in which we introduced the

�Disturb� program to randomly steal away some computational resources of the hosts on

which our program is running.

In these conditions we want to verify that the GLB program is able to run despite

the presence of the competing computation and if it is capable of relocating work away

from the hosts being disturbed.

The results are presented in Section 5.2.2.2. The characteristics of our Beowulf cluster

on which we perform this evaluation are summarized in Table B.1.

5.4.1 K-Means

For K-Means, we perform this evaluation on our beowulf cluster on up to 8 �piccolo�

servers. We conduct the evaluation in weak scaling. The details of the parameters

used for this benchmark are presented in Table 5.2. We compare the glb version of our

program against the non-glb version and the glb version stripped of its inter-process load

balancing features.

There are two main takeaways from this experiment. First, the intra-host load bal-

ancing routines used in our integrated load balancer does not generate any noticeable
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Table 5.2: Program parameters used for the K-Means evaluation

Parameter Value

nb of points 10m per host (weak scaling)
nb of iterations 30

k 2000
point dimension 5
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Figure 5.2: Execution time of the K-Means benchmark on up to 8 �piccolo� servers
of our Beowulf cluster
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overhead compared to the static allotment to each thread on our Beowulf cluster.This is

established by comparing the execution time of the �no lb� and the �integrated lb w/o

lifelines� in Figure 5.2.

Secondly, the inter-host load balancing strategy can be a signi�cant source of per-

formance issues. On the cluster con�gurations where no load balance is expected, the

total execution time of the �integrated lb� version is up to 40% longer on the 6 hosts

con�guration. This can be explained by the manner in which lifeline steals are handled.

Currently, there is no control over the amount of work transmitted to a remote host. A

lifeline steal can take up to an arbitrary 10 assignments if there are available on the vic-

tim host. In cases where no load unbalance is expected, work can be needlessly relocated

as no consideration as to the cost/merit is given.

In the presence of the Disturb program, the intra-host load balancing measures have

a positive impact as the computation time is reduced compared to the �no lb� implemen-

tation. However, the complete load balancer does not improve performance compared

to the reference version. This can be explained in part by the amount of computation

which remains relatively small compared to the amount of data needed to transfer when

relocating work a more appropriate strategy is clearly desired. Also, as only ever one host

sees some of its computational resources stolen, redundant work relocation between unaf-

fected processes can still occur, which would explain why the performance gap compared

to the reference version is greater when using 6 or 8 hosts compared to 4 hosts.

5.4.2 PlhamJ

For PlhamJ, we repeat the evalaution we performed in Section 4.6.3 in which we intro-

duced various cluster con�guration. The details of every cluster and process allotment

con�guration was presented in Table 4.3. We add the execution time of the integrated

load balancer to the comparison previously drawn in Figure 4.7 in Figure 5.3.

First, on Con�g A where no load-balance is needed, our PlhamJ version relying on

our integrated load balancer presents some overhead compared to the reference version.

We believe the main cause of this performance gap is the same as the case in K-Means

in that agents are redundantly relocated between processes.

In all other con�gurations that either present static performance disparities or dy-

namic changes in performance or both, the version using our integrated load balancer

shows performance on par or better than the reference version. The manually crafted

load-balanced version remains the best performing in all situations.

Overall, this shows that our integrated load balancer is capable of handling the

variety of situation with no e�ort required from programmers, while more experienced

users willing to put in the e�ort are still capable of implementing their own load balancing

strategies.
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Figure 5.3: Execution time of the PlhamJ simulation depending on the cluster con-
�guration

5.5 Conclusion and future work

In this chapter, we presented the global load balancer integrated into our distributed

collection library. The programming interface we propose is simple to use and allows

programmers to clearly identify the parts of their program that operate under this regime.

We re-visited the global load balancer scheme of X10 and gained new insights into the

�lifelines� used to implement this work-stealing scheme. While our current scheme al-

lowed us to gain an advantage against statically distributed programs in some dynamic

situations, further work is needed to implement an e�cient scheme both when load-

balance measures are and are not needed.

Further investigation into situations where multiple GLB computations are taking

place at the same time are desired. In such cases, the load balancing strategy may have

to take into account the fact that multiple operations are ongoing at the same time.

PlhamJ is one such application. In its full version, PlhamJ supports 3 classes of trading

agents: high-frequency, short-term, and long-term traders. In the evaluation presented

here, no long-term traders were used, resulting in a simpli�ed runtime. A number of

non-trivial modi�cations to the simulator implementation are necessary to be able to

compute both short-term and long-term agents' submissions concurrently. However, the

programming model o�ered by the integrated load balancer which relies on �glb futures�
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to manage the submission and the retrieval of computation of background computation

will be instrumental in successfully implementing the full-�edged simulator. Indeed, this

model allows use to overcome a limitation of the X10-style finish/async model in that

it allows us manage the termination of 2 di�erent group of transitive activities whose

start and completion intertwine.

We made a number of arbitrary decisions in the design of our integrated distributed

collection library. One of them was to only relocate data that still has some work inside

of it. In the case of iterative applications, it would still make sense to relocate entries that

have already being computed in anticipation of the next iteration. We could also choose

to initiate inter-host work-stealing before all the work from a host has disappeared. Both

of these ideas could be implemented without modifying the termination detection scheme.

We also anticipate that depending on the application, the cost/bene�t of performing the

entry transfer will have to be taken into account when answering lifeline steal requests.

Consider a parallel computation which is rather light in terms of computational cost but

is based on large objects in terms of memory cost. If the cost of transferring the data

entries takes longer than expected gain thanks to the newly gained balanced situation,

transferring data entries with the computation would be counterproductive. In our

current implementation, the size of the transferred assignments is not taken into account

when answering lifeline thieves. We believe we are already seeing the adverse e�ects of

this simplistic implementation in the both the K-Means and the PlhamJ results presented

in Section 5.4. We will have to be revisit this issue in future work.

Another choice that we made in the design of our integrated load balancer was to only

allow one such context to be opened ata time. Under certain condition, this restriction

could be relaxed. If we consider collections that are de�ned on entirely disjoint subsets of

the �world,� then it should be possible to have two disjoint load balancers each operating

on the subset. The issue with relaxing this constraint is that it opens the problem of

how to handle cases where collections have de�nitions that overlap. In the absence of a

clear and simple answer to this problem, we chose to restrict our design to the manner

we did to preserve the clarity of the abstraction we propose.

One setting which has a consequential in�uence on the performance of the GLB mech-

anism is the granularity, i.e. the number of entries of the collection that are computed

by a worker thread before the runtime is checked. The results presented here correspond

to the �best-case� scenario for both K-Means and PlhamJ, with vastly di�erent values

for either application: 500 and 5 respectively. Choosing other values yielded signi�cantly

poorer results. It would make the integrated GLB signi�cantly easier to use if it could

be �tted with a similar grain tuning mechanism as was introduced in Chapter 3.

Currently, only the variants of our arbitrary index array distributed collection sup-

ports load-balanced operations. The challenge in porting the same features to our other

distributed collections lies in the progress tracking through the Assignment class. For

distributed maps that may use any user-speci�ed object as key, there is no trivial progress

95



Chapter 5. Integrated Global Load Balancer

description. Even if a total order exists between the keys contained in the map, describ-

ing sets of entries with a pair of keys may not be su�cient, as when work is received from

a remote host, inserted keys may land inside the range of an existing assignment. For

these reasons,a hypothetical implementation of the Assignment class for a distributed

map may have to rely on the internal representation of the map.
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Conclusion

In this thesis, we laid out techniques to help non-expert programmers and application

developers to create distributed programs. We integrated a tuning mechanism to the

multi-worker global load balancer scheme. Our tuner adjusts a critical parameter for

the performance of the scheme and is capable of handling the variety of problems it may

receive and is robust against variations in implementation. This contributes to making

this scheme more user-friendly as it removes the responsibility of setting an arbitrary

parameter from the user.

We also introduced a distributed collections library as a complement to the APGAS

for Java library. This library brings distributed collections with an interface similar to

the standard library of the Java programming language and �tted with features dedicated

to handling the distributed nature of the computation. In particular, it is possible for

programmers to dynamically relocate entries of distributed collections between the pro-

cesses used to run the program through high-level abstractions. This makes distributed

application development easier, as demonstrated by the successful implementation of the

PlhamJ �nancial market simulator and its evolution to support dynamic load balancing,

something not possible in previous implementations.

Finally, we introduced a dynamic load balancer integrated into the distributed col-

lection library. Using the proposed programming model, programmers may temporarily

surrender the distribution management of a collection to the load balancer. In turn,

the entries of the distributed collections may be relocated between processes by the li-

brary. This system allows programmers who may not want to implement a dedicated

load balancing strategy into their program to instead leave this responsibility to the

library.

This work was also an opportunity to reach the limits of the finish/async model of

X10. Indeed this feature had to be hacked to allow the implementation of the integrated

load balancer termination detection mechanism. Another limit we identi�ed is that

it is not possible to interleave the launch and termination of multiple finish blocks.

This was recognized by the creators of Habanero-Java who added a �future� variant of
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finish to their language [58]. Moreover, not all the features of X10 have trickled down

into APGAS for Java. More advanced functionalities such as clocks [59], other features

related to resilience and elasticity [60, 61] have been integrated in X10 but do not have

an equivalent in AGPAS for Java.

An area where the abstractions provided by our distributed collection library will

be elastic programs. Contrary to �normal� distributed programs, malleable and evolv-

ing programs [62] are capable of dynamically changing the number of processes used

to run the program during execution. The bene�ts of such programs have long been

theoretically studied [63], with support in distributed programming language runtime

appearing decades ago [8]. More recently, actual implementation of malleable programs

and the necessary job scheduler and resource management system needed to support it

have been published [64, 65, 66]. One major hurdle for the development of malleable

programs is the need to relocate information between processes when either processes

used in the running computation are released or added to the program. In that regard,

our distributed collection library will be capable of helping programmers relocate impor-

tant object instances. Further work is necessary to integrated the abstractions that will

allow programmers to dynamically adjust the number of processes of their APGAS for

Java programs.
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Appendix A

Source Code

A.1 Aggregated program routines

In Listings A.1 and A.2 are presented the aggregated listings of the PlhamJ and K-Means

applications discussed in Section 4.4.1 and 4.4.2 respectively. The reader familiar with

the MolDyn benchmark will notice that the temperature scaling and the performance

tracking are absent from the code we present here. These are included in our actual

program, but we chose to omit them for brevity and to focus on the computation core

of the program.

A.2 Published software

The entirety of the source code discussed in this thesis has been released under open

source license on GitHub.

Source code for the topics discussed in Chapter 3 can be found in the following

repository:

� Multi-worker Lifeline-based Global Load Balancer https://github.com/handist/

JavaGLB

Source code for the topics discussed Chapter 4 & 5 can be found in the following

repositories:

� Distributed Collections library https://github.com/handist/collections

� Benchmarks for the Distributed Collections library https://github.com/handist/

collections-benchmarks

� PlhamJ Financial Market Simulator https://github.com/plham/plhamJ
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1 CachableArray<Market> markets ; // market in format ion
2 DistCol<Agent> agents ; // agents
3 DistBag<List<Order>> orderBag ; // orders submi t ted by agents
4 DistMultiMap<Long , AgentUpdate> contractedOrders ; // t rade s con t rac t ed
5 // Runtime v a r i a b l e s
6 TeamedPlaceGroup world = TeamedPlaceGroup . getWorld ( ) ;
7 boolean i sMaster = here ( ) == place (0 ) ; // p lace (0) hand les orders
8 long accumulatedOrderComputeTime = 0 l ; // time on order=submiss ion
9 int lbPer iod = 10 ; // load=ba lance per iod ( c on f i g u r a b l e )

10 int i t e r ; // curren t i t e r a t i o n
11
12 world . broadcas tF lat ( ( ) => {
13 // (1) Broadcast the updated s t a t e o f markets
14 markets . broadcast (MarketUpdate : : pack , MarketUpdate : : unpack ) ;
15 // (2) Submit agent orders
16 long s tar tOrder = System . nanoTime ( ) ;
17 i f ( ! i sMaster ) agents . para l l e lToBag ( ( agent , o rd e rCo l l e c t o r ) => {
18 List<Order> orde r s = agent . submitOrders ( markets ) ;
19 i f ( o rde r s != null && ! orde r s . isEmpty ( ) ) {
20 o rd e rCo l l e c t o r . accept ( o rde r s ) ;
21 }
22 } , orderBag ) ;
23 accumulatedOrderComputeTime = System . nanoTime ( ) = localSubmitTime ;
24 // (3) Co l l e c t a l l orders on the ' ' master ' ' p l a ce (0)
25 orderBag . team ( ) . gather ( p lace (0 ) ) ;
26 // (4) Match buy and s e l l orders , popu l a t ing ` contractedOrders `
27 f i n i s h ( ( )=>{
28 // (4 = op t i ona l ) ba lance the agents between p l a c e s 1 . . n
29 i f ( i t e r % lbPer iod == 0) { async ( ( )=>{
30 // Exchange time in format ion between hos t s
31 long [ ] computationTime =
32 world . a l lGather1 ( accumulatedOrderComputeTime ) ;
33 // prepare a r e l o c a t o r
34 CollectiveMoveManager mm = new CollectiveMoveManager ( world ) ;
35 performLoadBalance ( computationTimes , mm) ;
36 mm. sync ( ) ; // perform the r e l o c a t i o n
37 // r e s e t accumulated order=submiss ion time
38 accumulatedOrderComputeTime = 0 l ;
39 agents . updateDist ( ) ; // update the agents ' d i s t r i b u t i o n
40 }) ;
41 }
42 i f ( i sMaster ) handleOrders ( ) ; // procedure d e t a i l s omit ted
43 }) ;
44 // (5) Inform the agents o f the t rade s they made
45 // (5 . 1 ) Re locate con t rac t ed t rade in format ion to agents ' l o c a t i o n
46 LongRangeDistr ibution agen tD i s t r i bu t i on = agents . g e tD i s t r i bu t i on ( ) ;
47 contractedOrders . r e l o c a t e ( agen tD i s t r i bu t i on ) ;
48 // (5 . 2 ) Update the agents t ha t con t rac t ed a t rade
49 i f ( ! i sMaster ) contractedOrders . para l l e lForEach ( ( idx , updates ) => {
50 // Ret r i eve the agent t a r g e t e d by the update
51 Agent a = agents . get ( idx ) ;
52 // Apply each update f o r t h i s agent
53 for (AgentUpdate u : updates ) { a . executeUpdate (u) ; }
54 }) ;
55 }) ; // end o f broadcas t f l a t b l o c k

Listing A.1: Main procedure of the PlhamJ distributed simulator
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1 TeamedPlaceGroup world = TeamedPlaceGroup . getWorld ( ) ;
2 LongRange par t i c l eRange = new LongRange (0 , nbPar t i c l e s ) ;
3 CachableChunkedList<Par t i c l e > p a r t i c l e s ; // I n i t omit ted
4 int Ndivide = 5 ; // Number o f columns/ l i n e s to s p l i t the product in t o
5 long seed = 0 ; // Seed used to a s s i gn the t i l e s to ho s t s
6
7 world . broadcas tF lat ( ( ) => {
8 // Rep l i ca t e the p a r t i c l e s across proces s
9 i f ( world . rank ( ) == 0) {

10 p a r t i c l e s . share ( par t i c l eRange ) ;
11 } else {
12 p a r t i c l e s . share ( ) ;
13 }
14
15 // Prepare the i n t e r a c t i o n pa i r s
16 RangedList<Par t i c l e > pr l = p a r t i c l e s . getChunk ( par t i c l eRange ) ;
17 RangedListProduct<Par t i c l e , Pa r t i c l e > product =
18 RangedListProduct . newProductTriangle ( pr l , p r l ) ;
19 // S p l i t i n t e r a c t i o n s in t o t i l e s and as s i gn them to ho s t s
20 product = product . teamedSpl i t ( Ndivide , Ndivide , world , seed ) ;
21
22 // Prepare an accumulator f o r the f o r c e computation
23 Accumulator<Sp> acc =
24 new AccumulatorCompleteRange<>(part ic l eRange , Sp : : newSp) ;
25
26 for ( i = 0 ; i < i t e r ; i++) {
27 // Compute the f o r c e c on t r i b u t i on o f each pa i r
28 product . paral le lForEachRow ( acc ,
29 ( Pa r t i c l e p , RangedList<Par t i c l e > pa i r s , t l a ) => {
30 f o r c e (p , pa i r s , t l a ) ;
31 }) ;
32
33 // Merge a l l the f o r c e c on t r i b u t i o n s in the accumulators back
34 // in t o the de s i gna t ed p a r t i c l e s
35 p a r t i c l e s . p a r a l l e lAc c ep t ( acc , ( P a r t i c l e p , Sp a ) => {
36 p . addForce ( a ) ;
37 }) ;
38
39 // Sum the f o r c e c on t r i b u t i on s accross a l l ho s t s
40 p a r t i c l e s . a l l r e du c e ( ( out , P a r t i c l e p) => {
41 out . writeDouble (p . x f o r c e ) ;
42 out . writeDouble (p . y f o r c e ) ;
43 out . writeDouble (p . z f o r c e ) ;
44 } , ( in , P a r t i c l e p) => {
45 p . x f o r c e = in . readDouble ( ) ;
46 p . y f o r c e = in . readDouble ( ) ;
47 p . z f o r c e = in . readDouble ( ) ;
48 } , MPI .SUM) ;
49
50 // Move the p a r t i c l e s based on the computed f o r c e
51 p a r t i c l e s . para l l e lForEach (p => move ( ) ) ;
52 }
53 }) ;

Listing A.2: Hybrid MolDyn implementation
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Appendix B

Evaluation environment

The hardware and software con�guration of the cluster and supercomputer used in our

evaluations are summarized in the tables below. The large number of executions neces-

sary for this work was managed using OACIS [67].

Table B.1: Characteristics of our Beowulf cluster

Server Type �piccolo� �harp�

Nb of nodes 8 1
Processor Intel Xeon E3-1230 V2

(3.3GHz, 4 cores)
2 Intel Xeon E5-2680 V3
(2.5GHz, 24 cores combined)

RAM 16GB DDR4 128GB DDR4
Interconnection Gigabit Ethernet
Java version OpenJDK v1.8.0_312
MPI version Open MPI v3.1.6 with MPJ-Express v0_44 Java native bindings

Table B.2: Characteristics of the OakForest-PACS supercomputer

Server Type Fujitsu PRIMERGY CX1640 M1

Nb of nodes 8208
Processor Intel Xeon Phi 7250 (1.4 GHz, 68 cores)
RAM 96GB DDR4
Interconnection Intel Omni-Path (100 Gbps)
Java version Open JDK 1.8.0_222
MPI version Intel MPI with MPJ-Express v0_44 Java native bindings
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