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An artificial neural network (ANN) correlation of the lift coefficients of spherical and deformed bub-
bles in liner shear flows is developed. The ANN has three hidden layers and the number of neurons
in each hidden layer is 10. Lift coefficient data available in literature are used to train and test the
ANN correlation. The data include bubbles in both viscous force dominant and surface tension-
inertial force dominant regimes. Good agreements between the training data and model predictions
are obtained. Comparing the model with the test data confirms that the correlation has a good gen-
eralization performance.
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1. INTRODUCTION

Machine learning has been utilized in a wide variety of scientific fields. In the multiphase flow
community, machine learning techniques, especially the artificial neural network (ANN) (Beale
and Jackson, 1990), have been applied to multiphase flow researches have been developed, e.g.
flow pattern identification from video images (Liu and Bai, 2019; Shibata et al., 2021), subgrid-
scale modeling of interfacial mass transfer in DNS of bubbles (Weiner et al., 2019), modeling
of heat transfer coefficients (Enoki et al., 2017), predictions of void fractions in upward bubbly
flows (Tanaka et al., 2022) and modeling of hydrodynamics in bubble column reactors (Behkish,
2004; Behkish et al., 2005; Tanaka, 2010; Tanaka et al., 2010).

Behkish (2004) developed an ANN for predicting the total gas holdup and the gas holdup
of large bubbles in bubble column and slurry bubble column reactors (Behkish et al., 2005).
The ANN has two hidden layers in addition to the input and output layers and the neurons
are fully-connected. They used over 3,880 and 1,425 data of gas holdups and showed that the
trained ANNs predict the training and non-training data with 16% and 10% absolute errors for
the former and the latter. Tanaka et al. (2010) also developed ANNs to predict the gas holdup, the
dispersion coefficient and the reaction rate, which were used in constitutive equations to close
the averaging models for bubble column reactors (Tanaka, 2010). An example of applications of
ANN to a two-phase thermal engineering is found in Enoki et al. (2017), in which heat transfer
coefficients in horizontal mini-tubes are predicted using an ANN. The ANN consists of the input
and output layers and three hidden layers, and the inputs (features) are 16 parameters for the
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physical property and 5 parameters for the flow condition. The ANN trained with over 1,000
heat transfer data was confirmed to give good predictions.

As for the bubble dynamics, an ANN correlation is expected to give good evaluations of
model coefficients in the constitutive equations such as the drag, lift and so on, which are required
in bubbly flow simulations based on the averaging models. An advantage of the ANN correlation
is that it can be easily improved by a re-learning process when new experimental, numerical
and analytical data of the model coefficients are available. The key for realizing a reliable and
widely-applicable ANN correlation is to accumulate a large number of data, the so-called big
data. One of the difficulties in developing an accurate ANN correlation of the lift coefficient is
lack of experimental database. However, it would be worth examining the capability of ANN for
predicting the lift coefficients even with the limited number of the data.

This study aims to clarify the capability of an ANN correlation to express the lift coefficients
of spherical and deformed bubbles in linear shear flows.

2. ARTIFICIAL NEURAL NETWORK

2.1 Structure of ANN

The ANN used in this study consists of the input layer with N inputs, x(= (x1, x2, · · · , xN )),
the Affine layers having the weight matrix W and the bias b, the batch-normalization (Batch-
Norm) layer (Ioffe and Szegedy, 2015), the leaky ReLU (Leaky Rectified Linear Unit) layer
(Maas et al., 2013) and the identity layer for the output (Figs 1 and 2). All the layers are fully-
connected. The x is weighted and biased by using W and b to transform it into the signal, a,
and then, is transferred to the neurons in the first hidden layer:

ai = xjWji + bi (1)

where Wji are the component of the weight matrix connecting the jth input and the ith neuron
in the hidden layer, and bi is the ith component of b. BatchNorm is applied to the signal a as

āi =
ai − µBi

σBi
(2)

where µB and σB are the mean and the standard deviation of a in the batch. The ā is scaled by
the trainable coefficients, γ and β, as

âi = γiāi + βi (3)

The leaky ReLU is then applied to â:

yi =

{
âi for âi ≥ 0

αâi for âi < 0 (4)

where the gradient for negative signals is given by α = 0.01. The signal, y, goes to the next
hidden layer. The output layer applies the identity function and the output is denoted by z.

The ANN is trained by using the gradient descent learning. The NAG (Nesterov Accelerated
Gradient) algorithm (Nesterov, 1983) is used for learning. The weight parameters are initialized
using the Gaussian distribution (He et al., 2015). The mean squared error is used as the loss
function for evaluating the performance of the ANN.

The machine learning application in this study is developed by using the following pack-
ages: Keras (version 2.3.1) using TensorFlow (version 2.0.0) backend and Scikit-Learn (version
0.23.2).

Multiphase Science and Technology
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FIG. 1: Fully-connected artificial neural network.
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FIG. 2: Signal flow.

2.2 Input and output layers

Multi-fluid models and bubble tracking methods require the lift coefficient CL when solving
the momentum equations. The coefficient depends on several quantities such as the bubble size,
the instantaneous bubble and liquid velocities, and the fluid properties, i.e. the gas and liquid
densities, the liquid viscosity and the surface tension. It is possible to use these variables as the
inputs of the ANN model. However, it would be better to reduce the number of input variables
for making the ANN model as simple as possible. For this purpose, the relevant dimensionless
groups can be used. The CL of bubbles in linear shear flows are expected to be expressed in
terms of the bubble Reynolds number, Re, the Eötvös number, Eo, and the dimensionless shear
rate, Sr (Aoyama et al., 2017; Legendre and Magnaudet, 1998). It has been pointed out that the
bubble shape is a key parameter determining the magnitude of the negative component of the lift
acting on ellipsoidal bubbles (Adoua et al., 2009; Tomiyama et al., 2002), and the bubble aspect
ratio, E, has been taken as one of the independent variables in CL correlations (Hayashi et al.,
2021, 2020; Lee and Lee, 2020; Tomiyama et al., 2002) though E may also be a function of
Re, Eo and Sr. Aoyama et al. (2017) pointed out that E is rarely affected by weak liquid shear,
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TABLE 1: Dimensionless groups in datasets. A: Aoyama et al. (2017) (clean system), H: Hes-
senkemper et al. (2021) (purified, deionized, tap), L: Lee and Lee (2020) (contaminated). The
values in the parentheses represent the number of data points in each dataset.

Re Eo Sr M

A (562) 0.1 ∼ 120 0.027 ∼ 5.0 0.03 ∼ 0.43 2.3 × 10−7 ∼ 6.3 × 10−4

H (77) 660 ∼ 1520 0.68 ∼ 5.8 0.018 ∼ 0.075 2.6 × 10−11

L (11) 440 ∼ 7170 0.63 ∼ 55 0.0044 ∼ 0.024 1.4 × 10−11

and some E correlations are available (Aoyama et al., 2016; Hayashi et al., 2021; Hessenkemper
et al., 2021; Ziegenhein et al., 2018). Therefore, Re, Eo, Sr and E are used as the inputs, x, in
this study. The CL is the only output of the present ANN model.

The definitions of the dimensionless groups are as follows:

Re =
ρLVRd

µL
(5)

Eo =
∆ρgd2

σ
(6)

Sr =
ωd

VR
(7)

E =
dV
dH

(8)

where VR is the bubble relative velocity, d the sphere-volume-equivalent bubble diameter, ρL
the liquid density, µL the liquid viscosity, ∆ρ is the density difference between the two phases,
g the acceleration of gravity, σ the surface tension, ω the velocity gradient of liquid shear flow,

dV and dH are the minor and major axes of a bubble, and d = 3

√
dV d2

H .
The CL data were quoted from the literature (Aoyama et al., 2017; Hessenkemper et al.,

2021; Lee and Lee, 2020). The numbers of the data points and the ranges of the dimensionless
groups are shown in Table 1, where M is the Morton number defined by

M =
µ4
L∆ρg

ρ2
Lσ

3 (9)

The Re and Eo range from the order of 10−1 to 103 and from 0.01 to 10, respectively. The wide
ranges of these features may deteriorate the training efficiency. Therefore, logRe and logEo are
used instead of Re and Eo to put the data points into narrower variable ranges. Then, all the
features are normalized by the mean and the variance of the training data.

The data for training and test are randomly selected from the database with the ratios of
0.8 and 0.2 for the former and the latter, respectively. No stratification is applied in the data
extraction. The training data are used in the model development phase, and the test data are used
only in the final performance test.

2.3 Numbers of Layers and Neurons

Since the numbers of the input and output neurons are fixed and the network is fully-connected,
only parameters of the present ANN model are the number, Nl, of the hidden layer and the num-
ber, Nn, of the neurons in the hidden layers. The simplest model examined in the K-folds cross
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TABLE 2: Numbers of hidden layers Nl and neurons Nn in each hidden layer.
Nl = 1 2 3 4 5

Nn = 10 Case (1, 10) Case (2, 10) Case (3, 10) Case (4, 10) Case (5, 10)
20 Case (1, 20) Case (2, 20) Case (3, 20) Case (4, 20) Case (5, 20)
30 Case (1, 30) Case (2, 30) Case (3, 30) Case (4, 30) Case (5, 30)
40 Case (1, 40) Case (2, 40) Case (3, 40) Case (4, 40) Case (5, 40)

TABLE 3: Total numbers of parameters in ANN model. The values in the parentheses are the
numbers of non-trainable parameters.

Nl = 1 2 3 4 5
Nn = 10 101 (20) 251 (40) 401 (60) 551 (80) 701 (100)

20 201 (40) 701 (80) 1201 (120) 1701 (160) 2201 (200)
30 301 (60) 1351 (120) 2401 (180) 3451 (240) 4501 (300)
40 401 (80) 2201 (160) 4001 (240) 5801 (320) 7601 (400)

validation has Nl = 1 and Nn = 10. These values are increased up to 5 and 40, respectively, so
that the test cases can be summarized as shown in Table 2. For the cases of Nl > 1, the same
Nn is used for all the hidden layers. The total numbers of the parameters in each ANN model
are given in Table 3. Cases (4, 20) and (2, 40) have the same number of neurons. However the
total number of the parameters is larger in the latter than in the former.

3. RESULTS AND DISCUSSION

3.1 K-folds Cross Validation

The performances of the ANNs of different Nn and Nl are examined by using the K-folds cross
validation. The number of folds is five. The losses in the training Lt and validation Lv are
averaged for the folds. 20% of the training set are randomly extracted for validation in each fold.
The learning rate and the momentum in NAG are 0.1 and 0.9, respectively. The batch size is set
to the size of the training set.

Figure 3 shows the loss histories in each case. In Case (1, 10), the simplest model among the
models tested, Lt steeply decreases with increasing the epoch at the early stage of the training.
The decreasing rate of Lt then decreases and Lt approaches a certain value (∼ 0.006). The Lv

also shows a steep reduction at the early stage. However after 400 epochs Lv increases, which
implies that the model overfits the training data. The Lv then approaches a certain value, which is
about ten times larger than the converged value in the training. The increase in Nl to Nl = 2 does
not affect Lt so much. On the other hand, the overfitting is mitigated. Using (Nl, Nn) = (3, 10)
makes Lt smaller, but the overfitting becomes remarkable. The Lt in Case (4, 10) is smaller than
that in (2, 10), whereas Lv in the former is larger.

Compared with Case (1, 10), Lt in Case (2, 10) is smaller and the overfitting is mitigated.
By increasing Nn from 10 to 20, Lt is slightly reduced, but further increase in Nn does not affect
Lt so much. The Lv in the cases of Nl = 2 are similar.

The characteristics of Lt and Lv of Nl = 3 and 4 are similar to those of Nl = 2. Though
Case (5, 10) exhibits a large deterioration of Lv due to overfitting around 5,000 epoch, the other
cases of Nl = 5 also show trends similar to those in the cases of Nl = 3 and 4.

In summary, Lv of Nl = 1 are larger than those in the other cases of Nl > 1 and the
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FIG. 3: Loss history in K-folds cross validation in each Case (Nl, Nn). Solid line: loss in training; Dashed
line: loss in validation.
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overfitting largely deteriorates the performance in some cases. The behaviors of Lv in the cases
of Nl > 1 seem more stable except for (5, 10). However the increase in Nl from three to larger
values are not effective. Although the increase in Nl decreases Lt in most cases, the orders of the
magnitude of Lv are not so different. Therefore, (2, 10) or (3, 10) would be a reasonable choice
as the base model to make the model as simple as possible. Figure 4 shows the loss histories
of these cases up to 50,000 epochs. In both cases, overfitting does not take place even for large
epochs. The latter case shows slightly better performance than the former. In the following, we
use the model of (3, 10) as the base model.

0 10000 20000 30000 40000 50000

epoch

10−4

10−3

10−2

10−1

100

lo
ss

Case (2, 10)

Case (3, 10)

FIG. 4: Comparison of loss history between Cases (2, 10) and (3, 10). Solid line: loss in training; Dashed
line: loss in validation.

3.2 Training Phase

The model of Nn = 3 and Nl = 10 is trained for the full training dataset. Figure 5 shows the
loss history in the training phase of the model. The trend of the loss curve is the same as that
in the cross validation though the value of Lt of this training is somewhat smaller. Though Lt

shows some oscillations possibly due to the large learning rate, the decreasing rate in Lt is very
small for epoch > 20, 000. This implies that the simple model structure (3, 10) does not cause
serious overfitting even with the small size of the dataset.

Figure 6 shows comparisons between the predicted CL (the closed symbols) and the training
data (the open symbols), where the model parameters are for 50,000 epochs. The comparisons
confirm that the present ANN model is well trained for the dataset for the wide ranges of the
relevant dimensionless groups, e.g. 0.1 ≤ Re ≤ 7000. Bubbles included in the datasets are
either in the viscous force dominant regime or in the surface tension-inertial force dominant
regime (Tomiyama et al., 1998), and lift correlations may be developed using different functional
forms for those regimes (Hayashi et al., 2021, 2020). On the other hand, the ANN correlation
can cover CL in both regimes with the single network structure. Figure 7 shows the evaluation
errors in the predicted CL, where the dotted lines represent ±10% errors. Most data are within
the 10% error range.
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FIG. 5: Loss history in training phase for model of Nl = 3 and Nn = 10.
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FIG. 6: Comparison between predicted CL with training data (Nl = 3 and Nn = 10). Closed symbols:
predicted; Open symbols: training data. H-pure, H-DI and H-tap denote bubbles in pure water, deionized
water and tap water, respectively (Hessenkemper et al., 2021).

Lift curves are drawn by using the trained ANN as shown in Fig. 8. The inputs were prepared
as follows:
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FIG. 7: Estimation errors for training data. Nl = 3 and Nn = 10.

1. Create data of Re for a certain range.

2. Calculate Eo for the Re data by using the following drag correlations (Chen et al., 2019;
Mendelson, 1967; Tomiyama et al., 1998):

CD =
16
Re

[
1 +

0.25Re0.32

E1.9

]
(viscous force dominant regime) (10)

CD =
8
3

Eo

Eo+ 4
(surface tension-inertial force dominant regime) (11)

3. Evaluate E by using the following shape correlations (Aoyama et al., 2017; Hayashi et al.,
2021):

E = (1 + 0.016Eo1.12Re)−0.388 (viscous force dominant regime) (12)

E = (1 + 0.62We0.376)−1 (surface tension-inertial force dominant regime) (13)

4. Calculate Sr for given ω.

For −5.5 ≤ logM ≤ −3.9, the agreements between the lift curves predicted by the ANN and the
data are fairly well. Although the trend of the curve at logM = −3.2 is not good for Re < 0.2,
the trend at larger Re is acceptable. Even though there is no data for Re < 5.7 at logM = −6.6,
the ANN correlation reproduces the trend of CL, i.e. the increase in Re largely decreases CL.
At logM = −10.6, the predictions are reasonable for Re > 600; however at lower Re, at which
no experimental data are available for training, the lift curve shows an un-physical trend.

Thus, the present ANN is capable to accurately predict CL for a wide range of the rele-
vant dimensionless groups. It however requires more data to avoid causing large errors in some
parameter ranges, where no data are available.
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FIG. 8: Lift curves drawn using trained ANN model of Nl = 3 and Nn = 10. The shape correlations Eqs.
(12) and (13) are used for E. The legends of the symbols are the same as those in Fig. 6. The shear rate, ω,
used are 3.2 and 2.3 s−1 for logM ≥ −6.6 and logM = −10.6, respectively.

3.3 Data Extension Using Available Model

As discussed in the previous section, the present ANN correlation gives relatively large errors at
low Re (logM = −3.2,−6.6) and intermediate Re (logM = −10.6). Under these conditions,
the bubble shape can be assumed to be almost spherical, and for spherical bubbles the following
well-accepted semi-analytical correlation is available (Legendre and Magnaudet, 1998):

CS
L = ([CSL

L ]2 + [CSH
L ]2)1/2 (14)

where the lift coefficients of a low Reynolds number bubble, CSL
L (Legendre and Magnaudet,

1997), and a high Reynolds number bubble, CSH
L , are given by

CSL
L =

6
π2

2.255
√
SrRe [1 + 0.2Re/Sr]

3/2 (15)

CSH
L =

1
2

(
1 + 16/Re

1 + 29/Re

)
(16)

This correlation can provide some CL data to cover the Re ranges of inaccurate predictions. It
would be worth verifying a possibility of improving the accuracy of the present ANN model by
re-learning with additional data.
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Let us first examine whether the present ANN structure is capable of expressing Eq. (14) or
not. The number of the data generated for this purpose is 400. The bubble Reynolds numbers
and the dimensionless shear rate for the input are randomly selected. The Eötvös numbers are
determined using the following drag correlation for spherical bubbles (Mei et al., 1994):

CD =
16
Re

[
1 +

(
8
Re

+
1
2

(
1 +

3.315√
Re

))−1
]

(17)

Figure 9 shows comparisons between the generated data and predictions using the ANN cor-
relation, which was trained with all the data up to 50,000 epochs. The data for low Re show some
scatter because of the effects of Sr. The predictions agree well with the data in the whole range,
and therefore, the effects of Re and Sr on CL in Eq. (14) can be expressed well with the ANN
correlation. Hence, the present ANN structure is expected to be able to correlate simultaneously
the experimental data and additional data using Eq. (14).
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10
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10

12

C
L

Data
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FIG. 9: Data created using the Legendre-Magnaudet correlation, Eq. (14), (circles) and predictions with
ANN correlation (Nl = 3 and Nn = 10) (+ symbols).

The number of data added to the training set is 17 and the ranges of Re and Sr are shown in
Table 4 (the upper three rows in the table). Only two data points of low Re are added in the data
of logM = −3.2. On the other hand, we add 15 data points in the low M data (logM = −6.6
and −10.6) to supplement the database for a much wider Re range. Some data are also added in
the intermediate Re ranges of −6.6 ≤ logM ≤ −3.2 to maintain the decreasing trend of the lift
curves by the ANN model as shown in Fig. 8.

Figure 10 shows comparisons between the training data and CL predicted with the re-trained
ANN model and lift curves drawn with the model. The predictions agree well with the training
data and the characteristics of the lift curves become more reasonable than the previous predic-
tions (Fig. 8) even with the small number of the additional data. The lift curve for logM = −10.6
seems discontinuous at Re ∼ 460, at which the shape correlation switches between Eqs. (12)
and (13). Even though there are still no training data for 150 < Re < 440, the trend of the lift
curve is acceptable.
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TABLE 4: Ranges of Re and Sr in training data added using Eq. (14) (upper three rows) and
trained ANN model (lower five rows).

M Re Sr Num. of data points
−3.2 0.1 ∼ 0.3 0.20 ∼ 0.40 2
−6.6 0.1 ∼ 4 0.03 ∼ 0.06 5
−10.6 0.1 ∼ 150 0.02 ∼ 0.06 10
−3.2 27 ∼ 46 0.12 ∼ 0.22 5
−3.9 39 ∼ 68 0.10 ∼ 0.21 5
−4.8 62 ∼ 113 0.084 ∼ 0.20 5
−5.5 89 ∼ 167 0.074 ∼ 0.20 5
−6.6 139 ∼ 304 0.054 ∼ 0.20 5

10−1 100 101 102 103 104

Re

−3

−2

−1

0

1

2

3

4

5

6

C
L

logM = −3.2

−3.9

−4.8

−5.5

−6.6

−10.6

FIG. 10: Lift curves drawn using re-trained ANN model. Closed symbols: predicted; Open symbols: train-
ing data. Cross symbols: additional data.

3.4 Test Phase

The generalization performance of the trained ANN correlation is examined by predicting CL of
the test data. As shown in Fig. 11, the agreements between the predictions and the test data are
fairly well. The characteristics of CL are reproduced, i.e. CL decreases with increasing Re at low
Re, the decreasing rate mitigates, and then, CL drops down to the negative lift regime. The errors
in the predictions are shown in Fig. 12. Most data are within ±10% errors although some data
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have relatively larger errors. The developed ANN correlation, thus, does not show remarkable
overfitting and has a good generalization performance at least in the parameter ranges tested.
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−10.8 (Lee and Lee, 2020)

filled symbols: predicted

FIG. 11: Comparison between predicted CL with test data (Nl = 3 and Nn = 10). Closed symbols:
predicted; Open symbols: test data.

4. CONCLUSION

The characteristics of lift coefficients, CL, of deformed bubbles in linear shear flows were well
expressed by the artificial neural network trained with experimental databases available in lit-
erature. The K-folds cross validation was used to determine the numbers, Nl and Nn, of the
hidden layers and the neurons, and Nl = 3 and Nn = 10 were selected based on the validation
results. The predictions of the CL agree well with the training data. Comparisons with the test
data showed that the developed ANN correlation has a good generalization performance.

The ANN correlation with the simple fully-connected network was thus confirmed to be
capable of expressing CL well, and the applicable range covers both viscous force dominant and
surface tension-inertial force dominant regimes. The main advantage of the ANN correlation is
that the model can be easily improved by adding new lift data.

The simple ANN structure was selected from a point of view of computational costs in bub-
bly flow simulations. If a CL-data table is prepared using the ANN and CL is obtained from
the table in bubbly flow simulations, a more complex structure can be selected for better accu-
racy. However, overfitting tends to take place for complex structures, and therefore, remedies for
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FIG. 12: Estimation errors for test data. Nl = 3 and Nn = 10. Dashed lines: ±10% errors.

overfitting, e.g. dropout, should be implemented.
In this study, the bubble Reynolds number Re, the Eötvös number Eo, the dimensionless

shear rate Sr and the bubble aspect ratio E were used as the input features. It is also possible to
develop ANN correlations to evaluate Re, Sr and E for given fluid properties, bubble size and
liquid velocity.
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