

PDF issue: 2025-05-29

Subtype Distribution and Drug Resistance Patterns Among HIV-1 Strains Prevalent in Makassar, Indonesia

Khairunisa, Siti Qamariyah ; Megasari, Ni Luh Ayu ; Ueda, Shuhei ; Kotaki, Tomohiro ; Hidayati, Afif Nurul ; Nasronudin ; Kameoka,…

(Citation)

AIDS Research and Human Retroviruses, 39(3):124-129

(Issue Date) 2023-03

(Resource Type) journal article

(Version) Accepted Manuscript

(Rights)

This is the accepted version of the following article: [Subtype Distribution and Drug Resistance Patterns Among HIV-1 Strains Prevalent in Makassar, Indonesia. Siti Qamariyah Khairunisa, Ni Luh Ayu Megasari, Shuhei Ueda, Tomohiro Kotaki, Afif Nurul Hidayati, Nasronudin, and Masanori Kameoka. AIDS Research and Human Retroviruses 202…

(URL)

https://hdl.handle.net/20.500.14094/0100479373

1 Sequence Not	te
----------------	----

2	Subtype distribution and drug resistance patterns among HIV-1 strains prevalent in
3	Makassar, Indonesia
4	Siti Qamariyah Khairunisa, ^{1,2} Ni Luh Ayu Megasari, ² Shuhei Ueda, ^{2,3,4} Tomohiro Kotaki, ⁵
5	Afif Nurul Hidayati, ^{1,6} Nasronudin, ^{1,6} Masanori Kameoka ^{2,4}
6	
7	¹ Doctoral Program - Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
8	² Indonesian-Japan Collaborative Research Center for Emerging and Re-emerging
9	Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya,
10	Indonesia.
11	³ Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo,
12	Japan.
13	⁴ Department of Public Health, Kobe University Graduate School of Health Sciences,
14	Hyogo, Japan.
15	⁵ Department of Virology, Research Institute for Microbial Diseases, Osaka University,
16	Osaka, Japan.
17	⁶ Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

19 Running head: HIV-1 epidemiology in South Sulawesi, Indonesia.

20

21 Corresponding authors:

- 22 Nasronudin, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. E-mail:
- 23 <u>nasronudindr@yahoo.com</u>. Tel.: +62-811-3440-774
- 24 Masanori Kameoka, Division of Global Infectious Diseases, Department of Public Health,
- 25 Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku,
- 26 Kobe, Hyogo 654-0142, Japan. E-mail: <u>mkameoka@port.kobe-u.ac.jp</u>. Tel.: +81-78-796-

27	4594,	Fax:	+81-	78-7	796-	4509.
----	-------	------	------	------	------	-------

29 Abstract

Human immunodeficiency virus type 1 (HIV-1) is characterized by a large degree of 30 31genetic variability because of high rates of recombination and mutation, sizable population sizes, and rapid replication. Therefore, the present study investigated HIV-1 3233 subtype distribution and the appearance of drug resistance mutations (DRMs) in viruses 34that are prevalent in Makassar, South Sulawesi, Indonesia. The HIV-1 pol, env, and gag genes were amplified from 63 infected individuals and sequenced for a subtyping analysis. 35CRF01 AE was identified as the predominant HIV-1 circulating recombinant form (CRF) 36 37 in Makassar, South Sulawesi, Indonesia. Subtype B and recombinant viruses containing CRF01 AE, CRF02 AG, and/or subtype B gene fragments were also detected. Several 3839 major DRMs against non-nucleoside reverse transcriptase inhibitors were found among 40 antiretroviral therapy (ART)-experienced subjects, while ART-naive subjects did not possess any transmitted drug resistance. The prevalence of DRMs was very high among 4142ART-experienced subjects; therefore, further surveillance is required in this region. 43

45

44

Key words: HIV-1 subtype, CRF01 AE, HIV drug resistance, Makassar, Indonesia

Text

47	Human immunodeficiency virus type 1 (HIV-1) infection remains a significant
48	global health issue. HIV-1-infected individuals receive antiretroviral therapy (ART),
49	which is highly effective and recommended for all individuals diagnosed with HIV-1
50	irrespective of their CD4 ⁺ T-lymphocyte count. The significant development of
51	antiretrovirals for ART has transformed HIV-1 from an almost uniformly fatal infectious
52	disease into a manageable chronic disease. First-line ART drug regimens consist of a
53	combination of two groups of reverse transcriptase (RT) inhibitors; nucleoside RT
54	inhibitors (NRTI), such as zidovudine and lamivudine (3TC), and non-nucleoside RT
55	inhibitors (NNRTI), including efavirenz (EFV) and nevirapine (NVP), are prescribed in
56	Indonesia. ¹
57	Indonesia is a country with the largest number of HIV-infected cases in Southeast
58	Asia. Based on data reported by the Indonesian Ministry of Health, South Sulawesi was
59	one of the ten provinces with the highest numbers of HIV-infected cases in 2019.
60	Makassar, Pare-Pare, and Kabupaten Janeponto had the highest prevalence of HIV in
61	South Sulawesi province. ² Makassar is the capital city of South Sulawesi, the fifth largest
62	metropolitan city after Jakarta, Surabaya, Bandung, and Medan in Indonesia, and has the

63	highest HIV infection rate in South Sulawesi. As a result of the HIV epidemic and its
64	integral roles as a metropolitan city, HIV-1 epidemiology needs to be investigated in
65	Makassar. Previous studies identified CRF01_AE as the most prevalent HIV-1 circulating
66	recombinant form (CRF) across the majority of Indonesian cities, including Medan
67	(North Sumatra), Kepulauan Riau, Pontianak (West Kalimantan), Manado (North
68	Sulawesi), Jakarta, Surabaya (East Java), Bali, and Maumere (West Nusa Tenggara). ³ The
69	prevalence of subtype B was reported to be high in West Papua and Papua. ^{4,5} Nevertheless,
70	data on HIV-1 epidemiology in Makassar remains limited.
71	ART has improved the quality of life of infected individuals and has also
72	decreased mortality and morbidity associated with HIV-1 infection. The emergence of
73	acquired drug resistance (ADR) among ART-experienced subjects and transmitted drug
74	resistance (TDR) among ART-naive subjects are major issues associated with ART. The
75	prevalence of drug resistance mutations (DRMs) amongst ART-naïve HIV-positive
76	pregnant women was estimated to be 2.3-25%, and was recently found to be 24% in
77	freshly-infected juveniles, ⁶ while the prevalence of TDR in Surabaya was less than 5%. ⁷
78	However, data on HIVDR in Makassar remains limited; therefore, surveillance for the
79	emergence of DRMs is needed in the area.

80	Sixty-three HIV-1-infected individuals were recruited and enrolled in the
81	Voluntary Counseling and Testing program in Makassar Hospital. The present study was
82	approved by the Institutional Ethics Committees of Universitas Airlangga (approval
83	number: 25-995/UN3.14/PPd/2013) and the Kobe University Graduate School of
84	Medicine (approval number: 784). Written informed consent was acquired from all study
85	participants before the execution of this study. Inclusion criteria for recruiting participants
86	to this study were adults older than 18 years, HIV infections confirmed by three diagnostic
87	methods, and ART-experienced for more than one year or ART-naïve. Exclusion criteria
88	were individuals younger than 18 years and pediatric patients.
89	Whole peripheral blood samples from 63 individuals (60 ART-experienced and 3
90	ART-naive individuals) were collected into ethylenediaminetetraacetic acid-treated
91	vacutainer tubes. Plasma was separated by centrifugation at 2,000 rpm for 10 minutes.
92	Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient
93	centrifugation using Histopaque 1077 (Sigma-Aldrich, St. Louis, MO, USA). Cellular
94	DNA was isolated from PBMCs using the QIAamp DNA blood mini kit (QIAGEN,
95	Hilden, Germany). The HIV-1 pol gene encoding RT (the RT gene) and protease (the PR
96	gene) as well as the viral env and gag genes were then amplified using the GoTaq Green

97	Master Mix (Promega, USA) and a pair of specific primers corresponding to the target
98	genes. Primers for amplification and sequencing were the same as those previously
99	described ³ and information is available upon request. Sequencing data collection and
100	alignment were performed using Genetyx software version 10 (Genetyx, Tokyo, Japan).
101	Viral RT, PR, env, and/or gag genes were successfully amplified and sequenced from 48
102	subjects. The nucleotide sequences collected in the present study were registered to the
103	GenBank database with the accession numbers ON244098 - ON244133 (PR genes),
104	ON244134 - ON244168 (RT genes), ON244206 - ON244242 (env genes), and ON244169
105	- ON244205 (gag genes).
106	HIV-1 subtyping was performed using the recombinant identification program
107	(RIP) available at the HIV sequence database website (http://www.hiv.lanl.gov/) and
108	jumping profile Hidden Markov Model (jpHMM)-HIV (http://

109 jphmm.gobics.de/submission_hiv) on successfully sequenced PR, RT, gag, and env genes.

110 If the subtype or CRF amongst these genes was inconsistent, the viral gene was 111 considered to be derived from a recombinant virus. In addition, the generation of 112 neighbor-joining (NJ) trees with a Kimura two-parameter model was conducted by 113 MEGA X software. Subtypes A1, A2, B, C, D, and G as well as CRF01 AE and

114	CRF02_AG, as major pandemic subtypes and CRFs of HIV-1, and 3 CRF01_AE/subtype
115	B-recombinants, CRF15_01B, CRF33_01B, and CRF34_01B, as recombinants
116	frequently found in Indonesia, were included in the phylogenetic tree analysis. Sequence
117	information on the representative reference strains of subtypes and CRFs were retrieved
118	from the website
119	(https://www.hiv.lanl.gov/content/sequence/HIV/REVIEWS/RefSeqs2005/RefSeqs05.ht
120	ml). In addition, the identification of DRMs in the PR and RT genes of ART-naïve and
121	ART-experienced subjects was performed manually in accordance with the International
122	Antiviral Society-United States (IAS-USA) guidelines. ⁸
123	The demographic characteristics of 63 study participants are shown in Table 1. Of
124	these, 73.0% were male and 27.0% were females. The median age of all patients was 34.2
125	years (range between 21 and 47 years). In addition, 36.5% of patients were of Bugis and
126	Makasar ethnicity. Among these individuals, intravenous drug use and heterosexual
127	intercourse were the two main transmission routes, accounting for 34.9 and 30.2% of
128	infections in the study population. Among 63 individuals, 60 had received ART for longer
129	than one year, while the remaining three were ART-naive. Medication history showed that
130	the majority of ART-experienced individuals had been treated with the combination of

131 3TC, tenofovir, and EFV (49.2%) with an average treatment duration of more than three132 years.

133	Thirty-eight PR (296 bp), 36 RT (762 bp), 38 env (383 bp), and 39 gag (369 bp)
134	gene fragments were successfully sequenced from 48 samples and subjected to a
135	phylogenetic analysis. According to the phylogenetic tree, RIP, and jpHMM analyses, the
136	distribution of each subtype and CRF were as follows: 33/48 (68.8%) were CRF01_AE,
137	6/48 (12.5%) were recombinant viruses containing CRF01_AE and CRF02_AG genomic
138	fragments, 4/48 (8.3%) were subtype B, 4/48 (8.3%) were recombinant viruses containing
139	CRF01_AE and subtype B genomic fragments, and 1/48 (2.1%) was a recombinant virus
140	containing CRF02_AG and subtype B genomic fragments (Fig. 1). In the present study
141	CRF01_AE was the predominant CRF in Makassar, Indonesia, similar to other provinces
142	in Indonesia, including Medan, Manado, Surabaya, Jakarta, and Bali. ³
143	As discovered by the online Genotypic Resistance Interpretation Algorithm
144	(https://hivdb.stanford.edu/hivdb/by-mutations/) and in accordance with IAS-USA
145	guidelines,8 DRMs were identified in the RT and PR genes. Information on DRMs
146	corresponding to antiretrovirals is listed in Table 2. In RT genes, the percentage of
147	subjects with major and minor DRMs was 5/36 (13.9%). However, ADR in the RT genes

148	was identified in five subjects who were ART-experienced individuals. Only NRTI-
149	associated, not NNRTI-associated DRMs were detected in RT genes. The main DRMs
150	found in RT genes were K103N and E138A, which confer resistance to EFV, NVP, ETR,
151	and RPV. Our previous studies on Pontianak and several provinces in Indonesia revealed
152	the emergence of K103N and E138A among 28.6% (2/7) and 20.0% (8/40) of RT genes
153	derived from ART-treated individuals, respectively. ^{3,6} In addition, minor DRMs detected
154	in RT genes were V90I and V179D, which confer resistance to ETR. Moreover, major
155	and minor DRMs were detected in two PR genes, MK10 and MK4. The main mutations
156	found were D30N and M46I, which confer resistance to nelfinavir and indinavir/ritonavir.
157	In contrast, no TDR was identified among ART-naive individuals. Minor DRMs,
158	including M36I (33/38, 86.8%), L89M (32/38, 84.2%), K20R/I (27/38, 71.1%), and
159	I93L/M (19/38, 50.0%), were repeatedly detected in PR genes. The aforementioned
160	mutations were discovered to be natural polymorphisms amid CRF01_AE viruses. ⁸ These
161	results are similar to previous findings showing the presence of minor DRMs affiliated
162	with PR inhibitors in several regions across Indonesia. ³ Nevertheless, treatment outcomes
163	were largely unaffected by the large number of natural polymorphisms found in
164	CRF01_AE. ⁹

165	Based on the present results, CRF01_AE was identified as the dominant HIV-1
166	CRF in Makasar, Indonesia, similar to other regions in Indonesia. In addition, major and
167	minor DRMs conferring resistance to NRTI were frequently found in RT genes derived
168	from ART-experienced subjects. We consider continuous monitoring for the emergence
169	of HIVDR to be necessary in order to maintain the efficiency of ART and reduce TDR in
170	Indonesia.
171	
172	Sequence Data
173	Nucleoside sequences are available under GenBank accession numbers ON244098 -
174	ON244205.
175	
176	Acknowledgments
177	The authors would like to express their appreciation to all study participants and staff at
178	the Voluntary Counseling and Testing program in Makassar Hospital. Their most sincere
179	gratitude is extended to J-GRID, AMED and ITD – Universitas Airlangga who facilitated
180	this study (130/UN3.9.4/PT/2022). This manuscript was proofread by Medical English
181	Service, Kyoto, Japan.

183 Author Contributions Statement

- 184 S.Q.K., Nasronudin, and M.K. conceived the study. S.Q.K., N.L.A.M., and S.U.
- 185 performed the experiments. S.Q.K., N.L.A.M., T.K., A.N.H. and M.K. analyzed the data.
- 186 S.Q.K. drafted the manuscript. All authors reviewed the manuscript.

187

- 188 Author Disclosure Statement
- 189 There were no competing financial interests in this study.

191 **References**

192 1. WHO. Indonesia: Summary Country Profile for HIV/AIDS Treatment Scale-	Up:
HIV/AIDS Data Hub for the Asia-Pacific Region; 2005. Available fro	om:
https://www.aidsdatahub.org/sites/default/files/resource/indonesia-antiretrovira	al-
therapy-target-declared.pdf [last accessed: September 15, 2022]	
196 2. Kemenkes RI. Infodatin HIV AIDS. Kementeri Kesehat Republik Indones 2020);1–
197 8. Available fro	om:
https://www.kemkes.go.id/downloads/resources/download/pusdatin/infodatin/i	inf
odatin%202020%20HIV.pdf [last accessed September 15, 2022]	
200 3. Khairunisa SQ, Megasari NLA, Ueda S, et al. 2018-2019 Update on the molecu	ular
201 epidemiology of HIV-1 in Indonesia. AIDS Res Hum Retroviru	ises
202 2020;36(11):957–963; doi: 10.1089/aid.2020.0151.	
203 4. Witaningrum AM, Kotaki T, Khairunisa SQ, et al. Genotypic characterization	ı of
human immunodeficiency virus type 1 derived from antiretroviral therapy-na	iive
205 individuals residing in Sorong, West Papua. AIDS Res Hum Retroviru	ises
206 2016;32(8):812–817; doi: 10.1089/AID.2016.0054.	
5. Yunifiar MQ, Kotaki T, Witaningrum AM, et al. Sero- and molecular epidemiol	ogy

208		of HIV-1 in Papua Province, Indonesia. Acta Med Indones 2017;49(3):205–214.
209	6.	Khairunisa SQ, Megasari NLA, Indriati DW, et al. Identification of HIV-1 subtypes
210		and drug resistance mutations among HIV-1-infected individuals residing in
211		Pontianak, Indonesia. Germs 2020;10(3):174–183; doi:
212		10.18683/germs.2020.1203.
213	7.	Kotaki T, Khairunisa SQ, Witaningrum AM, et al. HIV-1 transmitted drug
214		resistance mutations among antiretroviral therapy-naïve individuals in Surabaya,
215		Indonesia. AIDS Res Ther 2015;12(1):5; doi: 10.1186/s12981-015-0046-y.
216	8.	Wensing AM, Calvez V, Ceccherini-Silberstein F, et al. 2019 update of the drug
217		resistance mutations in HIV-1. Top Antivir Med 2019;27(3):111-121.
218	9.	Sun Z, Ouyang J, Zhao B, et al. Natural polymorphisms in HIV-1 CRF01_AE
219		strain and profile of acquired drug resistance mutations in a long-term combination
220		Treatment cohort in Northeastern China. BMC Infect Dis 2020;20(1):178; doi:
221		10.1186/s12879-020-4808-3.
222		

1 Figure legends

FIG. 1. Phylogenetic tree analysis of HIV-1 RT, PR, env, and gag genes collected in 2 Makassar, Indonesia. 3 Phylogenetic trees were constructed for the HIV-1 RT (A), PR (B), env (C), and gag genes 4 newly sequenced in the present study (D). The corresponding viral genes of reference 5 HIV-1 strains representing subtypes A1, A2, B, C, D, and G as well as CRF01 AE 6 7 (01_AE), CRF02_AG (02_AG), CRF15_01B (15_01B), CRF33_01B (33_01B), and CRF34 01B (34 01B) were included in analyses (shown in Italic letters). Sequence IDs 8 9 are presented as a GenBank accession number, sample ID, or the ID of the reference HIV-10 1 strain and the subtype or CRF of the reference strain (shown in parentheses) in that order. New sequences identified in the study are highlighted by bold letters, while those 11 12 derived from recombinant viruses are denoted with circles. Bootstrap values were shown if they were >70. 13

0.020

Characteristics	Value $(n = 63)$				
Age, mean years (SD)	34.2 (6.3)				
Sex, n (%)					
Male	46 (73.0%)				
Female	17 (27.0%)				
Marital status, n (%)					
Married	33 (52.4%)				
Single	30 (47.6%)				
Ethinicity, n (%)					
Makasar	23 (36.5%)				
Bugis	23 (36.5%)				
Jawa	5 (7.9%)				
Toraja	2 (3.2%)				
Batak	1 (1.6%)				
Other	9 (14.3%)				
Transmission risk category, n (%)					
Heterosexual intercourse	19 (30.2%)				
Homosexual intercouse	12 (19.0%)				
Intravenous drug use	22 (34.9%)				
Commercial sex worker	7 (11.1%)				
Unidentified	3 (4.8%)				
Types of ART used, n (%)					
3TC+AZT+NVP	13 (20.6%)				
3TC+AZT+EFV	15 (23.8%)				
3TC+TDF+EFV	31 (49.2%)				
3TC+TDF+NVP	1 (1.6%)				
Naïve	3 (4.8%)				
Oppoturnistic infection, n (%)					
No	49 (77.8%)				
Yes	51 (22.2%)				

Table 1. Demographic characteristics of study participants

Sample	Type of ART; Subtype	Drug Resistance Mutations*			Conferred
ID		NRTI	NNRTI	PI	Resistance to
MK9	3TC, AZT, EFV;	-	V90I	-	ETR
	CRF01_AE/CRF02_AG				
MK10	3TC, TDF, EFV;	-	K103N	G16E	EFV, NVP
	CRF01_AE/CRF02_AG-			K20I	
	recombinant			D30N	
				M36I	
				M46I	
				L63P	
				L89M	
				193L	
MK26	3TC, TDF, EFV;	-	E138A	G16E	ETR, RPV
	CRF01_AE			K20R	
				M36I	
				V77I	
				L89M	
				193L	
MK27	3TC, AZT, NVP;	-	V179D	L33V	ETR
	subtype B			I64V	
				193L	
MK41	3TC, AZT, EFV;	-	V90I	G16E	ETR
	CRF01_AE/CRF02_AG-			K20I	
	recombinant			D30N	
				M36I	
				M46I	
				I62V	
				L63P	
				V77I	
				L89M	

Table 2. Drug resistance mutations and HIV-1 subtypes/CRFs detected in viral genes derived from HIV-1-infected individuals receiving ART

*Mutations associated with high resistance according to the guidelines published by the International AIDS Society United States (IAS-USA) are shown. Major mutations are shown in bold.