gMQ

;f Kobe University Repository : Kernel

R
S
4oge

PDF issue: 2024-06-25

High-productivity Abstractions and Efficient
Runtime for Dynamically Load-balanced
Distributed Programs on Multi/Many-core
Clusters

Finnerty, Patrick Martin

(Degree)
Bt (%)

(Date of Degree)
2022-09-25

(Date of Publication)
2024-09-25

(Resource Type)
doctoral thesis

(Report Number)
FAEE84675

(URL)
https://hdl. handle.net/20.500. 14094/0100477893

X HAVFT VY RMARZOZMERTY. BNER - TEFASZELEY. ZEEETROON TV ZEENT, BIICTRHACEIW,

KOBE

\j].\]\'l:lihl'[Y
J

%)

(BUREAR 3)

RSN DOEE

159 £ FINNERTY Patrick Martin

HE X TEHREHEK

RTEE (UMNEEOEAE, TORREHETSC L)

' H1gh-product1v1ty Abstractions and Efficient Runtime for Dynamlcally Load-balanced Distributed
Programs on Multl/Many -core Clusters

wNTF AT A== aT s T ARICBITSENAK ST v ST LD DOEEENTS
LR T & A NREEE

e =] K8 B

(E54 : FINNERTY Patrick Martin NO. 1)

Chapter 1: Introduction

Modern supercomputers rely on clusters of many-core processors, bringing large
amount of parallelism both within a node and across nodes. These architectures revive
interest in programming models and languages dedicated to supporting these new
environments. ;

The Asynchronous Partitioned Global Address Space (APGAS) as implemented in the
X10 language brings nice abstractions that allow programmers to handle the
distributed nature of their program. However, this model is not perfect. Most notably, it -
does not support communication between processes. Neither does it inherently solve
the issue of balancing the computational load across nodes.

High-level abstractions to dynamically balance the computation are therefore desired

to allow non-expert programmers to _

Chapter 2: Background

In the second chapter, we will recall useful background, covering existing parallel and
distributed computing programming models and languages.

We will cover the existing state of the X10-style implementation of the Asynchronous
Partitioned Global Address Space (APGAS) programming model. The semantics of the

finish/async constructs will be demonstrated.

Chapter 3: Task Granularity Tuning for the lifeline-based

multi-worker GLB

This scheme was first proposed in X10 but suffered from implementation issues. In the
Java version discussed in this chapter, these issues were resolved by introducing a
yielding mechanism in the worker’ s main routine. The mechanism goes against the
“work first” principle generally observed in pool threads and work-stealing scheme.
However, it is necessary in this case to ensure that worker threads do not monopolize
. the resources and that steal requests coming from other nodes can be scheduled
.successfully. |
The concept of granularity appears in various contexts. Among the parameters of the
hybrid load-balancing scheme discussed in this chapter, this specific setting is

particularly important to achieve good performance. This parameter determines the

(4 : FINNERTY Patrick Martin NO. 2)

number of micro tasks that worker threads process before checking on the
works-stealing runtime. A value too low causes overhead thrbugh excessive runtime

checking, while a value too high will cause starvation to appear. Finding a suitable

‘compromise is necessary to achieve good performance.

The problem with this setting is that it can be quite arbitrary. On the one hand, the
dynamic load balahcer cannot chooée a value which will Workbin any situation against
any computation. On the other hand, users of dynamic load balancers cannot be
expected to know in advance what a good value should be. In practice, users may go
through a wasteful trial-and-error process to find a value which gives appropriate
performance for their particular workload.

In this chapter, we will introduce a tuning mechanism capable of dynamically
adjusting the task granularity in the context of the hybrid lifeline-based global load
balancer. This mechanism monitors the most recent situation on each host and uses
two criteria to determine if either excessive overhead or starvation is occurring. It then
automatically adjusts the granularity as necessary, without any user input.

While observing starvation is relatively straightforward, observing overhead is more
difficult. We present a criterion capable of determining if excessive runtime checking is

occurring by exploiting a data race in the load-balancing scheme.

To evaluate the performance of this mechanism, we challenge it against 4

backtrack-search algorithms implemented using this load balancer. The tuning
mechanism built using these criteria is capable of handling the variety of exploration
searches, starting from an unfavorable setting, the granularity is adjusted to a
satisfactory level within a few seconds. The tuning mechanism we develop is also
robust against variations in the problem implementation and the hardware used to
perform the computation. Moreover, this tuning mechanism does not generate any

noticeable overhead compared to executions without the mechanism.

Chapter 4: Relocatable Distributed Collections

Modern clusters and supercomputers based on many-core processors make available to
computer scientist a high level of parallelism both between nodes and within nodes.
However, the complexity of such distributed systems requires dedicated programming
languages for programmers to successfully harness these architectures.

The elegant abstractions of the APGAS model as implemented in X10 and Java allows
for rather simple management of termination detection. However, the lack of support

for collective computation/communication across processes isa handicap for distributed

IARRRARE RN

(Fk4 : FINNERTY Patrick Martin NO.. 3)

object-oriented programming.

To fillin this gap, we introduce “relocatable distributed collections” which
complements the APGAS for Java library. Under the model we propose, a distributed
collécti_on is defined on a group of processes, meaning it can contain records on the set
of processes it is defined on. We mimic the usual collections from the standard Java
library that programmers are already familiar with. The key innovation of our library
lies in the relocatable nature of the entries recorded into our distributed collections,
which can be relocated from a process to another using high-level abstractions provided
by our library. »

To handle the distributed nature of the 'cofnputation, we introduce of notion of teamed
methods. Unlike regular methods, the teamed methods need to be called on each
process on which coilections are defined. They create synchronization points between

asynchronous activities running on different processes. Common computation patterns,

such as reductions, and other features of our library are implemented using this

concept. ;

Using these features, non-experienced programmers are capable of writing
sophisticated distributed programs that would otherwise remain out of reach, or too
complex to apprehend. The most prominent example of this is the PlhamdJ financial
market simulator which uses the features of our library extensively. The features and
abstractions supported by our library made it possible to introduce dynamic load
balancing into this simulator. In cases where the performance of the hosté differs, it is
now possible to dynamically adjust the distribution of data objects to match the actual
performance available in the cluster.

Chapter 5: Integrated Global Load Balancer

While the facilities presented in the previous chapter allow programmers to explicitly
manage the distribution of entries across processes, implementing a load-balancing
strategy for each application still comes with non-negligible effort. It would be
preferable if such entry relocation for the purpose of load-balancing could instead be
left up to the library. However, automatic load balancing facilities imply that the
distribution of entries is surrendered to the libr;ry, when up until now control over the
distribution of entries was entirely left up to the programmer.

To resolve this dichotomy, we introduce a specific context within which the integrated
load balancer operates. Within this context, the computation to perform on the entries

contained in the underlying distributed collection are expressed using a staging /

({3 TR

(K44 : FINNERTY Patrick Martin NO. 4)

submission system. Outside of this specific context, the control over the distributed
collections is left entirely up to the programmer. This design choice has the advantage
of providing clear boundaries for the operation of the integrated load balancer and
contribute to the greater programmability of our programming model.

Internally, we re-visit the lifeline-based global load balancer to implement these

load-balancing facilities. There are however a number of key differences between the -

original scheme intent and the implementation used in our integrated load balancer.
First, contrary to the original scheme where computation tasks are self-contained, the
source of the computation is external to the tasks in our scheme. As a consequence,
entries of the distributed collection are relocated along with the computation tasks
when inter-host load balancing procedures occur. ,

Secondly, the fact that multiple vcomputation operating on the same collection is
permissible under our scheme challenges the typical “single englobing'ﬂ.n.ish” used
in the original scheme. Under the canonical APGAS finish/async programming model,
asynchronous activities are only allowed to spawn new activities which belong to the
same finish. To guarantee the correctness of our scheme, we removed this constraint
and allowed asynchronous activities to participate into multiple finish constructs.
Finally, the notion of “lifelines” takes up a new meaning in the context of our
distributed collections. v

We show that our current implementation is capable of dynamically balancing the load
to some degree, but that further work is needed to reduce the redundant work

relocation in cases where no load imbalance actually occurs.

Chapter 6: Conclusion

- The last chapter will summarize the main findings of the previous chapter and open on

new avenues for research. In particular, the concept of relocatable distributed
collections have the potential to provide appropriate abstractions for elastic programs
in which processes can be dynamically dropped or added to the computation to match

the evolving parallelism needs of the program.

(AR 1) ’ MR EDORHEROET

K4 | FINNERTY Patrick Martin

High-productivity Abstractions and Efﬁc1ent Runtlme for Dynamically Load-balanced
#a3C | Distributed Programs on MultlfMany core Clusters

BEH |~ FaF A=m—aT T AKIC ié@méﬁ\ﬁ7m&7A®tb®mFm%m&%‘
T B A LNFEEEL

K % W 4 & 4
+ & #i KE
L Al iz I B
z e Bz Bl S#R
R B & Hee SER T =H0
i Fl
= 5

DEERERTWE T 0 7T AT, Wk, B LT —FRESC/ — NHE@EEFEE 7 v 7 7 < BRI
BHETAHZENEN, £, SAFATIFREREONE - LHEAET) DA TV v FERETIE, MPI
& OpenMP 72 EROHH &3 8546<, PGAS (Partitioned Global Address Space) EF /L ETOLHEL -
WHINAT Y RFa T I I IRBIRONDEENH D0, HABRSDERWTHET —#i37 m
Tl L VHARMICBEHEH I TS, —F, 77U r—a 58I iofi PRERRAREZ: O8I LT
BERAT DFHEEEZFRNCREL S Z k%.%f%é EHEL, 2O, WIHRIZ X B MEREM EIXIRE
HEROTND, BWMOARBEFIIR L, IHHAEVRECTIIESEBWATTOBRENSDREEEL TS
—F, TBATVRECIIFHEL T —FOBEBEE T n /Il Lo TEEINTEY, A7 «T—4D
HEHFEENRE TH-72, UKL, Charm++ TiI, BEBERTF —ZHEELEA L LT, B8
SEILT-F R Y OEEEREI LV ARSEER-> TV SO0, F— 2 HOEBEERs 2 27 DR/
Ta—Y T EVATAIETERDIRERSoTEY, 7V r—va VEEBREN TH - 72,

KL, ~ NV F AT A=—aT 75 AFEINBIT, hREATR B, E%@ﬁ%%ﬁﬂ
DHEEGTATITY, SHICHEFEOMAEZR SRR EZELOELDICR->TWVD, BEEMIC
PGAS EFNVERRIZ, A =—a7T 7 T AZMITIRAATS ﬁ%%&%ﬁ#éee%;,ﬁmmﬁﬁr
7 — & OFLE - %E%ﬁﬁﬁé LR TEDIHHMERTATIVETVA L - AR LTS, &big, W
FEMETAZ LT, DHBEL MR L LEBNATSRETRELL, M TTRS IR F — & Mo
RERLLE DTN LR LoD, HEIAROBARER 17 J I /&%Tww%ﬁ%ﬁATwé

AL BRTHEEIIRDO LI ->TWVD,

FIETE, T0BT I I I07 0BT BFOT 0S5 I 7B 7NV OMESH L AT B O
FEHECOWTE LD DR, TD 5 X TABIED BRI L HZZ OV THRRLA TS

E2ETIL, O8Il I9ITEE - =TI DT — ZBEOF N, FRZT ST < RBE
BICHEDO R EEE XL - T — &Aﬁ%ﬁ%ﬁET ﬁgowfikb6hTw6

BIETIHE, A=—aT7 7 7 RAZERRLE LIBINAR BB OEBRIE L 20X 2 7 RE OB BEE
FIERBRIN TV S, Saraswat HDEZE L7 Global Load Balancer (GLB) % Yamashita & 7238F
AT Yy FIEL TV, ARBFZE TR A v —UNEEER L, LV%ELE multi-worker
GLB % Java S LICFEET D &I LEEQJ LTW2a, ¥7-, AETIE Oakforest-PACS 25 1 /—
K 68 aTHROA=—aT 7 T AZERRIZ, ¥ATREIZXDBENGM - RS0 5, — I
ATRIERRKEWVEM — FNEDX A7) 72X F OB ENASRENE Z o, —F, hiE
BDINENWE TG B A LT =Ny RPRELRY, Ao—aT7RETCEIEEATY T 7RIZLB 20T
YarvbiEIZ V9%, RETE, JBRIRESCa Ty a v BEEZ T T s A ALK LA R 7 RIE
HEEET L FIEMER - BEIh, BEORVTFv—I TSV r—va VIZBWTH AT HREDORH)
PRI LTV D, 2B, AEORRIIRD 2 HOEMRIEEZE D HDITR> TV,

K4 | FINNERTY Patrick Martin

Patrick Finnerty, Tomio Kamada, and Chikara Ohta, “Self-adjusting task granularity for global load
balancer library on clusters of many-core processors,” Proc. of the Eleventh International Workshop |
on Programming Models and Applications for Multicores and Manycores (PMAM2020), Association
for Computing Machinery, New York, NY, USA, Article no. 4, pp. 1-10, Feb. 2020. (doi:
10.1145/3380536.3380539) : . '

Patrick Finnerty, Tomio Kamada, and Chikara Ohta, “A self-adjusting task granularity mechanism
for the Java lifeline-based global load balancer library on many-core clusters,” Concurrency and
Computation Practice and Experience, 14 pages, Feb. 2021. (doi: 10.1002/cpe.6224) ‘

BAETIE, BEROFRBENTRERSHELST AT IV OFTVA v LRNBFBEN RSN, WA T,
KIAT TV ONERHERESE L IR RIRINTWD, BT T7 T VX, G874 RESCERSE
WRT2EmWHRETRRZ B L TTF A L ENTEY, BHLEERHICOWVWTL A 77 U RZDOT—
SEEZEHIETHY, AMRRR SIS CEERBHZRE LT 0/ T AL HRICTTIRREL 72> T
W5, AETHE, EBICALTSRYI2—4% Plhamd #%ET5Z & ChL—F—x—TV) hOFEE
ZHREL LTRY, MEATERNODH 2 ETRE T CX A7 BENC L HRER EBRZR I TV D, 221,
KETRINZDIFITRAT ML BFAMSETIIRLS, rr/ 7=t X HICER - BHINEZHDOT
b, RETIE, BBET—ET 7 AR =S LEIA T T VERICOWTHREN TN S, filxiT,
X v ¥ WRESEICSIR L OUE O BES 255 & Uiz —EL—70E L REARETH 0, Y% A
WenFBAFET R 7 LB RASN TN D, Y7477 V3~ F a7 s FAFE2ELTRIFSNTE
v, Bz — R -/ — FRT—ZWHE2BZIZFERTE L7217 T, FERKRED reduction (B
Th, Ay FEIZT —# % reduction L7=t%, AL v NEIT reduction T3 &\ o 728 ELABSIZEER
AIREL R TV D, BB, KREOARII TROFHFHRILEE LD LD >TVD, ,

Patrick Finnerty, Yoshiki Kawanishi, Tomio Kamada, and Chikara Ohta, “Supercharging the |

APGAS programming model with relocatable distributed collections,” Scientific Programming. (& k

GRPE - HRFHEE) :

FEHETIE, FARETRREOBESTA 77V ICHNARSEISENREES Sh, AT, BHosis
BxtT 2 —HOT — FWHERIIKIT A AV a—V 7%, BEPOFRICGGBARERT 0/ FI 0
ETABREINTVD, TNETOSHESTA 7TV TR, T2 HESBBEHENICH 2 LixT
TN, TEGBIITa S RHIEETH O THY, -7 —F LRIIBEIRRER Y R 7 #RBT
HREBRES N VR0, RETIE, SBEAICKTS GLB HEMNEASHh, £4ERCXT ST
—ZWHNEFEIZBN T, AFRRICE CEERFEREBEL2 L beok /— NHEZ A7 BEPERB I TV 3,
GLB %X underGLB 71 v 7 NTETEINDH, BEOSHES TS GLB HEDIWFIFET,
future & AW/ ERIBMLER G AL IR RBETH 2 OB RN TH D, nMTe 7517 TiE, 7074
HNRAFREIE E DI OBEARE T =T v ST L HEVR, KRB THBMANSBERE T °8
BOTF—FZWINERDA S V2= V2 RIIRRT L IR LT\ 5, KAEREIL, SBEART AT
7 VIzE8IT % DistCol 7 7 RIZEEIN TS, 3 E TR/ multi-worker GLB %X—X|Z, fEBELNT
DEA7EHR - RENC LB FEAREEEBRBEINTEY, /— FRTF—FZEFNAEIZONTIE, — %D
a0 IR L ILEc T DR ER SN TWS, KT A 75 Uik K-means, Plhamd % X5 & U7 PERERHM
BB ZHDATEY, BIMARSBMESEZICHEIEL TVWAZ LB RENTNS, F4ETRSNZAT
GHEIRRY, VAT AR — FRIOAR AT VARG U TENICBBIARNBEIZ ZH T35 Z LiIcsiL
TWD, 2B, REOHFIITREOFNMLEELDEbDLERoTNE,

Patrick Finnerty, Tomio Kamada, and Chikara Ohta, “Integrating a global load balancer to an

APGAS distributed collections library,” Proc. of the Thirteenth International Workshop on

Programming Models and Applications for Multicores and Manycores (PMAM2022), Association for

Computing Machinery, New York, NY, USA, pp. 55-64, April 2022. (doi: 10.1145/3528425.3529102)

86 BB TH D, ARLOLWNNERES L 05 L & bIr, A% OFEREI >V TR 5T,
R, KRTONEIL, 2 HOERXEELEL 2 (O HEAZECAE XN RE ST D,

DXL, FmXiL, ST T I TICBOTRERB I b CW RN ST — 2 BRE -) —
FHBEDOEBERDORDVIC, Inl IRy —Z5HMeF A7 7 —2 MBI T5 2 L 2FF LoD,
HERGDLETREOE(NICIE UT-BEAR IR - BEEZERRTHDOFIEEZRLELOTHY, FiHy
BRROREVWMEED H 5EE TH 5, B SNimIULT AT MMERFEV IR ZOLm M EES R 72 LT
BY, EAAFEEO FINNERTY Patrick Martin 1%, {#+ (I%) ORME2ELIEERRIDDH LERD D,

