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Abstract

We derived a condition under which a coupled system consisting of two finite-dimensional
Hamiltonian systems becomes a Hamiltonian system. In many cases, an industrial system can
be modeled as a coupled system of some subsystems. Although it is known that symplectic
integrators are suitable for discretizing Hamiltonian systems, the composition of Hamiltonian
systems may not be Hamiltonian. In this paper, focusing on a property of Hamiltonian systems,
that is, the conservation of the symplectic form, we provide a condition under which two
Hamiltonian systems coupled with interactions compose a Hamiltonian system.
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1. Introduction

Because many industrial objects are described as cou-
pled systems, it is important to investigate the proper-
ties of systems composed of subsystems that are modeled
separately. For example, in the physical simulation of a
piano, it is necessary to consider a model in which the
parts described by different governing equations, such
as strings, hammers, bridges, and soundboard, are com-
bined by interaction [1]. In general, numerical simula-
tions are necessary to study such systems; however, if
the coupled system under investigation is large and/or
requires a long-term prediction, it may be difficult to
compute numerical solutions with general-purpose nu-
merical methods.
For certain kinds of systems that are difficult to solve

by general-purpose methods, structure-preserving nu-
merical methods have been studied [2]. However, the
overall structure of coupled systems consisting of differ-
ent equations can be complicated due to the differences
in the properties of the individual subsystems and the
effects of the way of coupling. Thus theoretical investiga-
tions of the structures of coupled systems are required.
In this study, we consider coupled systems, especially

those which consist of Hamiltonian systems as their sub-
systems. For Hamiltonian systems, symplectic integra-
tors are known to be efficient [3]. These methods are
based on the conservation of the symplectic form of the
Hamiltonian system and have good properties such as
bounded energy variation and discrete versions of vari-
ous conservation laws. Therefore, if the coupled system is
a Hamiltonian system, the symplectic integrators may be
the best choice. However, even if subsystems are Hamil-
tonian systems, the coupled system may not be Hamilto-
nian. It was shown that a specific coupled Hamiltonian
system composed of the wave equation and the elastic-
ity equation is Hamiltonian [4]. The present study is a
generalization of this result.

2. Hamiltonian systems and the conser-

vation of symplectic forms

A Hamiltonian system is typically defined in the fol-
lowing way.

Definition 1 Let (M,ω) be a symplectic manifold. Sup-
pose that a system admits a state variable on M of which
local coordinates are denoted by z(t). If there exists a
function H(z) called Hamiltonian and a skew-symmetric
matrix S(z) corresponding to the symplectic form ω such
that the time evolution of z is represented in

dz

dt
= S(z)∇H(z), (1)

the system is called a Hamiltonian system.

While the equation (1) is typically employed, the same
equation can be represented in the following coordinate-
free form.

Definition 2 Let (M,ω) be a symplectic manifold. If
X, the vector field of the system, satisfies

iXω = dH

for a function H : M → R and a symplectic form ω, the
system is called a Hamiltonian system and X is called a
Hamiltonian vector field, where iX is the interior product
and d is the exterior derivative.

This geometric representation can be used to deter-
mine whether a system is a Hamiltonian system or not.

Definition 3 If a vector field X on a symplectic man-
ifold (M,ω) satisfies

LXω = 0, (2)

where LX is the Lie derivative with respect to X, then
X is said to be symplectic.

Theorem 4 Hamiltonian vector fields satisfy (2), and
if a vector field satisfies (2) then it is at least locally a
Hamiltonian vector field.
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For details, see [5].

3. Symplectic integrators

Symplectic integrators are methods for discretizing
symplectic flows while preserving their properties.

Definition 5 For local coordinates (q1, . . . , qm, p1,
. . . , pm) and the standard symplectic form ω := dq1 ∧
dp1 + · · · + dqm ∧ dpm, let a vector field X that defines
its flow ϕt satisfy LXω = 0. Then a discretized ϕt

Φ ≈ ϕt|t=∆t

such that

(q
(n+1)
1 , . . . , q(n+1)

m , p
(n+1)
1 , . . . , p(n+1)

m )⊤

= Φ (q
(n)
1 , . . . , q(n)m , p

(n)
1 , . . . , p(n)m )⊤

and

dq
(n+1)
1 ∧ dp

(n+1)
1 + · · ·+ dq(n+1)

m ∧ dp(n+1)
m

= dq
(n)
1 ∧ dp

(n)
1 + · · ·+ dq(n)m ∧ dp(n)m

is called a symplectic integrator.

A numerical solution by a symplectic integrator is con-
sidered to be symplectic in the following sense [2]. The
solution is a sequence of discrete points in space which
can be regarded as points on a solution curve of a certain
Hamiltonian equation defined by the symplectic integra-
tor. If such a curve exists, it is generally different from
the solution ϕt of the original equation, but preserves
the symplectic form.

4. Coupling with interaction terms

In this study, we consider the following coupled Hamil-
tonian systems that consist of Hamiltonian systems H1

and H2 with interaction terms f1 and f2:

d

dt


q1
p1
q2
p2

 =


O I O O
−I O O O
O O O I
O O −I O





∂H1

∂q1
∂H1

∂p1
∂H2

∂q2
∂H2

∂p2


+


0
f1
0
f2

 .

(3)

The associated vector field X is also defined as the right-
hand side of (3). Note that q1, q2, p1, p2, f1, f2 are
not necessarily scalars; they can be vectors. The force
of Newton’s second law of motion can be transformed
as (3) in a form that appears only in the generalized
momentum part.
The specific form of the interaction is problem-specific

and it determines whether the coupled system is a
Hamiltonian system or not. If the system represented by
(3) is transformed into (1), then the system is Hamilto-
nian; however, it is in general difficult to check whether
such a transformation exists. This study provides con-
ditions to determine whether the coupled system is a
Hamiltonian system for a given interaction.

5. Main result

Lemma 6 Let the standard symplectic form ω of the
system (3) be ω := dq1∧dp1+dq2∧dp2. The Lie deriva-
tive LXω of ω with respect to X is

LXω = df1 ∧ dq1 + df2 ∧ dq2.

Proof From the Cartan formula, it holds that

LXω = d(iX(ω)) + iX(dω).

iX(dω) is always zero because ω is closed. iX(ω) in the
first term of the right-hand side is

iX(ω) =
dp1
dt

dq1 −
dq1
dt

dp1 +
dp2
dt

dq2 −
dq2
dt

dp2

=

(
−∂H1

∂q1
+ f1

)
dq1 −

∂H1

∂p1
dp1

+

(
−∂H2

∂q2
+ f2

)
dq2 −

∂H2

∂p2
dp2

and hence

d(iX(ω))

= d

(
−∂H1

∂q1
+ f1

)
∧ dq1 − d

(
∂H1

∂p1

)
∧ dp1

+ d

(
−∂H2

∂q2
+ f2

)
∧ dq2 − d

(
∂H2

∂p2

)
∧ dp2

=

(
−∂2H1

∂2q1
dq1 −

∂2H1

∂q1∂p1
dp1 + df1

)
∧ dq1

−
(

∂2H1

∂p1∂q1
dq1 +

∂2H1

∂2p1
dp1

)
∧ dp1

+

(
−∂2H2

∂2q2
dq2 −

∂2H2

∂q2∂p2
dp2 + df2

)
∧ dq2

−
(

∂2H2

∂p2∂q2
dq2 +

∂2H2

∂2p2
dp2

)
∧ dp2

= df1 ∧ dq1 + df2 ∧ dq2,

which proves this lemma.
(QED)

Lemma 6 gives the condition for a coupled system to
preserve the symplectic form.

Theorem 7 If the coupled system referred to in Lemma
6 satisfies

df1 ∧ dq1 + df2 ∧ dq2 = 0,

then it preserves the symplectic form ω.

Proof It follows immediately from Lemma 6.
(QED)

Remark 1 An important fact seen from Theorem 7 is
that the symplectic form for the coupled system is the
direct sum of the symplectic forms for the subsystems.
This modularity makes it easy to couple additional sub-
systems one after another.

6. Numerical experiments

In this section, we consider a composition of a simple
elastic beam and a spring-mass system. We determine
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Fig. 1. Schematic of the coupled system. It consists of a simple

elastic beam and a mass-spring system, and a point on the beam
and the mass m1 are fixed together.

the interaction without considering symplecticity, then
verify it using Theorem 7.
Let the coordinates be as illustrated in Fig. 1. The

equation of the beam is

ρAutt = −EIuxxxx,

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0,

where ρ is the density, A is the cross-sectional area, E is
the elastic modulus and I is the second moment of area.
We suppose that all these quantities are constants.
We consider a coupled system:

d

dt


u
v
q1
q2
p1
p2

 = J


EIuxxxx

v/ρA
−k(q2 − q1)
k(q2 − q1)
p1/m1

p2/m2

+


0

fδ(x− b)
0
0
−f
0

 ,

J =


0 1
−1 0

O

O
O I2
−I2 O

 , I2 =

(
1 0
0 1

)

and suppose a corresponding discrete system is given as

d

dt


ui

vi
q1
q2
p1
p2

 = J


EIδ4ui

vi/ρA
−k(q2 − q1)
k(q2 − q1)
p1/m1

p2/m2

+


0
Fi

0
0
−f
0

 , (4)

δ4ui =
ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

∆x4
,

(1 ≤ i ≤ Nx − 1),

u0(t) = uNx(t) = 0, (5)

u−1(t) = −u1(t), uNx−1(t) = −uNx
(t). (6)

The discrete boundary conditions (5) and (6) are de-
rived as follows. (5) is understood as discretized u(0, t) =
u(L, t) = 0. (6) is derived from the discrete version of
the boundary condition uxx = 0, e.g., for uxx(0, t) = 0,

u−1 − 2u0 + u1

∆x2
= 0. (7)

The boundary condition (6) is obtained by combining
(5) and (7).
The two subsystems are coupled at unb

on the semi-

discretized beam and q1 with an interaction vector:

Fi =

{
f/∆x (i = nb)

0 (i ̸= nb)
.

Each subsystem is a Hamiltonian system under the
following Hamiltonians:

Hel =

Nx−1∑
i=1

1

2

(
v2i
ρA

+ EI

(
ui+1 − 2ui + ui−1

∆x2

)2
)
∆x,

Hsp =
p21
2m1

+
p22
2m2

+
k

2
(q2 − q1)

2.

Hence the discrete coupled system is written with these
Hamiltonians:

d

dt


ui

vi
qj
pj

 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0





δHel

δui

δHel

δvi
∂Hsp

∂qj
∂Hsp

∂pj


+


0
Fi

0
fj
0

 ,

fj =

{
−f (j = 1)

0 (j = 2)

where δHel/(δui) = EIδ4ui and δHel/(δvi) = vj/(ρA)
are essentially the discrete variational derivatives pro-
posed by Furihata and Matsuo [6].
f , the magnitude of the interaction, is determined us-

ing an additional assumption. The coupling of the target
system seems not to include any dissipative component,
therefore we suppose the total energy H := Hsp + Hel

to be conserved. Note that the total energy H is just a
conserved quantity and not necessarily the Hamiltonian
of the coupled system. The time derivative of the total
energy is

dH

dt
=
∑
i

δH

δui

dui

dt
∆x+

∑
i

δH

δvi

dvi
dt

∆x

+
∑
j

∂H

∂qj

dqj
dt

+
∑
j

∂H

∂pj

dpj
dt

=

(
vnb

ρA
− p1

m1

)
f.

Therefore, if p1(t)/m1 = vnb
(t)/(ρA) holds, the total en-

ergy will be conserved. This sufficient condition is equiv-
alent to

1

ρA
vnb

(0)− 1

m1
p1(0) = 0, (8)

1

ρA

dvnb

dt
(t)− 1

m1

dp1
dt

(t) = 0. (9)

Substituting (4) into (9), we can determine f :

1

ρA

(
−EIδ4unb

+
f

∆x

)
− 1

m1
(k(q2 − q1)− f) = 0

⇐⇒ f =
ρA∆xm1

ρA∆x+m1

(
EI

ρA
δ4unb

+
k

m1
(q2 − q1)

)
.
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Fig. 2. The displacement of the coupling point.
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Fig. 3. The energy variation of the subsystems and their sum.

Now the entire semi-discretized coupled system is de-
scribed. However, the initial condition (8) and f given
by (9) only guarantee the conservation of the total en-
ergy. In other words, we should check the symplecticity
of the coupled system using Theorem 7.
The relationship between dunb

and dq1 is obtained by
integrating and taking the exterior derivative of (9):

vnb
/(ρA)− p1/m1 = 0

unb
− q1 = C (C : constant)

dunb
− dq1 = dC = 0.

Hence the condition of Theorem 7

df ∧ dunb
− df ∧ dq1 = 0

holds, and the coupled system is symplectic.
We conducted a numerical experiment with the

Störmer–Verlet method under L = 1, Nx = 51, b = 0.2,
nb = 10, T = 50, Nt = 105, ρ = 10, A = E = I = 1,
m1 = m2 = 0.1, k = 0.5. The spatial and temporal step
sizes are ∆x = 2 × 10−2, ∆t = 5 × 10−4. At t = 0, the
displacements of the beam and the coupled mass m1 are
set to 0, while q2 is set to −1.0. Since the f has only ui,
q1, and q2 as its inputs, it is evaluated at the same time
as the gradient of the Hamiltonians.

The results are shown in Figs. 2–4. Fig. 3 shows that
the energy variations from its initial values for the sub-
systems (∆Hel and ∆Hsp) are complementary to each
other, and the total energy H is conserved.
The symplecticity can be confirmed by the order prop-

erty of the modified Hamiltonian [3] and the Störmer-
Verlet method. To check the order property of the
method, we conducted additional experiments with dif-
ferent ∆t’s under fixed T = 500. Fig. 4 shows the results
of ∆t = 5× 10−4 and ∆t = 2.5× 10−4. We can see that
the variation of the total energy decreases in proportion
to the square of the time step. This proportionality re-
flects the fact that the method preserves the modified
Hamiltonian in order 1, and that the symplectic inte-
grators are valid for the system.

0e+00

2e-08

8e-08

	0 	100 	200 	300 	400 	500

|Δ
H

to
ta

l|

t

Δt=5.0e-4
Δt=2.5e-4

Fig. 4. Variation of the total energy for different time steps.
Halving the time step quarters the energy fluctuation; it shows
the order property of the Sörmer-Verlet method.

7. Conclusion

We have proposed a condition under which a coupled
system that consists of two Hamiltonian systems became
locally a Hamiltonian system. This result enables us to
check the applicability of the symplectic integrators to
complicated coupled systems. As shown in Lemma 6, the
underlying symplectic form is the standard one. Hence,
if the coupled systems are shown to be Hamiltonian,
existing symplectic integrators can be applied.
As related work, port-Hamiltonian systems, which are

an extension of Hamiltonian systems, have been stud-
ied [7]. It is known that the composition of a port-
Hamiltonian system is also a port-Hamiltonian system;
however, port-Hamiltonian systems are formulated by
focusing on the Dirac structure rather than the con-
servation of symplectic forms, and the applicability of
symplectic integrators is not well understood. The avail-
ability of symplectic integrators for such systems should
be investigated in future work.
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