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Abstract

Modern supercomputers rely on clusters of many-core processors, bringing large amount
of parallelism both within a node and across nodes. Harnessing the potential of such
systems is a challenge for application developers, as a large amount of parallelism is
available both between and within compute nodes. Modern Partitioned Global Address
Space (PGAS) programming languages facilitate this task to a degree by introducing
elements representing the distributed nature of the program in the language itself. How-
ever, these features alone are not enough to handle the load unbalances that arise in

modern applications.

A successful global load balancing scheme is the lifeline-based global load balancer.
First implemented in X10, this scheme showed that it can effectively scale up to several
thousand compute nodes. A shortcoming of this scheme is that the task granularity,
i.e. the number of individual tasks processed in a single batch, greatly influences the
performance of the scheme. Without any method to predict what an appropriate setting
should be, users of this scheme therefore need to try many settings to find a satisfactory
value for their application, wasting much time and valuable computational resources.
Instead, we believe this kind of setting adjustments should be performed by the library
itself. We integrate a tuning mechanism to the scheme which automatically adapts
the granularity during execution to guarantee optimum performance. Our grain tuner
is implemented as a feedback mechanism and relies on runtime metrics to make its
adjustments, with no noticeable overhead. We show that it is capable of handling a

variety of tree traversal applications and is robust against changes in implementation.

A limitation of the lifeline-based global load balancer is that it only operates on
self-contained tasks, that is, all the data needed to perform the computation is dis-
carded as soon as the task has completed. For cases where the data persists after the
computation, other techniques are desired. Current PGAS languages generally support
distributed collections, mostly arrays, and allow these arrays to be distributed across
the processes taking part in the computation. However, they provide little support for

uneven distributions or for dynamic modifications to the distribution of a collection.

In this thesis, we introduce our answer to this issue in the form of relocatable dis-
tributed collections. The collections we propose are analogous to their shared-memory

counterparts but have been fitted with additional features to handle the distributed na-



ture of the computation. In particular, we introduced a dynamic entry relocation system
which makes it easy for programmers to dynamically relocate entries of a distributed
collection between processes. We introduce the concept of teamed method to signify that
a method of the collection requires communication or synchronization between processes.
We demonstrate the productivity gains brought about by our distributed collections on
a complex financial market simulator and a well-known N-Body application.

We then consider the possibility for our distributed collections library to handle
the load balancing automatically, relieving application developers from the burden of
manually implementing such measures within their programs. Inspired by the lifeline-
based global load balancer, we adapt its principles to our distributed collections. We
provide a clear context within which it is allowed to operate, keeping the impact on the
legibility of programs to a minimum.

Overall, the concepts we introduce make it easier for both newcomers to the field
and more experienced programmers to develop dynamic distributed applications. In the
future, we think the facilities we introduce will make it possible to more easily develop
elastic applications where the number of running processes is dynamically adjusted to
match the actual parallelism needs of the application. Indeed a significant hurdle in the
development of such applications is the need to relocate the data away from released
nodes, or offloading data onto newly joined processes when decreasing or increasing the

number of running processes.

vi



Acknowledgments

The research presented here was conducted at Kobe University Graduate School of Sys-
tem Informatics under the guidance of professor Tomio Kamada and Chikara Ohta.

First and foremost, I would like to express my sincere gratitude to Associate Professor
Tomio Kamada and Professor Chikara Ohta who supervised me during this work. Not
only did they welcome me into the Future Information Network Engineering (FINE)
laboratory when I was a mere exchange student, they supported me when I expressed
my interest in pursuing a PhD. Under their guidance I have now progressed to the point
they acknowledge me as a colleague, for which I am most grateful. In several ways, this
has been and continues to be a longer collaboration than initially expected.

I would also like to thank Professor Naoyuki Tamura, Professor Mikio Yokokawa, and
Professor Takenao Ohkawa from the Graduate School of System of System Informatics
for the fruitful discussions and their advice throughout the doctoral course. They helped
me consider new problems and brought about new perspectives about my work which 1
had not considered. I also thank Professor Zhiwei Luo for his help with the title.

I also have to thank Yohsuke Murase, Research Scientist at RIKEN Center for Com-
putational Science, for his help in setting up the program executions on supercomputers,
saving me much time and trouble.

I would like to thank my fellow students at CS29 who make for a warm and welcoming
environment to work in. Among them, I would like to mention Yoshiki Kawanishi whom
I collaborated with on some aspects of the work presented here.

I would also like to express my profound gratitude to my parents for their infallible
support in all my endeavors. For some reason, I always seem to get further and further
away from my hometown. I promise I will be visiting soon.

Finally, I would like to express my great appreciation to the Japanese Society for the
Promotion of Science who funded the research presented here under KAKENHI grants
number JP20K11841 and JP18H03232.

Patrick Finnerty
Kobe, Japan
July 15, 2022

vil






Contents

Abstract ™
Acknowledgments bl
List of Figures il
List of Tables XV
Listings xviil
1 Introduction [
1.1 Distributed & parallel computing . . . . . . . .. . ... ... ... il
1.2 Motivation . . . . . . . . L 2l
1.3 Contributions . . . . . . . . .. 1]
1.4 Outline . . . . . ..

2 Background rd|
2.1 Programming models for distributed & parallel computing . . . . . . . .. [7]
2.1.1 MPI . . . &

212 Charm—+4 . . . . . .. Bl

2.1.3 Map/Reduce frameworks . . . ... ... Lo O]

214 (A)PGASlanguages . . . . . . ... ... o O]

22 APGASforJava . . . . . .. L 11

3 Task Granularity Tuning for the lifeline-based multi-worker GLB a3l
3.1 Background on the lifeline-based global load balancer . . . . . . ... ... 13l
3.1.1 Abstraction for programmers . . . . .. ... oL 14

3.1.2 Lifelines . . . . . . . .

3.1.3 Multi-worker GLB . . . . . .. ... 16l

3.2 Fairness between activities of the multi-worker load-balancing scheme . . . [T
3.2.1 Problem statement . . . . ... .. L0000 |

3.2.2  Yielding worker mechanism . . . .. . ... ... .. L. i

3.3 Related work about granularity tuning . . . . . .. ... ... 19l

X



3.4 Grain tuning mechanism . . . . . ... ..o 20

3.4.1 Influence of the granularity on the worker activity . . . ... ... 201
3.42 Heuristics . . . . . . . oL 23l
3.4.2.1 Diagnosis of a grain too large . . . . . . . ... ... ... 23

3.4.2.2 Diagnosis of a grain toosmall . . . . .. .. ... ... .. 23

3.4.3 Integration with the GLB runtime . . . . . .. ... ... ... ...
344 Evaluation. . . . . ... .. 25
3.44.1 Benchmarksused . . . ... .. .. ... ... ... ... 25

3.44.2 On many-core clusters . . . . . . . ... ... L. 7]

3443 Robustness . . . . . ... Lo 20

3.4.4.4 Limitations . . . . . . . ... B2l

3.5 Conclusion and future work . . . . .. .. ... Lo
Distributed Relocatable Collections B7
4.1 Introduction . . . . . . . . .. B7
4.2 Combining APGAS for Java with MPT . . . . . . . ... ... ... ... B8
4.3 Relocatable distributed collections . . . . . . ... ... ... ... .. 39]
4.3.1 Proposed collections . . . . . . .. ... 40
4.3.2 Local handle of a distributed collection . . . . . . .. .. ... ... 41l
4.3.3 Teamed operations . . . . . . . . ... Lo [42]
4.3.4 Support for intra-node parallelism . . . . . ... ... ... .. 44

4.4 Motivating cases . . . . . ..o 71
4.4.1 PlhamJ . . . . .. 14
4.4.1.1 Replication: CachableArray . . . . . ... ... ... ... 2l

4.4.1.2 Intra-node parallelism: producer / receiver . . .. .. .. 4y

4.4.1.3 Teamed relocation: gather . . . .. ... ... ... ... [49]

4.4.1.4 Teamed relocation: dispatch . . . . ... ... .. ..., 49l

44.1.5 Teamed relocation: load-balancing . . . . . .. ... ... 0]

4.4.1.6 Distribution tracking . . . . . ... ... L. 5%

442 K-Means. . . . . . . . . 5%
44.2.1 Intra-node parallelism: reduction . . . . . . .. ... ... 5%

4.4.2.2 Teamed reduction . . ... . ... ... ... ...

443 MolDyn . . . .
4.4.3.1 Replication: CachableChunkedList . . . . .. . ... ... 0]

4.43.2 Product of ranged lists . . . . .. ... ... b7

4.4.3.3 Intra-node parallelism: Accumulator . . . . . . . .. ... 5%}

4.4.3.4 Replication: reduction . . . . . . ... ... ]

4.5 Design & implementation . . . .. ... oL oo Lo 600
4.5.1 Lagy allocation of local handles . . . . . . . ... ... ... .. .. 6]
4.5.2 Registering entries for relocation . . . ... ... .. ... 62]



4521 Relocationinbulk . . ... ..o

4.5.2.2 Relocation by range or by key . . . . .. ..o

4.5.3 Communication patterns for entry relocation . . . ... ... ...

4.6 Evaluation . . . . . . ... L
4.6.1 Programmability . . . . . ... ... Lo oL
4.6.2 Performance comparison against original benchmark implementation
46.21 K-Means . . . . . . . ... e

4622 MolDyn . . . . .o oo

4.6.3 Dynamic load balancing in PlhamJ . . . . . ... ... ... ...

4.7 Conclusion and future work . . . . . . ..o oo

5 Integrated Global Load Balancer

5.1 Introduction . . . . . . . . . L
5.2 Programming model . . . . . ... Lo
5.2.1 Integrated load balancer semantics . . . . ... .. ... ... ...
5.2.1.1 Load-balanced context . . . . . . . ... ... ... ...

5.2.1.2 Staging mechanism, batch submission . . .. .. .. ...

5.2.1.3 Priority between operations . . . . . . .. ... ...

5.2.1.4 Completion dependencies . . . . . .. .. ... ... ...

522 FExamples . . . . . .
5.221 K-Means . .. ... ... . o

5222 PlhamJ . . ...

5.3 Implementation . . . . . . . . ...
5.3.1 Progress tracking with Assignment . . . . . ... .. .. ... ...
5.3.2 Intra-host load-balancing . . . . . .. ... oo
5.3.3 De-coupling of worker activities and computation . . . . . .. . ..
5.3.4 Inter-host load balancing and termination detection . . . ... ..
5.3.5 Chunk splitting . . . . . . .. Lo
5.3.5.1 Rangeordering . . . . . .. ... oL

5.3.5.2 Splitting procedure . . . . . .. ... oL

5.3.6 Restrictions . . . . . ...

54 FEvaluation . . . . . . . L
0.41 K-Means. . . . . . . ..
54.2 PlhamJ . . .. ..o

5.5 Conclusion and future work . . . . . . . . . .. .

6 Conclusion

Bibliography

xi

86
36

39
89
39

91]
9|
94

97

99|



A Source Code
A.1 Aggregated program routines . . . . . .. ... oL oL
A.2 Published software . . . . . . . ... L o

B Evaluation environment

Publications

xil



List of Figures

1.1

3.1

3.2
3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

4.1

4.2

4.3

One of 92 solutions to the 8-Queens problem . . . . . . .. ... ... ... Bl

Overview of the multithreaded global load balancer opeprations within a
place . . . . . e [106]
Scheduling of steal activities in the multi-GLB work stealing scheme . . . [§
A particular solution to the Pentomino and the One-sided Pentomino
problems . . . . . .. 26|
Relationship between the grain size and the execution time of our four

benchmarks when running on 16 hosts of the OakForest-PACS supercom-

Execution time comparison between the best fixed grain and our “split /merge”
and “merge/empty” tuning mechanisms on the OakForest-PACS super-
COMPUEET . . . . o o L e 29
Execution time, split/merge, and merge/empty ratios of 3 implementa-

tions of the UTS benchmark depending on the grain size chosen . . . . . . B1
Evolution of the grain size on a 8 host execution of the Traveling Sales-

man Problem and the UTS split 2 benchmark on the OakForest-PACS
SUPEICOMPULET . . . v o v v v e e e e e e e e e e B
Execution times of our four benchmarks in the three configurations on our
“harp” server . . . .. .. L B3l
Evolution of the grain size over time depending on the cluster configu-
ration of our Beowulf server using our “merge/empty” tuner on the TSP
problem . . ... L B34
Evolution of the number of times the intra-bag is emptied on each place

of a four-place execution of the Pentomino problem on our Beowulf server [B4]

State of the distributed map “dMap” in a 4 processes execution of the
Listing .2l program . . . . . . . ... 42
Figurative representation of the communications and computations pro-
cesses that take place during a round of the Plham simulation . . . . . . . 45
Illustration of the teamed split product used to allocate the particle in-

teraction pairs between processes in our MolDyn implementation . . . . . 58]

xiii



4.4
4.5

4.6

4.7

4.8

5.1
5.2

9.3

K-Means iteration times . . . . . . . . . . . ... 69]

Computation time and efficiency of the MolDyn benchmark on the OakForest-

PACS supercomputer . . . . . . . ... [0l
Computation time breakdown of the higher-parallelism executions of the

MolDyn benchmark . . . . . . . . .. .. [0l
Execution time of the PlhamJ simulation depending on the cluster con-

figuration . . . . .. ... [73l
PlhamJ agent distribution over time . . . . . ... ... ... ... ... 4
Chunk splitting guaranteeing concurrent read access . . . . . . . . . . .. 90]

Execution time of the K-Means benchmark on up to 8 “piccolo” servers of
our Beowulf cluster . . . . . . . . . ... 92
Execution time of the PlhamJ simulation depending on the cluster con-
figuration . . . . ... 94

Xiv



List of Tables

3.1

4.1
4.2
4.3

5.1
0.2

B.1
B.2

Problem settings used for the experiments involving varying number of

workers on the Oakforest-PACS supercomputer and our Beowulf server . . S|
Collection classes proposed by our library . . . . . . .. .. ... ... .. A0
K-Means benchmark parameters . . . . ... ... .. ... .. ...... 68]

PlhamJ execution configuration summary

GLB operations currently implemented for class DistChunkedList<T> . . [9

Program parameters used for the K-Means evaluation . . . .. ... ... 92
Characteristics of our Beowulf cluster . . . . . . .. ... ... .. .. ... 111
Characteristics of the OakForest-PACS supercomputer . . . . . . .. ... 11

XV






Listings

2.1
2.2
3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11
5.1

5.2
5.3
0.4
5.5
2.6
Al
A2

Distributed Hello World in Java . . . . . . .. ... ... ... .. ..... 11
Possible output of the Listing program running with 4 processes. . . . [l
Worker activity main procedure . . . . . . . ... 21
Equivalent program to Listing using class TeamedPlaceGroup . . . . . 39]
Distributed map creation, record insertion, and relocation example . . . . HI]
Replication of Market objects in the PlhamJ simulator . . . . . . . .. .. |7
Parallel Order collection and relocation in the Plham simulator . . . . . . 4y
Dispatch of contracted order updates and agent update. . . . . . . . . .. B0l
Load Balance step in PlhamJ simulator . . . .. . ... ... ... .... 51}
Distributed K-Means implementation with our collection library . . . . . . %1}
Particule replication in MolDyn . . . . . . . . ... ... ... ... ..., L0l
MolDyn force interaction computation using RangedListProduct and Ac-

cumulators . ... Lo hol
Force reduction on each particule in the MolDyn simulation . . . . . . .. 61
Rotation of entries between processes using a collective relocator . . . . . 63

Program with a part operating under our library’s integrated dynamic

load balancer . . . . . .. .. 80
K-Means non-GLB implementation . . . . . . ... ... ... ... ... R3l
K-Means GLB implementation . . . . . .. .. .. ... .. ........ R3l
Order submission of non-GLB program . . . . . . ... ... ... .. ... 84
Order-submission of GLB program . . . . . . ... .. ... ... ..... R4
Chunk-splitting procedure . . . . . .. .. ... oL 90]
Main procedure of the PlhamJ distributed simulator . . . . ... ... .. 108
Hybrid MolDyn implementation . . . . . . . . .. . .. ... .. ...... 109

xvil






Chapter 1

Introduction

1.1 Distributed & parallel computing

Modern supercomputers feature an unprecedented level of parallelism. For instance, the
current flagship supercomputer of Japan, Fugaku, is composed of over 158 thousand
compute nodes, each node containing a many-core 48 core processor |1|. Harnessing the
processing power of such large systems poses a challenge to application developers.

Borrowing the definition from van Steen and Tanenbaum [2]:

A distributed system is a collection of autonomous computing elements that appears
to its users as a single coherent system.

Programming models for distributed programming should therefore present a single co-
herent system for programmers to be able to reason and create distributed programs
with ease.

The second aspect to consider is how to handle the available intra-node parallelism.
The emergence of multi- and many-core processors has brought a large amount of paral-
lelism to be exploited within each node. Naturally, a plethora of frameworks, languages,
and compiler directives aiming at automatically paralyzing code for shared-memory ex-
ecution has emerged.

One possibility for programmers is to combine the techniques of distributed com-
puting and intra-node parallelism together in a hybrid manner. This approach means
that newcomers to the field of parallel and distributed programming need to familiarize
themselves with both distributed programming on one hand, and parallel programming
on the other to start developing applications. This comes as a significant burden, ef-
fectively requiring from programmers that they become expert in both fields to develop
applications for modern supercomputers.

Another approach may consist in using a higher-level framework or a language ded-
icated to distributed and parallel processing. Currently, a large variety of models and
programming languages implementing these models exist, each expressing their own point

of view of what a distributed program is. Some models completely hide the distributed
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nature of the hardware used to execute the program, while others allow programmers
to more finely control how and when independent processes communicate via dedicated
primitives.

As we will develop in Chapter [2| the difficulty with such models is that a compro-
mise needs to be struck between control and ease of use. Programming models that
completely hide the distributed nature of the program make it difficult for programmers
to leverage locality to make efficient programs. On the other hand, techniques that allow
programmers to manage the locality of their data will place a significant burden on the

programmer when it comes time to implement load balancing measures.

1.2 Motivation

We believe that with the appropriate abstractions and middleware to support them, the
barrier to entry into the field of distributed and parallel programming can be significantly
reduced. In the work presented in this thesis, we strive to provide the middleware that
will help non-expert programmers accustomed to “traditional” shared-memory Object-
Oriented Programming transition to distributed computing. We also aim to provide
the high-level abstractions that will allow more experienced application developers to
create complex and dynamic applications. As such, we prioritize the productivity of the
high-level abstractions over pure performance. A program written with the facilities we
propose should run reasonably well “out of the box,” without the programmer needing
to spend much time refining it.

At its most fundamental level, distributed computing involves decomposing a large
computation into multiple smaller units and to assign these units to several indepen-
dent computers to be processed in parallel. Load balancing is the act of assigning these
units of work in a manner which matches the compute nodes available processing power,
maximizing the program’s efficiency. For instance, let us consider an hypothetical com-
putation composed of 20 independent units of work of equivalent load. If we were to
distribute these units between 4 compute nodes, a balanced load assignment would con-
sist in attributing 5 units of work to each compute node.

In practice however, things are not that simple. First, it may not be possible to a
priori estimate the required computation load of each fragment. As an example, take
the enumeration problem of N-Queens which counsists in finding the number of ways N
Queens can be arranged on a N-wide square board without any two Queens threatening
one another [3]. A solution to the 8-Queens problem is shown in Figure[l.1] This problem
can be solved using a backtrack-search algorithm in which the nodes of the exploration
tree consists in placing (or removing, when backtracking) a piece on the board. Sub-trees
of the exploration tree can be explored independently and in parallel, but there is no way
to precisely estimate the size of a sub-tree. If you were capable of correctly estimating

the number of nodes in a sub-tree without exploring it, you would have effectively solved
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Figure 1.1: One of 92 solutions to the 8-Queens problem

the problem.

Secondly, the performance of the computers hosting the processes used to perform
the computation may be uneven, either through different hardware characteristics, or
competing processes from other programs running on the same host. As a result, a
“programmatically even” load distribution may result in unbalance in practice.

Without any measure taken, some processes will complete the units of work they were
assigned early and remain idle until the other processes also complete their part. It does
not appear reasonable to account for hardware discrepancies in a program as this would
imply modifying the program for every different hardware configuration encountered.
As for dealing with processes competing for resources on the same host, it is a dynamic
problem by nature and thus cannot be solved by static distribution adjustments.

For situations such as the ones mentioned above, dynamic load balancing techniques
appear to be an appropriate answer. Dynamic load balancing consists in modifying the
distribution of the computation units across processes during the computation as load
unbalances are detected. Multiple schemes and techniques can accomplish this goal, such
as profiling, and work-stealing schemes. It should be noted that since modern computers
rely on multi-core and now many-core processors, a large amount of parallelism is avail-
able both within and between hosts. Load balancing schemes therefore need to balance
the load both between processor cores and across processors.

In this thesis, we target two challenges facing distributed application developers. The
first one consists in finding the appropriate task granularity in a dynamic load balancer.

The second one concerns the management of persistent data in a distributed program.

Automatic granularity tuning Programming models, schemes, and techniques nec-
essarily rely on a number of arbitrary settings and parameters. While expert application
developers may be able to spend the time to adjust and fine-tune these parameters to
obtain optimal performance on specific applications, this is not the case for most peo-
ple. As one objective of our work is to provide simple abstractions and to guarantee
reasonable performance on a wide-range of applications, we find that leaving parameter

tuning up to users is not satisfactory. Instead, such tuning steps should be taken by
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the middleware itself, adjusting parameters on the fly to adapt to both the underlying
hardware and the supported program.

In this thesis, we consider the case of the multi-worker lifeline-based global balancer |4,
5,16]. This framework allows programmers to provide some computation through a simple
abstraction. The scheme then takes care of distributing and balancing the load across
compute nodes. One setting critical for the performance of this scheme is the task
granularity, i.e. the number of unit tasks performed together in a single batch. We
explore the criteria that will allow us to automatically adjust this setting to guarantee

optimal performance.

Relocatable distributed collections Current languages and libraries for distributed
programming may allow programmers to distribute data structures such as arrays across
processes. However, little support is offered to allow this initial distribution to be mod-
ified dynamically as load balances appear.

In this thesis, we introduce the notion of relocatable distributed collections. The
facilities we introduce allow programmers to explicitly and easily manage the distributed
nature of their program. In particular, the high-level dynamic entry relocation system
makes it possible for programmers to implement load balancing strategies for their own
application with ease. We then explore the possibility for the programmer to temporarily
surrender the management of their collections’ distribution to the runtime so that they
are load-balanced automatically. This allows less-experienced programmers to create

dynamically load-balanced programs with minimal effort.

1.3 Contributions

The contributions of this thesis are as follows. First, we claim the successful implementa-
tion of a hybrid dynamic load balancer and its application to combinatorial exploration
and optimization problems. We integrate a tuning mechanism into the scheme that au-
tomatically adjusts the task granularity to guarantee optimal performance. This tuning
mechanism is constructed as a feedback mechanism and relies on runtime information
to judge whether the granularity of the computation at hand should be either increased,
decreased, or kept as is.

Secondly, we claim the implementation of a distributed relocatable distributed col-
lections library. The collections provided are analogous to their shared-memory coun-
terparts, but with extra features handling their distributed nature. The introduction of
“teamed methods” offers a clear way to identify functionalities that require communica-
tion and/or synchronization between hosts to perform the desired computation. Entries
recorded into the distributed collections can be dynamically exchanged between pro-
cesses through a consistent set of high-level abstractions. This allows programmers to

control the object from from process to process with ease. It also allows load balanc-

4



1.4. Outline

ing techniques to be implemented by the user. Using these facilities, we introduce a
load-balanced version of the PlhamJ financial market simulator.

Finally, we claim the implementation of a dynamic load balancer integrated into the
distributed collection library. The programming interface we propose allows program-
mers to temporarily surrender the control over the collections’ distribution to the library,
which will in turn relocate entries of the underlying collections as unbalances appear.
This method allows programmers to automatically balance the load of their computa-
tion without having to craft and integrate their own load-balancing strategy into their

application.

1.4 Outline

The remainder of this thesis is organized in the following chapters. First, we recall
some useful background about programming models and paradigms for distributed and
parallel programs in Chapter [2| A particular focus is made on the Asynchronous Par-
titioned Global Address Space (APGAS) programming model and its use in the Java
programming language on which the work presented in this thesis is based.

Then, we discuss the problem posed by task granularity in global load balancers
in Chapter [8] The conditions necessary for the successful implementation of a hybrid
lifeline-based load balancer are discussed before introducing a tuning mechanism capa-
ble of dynamically adjusting the task granularity based on runtime metrics. The scheme
presented causes no detectable overhead and is robust against changes in problem im-
plementation.

In Chapter 4] we address the lack of inter-process communication in the APGAS
programming model by introducing our distributed relocatable collection library. Our
contribution comes as a complement to the APGAS for Java library and provides collec-
tions which mimic the Java standard library and provide support for common distributed
computation patterns through a consistent API.

In Chapter [5] we present the dynamic load balancer integrated into our distributed
collection library. The integrated global load balancer we propose relocates entries of
distributed collections within a clearly identifiable context. Internally, it borrows ideas
of the lifeline-based global load balancer discussed in Chapter [3]and adapts them to the
requirements of this situation.

Finally, conclusions and future perspectives are offered in Chapter [6]






Chapter 2
Background

In this chapter, we first outline current techniques, languages, and programming models
used in distributed and parallel computing today in Section 2.1l We then lay out the
case as to why we believe APGAS for Java is a good candidate to fulfill our objectives
and what it still lacks to achieve its full potential in Section [2.2]

2.1 Programming models for distributed & parallel com-

puting

There are many different programming models available to programmers to create par-
allel and distributed programs. In this section, we lay out the differences between pro-
gramming models with respect to two specific areas of interest: locality and dynamic

distribution management.

Locality corresponds to how the programming model allows programmers to control
what computation is assigned to which process. This refers both to data and task man-
agement. As we will see, some models provide a higher-level abstraction of a distributed
program which is more detached from any execution consideration, relieving program-
mers from the need to manage locality. Other models require that all things distributed

be managed explicitly.

Dynamic distribution management refers to the capability for data to be redistributed
between processes after an initial allotment to processes has been made. Not all pro-
gramming models and languages used for distributed programming support this kind of

facilities, and the involvement of the programmer can vary greatly.

We should point out that any programming language is not precluded to a single
category. Frameworks built on top of a particular programming model may belong in

another category.
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2.1.1 MPI

The Message Passing Interface (MPI) is a standard for communication whose first version
was established in 1994 [7]. It has become a de-facto standard for many high-performance
programs either used directly or to support higher-level abstractions. MPI itself is merely
a standard defining the C calls that are available to programmers, with multiple existing
implementation. The standard itself has been revised a couple of times since its inception
to introduce new features such as process creation and management, parallel 1/0, and
one-sided non-blocking communications [8]. The current version at the time of writing
stands at Version 4.0.

While the most essential use of MPI is done through calls to a C of Fortran inter-
face, multiple projects have introduced a compatibility layer with the Java programming
language. Use of the C “native” MPI calls can now be made from a Java program. The
conversion layer between the native C calls and the Java language either usually comes
in the form of a series of Java objects and methods organizing the MPI functions in a
Java-friendly class hierarchy. These Java calls are supported through the use of Java
Native Interface (JNI), which allows “native” C code to be called from a Java program.
The translation between C and Java arrays is done in this compatibility layer which
needs to be compiled and on top of an existing C language MPI implementation, as in
mpiJava [9] and the MPJ-Ezpress |[10] projects. Notably, OpenMPI [11] ships with its
own Java compatibility layer.

MPI offers a “same program multiple processes” view of a distributed system. This
means that the program’s main will execute on every process spawned for the execution
of the program. It is possible to make processes perform different computation by intro-
ducing conditions based on the number, or “rank” in MPI terminology, of the running
process. Control over which process executes what code over which data is therefore
explicit. If data needs to be dynamically relocated between processes, this will require
significant programmer investment as no direct support for such features exist in the
MPI standard. Intra-host parallelism needs to be implemented with the help of external

libraries or compiler directives as MPI is solely focused on inter-host communication.

2.1.2 Charm-+-+

At its core, Charm—++ relies on over-decomposing the problem into many objects, “chares”
in the language’s idiom |12, 13]. Communication is performed by sending “messages” be-
tween chares which correspond to a call to a method of this object. The programming
model is agnostic to distribution, meaning the programmer does not know how the var-
ious chares used in their program will be distributed across the processes actually used
to run the program.

The strength of Charm++ lies in its embedded load balancing strategies. Indeed,

the Charm++ runtime is capable of profiling the running program and relocating chares
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between processes to balance the load between processes. A consequence is that the
programmer remains quite removed from any locality concerns.

While the abstraction brought about by the Charm-++ programming language are
expressive and powerful, they require some getting used to. In particular, the global
termination detection scheme which relies on quiescence is a significant hurdle. Also, the
fact that the order in which messages are processed by the chares is not deterministic

may be problematic for some applications.

2.1.3 Map/Reduce frameworks

The main idea of the Map/Reduce framework is to use inputs of various nature, pro-
duce new data through a number of “map” operations, and aggregate this data through
“reduce” operations. The programmer is in charge of implementing what the map and
reduce actions on the data source consist in, while the scheduling and execution in a
large scale cluster or cloud environment is managed by the system. As this offers a sim-
ple framework for programmers, the barrier to entry is significantly reduced compared
to other distributed computing approaches. The most popular implementations of this
framework are Hadoop [14] and Spark [15].

While the low barrier to entry of Map/Reduce frameworks make them appealing to
computer scientists dealing with large datasets that require a large amount of parallelism
to process them in reasonable time, the expressiveness of this model is somewhat limited.
No notion of locality or distribution management can be expressed by the programmers as
the system’s runtime is solely in charge of scheduling the tasks on the processors. There
is however much research looking into how to make this as efficient as possible |16}, |17].

Admittedly, considering Map/Reduce in terms of programming model is quite reduc-
tive as their most appealing characteristic lie in their integration in a broader ecosystem
for big data analytics, comprising interoperability with database management systems,

distributed file system, cluster resource management, job schedulers etc |18, [19].

2.1.4 (A)PGAS languages

The Partitioned Global Address Space [20] (PGAS) programming model is implemented
by multiple programming languages, including Coarray Fortran |21, 22|, Unified Par-
allel C (UPC) |23, 24], UPC++|25|, Xcalable MP |26, 27|, and PCJ |28 29]. The
Asynchronous Partitioned Global Address Space (APGAS) extends the PGAS model
by introducing asynchronous tasks executing on one of the locality abstractions, with
languages such as X10 [30], Habanero-Java [31, 32|, and Chapel [33] implementing this
model.

At its core, languages that implement these programming models embed an ab-
straction representing a running process within the language itself. Typically, processes

running the program are numbered from 0 to n —1 for an n-process execution, analogous

9



Chapter 2. Background

to the notion of rank in MPI.

The “partitioned global address space” means that variables located on a process can
be accessed from a remote process through facilities provided by the language. Such
variables are therefore “global” in the sense that they can be accessed from any process
participating in the program through some form of globally unique identifier. Depending
on the language, this identifier may take the form of an index in a distributed array, a
global pointer, or a generic identifier such as a globally unique key. The address space
is partitioned between the running processes, meaning that the variables that possess a
global address are actually handled by one of the processes. Depending on the process
considered, there are therefore “local” memory accesses if the process itself is handling
the data, or “remote” memory if the data is handled by another process.

Depending on the language, there are subtle variations on the implemented pro-
gramming model. For instance, UPC [23] introduces the notion of global pointers which
refer to some memory allocated on a process. Inside the program, if access is made to
a global pointer and the corresponding memory area belongs to a remote process, the
UPC compiler will automatically add the code to make the remote access during com-
pilation. Access to remote memory is therefore implicit to some degree. In the more
recent version of the UPC++ [25] language which is derived from UPC, dereferencing
global pointers needs to be performed through a specific call, forcing the programmer to
explicitly recognize the distributed nature of the program.

Chapel supports distribution of arrays through Block, Cyclic, and Cyclic Block dis-
tributions. With an initial array defined, the location of these pieces can be defined
using these pre-defined distributions. However, Chapel does not support this features
for maps, or associative domains per the Chapel idiom. Deitz et al. [34] explored im-
proving the programability and the performance of distributed scans and reductions in
Chapel and MPI. In particular, they supplement MPI with a set of preprocessor direc-
tives that automatically generate the code to make user-defined parallel and distributed
reductions.

PCJ brings the PGAS programming model to Java in a pure Java library, relying on
Java annotations to mark the variables that belong to the global address space in par-
ticularly elegant manner. The library also provides collective communications operating
on the variables of the global address space such as broadcast, scatter, reduce and
others in pattern similar to MPI but adapted to their programming model [29].

Another distinction depending on the model is the adoption of a “local view” or a
“global view.” In local view, the program is written from the point of view of one process
communicating with the other processes, while in global view the program is written
for the entire cluster as a single consistent entity. UPC, UPC-++-, Habanero-Java, and
X10 are examples of programming languages that adopt the “local” view, while Coarray

Fortran and Chapel adopt the “global view”. Xcalable MP can adopt both.
Managing locality with a PGAS language is made easy through the introduction of
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2.2. APGAS for Java

import static apgas.Constructs.x;
import apgas.Place;
class HelloWorld {
public static void main(String[] args) {
System.out.println ("Running_main_at_" + here() + "_of_" +
places().size() + "_places");
finish (() — {
for (Place p : places()) {
asyncAt(p, () —> System.out.println ("Hello_from_" + here()));
}
1)
System.out.println ("Bye");
}
}
Listing 2.1: Distributed Hello World in Java
Running main at place(0) of 4 places
Hello from place(0)
Hello from place (3)
Hello from place(2)
Hello from place (1)
Bye

Listing 2.2: Possible output of the Listing program running with 4 processes

some representation of a process within the language. However, dynamic relocation after
an initial distribution of a data structure has been made is generally not supported.
One exception is the case of X10 which allows any from of user-defined distribution
for its DistArray [35] if the programmer so desires it, but modification of an existing
array is not supported. Instead, a new array can be created based on the contents of the

old one.

2.2 APGAS for Java

The X10 implementation of the APGAS programming model was later ported to Java
in the form of a library [36]. The keywords of the X10 language were converted to Java
static methods taking lambda-expressions as parameter. With the use of this library,
Java effectively becomes an APGAS language.

A distributed Hello World program demonstrating the use of the finish and asyncAt
constructs is presented in Listing 2.I] A possible output of this program shown in
Listing 2.2 In this example, the finish method is called on line 7 to 11, with an
asynchronous activity spawned on each place participating in the computation using a
for loop and the asyncAt method on line 9. The program will not progress beyond the
finish until every place prints its “hello” message.

First and foremost, Java is a popular programming language featuring an exten-
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sive standard library. A large number of third-party libraries is also available on public
repositories such as Apache Maven|37|. Unlike programming languages dedicated for
distributed computing that often rely on an intermediary compilation to another lan-
guage before producing the final binaries, the compilation toolchain for Java is rather
straightforward with good support in modern IDEs.

Secondly, Java has a clear memory model, independent from any hardware architec-
ture, in which the notions of threads and synchronization scheme between threads oper-
ating in shared-memory are defined [38]. In particular, the Java Memory Model allows
the JVM to re-order program instructions as long as the “happens-before” relationships
between threads that synchronize is preserved. This allows application developers to
reason on this model, rather than having to re-adjust for different architectures.

As such, Java combined with the APGAS for Java library makes for an interesting
stepping stone into the world of distributed and parallel computing. For newcomers to
the field, it provides a familiar environment to Java programmers, with new features to
handle the distributed nature of the program. For more experienced programmers, the
high-level abstractions of the APGAS for Java library will support dynamic and complex
task schedules controlled by the finish/async constructs. One such application, the
lifeline-based global load balancer |4} 5, 6], is the subject of Chapter

Although the APGAS for Java library appears promising, there are a number of
features desired for distributed computing not provided. Most notably, no method for
communication between activities running on different processes is provided. A simple
approach could consist in combining APGAS for Java with a library which supports
communication between processes such as MPI. However, this would not be suflicient.

While many common communication patterns such as broadcast or reductions are
supported in MPI, these interfaces concern primitive types (int, double etc.) While this
may be satisfactory for numerical simulations, it does not support those same patterns
for object-oriented programs. Instead, higher level abstractions and features are desired,
with a communication library serving in a support role in the background. We develop
our vision for what these higher-level abstractions should be in Chapter f] and [5]

12



Chapter 3

Task Granularity Tuning for the
lifeline-based multi-worker GLB

The lifeline-based global load balancer [4] is a distributed load balancing scheme capable
of dynamically redistributing some computation implemented by users following a spec-
ified APL. Its scaling and dynamic load balancing capabilities were demonstrated on the
Unbalanced Tree Search benchmark [39], a particularly difficult tree traversal due to its
inherent irregularity and unpredictability.

In this chapter, we explore two challenges in the implementation of the multi-worker
lifeline-based global load balancer. The first one consists in a fairness issue between the
various activities used to implement the multi-worker variant of the scheme. The second
issue we tackle consists in determining an appropriate setting for the task granularity.
While this parameter is important for the general performance of the scheme, there
are no methods that can allow users to determine a priori what a good setting would
be. We propose a tuning mechanism embedded into the load balancing scheme which
dynamically adjusts the setting as the computation takes place based on recently sampled
runtime information.

This chapter is organized as follows. We first cover some background information
concerning this load balancing scheme in Section [3.1} In Section we discuss the
conditions necessary for the successful implementation of this scheme in Java. We then
cover related work about task granularity tuning in Section before introducing our
main contribution, the grain tuning mechanism, in Section[3.4l We present our conclusion
and perspectives in Section [3.5]

3.1 Background on the lifeline-based global load balancer

The lifeline-based global load balancer is a work-stealing scheme first introduced in
X10 [4,5]. Its main feature consists in defining pre-determined channels for work stealing

between places, the so-called “lifelines.” When a place runs out of work and is unable to
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steal some from a randomly selected victim, it signals its “lifeline” counterparts that it
needs some work and passively waits until either work is sent to it, or the computation
completes. This mechanism allows the load balancing scheme to maintain high efficiency
even for large cluster sizes up to several thousand processors [5].

In the original scheme, there is only one worker thread per process. In a later evolu-
tion we discuss in Section this scheme was extended to support multiple workers

on the same process.

3.1.1 Abstraction for programmers

The abstractions provided to the programmer under both of these schemes are summa-
rized in the Bag abstraction. In our Java implementation of the load balancer, it comes
as an interface that programmers need to implement in their class that contain the data-
structures that represent the computation at hand. The methods that programmers

need to implement are the following:

e void process(int, R): processes a certain amount of computation, that amount
being specified by the integer parameter of the method. An instance of the result
type R is also provided to the worker to read and/or write information shared with

the other workers on the same host during the computation.

e B split(boolean): returns a new bag instance containing a fragment of the com-
putation held by the current bag. The boolean parameter is here to indicate
whether or not all of its contents should be given away in the event the instance

cannot be split.

e void merge(B): merges the contents of the bag instance given as parameter into

this instance.

e boolean isEmpty(): indicates if this bag is empty, i.e. if it does not contain any

work.

e boolean isSplittable(): indicates if this bag can be further split, i.e. if work

can be taken from it without emptying it altogether.

e void submit(R): is called when the computation has ended and the result gath-
ering phase begins. This method gives the opportunity to the bag to put its

contribution to the final result into the instance provided as parameter.

To balance the load, a fragment of the computation can be obtained from a bag by
calling the split method before transferring and merging that fragment into another
bag instance. The split and merge methods’ implementation is entirely left to the
programmer. This grants complete control over the internal data structure used to

represent the computation. The library remains oblivious to the data structure used by
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the bags, and while programmers are advised to program the split method such that
half of the contents of the bag are given away, there is no actual mechanism to enforce it.
The library guarantees that calls to the split and merge methods on any bag are made
sequentially. Programmers do not have to concern themselves about potential concurrent
accesses made to their Bag implementation as they do not occur in the multithreaded

lifeline-based global load balancer.

3.1.2 Lifelines

As mentioned above, the key innovation of the lifeline-based laod balancer scheme is
that it introduced preferential channels for work-stealing, the so-called lifelines. Taken
as a whole, the lifelines of all the processes combined form a directed graph of passive
stealing channels, the lifeline graph.

In the initial stage, all the lifelines between all the processes are established. The
initial bag containing the entire computation is arbitrarily given to the first process
(place 0). The worker process of the first process will split its task queue to provide
work to the processes which have lifelines established on place . These processes will in
turn do the same with the processes with lifeline established on them until work trickles
throughout the whole cluster. This scheme elegantly solves the problem of termination
detection as all asynchronous activities that carry work are transitively spawned from
the same superseding finish. When all the activities on all the hosts terminate, the
enclosing finish returns, guaranteeing that global termination was achieved.

It is generally understood that the lifeline graph needs to be connected for the work-
stealing scheme to be effective. Indeed, using a non-connected lifeline graph would cause
work not to trickle from the initial place 0 to the subset of non-connected processes,
causing them to remain idle throughout the computation.

Besides connectivity, two more desirable properties for the lifeline graph are listed by
the creators of the scheme: bounded out-degree, and low diameter [4]. A bounded out-
degree means the number of lifelines established (and received) by each process should
be limited so that processes with work do not spend too much time addressing lifeline
thieves when work becomes scarce. As for the low-diameter, it means that the maximum
number of hops needed to travel between any two nodes in the lifeline graph should be
limited. An extreme (but useful) example of a lifeline graph with high-diameter would
be the directed loop between all the processes in the program. In a situation with N
nodes, the average distance between nodes is N/2. When the number of processes used
remains small this approach can give satisfactory results. However, when using a larger
amount of processes, work takes too long to reach the last node in the graph, resulting
in much of the cluster to remain idle for prolonged periods of time.

Although the influence of the lifeline strategy selection has not been studied thor-
oughly, there is consensus on the fact that the family of cyclic hypercubes satisfy the

properties mentioned above. The cyclic hypercubes graphs can be defined as follows:
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Figure 3.1: Overview of the multithreaded global load balancer opeprations within a
place

Given a number of processes N, N € N, choose a radix h,h € N and a power z,z € N
such that h*~! < N < h%. Each vertex p is represented as a number in base h with
z digits.

Each vertex has an outgoing edge to every other vertex at a distance +1 from it
in the Manhattan distance (in modulo h arithmetic). That is, the vertex p labeled

(al,...,az) has an outgoing edge to every vertex q such that for some i € 1..2,q =
(al, ..., (ai + 1)%h, ..., az).

Using radix 2, the graph draws a 2-D square, a 3-D cube, and a 4-D hypercube for

4, 8, and 16 vertices respectively.

3.1.3 Multi-worker GLB

In the original X10 scheme, the lifeline-based global load balancer only supports one
worker per host. A later evolution of this scheme, the multithreaded lifeline-based global
load balancer 6] (multi-GLB) keeps the same computation abstraction and lifeline mech-
anism between places but makes each place run multiple worker threads in parallel in-
stead of a single one as per the original scheme.

With this scheme, it is no longer necessary to use multiple places (or processes) per
host to use all the cores of the hosts used for the computation. Instead, a single place
containing as many workers as there are cores on the underlying processor can be used.
This also brings the opportunity for workers on the same host to easily share information
as they operate in shared-memory. A graphical representation of the design including
the main load balance operations that occur within a host is depicted in Figure

Instead of making remote steals when a worker runs out of work, the remote steals
are made when all the parallel workers on the host run out of work. Within a place,
each worker holds its own dedicated bag instance throughout the computation. Load
balance operations are achieved through the use of two additional bag instances that are
not processed by any worker. One bag - the inéra-bag - is primarily used to handle load
unbalances within a host, while the second bag - the inter-bag- is used to handle steals
attempts coming from remote places. The workers on the place collaboratively maintain

some work available in both of these bags for a potential thief, be it a local worker or a
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remote place.
In its original X10 implementation, this load balancer suffered from a few problems

concerning the scheduling of messages. These were resolved in our Java implementation.

3.2 Fairness between activities of the multi-worker load-

balancing scheme

3.2.1 Problem statement

For maximum processing power of the multi-GLB scheme, it makes sense to use as many
worker activities as there are cores on the underlying host. However, making such a
choice will prevent the scheme from operating as intended. The issue stems from the
fact that worker activities are long-running tasks.

In the implementation of the X10-style APGAS programming model in Java, asyn-
chronous activities are submitted for execution to a common thread pool on each process.
In the multi-worker lifeline-based global load balancer scheme, all the activities (worker
activity, lifeline-answer activity, steal activity), are therefore submitted to this unique
pool. As per the normal execution policy of thread-pools, tasks submitted execute until
completion.

Allowing as many worker activities as there are cores on the underlying host will result
in the worker activities monopolizing all the computing resources. As a result, incoming
steal requests coming in the form of stealing asynchronous activities will remain staged in
the thread pool until one of the worker activities terminates, as illustrated in Figure[3.2al

This goes against the intent of the work-stealing scheme for two reasons. First, this
causes a significant delay between the time the steal request of a remote host is sent and
the moment it is actually processed. In the meantime, the thief remains idle. Secondly,
the fact that a worker activity terminated on the host is a sign that work is getting
scarcer. Therefore, there is good chance that the fragment of work eventually stolen
turns out to be relatively small. As a result, the thief will soon run out of work again
and restart this ineffective work-stealing process.

In the first implementation of the multi-worker lifeline-based global load balancer in
X10 [6], the choice was made to allocate 1 fewer worker than the available number of
cores on the running process. This helps scheduling the asynchronous activities coming
from remote hosts on the process as there remains one core available at all times for

other activities at the cost of reduced computing power.

3.2.2 Yielding worker mechanism

To resolve this scheduling issue, we introduced a yielding mechanism to the routine of
worker activities. This mechanism forces a worker activity to stop its progression to

allow other activities submitted to the process to execute before resuming execution.
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Figure 3.2: Scheduling of steal activities in the multi-GLB work stealing scheme

Internally, this is implemented using the ManagedBlocker feature provided by the
ForkJoinPool class [40]. Usually, a ManagedBlocker is used when a task in the pool
needs to perform some kind of long-waiting blocking operation or synchronization. Us-
ing the ManagedBlocker mechanism to perform such blocking operations allows the
ForJoinPool to put temporarily suspend this thread and schedule a new thread in its

place.

We exploit this mechanism by adding a step in the main routine of workers, consisting
of checking if there are any tasks submitted to the pool waiting to be scheduled. If the
maximum number of workers is currently running and tasks are pending, the worker
voluntarily blocks on a semaphore within a managed blocker, allowing the thread pool

to schedule the pending tasks.

Looking at a single worker activity, this yielding mechanism appears to go against
the “work first” principle generally observed in work-stealing schemes, but considering
the scheme as a whole draws a different picture. First, the operation of this yielding
mechanism is only done when the maximum number of worker activities are running,
i.e. monopolizing the available cores of the processor. Also, a maximum of one worker
activity is allowed to yield at any time. Finally, all activities used in the load balancing
scheme proceed to unblock the potentially waiting worker activity before terminating.
This guarantees that as soon as any activity completes, be it a steal activity or an-
other worker activity, the yielding worker is immediately allowed to resume execution,
as illustrated in Figure [3.2b]
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The result is that worker activities and other activities are capable of sharing the
resources on the process and intertwine their execution. Steal activities coming from
remote hosts are addressed in a timely manner and the maximum available parallelism

on the host is used for computation.

3.3 Related work about granularity tuning

Parallel processing generally involves breaking down the computation into smaller parts
which can be independently and/or concurrently computed. However, breaking up the
computation at hand into the smallest unit possible is usually not the most efficient
solution as there is a limit beyond which further exposing the inherent parallelism of
the computation does not provide any advantage. On the contrary, it may cause in-
creased management cost or memory footprint. To counter the undesirable effects of
over-decomposing computation units, these irreducible independent tasks get packed
into larger computation unit. This is referred to as grain coarsening. The number of
individual tasks aggregated into these individual units is called the grain size or grain.
One difficulty in precisely defining what the “grain” is stems from the fact that it de-
pends on the context considered. Different programming paradigms introduce different
nuances to this notion.

The most popular programming model for parallel computation relies on the Fork/Join
model. Typical implementations in shared memory processor rely on a pool of threads,
with each thread having its own queue of tasks to process. Tasks can generate new tasks
which are added to the worker’s queue. When a worker runs out of work, it attempts to
steal tasks from a neighboring thread to resume its computation. Several works elaborate
on this scheme to reduce the overhead due to the task creation, such as Wang et al [41],
or influence the tasks stolen to favor cache consistency, as in LAWS[42] and Constrained
Work Stealing [43]. Min, Iancu and Yelick also present their own implementation of
a distributed task library over UPC in HotSLAW [44]. They define a hierarchy that
matches the characteristics of the (distributed) hardware at hand (cache, socket, and
node level). Workers that run out of work try to steal on workers that are close to them
first, only stealing from workers further away in the hierarchy if failing to obtain some
from close workers. Moreover, they adapt the number of tasks stolen at each level, with
closest level steals stealing only 1 or 2 tasks and remote steals stealing half of the tasks
contained in the queue. This is a characteristic not supported under the lifeline-based
global load balancer as the grain is not related to the amount of work transferred when
a bag is split.

Our tuning mechanism bears some resemblance with the adaptive grain mechanism
presented by Cong et al. in XWS [45]. They reuse the task-parallelism model of Cilk [46]
and enhance it with the capabilities of the X10 language to target graph algorithms. In

their target applications, each node of the graph at hand represents one task. Coarsening
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is achieved by grouping the nodes in the workers’ queues in batches. Working threads
always process and steal entire batches of tasks. The appropriate batch size for each
worker is dynamically adjusted following a heuristic on the current size of its queue. The
abstractions offered by the lifeline-based global load balancer are different. First, while
programmers may choose to implement their bag as double-ended queue of tasks, there
is not obligation for them to do so. The load balancing routines remain oblivious to the
internal implementation of the Bag abstraction. Secondly, our library guarantees that
bags are only manipulated by a single thread at a time. In our scheme, load balance
operations using either of the work reserves are done in mutual exclusion whereas in
XWS, a worker is allowed to steal from a second worker while this second worker is
processing a batch. Again, in our case there is no relationship between the size of the

grain used and the amount of work which can be stolen from a bag.

3.4 Grain tuning mechanism

In the context of both the lifeline-based global load balancer and its multithreaded
variant, the task granularity corresponds to the number of individual tasks processed
during each iteration of the workers’ main routine. This is a sensitive setting since this
integer parameter does not have any meaning outside the context of a specific application.
Setting an arbitrary value on the library side is not satisfactory. Also, we cannot expect
users of the library to be able to predict what a good value would be for their application.
The ideal grain size will vary depending on the problem at hand, as well as the size of
the cluster used. Changes to the implementation of a problem may also change the
performance characteristics of a problem.

We aim at eliminating the need for users to guesstimate this value by integrating a
tuning mechanism into the load balancer library that will automatically adjust the grain
size to achieve good performance. In Section [3.4.1) we detail how the grain size influences
the behavior of the load balancer. We then discuss the assumptions and heuristics on
which our tuning mechanism relies in Section Implementation details are briefly
discussed in Section B.4.3] before the evaluation in Section B.4.4]

3.4.1 Influence of the granularity on the worker activity

The multithreaded global load-balancing scheme relies on several kinds of asynchronous
activities to handle the distributed computation [6]. In this section, we will discuss the
main routine of the “worker activity” along with some of the load-balancing mechanisms
within a host as they are directly relevant to how our tuning mechanism operates. The
main routine of the worker activity is presented in Listing Note that some elements
pertaining to synchronization were removed for clarity.

When an idle host receives work, the computation received is merged into one of the

workers’ bag and a first worker activity is spawned with that bag given as parameter.
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1| void workerActivity (Bag workerBag) {

2| do {

3 do {

4 // Step 1 — if able, spawn a worker activity

5 if (runningWorkers < maxWorkers && workerBag.isSplittable()) {
6 Bag fragment = workerBag.split (false);

7 idleWorkerBag . merge (fragment ) ;

8 asyncAt (here(), ()—> workerTask(idleWorkerBag));

9 }

10

11 // Step 2 — if the intra—bag is empty and the worker’s bag can
12 // be split, feed the intra—bag.

13 if (intraBagEmpty) { // wvolatile boolean flag

14 if (workerBag.isSplittable()) {

15 // Workers will block here in case of extreme contention
16 synchronized (intraBag) {

17 Bag b = workerBag.split (false);

18 intraBag.merge(b) ;

19 intraBagEmpty = false; // flag update

20 }

21 }

22 }

23

)
=
\
~
@)
~
o
=

3 — if feeding the inter—bag is needed and the

25 // workerBag can be split, feed the inter—bag
26 // Step 4 — Check if there are remote thieves that can be
27 // answered

28 // Step 5 — Yield to load—balancing activities if needed
29

30 // Step 6 — Do some work

31 workerBag . process (n, sharedResult);

32

33 // Repeat from step 1 until the workerBag is empty

34 } while (!workerBag.isEmpty());

35

36 // Step 7 attempt to steal from the intra—bag

37 if (the intra—bag is not empty) {

38 workerBag . merge (intraBag. split (true));

39 intraBagEmpty = intraBag.isEmpty(); // Update the flag
40 }

41 // Step 7—bis if wunable to steal from the intra—bag attempt to
42 // steal from the inter—bag

43 else if (the inter—bag is not empty) {

44 workerBag . merge (interQueue. split (true));

15 }

46 // If work could be obtained, repeat from step 1.

47} while (!bag.isEmpty());

48 // The worker could not get work from either bag, it stops.

49 // It may be spawned again by another worker performing step 1.
50| }

Listing 3.1: Worker activity main procedure
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While the worker has some work in its bag, they will loop through steps 1 to 6 of their
main procedure (lines 3 to 34 in Listing , with step 6 consisting in performing the
computation. In its first step, the worker checks if it is possible to spawn an additional
worker activity in the first step of its main routine. Provided this first worker’s bag can
be split, another worker activity will be spawned, which will in turn (transitively) spawn

other workers until the maximum number of concurrent workers on the host is reached.

In steps 2 and 3, the workers try to maintain work in both shared bags on the place.
If a worker performing step 2 finds that the intra-bag is empty and that it is capable of
splitting its bag, the worker splits a fragment from its bag and merges it in the intra-bag.
The inter-bag involved in step 3 follows a similar scheme. We do not detail steps 4 and 5
which are involved in guaranteeing the scheduling of work stealing activities as discussed
in Section

When a worker runs out of work after performing step 6 and exits the inner do-while
loop of its procedure, it will attempt to take some computation from the intra-bag in
step 7, or as a last resort from the inter-bag in step 7-bis, to immediately resume its
computation (lines 36 to 45 in Listing B.I). If the intra-bag gets emptied as a result,
another worker performing step 2 will place some computation back into it. The next
worker to run out of work will therefore be able to take some computation from the
intra-bag again.

If a worker runs out of work when neither the intra-bag nor the inter-bag contain any
work, it will escape the outer do while loop (line 47 in Listing and terminate. A
new asynchronous worker activity may be spawned back again by a worker performing

step 1 of its main routine.

The attentive reader will have noticed the parameter “n” of the process method in

step 6 of the worker’s main procedure (line 31 in Listing [3.1)). This integer determines
the grain size. In general, it should be seen by programmers as the number of indivisible
computation units to be performed in a call to method process before returning. As
a consequence, the grain size is correlated to how much time workers spend in step 6,
influencing how often they go through the inner do-while loop. If this parameter is
low, the worker activities will go through their loop more frequently. Conversely if the
chosen grain is large, workers will spend more time in step 6 and go through the loop

less frequently.

The purpose of the two shared bags on each host is for workers that run out of work
to steal from them and continue to participate in the computation. An issue that arises
when the grain is too large is that when these queues become empty, there is a delay
until a worker checks the queues status in steps 2 and 3 and puts some computation
back into them. As a result, workers that run out of work are more likely not to be
able to steal any work in step 7 and terminate, reducing throughput. These workers will
eventually be spawned back by other workers performing step 1, but for the same reason

this will also happen after a delay. A situation where the grain size is too large on a
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host will therefore be characterized by intervals of time where fewer than the maximum
number of concurrent workers are running.

As workers go through the inner loop of their procedure, various checks are made.
These consists of reading some volatile boolean flags and calling methods of atomic data
structures. These are quite lightweight, but they will still generate some overhead if
they are made too often. Moreover, with many workers running in parallel, there is also
an increased risk of contention on the bags used for load balancing when load-balancing
operations are actually needed. Since the accesses to the bags are made in mutual
exclusion using synchronized blocks, we risk creating a bottleneck by using a grain size

too low.

3.4.2 Heuristics

The tuning mechanism we integrated into the multi-GLB relies on a pair of heuristics to

construct a basic feedback mechanism.

3.4.2.1 Diagnosis of a grain too large

As explained above, executions with a grain too large will cause workers that run out
of work to remain idle for prolonged periods of time. As an indicator that the task
granularity is too large, we use the proportion of the time spent with the maximum
number of workers. If this proportion drops below a certain trigger level, it is inferred
that the grain currently in use is too large. Based on the empiric characteristics of static
grain executions of the Unbalanced Tree Search benchmark, we deem the grain size to
be too large if less than 90% of the elapsed time is spent with the maximum number of

workers.

3.4.2.2 Diagnosis of a grain too small

We developed two heuristics to detect cases where the grain is too low. Both rely on a
subtle effect low grain executions have on the handling of the intra-bag.

When a worker empties the intra-bag, it sets the boolean intraBagEmpty flag to true
in line 39 of Listing The next worker to perform the second step of its main routine
will read the value of the flag as true in line 13 and (if able), place some work back
into the intra-bag before setting the intraBagEmpty flag back to false on line 19. Any
subsequent worker to perform the check in line 13 will read the updated value of the
boolean flag and move on to the next step of its routine without placing work into the
intra-bag.

However, it is possible for multiple workers to place work back into the intra-queue

¢

as a result of it being emptied once due to a data race between the “read” on the

[4

intraBagEmpty flag on line 13 and the “write” of the first worker placing work back

into the queue on line 19. Usually, data races are best avoided in concurrent programs.
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However in this particular case, it does not adversely affect the correctness of the pro-
gram thanks to the synchronized block protecting the access to the intra-queue spanning
lines 16 to 20.

This situation where the intra-bag is likely to be fed several times after getting
emptied only once is more likely to occur in situations where the grain is low. Our
tuning mechanism leverages that fact to detect this situation.

We could eliminate the redundant feeding of the intra-bag by changing our volatile
boolean flag for an atomic integer. However, the redundant feeding isn’t a performance
problem in itself. Rather, the fact that it occurs beyond a reasonable level is the sign
that workers go through their loop too often, creating overhead. In such a situation, the
performance suffers more from the overhead created through excessive checking than from
the contention on the shared queue when it becomes empty. As our tuning mechanism
detects this situation and increases the grain size, any contention on the queues will

naturally disappears.

Early “split/merge” design In an early design we introduced, we used the ratio be-
tween the number of times work is split from the intra-bag and the number of times
work is merged back into the bag to determine if multiple workers were able to redun-
dantly feed the intra-bag. We call the tuner that relies on this criterion “split/merge

tuner.”

This indicator, however, relies on the assumption that the programmer imple-
ments the split method of its bag such that successive calls to this method recursively
give away half of the contents of the bag. Under this assumption, if the intra-bag is fed
by multiple workers as a result of being emptied once, it will take comparatively fewer
split calls to empty it again than it would have if a single worker placed work into the
intra-bag each time it got emptied.

Using empiric data, we set the split/merge “trigger” level to 2, meaning that if fewer
than two workers are able to take work from the intra-queue for each time work is placed

back into the queue, the grain is deemed too small.

“merge/empty” design We have since departed from this criterion and designed a
new version of our tuning mechanism. We now directly measure the number of redundant
feedings of the intra-bag by comparing the number of times the intra-bag was emptied
in lines 39-41, with the number of times a worker puts work back into the intra-bag in
lines 17-19 of Listing

We call this new criterion “merge/empty” because in the context of our global load
balancer library, it corresponds to the number of times workers merge work into the
intra-bag divided by the number of times the intra-bag is emptied. From a runtime
perspective, it is the ratio between the number of workers that go through the if block
in lines 13-22, and the number of times the boolean flag which guards this if block is

set to true, allowing workers to enter it.
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3.4.3 Integration with the GLB runtime

The tuning mechanism is implemented as an extra asynchronous activity, the tuning ac-
tivity, on each place of the global load balancer’s runtime. The tuner is called periodically
and remains inactive the rest of the time.

When the tuner is called, it directly reads the information accumulated in the load
balancer’s local logger. By comparing the current values with the ones from the previous
time the tuner was called, the tuner is able to determine what took place during the last
interval. It can then evaluate the heuristics mentioned above, draw its conclusions, and
modify the grain size if necessary.

Initial experiments showed that the two indicators we use to detect if the grain is
too low or too high are not infallible. Throughout the execution, there are times when
the indicators draw the “wrong” conclusion or contradict themselves. As a moderation
mechanism, we choose to only modify the grain size if the same conclusion is drawn by
the tuner twice in a row.

When changing the value, we double (or divide) the current value by a factor 2.
Combined with a tuning interval of 1 millisecond, this allows us to cover the very large
range of values that the grain can take over a short period of time. In all our experiments,
we purposely set the initial grain size at a very low value of 10. The tuner activities
of each place are free to adjust the grain as soon as the computation starts, and do so
independently from one another. As a result, the chosen grain on two different compute
nodes of the distributed computation may differ.

We did not witness any overhead imputable to this extra activity. This was checked by
running distributed computations with the tuner activity active but keeping the chosen
grain fixed. These executions produced the same execution time as regular fixed grain
executions without this additional activity. This can be explained by the fact that the

decision making takes an insignificant amount of computing power.

3.4.4 Evaluation
3.4.4.1 Benchmarks used

To evaluate the performance of our tuning mechanism, we use four backtrack-search
applications: N-Queens, Pentomino, the Traveling Salesman Problem (TSP), and the
Unbalanced Tree Search (UTS).

We implemented these problems in a similar manner, using a pair of arrays to describe
ranges of branches at each level of the exploration tree. Splitting the exploration is
reduced to dividing this interval into two, matching the lowerbound of the thief to the
upper bound of the victim for each layer of the exploration. This operation is therefore
bounded in time and space by the depth of the exploration. As the branches are implicitly
described, the size of the data transfered from host to host during load balance operations

is independent from the actual amount of work transferred.
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Figure 3.3: A particular solution to the Pentomino and the One-sided Pentomino
problems

In this section, we briefly introduce each application and discuss some selected details

about our implementations.

N-Queens The N-Queens problem consists in finding all possible arrangements such
that a maximum number of Queens are placed on a chessboard of width N without any
two Queens threatening one another. We model the problem as an exact cover problem,
which consists in finding all the different subsets of rows of a matrix of Os and 1s such
that for each column of the matrix, exactly one row has a 1 in that column. In the case
of the N-Queens problem, the columns of the cover matrix correspond to the files, ranks,
and diagonals of the chessboard. Each row in the matrix corresponds to a possible queen
placement on the board and contains four 1s: one for the rank, the file, the diagonal,
and the anti-diagonal that the piece occupies.

We use Knuth’s “Dancing Links” data structure [47] to represent the sparse matrix
of the exact cover problem. This data structure exploits doubly linked lists to hide and
restore parts of the matrix as the backtrack exploration progresses. Exploration is made
in a depth-first manner. At each step in the exploration, the first column of the cover
matrix that remains to be covered is arbitrarily chosen. The various rows that can cover
this column represent the options available in the exploration and can be explored in

parallel.

Pentomino The pentominoes are the 12 different shapes that can be formed by stitch-
ing 5 square tiles edge-to-edge. The Pentomino problem consists in enumerating all the
possible ways to arrange these 12 shapes to cover a 10x6 rectangle. The One-sided
Pentomino is an analogous problem but treats the face-down variations of the chiral
pentominoes as pieces of their own. As a result, the problem is significantly larger, con-
sisting of arranging 18 pieces on a 10x9 rectangular board. A solution to the Pentomino
and the One-sided Pentomino problems are presented in Figure [3.3]

In our implementation, we use a single array with sentinels to represent the rectangu-
lar board. We recursively attempt to place every rotation of every piece on the top-most

and left-most unoccupied tile of the board. If the piece can be placed, the exploration
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proceeds and we attempt to place the remaining pieces of the board. If the chosen piece
cannot fit on the board, the next orientation and/or piece is selected as a candidate.
When all the candidates at a certain stage of the exploration have been attempted, the
exploration backtracks by removing the last piece that was placed and selecting a new
candidate. Some restrictions on piece placement and orientation can be made to elim-
inate the symmetries of the problem and only enumerate the fundamenta