
Kobe University Repository : Kernel

PDF issue: 2025-07-12

High-productivity Abstractions and Efficient
Runtime for Dynamically Load-balanced
Distributed Programs on Multi/Many-core
Clusters

(Degree)
博士（工学）

(Date of Degree)
2022-09-25

(Date of Publication)
2024-09-25

(Resource Type)
doctoral thesis

(Report Number)
甲第8467号

(URL)
https://hdl.handle.net/20.500.14094/0100477893

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

Finnerty, Patrick Martin

（別紙様式 3）

論文内容の要旨

氏 名 FINNERTY Patrick Martin

専 攻 情報学専攻

論文題目（外国語の場合は，その和訳を併記すること。）

High-productivity Abstractions and Efficient Runtime for Dynamically Load-balanced Distributed

Programs on Multi/Many-core Clusters

マルチコア／メニーコアクラスタにおける動的負荷分散プログラムのための高生産性抽象

化と効率的ランタイム実装法

指導教員 太田 能 教授

（氏名：FINNERTY Patrick Martin ＮＯ．1）

Chapter 1: Introduction

Modern supercomputers rely on clusters of many-core processors, bringing large

amount of parallelism both within a node and across nodes. These architectures revive

interest in programming models and languages dedicated to supporting these new

environments.

The Asynchronous Partitioned Global Address Space (APGAS) as implemented in the

X10 language brings nice abstractions that allow programmers to handle the

distributed nature of their program. However, this model is not perfect. Most notably, it

does not support communication between processes. Neither does it inherently solve

the issue of balancing the computational load across nodes.

High-level abstractions to dynamically balance the computation are therefore desired

to allow non-expert programmers to

Chapter 2: Background

In the second chapter, we will recall useful background, covering existing parallel and

distributed computing programming models and languages.

We will cover the existing state of the X10-style implementation of the Asynchronous

Partitioned Global Address Space (APGAS) programming model. The semantics of the

finish/async constructs will be demonstrated.

Chapter 3: Task Granularity Tuning for the lifeline-based

multi-worker GLB

This scheme was first proposed in X10 but suffered from implementation issues. In the

Java version discussed in this chapter, these issues were resolved by introducing a

yielding mechanism in the workers’main routine. The mechanism goes against the

“work first” principle generally observed in pool threads and work-stealing scheme.

However, it is necessary in this case to ensure that worker threads do not monopolize

the resources and that steal requests coming from other nodes can be scheduled

successfully.

The concept of granularity appears in various contexts. Among the parameters of the

hybrid load-balancing scheme discussed in this chapter, this specific setting is

particularly important to achieve good performance. This parameter determines the

（氏名：FINNERTY Patrick Martin ＮＯ．2）

number of micro tasks that worker threads process before checking on the

works-stealing runtime. A value too low causes overhead through excessive runtime

checking, while a value too high will cause starvation to appear. Finding a suitable

compromise is necessary to achieve good performance.

The problem with this setting is that it can be quite arbitrary. On the one hand, the

dynamic load balancer cannot choose a value which will work in any situation against

any computation. On the other hand, users of dynamic load balancers cannot be

expected to know in advance what a good value should be. In practice, users may go

through a wasteful trial-and-error process to find a value which gives appropriate

performance for their particular workload.

In this chapter, we will introduce a tuning mechanism capable of dynamically

adjusting the task granularity in the context of the hybrid lifeline-based global load

balancer. This mechanism monitors the most recent situation on each host and uses

two criteria to determine if either excessive overhead or starvation is occurring. It then

automatically adjusts the granularity as necessary, without any user input.

While observing starvation is relatively straightforward, observing overhead is more

difficult. We present a criterion capable of determining if excessive runtime checking is

occurring by exploiting a data race in the load-balancing scheme.

To evaluate the performance of this mechanism, we challenge it against 4

backtrack-search algorithms implemented using this load balancer. The tuning

mechanism built using these criteria is capable of handling the variety of exploration

searches, starting from an unfavorable setting, the granularity is adjusted to a

satisfactory level within a few seconds. The tuning mechanism we develop is also

robust against variations in the problem implementation and the hardware used to

perform the computation. Moreover, this tuning mechanism does not generate any

noticeable overhead compared to executions without the mechanism.

Chapter 4: Relocatable Distributed Collections

Modern clusters and supercomputers based on many-core processors make available to

computer scientist a high level of parallelism both between nodes and within nodes.

However, the complexity of such distributed systems requires dedicated programming

languages for programmers to successfully harness these architectures.

The elegant abstractions of the APGAS model as implemented in X10 and Java allows

for rather simple management of termination detection. However, the lack of support

for collective computation/communication across processes is a handicap for distributed

（氏名：FINNERTY Patrick Martin ＮＯ．3）

object-oriented programming.

To fill-in this gap, we introduce “relocatable distributed collections” which

complements the APGAS for Java library. Under the model we propose, a distributed

collection is defined on a group of processes, meaning it can contain records on the set

of processes it is defined on. We mimic the usual collections from the standard Java

library that programmers are already familiar with. The key innovation of our library

lies in the relocatable nature of the entries recorded into our distributed collections,

which can be relocated from a process to another using high-level abstractions provided

by our library.

To handle the distributed nature of the computation, we introduce of notion of teamed

methods. Unlike regular methods, the teamed methods need to be called on each

process on which collections are defined. They create synchronization points between

asynchronous activities running on different processes. Common computation patterns,

such as reductions, and other features of our library are implemented using this

concept.

Using these features, non-experienced programmers are capable of writing

sophisticated distributed programs that would otherwise remain out of reach, or too

complex to apprehend. The most prominent example of this is the PlhamJ financial

market simulator which uses the features of our library extensively. The features and

abstractions supported by our library made it possible to introduce dynamic load

balancing into this simulator. In cases where the performance of the hosts differs, it is

now possible to dynamically adjust the distribution of data objects to match the actual

performance available in the cluster.

Chapter 5: Integrated Global Load Balancer

While the facilities presented in the previous chapter allow programmers to explicitly

manage the distribution of entries across processes, implementing a load-balancing

strategy for each application still comes with non-negligible effort. It would be

preferable if such entry relocation for the purpose of load-balancing could instead be

left up to the library. However, automatic load balancing facilities imply that the

distribution of entries is surrendered to the library, when up until now control over the

distribution of entries was entirely left up to the programmer.

To resolve this dichotomy, we introduce a specific context within which the integrated

load balancer operates. Within this context, the computation to perform on the entries

contained in the underlying distributed collection are expressed using a staging /

（氏名：FINNERTY Patrick Martin ＮＯ．4）

submission system. Outside of this specific context, the control over the distributed

collections is left entirely up to the programmer. This design choice has the advantage

of providing clear boundaries for the operation of the integrated load balancer and

contribute to the greater programmability of our programming model.

Internally, we re-visit the lifeline-based global load balancer to implement these

load-balancing facilities. There are however a number of key differences between the

original scheme intent and the implementation used in our integrated load balancer.

First, contrary to the original scheme where computation tasks are self-contained, the

source of the computation is external to the tasks in our scheme. As a consequence,

entries of the distributed collection are relocated along with the computation tasks

when inter-host load balancing procedures occur.

Secondly, the fact that multiple computation operating on the same collection is

permissible under our scheme challenges the typical “single englobing finish” used

in the original scheme. Under the canonical APGAS finish/async programming model,

asynchronous activities are only allowed to spawn new activities which belong to the

same finish. To guarantee the correctness of our scheme, we removed this constraint

and allowed asynchronous activities to participate into multiple finish constructs.

Finally, the notion of “lifelines” takes up a new meaning in the context of our

distributed collections.

We show that our current implementation is capable of dynamically balancing the load

to some degree, but that further work is needed to reduce the redundant work

relocation in cases where no load imbalance actually occurs.

Chapter 6: Conclusion

The last chapter will summarize the main findings of the previous chapter and open on

new avenues for research. In particular, the concept of relocatable distributed

collections have the potential to provide appropriate abstractions for elastic programs

in which processes can be dynamically dropped or added to the computation to match

the evolving parallelism needs of the program.

