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ABSTRACT

Peristaltic pumping is the primary mechanism of food transport in the human intestine. Intestinal contents are often modeled as power-law
fluids with low-behavior indices (n< 1). Peristaltic flows were studied for periodic contraction waves (L=k ¼ 1) with infinitely long wave-
lengths (k=D ! 1) in the Stokes flow regime (Re ! 0). However, the peristaltic flow generated by an isolated contraction wave with a short
wavelength at nonzero Reynolds numbers is more relevant to physiological conditions. In this study, we investigated the peristaltic transport
of a power-law fluid with a low behavior index of n¼ 0.21 at nonzero Reynolds numbers up to Re¼ 10, generated by a single short contrac-
tion wave. First, we investigated the analytical solution for the peristaltic transport of the power-law fluid for k=D ! 1 and Re ! 0. The
analytical solution shows that the discharge flow rate of a power-law fluid generated by a single contraction wave is much smaller than that
of a Newtonian fluid (n¼ 1). Next, we investigated the peristaltic transport for Re � 10 using the cumulant lattice Boltzmann method. The
numerical results demonstrate that the discharge flow rate for the power-law fluid sharply increased owing to the inertia effect. The power-
law fluid induces an asymmetric flow field with respect to the contraction wave at smaller Reynolds numbers than Newtonian fluids. The
inertia effect was increased by the sharpness of the contraction wave. These results suggest that intestinal contents can be transported more
quickly by an isolated contraction wave with a shorter wavelength when the contents have low consistency indices or when the contraction
wave has a large propagation velocity.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0122182

I. INTRODUCTION

Peristaltic pumping is the mechanism of liquid transport generated
by contraction waves along deformable channels. In the human intes-
tine, chyme transformed from food is transported by peristaltic motions
of the intestinal wall for digestion, absorption, and excretion. Peristaltic
transport is also observed in other organs, such as the esophagus, stom-
ach, and ureter. The most fundamental research on peristaltic flow is
analytical solutions based on the lubrication theory. Shapiro et al.1

derived an analytical solution for the peristaltic flow of Newtonian fluids
for periodic contraction waves with infinitely long wavelengths at zero
Reynolds numbers. Li and Brasseur2 modified the classical lubrication
theory model to investigate peristaltic flow generated by contraction
waves with arbitrary wave numbers and channel lengths. Intestinal con-
tents are often modeled as power-law fluids with low-behavior indices.3

Shukla and Gupta4 extended the theory of Shapiro et al.1 to power-law
fluids. They demonstrated that when the behavior index decreases, the
amount of transported fluid decreased slightly. Power-law fluid flow

through peristaltic channels with arbitrary axisymmetric shapes has also
been investigated analytically. Srivastava and Srivastava5 and Chaube
et al.6 investigated the peristaltic flow of power-law fluids through a
nonuniform peristaltic channel. Misra and Pandey7 studied the effect of
single and train expansion waves on peristaltic transport of power-law
fluids. Avvari8 considered trade-off between the power consumption to
propel power-law fluids and the local longitudinal shortening.

These analytical solutions are applicable to the Stokes flow
regimes. However, if we assume that the diameter of the intestine is
D � 50–75mm,9,10 the maximum peristaltic velocity is C � 30mm/s,9

density is q � 103 kg/m3, consistency index is k � 1–3000Pa sn, the
behavior index is n � 0.21,3 and the Reynolds number reaches
Re � Oð1Þ at most. Analytical solutions are also valid for infinitely
long wavelengths, but some contraction waves have wavelengths
similar to or shorter than the diameter of the intestine. Agbesi and
Chevalier,11 for example, reported short wavelengths of
k=D � 0.5–1.5 in the mice hindgut and chicken embryonic midgut.
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In addition, the previous studies considered periodic waves, but
contraction waves are often isolated in the intestine. Shikaya et al.12

for example, visualized isolated contraction waves in the chicken
embryonic gut. Thus, peristaltic flow generated by a single contraction
wave with short wavelength at nonzero Reynolds number is more rele-
vant to physiological conditions.

Recent studies have partly demonstrated the inertial effect on
the peristaltic flow of power-law fluids.13–15 Peristaltic transport by
an isolated contraction wave has also been studied.8,11,16 In addition,
some studies focused on the dynamics of particles in peristaltic
flows.17–19 However, the peristaltic flow of power-law fluids with
low-behavior indices is not fully understood. Motivated by the
above, we investigate the peristaltic transport of a power-law fluid
with a low-behavior index n¼ 0.21 at Re � 10, generated by a single
contraction wave.

We present a computational framework for simulating the peri-
staltic flow of power-law fluids with low-behavior indices based on
the lattice Boltzmann method (LBM).20 The LBM does not directly
solve the pressure and velocity fields and is efficient for parallel com-
puting and complex wall boundaries. Furthermore, for power-law
fluids, the shear rate is estimated locally using the LBM distribution
function without finite differences. This benefit was first highlighted
by Ginzburg.21 However, the LBM for power-law fluids presents two
difficulties in terms of numerical stability. First, the diffusion num-
ber (non-dimensional viscosity) can easily exceed the stable range in
low-shear-rate regions. Second, the diffusion number (relaxation
time) may be extremely small in high shear rate regions. Gabbanelli
et al.22 presented a truncated power-law model to limit the maxi-
mum and minimum viscosities. An improved LBM for power-law
fluids was also developed in which additional forcing operators or
reconstructed distribution functions were introduced.23–25 Stabilized
LBMs, such as multi-relaxation-time (MRT) LBM and cascaded
LBM, have also been used for this problem.26–28 The numerical con-
ditions were also studied by Conrad et al.29 However, the LBM for
the peristaltic transport of power-law fluids has not yet been estab-
lished. In this study, we propose a numerical method based on the
cumulant LBM.32

The remainder of this paper is organized as follows: In Sec. II,
we describe the problem statement and the numerical methods. In
Sec. III, the analytical solution of the peristaltic flow is investigated
for k=D ! 1 and Re ! 0, where k=D denotes the wavelength rela-
tive to the channel diameter. In Sec. IV, we present the numerical
results to clarify the effects of k=D and Re on peristaltic flow. Finally,
we discuss our results with a focus on physiological conditions in
Sec. V.

II. NUMERICAL METHODS
A. Geometry

We consider the three-dimensional flow of power-law fluids
driven by peristaltic contraction in a circular channel of length L and
diameter D (Fig. 1). A contraction wave of wavelength k propagates
with contraction ratio Dp=D and wave speed C. The wave shape was
determined by a sinusoidal function. The shape of the channel at posi-
tion X and time t is expressed as follows:

HðX; tÞ ¼ D=2�Dp

4
1þ cos

2p
k

X�Ctð Þ
� �

�k
2
� X�Ct � k

2

� �
;

D=2 ðotherwiseÞ:

8><
>:

(1)

In this paper, the position and velocity vectors in the laboratory frame
are denoted by X ¼ ðX;Y ;ZÞ and U ¼ ðU;V;WÞ, and those in the
moving frame are x ¼ ðx; y; zÞ and u ¼ ðu; v;wÞ. These parameters
are transformed by the following equations:

x ¼ X � Ct; y ¼ Y ; z ¼ Z; (2)

u ¼ U � C; v ¼ V ; w ¼ W: (3)

The shape of the channel in the moving frame is expressed as follows:

hðxÞ ¼ D=2� Dp

4
1þ cos

2p
k
x

� �
� k
2
� x � k

2

� �
;

D=2 ðotherwiseÞ:

8><
>: (4)

Physical quantities are summarized in Table I.

B. Governing equations

The governing equations are the Navier–Stokes and continuity
equations for incompressible fluids as follows:

q
@U
@t

þ U � $U
� �

¼ $ � r; (5)

$ � U ¼ 0; (6)

where q denotes the fluid density and r denotes the stress tensor. The
stress tensor is obtained as follows:

r ¼ �pI þ 2lE; (7)

where p denotes the pressure, l denotes the apparent viscosity, and E
denotes the rate of strain tensor. The rate of strain tensor is obtained
from the velocity gradients as follows:

FIG. 1. Wall geometry of the peristalsis. D denotes the channel diameter, R ¼ D=2 denotes the channel radius, and L denotes the channel length. Dp denotes the amplitude
of the contraction wave, and k denotes the wavelength.
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Eij ¼ 1
2

@Ui

@Xj
þ @Uj

@Xi

 !
: (8)

The apparent viscosity of power-law fluids is expressed as follows:31

l j _cjð Þ ¼ kj _cjn�1; (9)

where the constants k and n are known as the consistency index and
the behavior index, respectively, and _c denotes the shear rate obtained
as follows:

j _cj ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2EijEij

p
: (10)

The governing equations are solved in the moving frame, with no-slip
boundary conditions at the wall, and zero-pressure boundary condi-
tions at both the ends of the channel. We define the Reynolds number
as follows:

Re ¼ qCD
l C=Dð Þ

¼ qCD

kðC=DÞn�1

¼ qC2�nDn

k
: (11)

C. Lattice Boltzmannmethod

We simulated the peristaltic transport of power-law fluids
using LBM,20 as in our previous study on the peristaltic transport
of Newtonian fluids.16 The time evolution equation of the distri-
bution function fngf for the lattice direction n; g; f 2 f�1; 0; 1g
reads

f �ngfðx; tÞ ¼ fngfðx; tÞ þ Xngf; (12)

fngfðx þ cngfDt; t þ DtÞ ¼ f �ngfðx; tÞ; (13)

where x denotes the position, t denotes time, cngf denotes the particle
velocity, andXngf denotes the collision operator.

In the case of power-law fluids with a low behavior index (n< 1),
the apparent viscosity locally decreases in high shear rate regions, pos-
sibly resulting in numerical instabilities. Here, we use the D3Q27

cumulant model32 as a stabilization technique for numerical simula-
tions of power-law fluids. In the cumulant LBM, the collision of par-
ticles is modeled in a cumulant space. The cumulant Cabc for fngf is
defined as

Cabc ¼ c�a�b�c @a@b@c

@Na@!b@Zc
ln F Nð Þð ÞjN¼!¼Z¼0; (14)

where N ¼ ðN;!;ZÞ is the momentum wave number, a; b; c;
2 f0; 1; 2g are the indices of the cumulant, and FðNÞ is the Laplace-
transformed distribution function. The collision of cumulant is
described by the following equation:

C�
abc ¼ ð1� xabcÞCabc þ xabcC

eq
abc; (15)

where C� is the post-collision cumulant, Ceq is the equilibrium value of
cumulant, and xabc is the relaxation rate for cumulant LBM.
The second-order cumulants relate to shear viscosity; x200 ¼ x020

¼ x002 ¼ x110 ¼ x101 ¼ x011 ¼ x1 ¼ 1=s and they have leading
influence on numerical results. The other relaxation rate can be
selected arbitrary from a range of 0–2. In this study, we set the
other relaxation parameter to 1. The post collision distribution
function f �ngf is calculated by the Laplace inverse transformation of
cumulant C�

ngf.
In conventional numerical methods, the rate of strain tensor can

be computed by finite-difference approximation using velocity data on
neighboring nodes. However, in the cumulant LBM, the rate of strain
tensor is locally discretized using the summation of the cumulant
without adjacent information.30 Then, the shear rate norm was
approximated as follows:

j _cj �
ffiffiffiffiffiffiffiffiffiffiffiffi
2Ed

ijE
d
ij

q
þ e; (16)

where

Ed
11 ¼ �x1

2q
2C200 � C020 � C002ð Þ

� 1
2q

C200 þ C020 þ C002 � j000ð Þ; (17)

Ed
22 ¼ Ed

11 þ
3x1

2q
C200 � C020ð Þ; (18)

Ed
33 ¼ Ed

11 þ
3x1

2q
C200 � C002ð Þ; (19)

Ed
12 ¼ � 3x1

2q
C110; (20)

Ed
23 ¼ � 3x1

2q
C011; (21)

Ed
31 ¼ � 3x1

2q
C101; (22)

and e denotes the artificial shear rate (ASR). The notation j000 denotes
the central moment for a ¼ b ¼ c ¼ 0. ASR was added to prevent the
apparent viscosity from approaching infinity in low-shear-rate regions.

For curved moving wall boundary conditions, interpolated-
bounce-back scheme33 is used.

In the LBM, the collision step is characterized by the relaxation
time s. This is a non-dimensional parameter defined as follows:

TABLE I. Physical quantities.

Symbols Quantities

D Channel diameter
L Channel length
k Wavelength
Dp Contraction amplitude
C Wave velocity
U Velocity vector in the laboratory frame
u Velocity vector in the moving frame
j _cj Shear rate
Re Reynolds number
p Pressure
Q Discharge flow rate
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s ¼ 1
2
þ 3Df ; (23)

whereDf denotes the diffusion number

Df ¼ lDt
qDx2

: (24)

For power-law fluids, the diffusion number varies with the local shear
rate. Thus, we introduce a reference diffusion number Dfref as follows:

Dfref ¼ kDt
qDx2

j _cjn�1
mean: (25)

Here, j _cjmean denotes the mean shear rate, and we estimate it as
j _cjmean ¼ C=D to characterize the global viscosity in the computation
domain.

The influence of the ASR on the numerical solution of a two-
dimensional (2D) Poiseuille flow (see Appendix A) is shown in Fig. 2,
where the distance between the parallel plates is denoted by B. The
cumulant LBM has a second-order accuracy with respect to the grid
size for Newtonian fluids (n¼ 1). When ASR is set as eB=C ¼ 10�4,
the proposed method also has second-order accuracy for the power-
law fluid with n¼ 0.21, at least for a range from Dx=B ¼ 1=25 to

Dx=B ¼ 1=400. Second-order schemes have also been presented in
the previous studies.23–29,34 Hereinafter, we use eB=C ¼ 10�4

(eD=C ¼ 10�4 for peristaltic transport) unless otherwise noted.

III. ANALYTICAL SOLUTIONS

First, we investigated the analytical solution of the peristaltic flow
generated by a single contraction wave for k=D ! 1 and Re ! 0.
The analytical solution was obtained using the lubrication theory.1,2,4

For a three-dimensional channel, the relationship between the pres-
sure gradient and flow rate is as follows:

dp
dx

¼ �2k
3nþ 1
pn

� �n 1
h3nþ1

ðqþ pCh2Þjqþ pCh2jn�1; (26)

where the flow rate is as follows:

q ¼
ðh
0
2purdr; (27)

and the derivation of the analytical solution is presented in Appendix
B. The flow rate in the laboratory frame is defined as follows:

Q ¼
ðh
0
2pðuþ CÞrdr ¼ qþ pCh2; (28)

called discharge flow rate. In this study, the discharge flow rate at the
outlet (X¼ L) was calculated.

The contraction ratio may vary over a wide range in physiological
conditions. Agbesi and Chevalier,11 for example, observed
Dp=D � 0.12–0.88 in their animal experiments. Figure 3(a) shows the
change in the discharge flow rate with the contraction ratio, where
L=k ¼ 5. The discharge flow rate gradually increases with the contrac-
tion ratio for n¼ 1. In the case of n¼ 0.21, however, the discharge
flow rate does not increase with the contraction ratio for the low and
middle values of Dp=D but steeply increases for large values
(Dp=D � 0.75 or larger).

Figure 3(b) compares the discharge flow rate between n¼ 1 and
n¼ 0.21 as a function of L=k. When L=k is larger, the discharge flow
rate decreases for n¼ 1 and n¼ 0.21, but the discharge flow rate for
n¼ 0.21 more quickly decays. This results in a large difference in the
discharge flow rate between Newtonian and power-law fluids for a sin-
gle contraction wave. The discharge flow rate for power-law fluids
highly depends on the channel length relative to the wavelength.

FIG. 2. Effect of ASR on the numerical solution of 2D Poiseuille flow for n ¼ 0.21,
where e denotes the ASR, B denotes the parallel wall distance, C denotes the
wave velocity, and Dx denotes the lattice spacing. The referential diffusion number
is Dfref ¼ 0:1. The results of a Newtonian fluid (n ¼ 1) are also provided. The
dashed line indicates second-order convergence.

FIG. 3. Analytical solutions of discharge
flow rate for Re ! 0 and k=D ! 1 (a)
as a function of contraction ratio Dp=D for
L=k ¼ 5 and (b) as a function of L=k for
Dp=D ¼ 0:5.
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IV. NUMERICAL RESULTS

In the present problem, four parameters were expected to influ-
ence the flow characteristics: Dp=D; L=k; k=D, and Re. The effects of
Dp=D and L=k are discussed in Sec. III, using analytical solutions. In
this section, numerical simulation are used to examine the effect of
k=D and Re.

A. Validation

We first investigated whether the cumulant LBM can suppress the
numerical instability that occurs in power-law fluid simulations. We
compared the numerical results between the Bhatnagar–Gross–Krook
LBM (BGK-LBM) and cumulant LBM for Dp=D ¼ 0:75, Re¼ 10,
k=D ¼ 1, and L=k ¼ 5 in Fig. 4(a). In BGK-LBM, nonphysical oscil-
lations appear in the contracted region of the channel. The shear
rate increases in this region, and the apparent viscosity decreases
according to the power law. This cause Df to be small, resulting in a
numerical instability. However, such oscillations were not observed
in the cumulant LBM. These results suggest that a cumulant LBM

can be used to avoid the numerical instability problem of power-law
fluids.

We also test the convergence of the numerical solution with
respect to Dx=D and Dfref . Figure 4(b) shows the effect of Dx=D and
Dfref on the discharge flow rate. The numerical results were almost the
same for Dx=D ¼ 1=100 and Dx=D ¼ 1=125 for 0:1 � Dfref � 0:5.
Therefore, in Secs. IVB–IVD and V and Appendix C, Dx=D ¼ 1=125
andDfref ¼ 0:1 are used.

B. Effects of k=D

Next, we investigated the effects of k=D at a low Reynolds
number of Re ¼ 0.1. Figures 5(a) and 5(b) show the discharge
flow rates for n¼ 1 and n¼ 0.21 as a function of k=D, where
Dp=D ¼ 0:5 and L=k ¼ 1. Newtonian and power-law fluids
exhibit nearly the same dependence on k=D. The effect of k=D on
the discharge flow rate is limited to short wavelengths of approx-
imately k=D � 1. When k=D increases, the discharge flow rate
converges to that obtained from the analytical solution for
k=D ! 1.

FIG. 4. Validation of the present method for peristaltic flow of a power-law fluid with n ¼ 0.21, where Re¼ 10, Dp=D ¼ 0:75; L=k ¼ 5, and k=D ¼ 1. (a) Nonphysical oscilla-
tions appear at the contracted region of the channel in BGK-LBM, whereas such oscillations do not appear in the cumulant LBM. (b) Effect of the lattice spacing and referential
diffusion number on discharge flow rate.

FIG. 5. Discharge flow rate as a function of k=D for Re ¼ 0.1, Dp=D ¼ 0.5, and L=k ¼ 1: (a) n ¼ 1 and (b) n ¼ 0.21.
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C. Effects of Re

Subsequently, we investigated the effect of Re on the peristaltic flow
of a power-law fluid. In Fig. 6, the discharge flow rate is shown as a func-
tion of Re for Dp=D ¼ 0:5 and L=k ¼ 5, where k=D varies from 0.8 to
1.2 (approximately 1). For n¼ 1, there was little change in the discharge
flow rate, even when Re increased to 10. In contrast, the discharge flow
rate increases sharply for n¼ 0.21. In addition, the discharge flow rate
began to increase at a lower Re value when k=D decreased. This indicates
that the peristaltic transport of power-law fluids induced by a single con-
traction wave is highly dependent on Re and k=D.

D. Velocity field and pressure

To find the mechanism of changes in the discharge flow rate with
Re, we studied the velocity and pressure fields generated by a single
contraction wave. We compare streamlines on the laboratory frame
between Re ¼ 0.1 and Re ¼ 10 in Fig. 7, where L=k ¼ 5; k=D ¼ 1,
and Dp=D ¼ 0:5. In the case of n¼ 1, the velocity fields were almost
the same for Re¼ 0.1 and 10. In contrast, the case of n¼ 0.21, an
asymmetric velocity field appears with respect to the contraction wave
for Re¼ 10, with stronger retrograde flow than the other cases.

The analytical solution suggests that the flow rate is proportional
to ðdp=dxÞ1=n for power-law fluids because of apparent viscosity (see

Appendix B). The cross-sectional mean pressure is presented for
L=k ¼ 5, L=D ¼ 1, and Dp=D ¼ 0.5 in Fig. 8, where the numbers with
arrows indicate the slope of the least squares fit in the straight region
of the channel. For n ¼ 0.21, because of the strong retrograde flow, the
pressure drop occurring in the contracted region is much larger for
Re ¼ 10 than for Re ¼ 0.1 and increases the magnitude of the pressure
gradient in the straight region of the channel. In Fig. 8(b), the pressure
gradient for Re ¼ 10 becomes approximately 1.3 times larger than that
for Re ¼ 0.1, and this pressure gradient may cause three times larger
flow rate in Fig. 6(b).

V. DISCUSSION

First, we considered the analytical solution of this problem for
k=D ! 1 and Re ! 0. The discharge flow rate of the power-law
fluid is much smaller than that of Newtonian fluids. Shukla and
Gupta4 compared the peristaltic flows generated by periodic contrac-
tion waves (L=k ¼ 1) between Newtonian and power-law fluids. They
reported that the flow rates were almost identical. The discrepancy
between their results and ours is likely caused by the difference
between the isolated and periodic waves, in particular, by the effect of
L=k on the discharge flow rate. As shown in Fig. 3(b), although the
discharge flow rates are nearly the same for n¼ 1 and n¼ 0.21 at

FIG. 6. Discharge flow rate as a function of Re, where L=k ¼ 5 and Dp=D¼ 0.5: (a) n ¼ 1 and (b) n ¼ 0.21.

FIG. 7. Laboratory frame streamlines with x-directional velocity magnitude U/C at the center plane (XZ plane) of the channel, where L=k ¼ 5, k=D ¼ 1, and Dp=D ¼ 0.5: (a)
Re ¼ 0.1 and n ¼ 1; (b) Re ¼ 0.1 and n ¼ 0.21; (c) Re ¼ 10 and n ¼ 1; and (d) Re ¼ 10 and n ¼ 0.21.
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L=k � 1, the discharge flow rate of n¼ 0.21 is much smaller than that
of n¼ 1 at a large value of L=k.

Next, we performed numerical simulations to investigate the
peristaltic flow of the power-law fluid at nonzero Reynolds numbers
up to Re¼ 10. We present a computational framework for power-law
fluids based on a cumulant LBM with an ASR. The numerical results
demonstrate that the discharge flow rate for the power-law fluid with
n¼ 0.21 sharply increased even at Re¼ 10, owing to the inertia effect.
When a power-law fluid is transported by a single contraction wave
with a short wavelength, an asymmetric flow field appears with respect
to the contraction wave at Re¼ 10. Such an asymmetric velocity pro-
file is not an inherent property of peristaltic flow of power-law fluids.
As demonstrated in a previous study,16 an asymmetric velocity profile
appears at Re¼ 100 for Newtonian fluids. These results indicate that
power-law fluids with low behavior indices tend to generate asymmet-
ric flows, even at lower Reynolds numbers, than Newtonian fluids.

The inertia effect was increased by the sharpness of the contrac-
tion wave, or k=D. In Fig. 6, we changed the channel length relative to
the channel diameter, L/D, but the discharge flow rate at a fixed L/D
may be more useful under physiological conditions. Figure 9 shows
the discharge flow rate at L=D ¼ 5 as a function of Re, where
Dp=D ¼ 0:5. At a low Re, the discharge flow rate is higher for larger

values of k=D; this relationship is inverted at Re � 10. This suggests
that the intestinal contents can be transported more quickly by an iso-
lated contraction wave with a shorter wavelength when Re is increased.
In the human intestine, the Reynolds number may reach Re � Oð1Þ
for intestinal contents with low consistency indices or fast propagation
of contraction waves under pathological conditions. For example, in
patients with irritable bowel syndrome, in which diarrhea is the pre-
dominant symptom, intestinal contents are transported more rap-
idly.35,36 This may be associated with an increase in the Reynolds
number and a decrease in the wavelength. Our results would be help-
ful for understanding intestinal transport in such patients.

VI. CONCLUSIONS

We have presented the peristaltic transport of a power-law fluid
with a low behavior index of n¼ 0.21, induced by a single contraction
wave. The discharge flow rate for the power-law fluid sharply
increased owing to the inertia effect. The power-law fluid induces an
asymmetric flow field with respect to the contraction wave at smaller
Reynolds numbers than Newtonian fluids. The results suggest that
intestinal contents can be transported more quickly when the contents
have low-consistency indices or when the contraction wave has a large
propagation velocity.
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APPENDIX A: ANALYTICAL SOLUTION OF 2D
POISEUILLE FLOW

The analytical solution of the 2D Poiseuille flow for power-law
fluids is obtained as follows:

u ¼ n
nþ 1

1
k
dp
dx

� �1
n B

2

� �1þ1
n

� jyj1þ1
n

( )
; (A1)

where x and y are the components of the position vector, u denotes
the x-directional velocity, p denotes the pressure, B denotes the dis-
tance between parallel plates, and k and n denote the consistency
and behavior indices, respectively. In Fig. 2, the numerical error is
defined as follows:

Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
node

uLBM;node � uth;node
uth;node

� �2

vuut ; (A2)

where uLBM;node and uth;node ( 6¼ 0) denote the numerical and analyti-
cal solutions at computational node, respectively, and N denotes the
number of computational nodes.

APPENDIX B: ANALYTICAL SOLUTION OF 3D
PERISTALTIC FLOW

Using the lubrication theory, the cylindrical form of Eq. (5)
can be simplified as follows:

dp
dx

¼ sgn
@u
@r

� �
k
r
@

@r
r

���� @u@r
����
n

 !
; (B1)

where r and u denote the radial position and axial velocity, respec-
tively. Using the following boundary conditions:

@u
@r

¼ 0 at r ¼ 0; u ¼ �C at r ¼ h (B2)

we obtain the Poiseuille-type velocity profile as follows:

u ¼ �C � sgn
dp
dx

� ����� 12k dpdx
����
1
n n
nþ 1

h1þ
1
n � r1þ

1
nð Þ: (B3)

Then, the flow rate is expressed as follows:

q ¼
ðhðxÞ
0

2prudr;

¼ �pCh2 � psgn
dp
dx

� ���� 1
2k

dp
dx

���1n n
3nþ 1

h3þ
1
n (B4)

and we obtain the following:

dp
dx

¼ �2k
3nþ 1
pn

� �n 1
h3nþ1

qþ pCh2
� 	jqþ pCh2jn�1: (B5)

APPENDIX C: D3Q27 MRT-LBM

We also tested D3Q27 multiple-relaxation-time (MRT) LBM.
In this paper, we follow Geier et al.32 The moment Mabc is given
by

Mabc ¼ c�a�b�c @a@b@c

@Na@!b@Zc
F Nð ÞjN¼!¼Z¼0: (C1)

The collision of the particles is written as

M�
abc ¼ ð1� sabcÞMabc þ sabcM

eq
abc; (C2)

where M�
abc denotes the post-collision moment, Meq

abc denotes the
moment for equilibrium, and sabc denotes the relaxation parame-
ter for MRT-LBM. In this paper, we set the relaxation parameter
as

sabc ¼ f0; 0; 0; 0; 0:8;x1;x1;x1;x1;x1;

0:8; 0:8; 0:8; 0:8; 0:8; 0:8; 0:8; 0:8;

x1;x1;x1;x1;x1; 0:8; 0:8; 0:8;x1g: (C3)

We simulated the same problems as Fig. 4 using MRT-LBM. The
MRT-LBM can be applied to this problem, but a slight oscillation
near the contraction appears (Fig. 10). The relaxation parameter
must be optimized to obtain more proper result.

FIG. 10. Numerical result of MRT-LBM for the same problem as Fig. 4.
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