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Despite a climate and topology favorable to hydropower（HP）generation, HP only

accounts for 4¥％ of today’s Japanese primary energy consumption mix. In recent

years, calls for improving the efficiency of Japanese HP have emerged from prominent

voices in the Ministry of Land, Infrastructure, Transport and Tourism. Among poten-

tial optimizations, data-driven dam operation policies using accurate river discharge

forecasts have been advocated for. Meanwhile, Machine Learning（ML）has recently

made important strides in hydrological modeling, with forecast accuracy improve-

ments demonstrated on both precipitation nowcasting and river discharge prediction.

We are interested in the convergence of these societal and technological contexts : our

goal is to provide scientific evidence and actionable insights towards the implementa-

tion of more efficient dam operation policies using ML-based river discharge forecasts

on a national scale. Towards this goal, this work presents a framework that simulates

dam operation using uncertain river discharge forecasts. This framework aims to

jointly quantify river discharge forecast accuracy, and the impact of forecast errors on

dam operation efficiency. We conduct a preliminary study of ML-based discharge fore-

cast on a dataset of 127 Japanese public dams we have assembled, and attempt to

quantify the impact of different forecast error components on operation efficiency.
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1 Introduction

Dam operation is a problem of control under uncertainty, in which dam operators aim to

maximize multiple objectives（flood protection, HP generation, etc.）given uncertain forecasts

of river discharge flowing into dam reservoirs. The more accurate river discharge forecasts are,

the more efficiently（in terms of both flood protection and HP generation）dams can be oper-

ated. The uncertainty of discharge forecasts can be attributed to two main factors : Uncertainty

in precipitation forecast（how much rain will fall）and uncertainty in hydrological modeling

（how much of the fallen rain will flow into rivers）. High levels of uncertainty and abundant al-

ternative energy sources have lead Japanese public dam operators to adopt conservative opera-

tion strategies. However, three factors may come to challenge this status quo : First, social and

environmental pressures on fossil fuels and nuclear energy production, combined with the

rapid development of intermittent renewable energy sources, are foreseen to increase the value

of HP generation. Second, climate change is expected to have a deep impact on Japanese sur-

face water distribution（Synthesis Report, 2018）, which is set to challenge current water supply

operations. Third, improvement of both physical and statistical inference models are foreseen

to increase the accuracy of forecast, allowing for better-informed dam operation policies. Com-

bined, these three factors may come to challenge the current risk-benefit analysis towards

more efficient operation policies leveraging accurate river forecast.

Figure 1

Current HP supply

: ＞60％
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: 20％�40％
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（Left）Current energy supply rates（Energy consumed / HP production）coming from HP（Center）Potential HP supply
rate. Both figures were taken and translated from 角 et al. 2019（Right）: Illustration of our dataset’s dam locations. Many
collected dams are located in prefectures with high potential for optimization.

In this context, we aim to provide the scientific evidence and actionable insights for dam in-

The Kokumin-Keizai Zasshi, Vol. 227, No. 246



frastructure managers and policy makers to implement energy-efficient and flood-resistant dam

operation policies leveraging Machine Learning（ML）-based discharge forecast on a national

scale. To do so, we have implemented the conceptual framework illustrated in Figure 2, which

we detail in Section 3. This framework simulates Japanese public dam operations on a national

scale so as to characterize the uncertainty of river discharge forecast, and to quantify the impact

of these uncertainties on the efficiency of dam operation policies. Using this framework, we aim

to provide answers the following questions :

・To what accuracy can ML models forecast river discharge?

－What is the impact of different error components（e.g.; atmospheric or hydrologi-

cal uncertainties）?

－How does accuracy evolve with horizon times?

－Can reliable uncertainty estimates on the forecasted discharge be achieved?

・How does forecast accuracy impact operation efficiency?

－What is the impact of different error components?

－On what time horizons is forecast accuracy the most impacting?

・What is the impact of dam dimensioning on operation efficiency?

－In particular, what potential efficiency gains can be expected from dam heighten-

ing?

The answer to these questions represent the scientific evidence and actionable insights we

aim to provide for dam infrastructure managers and policy makers. This work presents the re-

sults of our initial efforts towards achieving this goal, focused on analysing the accuracy of

ML river discharge forecast, and on evaluating the impact of forecast accuracy on dam opera-

tion efficiency. On the river discharge forecast side, we report positive results, showing that

advanced Deep Learning（DL）models tend to outperform both global hydrological models and

linear baselines. We find uncertainty on precipitation observations and forecasts to be the most

impacting factor for river discharge forecast accuracy, and that for high level of precipitation

uncertainties, non-linear models perform on-par with linear models. In addition, we find that

forecast accuracy of ML models improves when models are fitted to noisy precipitation forecast

inputs, suggesting that these models can skillfully make use of the patterns of precipitation un-

certainties to improve their predictions. On the problem of evaluating the impact of forecast

accuracy on dam operation efficiency, we report a negative result : We propose a Reinforcement

Learning（RL）formulation to the problem of dam operation, and find that our approach does

not manage to deal with extreme weather events（e.g.; typhoons）, which induces random vari-
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ations in our results. These random variations are due to the difficulty of the model to handle

rare statistical extremes, rather than the expression of a meaningful trend, which constitutes

our negative result. Nevertheless, this experiment provides us with future research directions :

we will focus on integrating explicit modeling of heavy rain events to our framework. Section

6 discusses the limitations of our current approach and lays out a path towards providing more

definitive answers to the questions outlined above. The remainder of this paper is organised

as follows : We present our proposed framework in Section 3. Section 4 focuses on the analysis

of ML-driven discharge forecast, and Section 5 on evaluating the impact of forecast errors on

dam operation efficiency. We start by presenting the dataset we have collected in Section 2, and

the remainder of this section further motivates our study with additional context.

1．1 Societal Context

A mountainous topology and a heavy rain climate lend Japan a high potential for HP genera-

tion. Historically, Japan has extensively relied on HP generation during the first half of the 20

th century, favoring HP over fire-based energy for its base load supply, a policy known as

「水主火徒」. As the post-war period of great economic development called for increased energy

consumption, fossil fuel plants were preferred to HP for their ability to quickly and efficiently

answer the rapid increase in demand. Later, the oil shock has seen Japan strategically develop

nuclear power generation to ensure its energy independence. Due to longer infrastructure de-

velopment times, HP lost its competitiveness in times of rapidly increasingly energy needs, so

that its operating infrastructure has been comparatively little optimized（角 et al. 2019）. Today,

nuclear incidents and international pledges to reduce carbon emissions have come to threaten

the long term viability of Japan’s current energy mix. While solar and wind power generation

are being intensively developed, their intermittent nature does not allow them to cover for the

base load and demand response capacity provided by fossil fuel plants. In this context HP gen-

eration is seen as a valuable low-carbon alternative to fossil fuels for both base load and demand

response needs to complement the development of intermittent renewable energy sources. For

all its benefits, several voices from the MLIT have been advocating for a more efficient use of

Japanese water resources towards HP generation（角 et al. 2019, 竹村 2016）. Figure 1, drawn

from a 2019 report on the state and future of Japanese HP（角 et al. 2019）, shows the current

rate of energy demand supplied by HP per prefecture, and contrasts it to potentially achievable

supply rates, illustrating large potential gains. Among the potential optimization, the implemen-

tation of power efficient dam operation policies using accurate river discharge forecasts has
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been identified. Furthermore, climate change is expected to have a deep impact on surface

water distribution in Japan（Synthesis Report, 2018）, with impacting local disparities including

faster snow melt in the northern and Japan sea regions, increased drought periods in the south,

and increased flooding risks due to heavy rain events across the country. Both the destabiliza-

tion of surface water distribution and the need for sustainable energy supply call for better fore-

casting abilities to optimize water resource management operations.

1．2 Technological Context

Dam operation is the problem of satisfying two opposing objectives. On the one hand, HP

production, crop irrigation, household and industrial consumption benefit from keeping high

water volumes in dam reservoirs. On the other hand, flood control benefits from low water lev-

els as empty reservoirs can better buffer strong river discharges so as to prevent flooding of

downstream settlements. Optimal operation policies aim to maximize HP generation and other

water-supplied services while minimizing the risk of flooding by keeping appropriate levels of

water in the reservoir at all time. If water levels are kept high to maximize HP generation, op-

erators must be able to preemptively lower water levels in order to accommodate for high river

discharge following heavy rain events. Failing to do so comes with dire consequences : disas-

trous flooding of downstream urban settlements, and even possible dam failures. Thus, the im-

plementation of efficient dam operation policies requires a precise knowledge of incoming dis-

charges ahead of time, i.e.; accurate river discharge forecast. In the present study, we focus on

river discharge forecast horizons of up to 3 days, which we estimated as the time needed for

most small to medium size dams to preemptively empty their reservoirs so as to buffer heavy

rain event discharges.

Historically, both atmospheric and hydrological modeling have been mostly addressed by

physical simulation models. However, following the success of DL approaches across an in-

creasing array of science and engineering fields, recent years have seen an increasing interest

in applying DL methodology to river discharge modeling, hydrology and the earth sciences at

large. In a series of recent works, ML-based river discharge models have been shown to outper-

form traditional methods on several benchmarks（Kratzert et al. 2018）, with notable voices ad-

vocating for further development and wider applications of statistical approaches over physical

models（Nearing et al. 2021）. In the meantime, another line of work has shown ML-based pre-

cipitation nowcasting to outperform state-of-the art ensemble physical atmosphere simulations

（Ravuri et al. 2021, Espeholt et al. 2021）. These recent successes are emblematic of a wider
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trend that sees statistical approaches increasingly impacting the earth sciences, further exem-

plified by leading institutions integrating statistical approaches at the heart of their develop-

ment strategy（ECMWF, 2021）. Together, these trends beg the question of whether ML can

provide river discharge forecast accurate enough to empower efficient dam operation policy im-

plementations in Japan, as called for by prominent policy makers（角 et al. 2019, 竹村 2016）.

This work aims to layout the foundation to answer this question.

2 Dataset

We have assembled a dataset covering 127 public dams across Japan, whose locations are il-

lustrated in Figure 1. For each dam, we have collected historical hourly reservoir inflow dis-

charges provided by the MLIT, spanning from the year 1980 to 2020, as well as the dam dimen-

sions（wall height, reservoir volume, control door average and potential discharge and HP tur-

bine power）. Atmospheric observations（precipitation, temperature, wind, etc.）, and forecasts

for the same period were collected from different sources, interpolated to each dam’s drainage

area（the area from which rain flows into the dam）, and aligned to the in-situ river discharges

observations.

As precipitation forecasts, we have collected historical data from different physical simula-

tions provided by the Japanese Meteorological Association（JMA）on different spatio-temporal

scales, including the Global Spectral Model（GSM）, Meso-Scale Model（MSM）and Local

Forecast Model（LFM）. As atmospheric observations, we used assimilated data provided by

the MSM model for precipitation, wind and temperature. Additionally, we have collected remote

sensing precipitation estimates（Kubota et al. 2020）, and in-situ precipitation measurements

provided by the MLIT. We also collected snow melt data from the Today Earth simulations.

Table 1 summarizes the different kind of variables collected for each dam. This dataset will

Table 1 : Summary of the variables in our dataset

Data Source Variable Type Unit

MLIT Discharge In-Situ m3/s

JMA Precipitation Forecast mm

MLIT Precipitation In-Situ mm

GSMap Precipitation Remote Sensing mm

JMA Precipitation Assimilated Model mm

JMA Temperature Assimilated Model degrees

JMA Wind Assimilated Model m/s

TE［9］ Snow melt Model m3/s
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be released, along additional Japanese river discharge measurements, following existing hydro-

logical standard in an upcoming paper. Beyond the present study, our goal is to foster future

ML research efforts on improving discharge forecast of Japanese rivers by providing this data

as a standard benchmark. Similar efforts have been undertaken to provide such benchmark in

different countries（e.g.; Addor et al. 2017）, and to homogenize datasets from different coun-

tries（Kratzert et al. 2022）. We hope that this data will enable the inclusion of Japan to this in-

ternational effort for future research to benefit Japan as well.

Our study is currently limited to using the JMA’s GMS precipitation forecast; evaluating the

impact of more local simulations（i.e.; MSM and LFM）is left for future work.

3 Framework

Figure 3 illustrates our proposed framework. Components for which we have optimized ML

models are shown in darker color. The Meteorological Model component provides atmospheric

forecast and observations including precipitation, surface wind and temperatures. These atmos-

pheric variables are given as inputs to the Hydrological Model, which computes river discharge

forecasts. River discharge forecasts are used by the Dam Operator component, which computes

control variables acting on the Dam Model. The Dam Model keeps track and up-dates the state

of the dam reservoir given incoming river discharges（in-situ observations provided by the

MLIT）, and the outflow discharge controlled by the operator. A reward is computed from the

Dam Model operation : A positive reward is attributed by the Grid Response component, quan-

tifying the benefit gained from HP, and a negative reward is attributed that quantifies the flood

Figure 2 : Schematic illustration of our proposed framework.

Preclpitation Input
Discharge

Meteorological
Model

Hydrological
Model

Dam
Operator

Reward Generated
Power
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Dam
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risk resulting from dangerous operations. We further describe each component below:

Meteorological Model : In the present study, we use JMA’s GSM model to provide atmos-

pheric forecast. In some ablation study, we also simulate ideal forecast using actual observation

data so as to isolate the impact of atmospheric forecast errors on the discharge forecast accu-

racy. In future work, we also plan to integrate both finer-grain JMA simulations（MSM, LFM）

and recent Deep Learning based precipitation nowcasting models（Ravuri et al. 2021, Espeholt

et al. 2021）. Our implementation is modular so as to allow the integration of new models in the

future.

The Hydrological Model implements a function

Ft=f(Xt) （ 1）

f：�D → �72 （ 2）

where Xt represents D-dimensional feature vector representing atmospheric forecast and ob-

servations provided by the Meteorological Model（cf. Figure 3）, and Ft∈�72 represents hourly

river discharge forecast for the following three days. We have experimented with different hy-

drological models including global hydrological modes, linear baselines non-linear ML models

and recent hydrological DL models. Section 4 details our analysis.

Dam model : The dam model keeps track of water levels throughout the simulation. Our dam

model features two doors : the flood control door releases a large volume oF of the reservoir’s

water. The HP door releases a smaller volume oHP which generates HP. Given a certain dis-

charge dt incoming at time t, the dam simulator updates the reservoir’s current volume follow-

ing the vt=vt-1+dt-ot rule. Here, the amount of water released is denoted as ot, and can be

either oF or oHP, depending on which door the dam operator opens. We run hourly simulations,

so discharge variables represent volumes exchanged during one hour of operation. A function

g characterizing the reservoir geometry translates water volume to water height ht=g(vt),

which is used for the reward computation. We modeled dam reservoir geometry as a truncated

cylinder, parameterized by their actual height and heuristically defined radius. When the HP

door is activated by the operator, the amount of generated power Pt is proportional to the cur-

rent water level : Pt=C*ht.

Dam Operator : The dam operator implements a control function

at=c(vt , Ft) （ 3）

c：�*�72 → � （ 4）
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which outputs a discrete control variables at∈�, given two inputs : the current dam reservoir

state vt and the forecasted river discharges Ft. �={aHP, aF, aidle} represents a set of three dis-

crete actions : either open the HP door, the flood control door, or remain idle. In Section 5, we

present our early attempt to learn an optimal control function c using RL.

Operation Reward : At each step, a reward rt=rHPt +rFt is computed to quantify the efficiency

of current dam operation. This reward is the sum of two components : A positive reward is

given for HP generation. In this work, we use a constant reward for HP : r HPt =K*Pt, with K

a constant. In future work, we may implement a more complex reward system using a grid re-

sponse simulation that would account for HP value fluctuations. The r floodt component represents

a negative reward related to flood risk. In this work, we represent flood risk as a function of

reservoir water levels, which can be seen as quantifying the risk of dam failures as water levels

reach high values. In the future, we may instead quantify flood risk as cumulative outflow,

which is the subject of regulations to prevent downstream flooding in practical operations.

4 River Discharge Forecast

In this section, we aim to maximize discharge forecast accuracy and to characterize forecast

errors by quantitatively answering the questions listed below. To do so, we use a Machine

Learning methodology : we fit possibly non-linear parameterized functions to regress future

river discharge on a set of training data, and evaluate the ability of the fitted functions to esti-

mate river discharge on a held-out set of test data. For each dam, we split our dataset into a

training set ranging up to January 2018, a validation set consisting in data between January and

December 2018 and a test set made of data from January to December 2019. The validation set

is used to calibrate the model regularization to avoid overfitting the training data. We report

our results in terms of forecast accuracy on the test set.

We use the in-situ measurements provided by the MLIT as river discharge ground-truth for

both training（i.e.; fitting the parameterized function to the training set）and testing（evaluating

forecast accuracy on the test set）. Figure 3 illustrates the inputs Xt, at a given time step t, used

to regress river discharges dt+T at a given forecast horizon T. For a given horizon time T rang-

ing from 1 to 72 hours ahead, Xt includes past hourly observations of different atmospheric

variables over the past 85 hours, as well as forecasted precipitation data up to the target horizon.

We use the Mean Squared Error（MSE）as a loss function to train the models. Models are func-

tions fè parameterized by a set of parameters è∈È. Training a model consists in fitting the

parameterized function to the training data by minimizing the the loss function over the parame-
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ters on the training set Tr.

Figure 3 : Schematic illustration of the input data Xt to our model

Past obs. Limit Obs. Time Forecast Horizon

Snow melt

Precipitation

Temperature

Wind

Observation data Forecast data

We use past observations of both atmospheric variables and discharge up to the
current observation time t. In addition, we use forecasted precipitations up to
the horizon time T.

�(è)=∑
t∈Tr
( fè(Xt)-dt+T)2 （ 5）

è*=minè∈È�(è) （ 6）

We evaluate different classes of model fè : A linear model, a standard Multi-Layer Perceptron

（MLP）, gradient boosting models（LGB, XGB）, and the deep learning model（LSTM）pre-

sented in（Kratzert et al. 2018）. Each model is fitted and evaluated individually per dam and

per horizon time. We report the average accuracy over the full test set（averaged across dams）.

As large dams show significantly higher river discharges, the average MSE across the dataset

is dominated by the error on large dams. In order to report results that more evenly represent

the average performace across dams, we report our results in terms of the Nash-Sutcliffe

model efficiency coefficient（NSE）, which is common practice in hydrology. Given an observed

discharge dt+T and a predicted discharge f(Xt), NSE is defined as below:

NSE(dt+T , fè(Xt))=1-
∑t(dt+T-fè(Xt))2

∑t(dt+T-d�)2
( 7 )

E(T)=
1
|Te|
*∑
t∈Te
NSE(fè(Xt)-dt+T) （ 8）

where d�denotes the average observed discharge over the observation period. NSE can be

roughly understood as the ratio of variance in future discharge explained by the model, with

a score of 1 representing perfect forecast ability and a score of zero representing an accuracy
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accuracy similar to a constant prediction corresponding to the observed average. To answer the

below questions, we repeat the training and evaluation procedure described above, varying

either the model fè, the variables Xt used as input, or the horizon time T.

Figure 4
Linear Model MLP

0.9
Trained on Forecast
Trained on Observations

Trained on Forecast
Trained on Observations

0.8 0.8
0.7

0.6 0.6

0.5
0.40.4

0.3
0.20.2

10 20 30 40 50 60 70 10 20 30 40 50 60 70

（a）Linear Model （b）MLP

Accuracy of models trained on either forecasted precipitations or observed precipitation（oracle forecast）.
The difference between both curves represent improvement brought by knowledge of the precipitation fore-
cast uncertainties.

Figure 5
Linear Model MLP
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Precipitation Forecast
Precipitation Observations

Hydrological Error
Precipitation Error

Precipitation Forecast
Precipitation Observations

Hydrological Error
Precipitation Error

0.80.8

0.60.6

0.40.4

0.20.2

10 20 30 40 50 60 70 10 20 30 40 50 60 70

（a）Linear Model （b）MLP

Accuracy of models trained and evaluated on either forecasted precipitations or observed precipitation（oracle fore-
cast）. The upper area can be seen as quantifying the hydrological error component, while the lower curve aims to to
quantify the precipitation forecast component.

What practical forecast accuracy can be achieved on different forecast horizons? The

upper curve in Figure 4 presents the evolution of accuracy with forecast horizons obtained by

our best effort models in practical use-case situations : in-situ measurements of past discharge

and atmospheric variables with GSM precipitation forecast were used as inputs to a linear and

MLP model. A sharp decrease in accuracy can be observed within the first day time horizons.

The below experiments further analyse the nature of these errors.

Are discharge forecast errors most impacted by precipitation forecast errors（how

much rain will fall）or hydrological errors（how much of the fallen rain will flow into the
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dam）? To answer this question, we ran the following experiment : In a first run, we train and

evaluate models using oracle precipitation forecasts（i.e., we simulate perfectly accurate pre-

cipitation forecast using future in-situ observations of precipitations）. In a second run, we train

evaluate the learned models using the actual uncertain GSM forecast as precipitation forecast.

This allows us to isolate discharge forecast error components caused by hydrological and pre-

cipitation forecast errors respectively : We consider the errors of the first run to stem from hy-

drological uncertainties and the difference in accuracy between both runs to be the impact of

GSM forecast errors. Figure 5 shows the result of our experiments for two models, a linear

model and a higher capacity MLP. The sharp increase in errors induced by short-term precipi-

tation forecast motivates us to integrate higher precision short-term forecasts to maintain high

accuracy on these horizon times. We are currently considering either JMA’s physical simula-

tions or precipitation nowcasting DL models.

Figure 6 : Impact of different modeling on discharge forecast accuracy

JMA
In-situ
GSMap
GSMap（gauge）

0.7
0.6

0.6
0.5

0.5
0.4

0.4

N
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N
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CaMa-Flood
Linear
LGB
XGB
MLP
LSTM

0.3 0.3

0.2 0.2

0.1 0.1

0.0 0.0

（a）Impact of precipitation data （b）Impact of hydrological model

What variables are most predictive of river discharge? Figure 6（a）highlights the impor-

tance of quality precipitation estimates, by showing results on a 24 hours horizon forecast using

different precipitation observations. In-situ observations provide large improvements over both

remote sensing estimates（GSMap）and assimilated model simulations（JMA）. Temperature

seems to provide little predictive power, as shown in Figure 7（c）. Snow melt was also found

to have an important impact for dams in the north and along the Japan sea. We study the impact

of providing snow melt information（simulation data provided by the Today Earth service）as

input to the model and compare forecast accuracy with and without snow melt data in Figure

7. Large accuracy gains can be observed in heavy snowfall regions（North and Japan sea）.

We also find that using past discharge observations with conditioning of the model on the cur-

rent month allows to recover similar accuracy, which suggests that snow melt-induced dis-

charges may be smooth enough to be estimated from past discharge observations and season-
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ality only. It remains to be seen whether this strategy may work for longer horizon times.

What hydrological models are most accurate for river Japanese dams discharge model-

ing? We compare the accuracy of different ML models to that of a global hydrology model

（Yamazaki et al. 2011）on a one day horizon forecast, and show that ML models tend to outper-

form the hydrology model. This may be due to ML model relying extensively on high-precision

local data, while the global model does not. In addition, it can be seen that more expressive

models outperform the baseline linear models. This trend was only observed for high precision

precipitation estimates, while the gap between ML models and the linear baseline diminishes

as the uncertainty in precipitation estimates increases. Indeed, Figure 4 and 5 both show that

the MLP accuracy tends towards the linear baseline accuracy for longer horizon times when

using uncertain forecasts.

Can ML models leverage knowledge of the uncertainty in precipitation forecasts to im-

prove river discharge forecast? To answer this question, we run the following experiment :

In a first run, we train ML models to forecast river discharge given oracle precipitation forecast.

We both control overfitting and evaluate the accuracy of trained models on actual precipitation

forecast. In that setting, the models are trained to model accurate hydrological phenomena, i.e.,

to output actual river discharges corresponding to actual precipitations. In a second run, we

train models to regress river discharges on the GSM precipitation forecast instead of the oracle.

This way, the model has knowledge of the given precipitation forecast error distribution. If the

precipitation forecast shows systematic biases, the model shall thus fit these biases and repro-

duce them on the test set. Figure 5 shows the results of this experiment, with the lower curve

representing oracle precipitation forecast training and the upper curve showing results for the

GSM forecast training. Non-negligible improvements can be observed for the latter. At this

point of the study, we have not yet elucidated the reasons behind this improvement. Future

Figure 7 : Illustration of the impact of snow melt modeling on discharge forecast accuracy
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analysis will investigate if structural biases are indeed identified in the precipitation forecast and

what these biases are. Nevertheless, knowledge of precipitation forecast errors seems to im-

prove forecast ability. Another possible line of improvement would be to provide explicit precipi-

tation error estimates as input to the model, using ensemble simulations provided by the JMA.

5 Impact on Dam Operation

In the previous section, we have analysed the impact of different modeling components on

river discharge forecast errors. Maybe the most fundamental question remaining towards ad-

dressing our final goal is : how do forecast errors impact the efficiency of dam operations, and

what forecast accuracy is required to enable data-driven energy-efficient policies? Answering

these questions would provide precious insights : From an academic perspective, it would pro-

vide directions for future research on river discharge to focus on minimizing the most impact-

ful error components. From a more practical perspective, it would provide actionable insights

for dam operators to implement data-driven operation policies. In this section, we thus focus

on quantifying the impact of different forecast error patterns on dam operation efficiency and

propose a RL mehtodology to do so. Unfortunately, at this point of our study, difficulties in cali-

brating the model to deal with rare and extreme rain event prevent us from drawing tangible

conclusions. Nevertheless, we present our methodology and discuss ways forward to address

our current difficulties.

5．1 Motivation

Evaluating the impact of forecast errors on dam operation is not as straightforward as it first

seems. Indeed, forecast errors stem from a variety of causes : some errors are due to uncer-

tainty in precipitation forecasts, while some errors come from inaccurate measurements of pre-

cipitations, or from hydrological errors caused by unexpected runoff coefficient（i.e.; how

much of the fallen rain ends up flowing into the river）. These different causes of uncertainty

lend river discharge forecast errors a multidimensional structure, manifesting themselves in

various forms. Figure 8 schematically illustrates two different error components : peak dis-

charge time delay and peak discharge underestimates. Using a classical MSE metric, the time

delay component seems the most severe. However, when it comes to dam operation, an opera-

tor given the delayed forecast would only empty the dam reservoir slightly too early, which

would have little impact on the operation outcome. On the other hand, peak underestimate

could lead the dam operator to not empty the reservoir enough preemptively, which could lead
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to a disastrous dam failure. This example illustrates the fact that straightforward accuracy met-

rics do not necessarily correlate with practical concerns of operation efficiency. But the com-

plexity of estimating the impact of different error components does not end there. Preemptively

keeping low reservoir levels due to an overestimation of forecasted peak discharge would not

have the same impact during dry and wet seasons. During dry seasons, low precipitation levels

would lead to long periods of low water levels, incurring more efficiency loss than during rainy

seasons in which reservoirs would be filled faster.

Figure 9 illustrates another form of complexity in evaluating the quality of discharge fore-

casts. Forecasts are made for different time horizons, with accuracy typically decreasing with

time horizon. Is a high short-term accuracy（as illustrated with the red curve in Figure 2

Figure 8 : Illustration of different forecast error components
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Figure 9 : Illustration of practical forecasts using our best effort model
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（Left））more beneficial to dam operation efficiency, or is longer forecast horizon time accuracy

（red curve）more impactful? In the face of this complexity, we propose a fully data-driven ap-

proach to forecast quality assessment. We propose to use the reward of an RL agent, trained

to optimize dam operation efficiency given an uncertain river discharge forecast, as a metric

assessing the value of this forecast to dam operation optimization. We compare the relative ef-

ficiency loss incurred by agents using uncertain forecasts relatively to that of an agent operat-

ing with perfect oracle forecast.

5．2 Model and experiment

The dam operator is faced with a problem of control under uncertainty : it seeks an optimal

operation policies, in terms of average reward, given uncertain discharge forecasts. In our case,

the operator policy is implemented through the function c in Equation 3. We propose to address

this problem through the framework of RL : we parameterize function c as a MLP, which we re-

fer to as the RL agent. In RL terminology, the remaining modules of our proposed framework

（Figure 2）, constitutes the RL environment, a program that provides the RL agent with its in-

puts（the current dam state, and the discharge forecast）and its output（the reward resulting

from its actions）. The agent is trained to maximize the average reward R=∑t rt of his operation

over the course of the evaluation period. We use the Deep Q-Network framework for training

of the agent. For brevity, we omit the mathematical definition of this model and refer interested

readers to the original paper for further details（Mnih et al. 2013）.

Because the agent learns its policy from uncertain forecast, we expect the efficiency of the

learned policy to reflect the forecast uncertainty : the higher the level of discharge forecast un-

certainty is, the more conservative the learned policy should be so as to avoid high negative

rewards stemming from unexpected future discharges, which would simultaneously decrease

the positive rewards. Our goal is to quantify the impact of forecast errors on dam operation ef-

ficiency. We start by defining a baseline agent trained on perfect river discharge oracle forecast.

Abusing notation for the sake of brevity, we denote the oracle forecast by F�and denote by

R(F�) the average reward of this agent over the course of the simulation. Given an uncertain

river discharge forecasts F over the same period of time, we similarly train an RL agent and

evaluate its average reward R(F). The metric we use in our experiments to evaluate the effi-

ciency loss incurred by the uncertainty in a given forecast F is the ratio :

E(F)=
R(F)
R(F�) （ 9）
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The more impactful forecast error components are, the lower the above efficiency ratio is

expected to tend. The least impactful forecast errors are, the closer to one this ratio should be.

Our final goal is to evaluate the impact of practical forecast modeling designs on operation effi-

ciency, but we start by calibrating our RL methodology on artificial forecast error patterns for

which we know the expected trend. We simulate uncertain forecast by applying synthetic noise

models to the oracle forecast. We use the following noise models :

Multiplicative Noise Model : We apply a multiplicative noise model to simulate peak underes-

timate and overestimate error components（illustrated in Figure 8（Right））. Forecasts with dif-

ferent noise levels were generated by sampling a multiplicative noise coefficient for each time

step of the simulation from a Gaussian distribution�(1, ó). We then smoothed the noise coef-

ficient in time using a Gaussian filter with a time window of 48 hours, to simulate temporal con-

sistency of forecast errors. Figure 10（a）illustrates the resulting artificial forecasts. We expect

the agent efficiency loss to gradually decrease with the noise ó.

Peak Time Delay Simulation : We simulate discharge peak time estimation delays（illustrated

in Figure 8（Right））by segmenting the 98th top percentile of river discharge. We randomly

shift 10 hours windows of river discharge centered on these peaks with time delays drawn from

a uniform distribution in the [-N, N] hours range, for different values of N. We expect peak

delays with relatively low amplitude（within the one day range）to have little effect on the effi-

ciency as the model should learn to anticipate these delays.

Figure 10 : Illustration of forecasts generated with different noise models
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Time-shifted Multiplicative Noise Model : Finally, to measure the impact of noise on differ-

ent forecast horizon, we selectively apply the multiplicative noise model to gradually closer time

horizons, as illustrated in Figure 10（c）. We expect efficiency to decrease as we apply the noise

to shorter-term horizons.

We train one DQN agent to maximize the expected reward on each of the noisy forecast illus-

trated in Figure 10, and evaluate the efficiency of the learned policy in terms of the ratio E de-
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fined in Equation 10. Due to heavy computational loads, in this preliminary study, we only

evaluate the policy for a single dam. A DQN agent is trained over four different seeds for each

of the forecast type, i.e., results are averaged over four runs with different random initial con-

ditions. We discuss the result of our experiment, shown in Figure 11, through the lense of the

following questions we aim to answer :

How do forecast errors at different time horizon impact operation efficiency? In Figure

10（b）, noise is applied on gradually shorter-term horizons. The x axis represents the time ho-

rizon（in hours）on which the noise was applied. As we apply noise on shorter forecast hori-

zons, the overall trend confirms that efficiency decreases, stressing the importance of short-

term forecast accuracy. However, one outlier stands out when applying noise on the 24th to 72

nd-hour horizon of the forecast. This highlights the random variation we still have in our results,

despite our best efforts to calibrate the model, which we further describe below.

How does dam operation efficiency correlate with standard metrics for different error

components? Overall, dam operation efficiency tends to follow the MSE trends. The results

of the multiplicative noise model（shown as Nsy in Figure 11（a））suggest that deviation from

the overall trend may be due to random variations in our experiments rather than meaningful

phenomena.

How do different error components impact dam operation efficiency? The results pre-

sented in Figure 11（a）results contradict our expectations : Surprisingly, we found peak estima-

tion delays to have an important impact on dam efficiency, while we expected peak discharge

estimation errors（as modeled by the multiplicative noise model Nsy）to be the most impactful.

The Multiplicative noise model results show important random variations, with higher noise

level forecasts occasionally reaching higher efficiency than lower ones（e.g., ó=2 efficiency is

higher than ó=0.5）. This is especially notable for the results of the multiplicative noise model

Figure 11 : Efficiency ratios og DQN agent trained with different forecast error components
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with ó=1, for which the agent efficiency outperforms that of the agent using the oracle forecast

despite non-negligible noise levels. Similar random variations can be observed for the time-

shifted multiplicative noise models, as previously mentioned.

Upon closer inspection, we found that the errors causing these random variations concen-

trate on a few rare extreme precipitation events, for which the agent does not manage to pre-

emptively empty the reservoir enough. Despite our best efforts to calibrate the model, we have

not yet managed to stabilize these variations, which prevents us from drawing tangible conclu-

sions for the moment. Taming these random variations by better addressing these rare extreme

events will be the topic of future work.

6 Limitations, Future Work and Conclusion

The current work has presented our preliminary efforts in applying ML to optimize and

evaluate the impact of river discharge forecast on Japanese public dam operation efficiency.

Our initial efforts have been focused on collecting the data, proposing a methodology, and an-

alysing forecast errors. Despite encouraging first results, much remains to be done towards

our final goal.

In the short term, the instability of the dam operator model will be addressed, either by us-

ing alternative formulations of the agent state, or by introducing more structured modeling that

explicitly addresses extreme rain events. We may also integrate JMA’s tropical typhoon infor-

mation tracking data to our modeling for explicit heavy-rain modeling. We will keep optimizing

river discharge forecast by both discharge model improvements and integration of finer-grained

precipitation forecast.

We plan to open our data and simulation code with the following goals : to foster future ML

research efforts on improving discharge forecast of Japanese rivers by providing a standard

benchmark, and to provide a foundation into which improved precipitation and discharge fore-

cast models derived by future research can be integrated so as to analyze the impact of their

improvements on Japanese public dam operation efficiency. Despite its current limitations, we

believe that our framework can bring valuable insights to assist dam infrastructure and policy

maker in water resource management. Beyond the questions addressed in this study, our

framework may also be used to study the impact of dam parameter on their operation. In par-

ticular, dam heightening, a process in which the dam wall height is elevated to increase reser-

voir capacity has been advocated for to increase operation efficiency of some Japanese dams

（角 et al. 2019）. Once operational, our framework would allow to quantify the potential benefits
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of such operation by experimenting with different reservoir geometry parameters.

This work was supported in part by JSPS KAKENHI（Grant No. JP20K19823）.
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