

Direct production of 4-hydroxybenzoic acid from cellulose using cellulase-displaying *Pichia pastoris*

Inokuma, Kentaro ; Miyamoto, Shunya ; Morinaga, Kohei ; Kobayashi, Yuma ; Kumokita, Ryota ; Bamba, Takahiro ; Ito, Yoichiro ; Kondo, Akihiko ;...

(Citation)

Biotechnology and Bioengineering, 120(4):1097-1107

(Issue Date)

2023-04

(Resource Type)

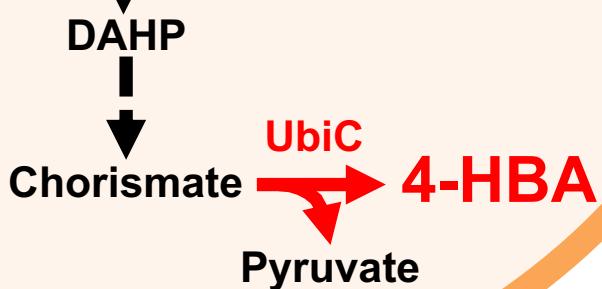
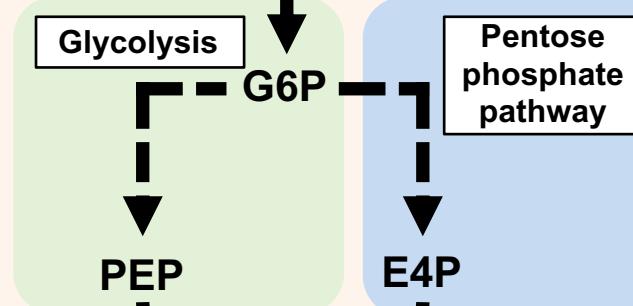
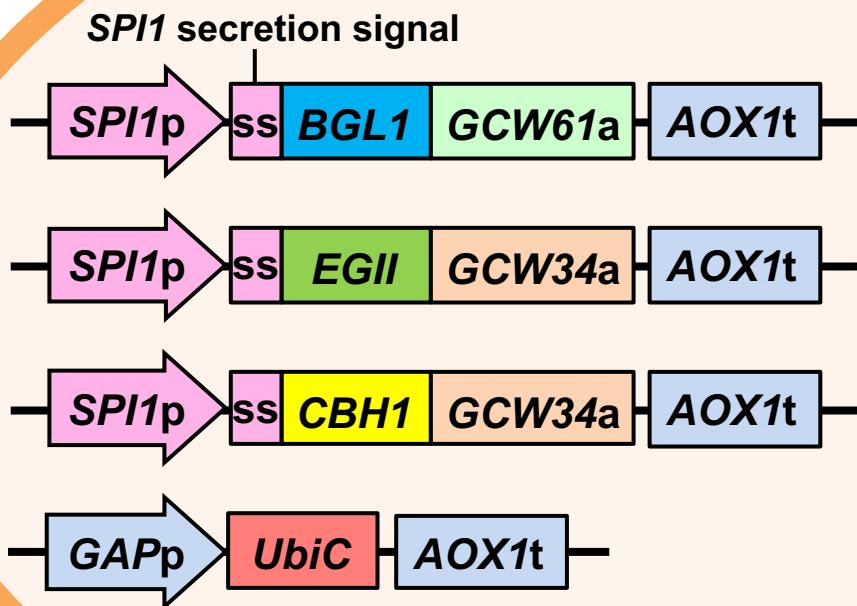
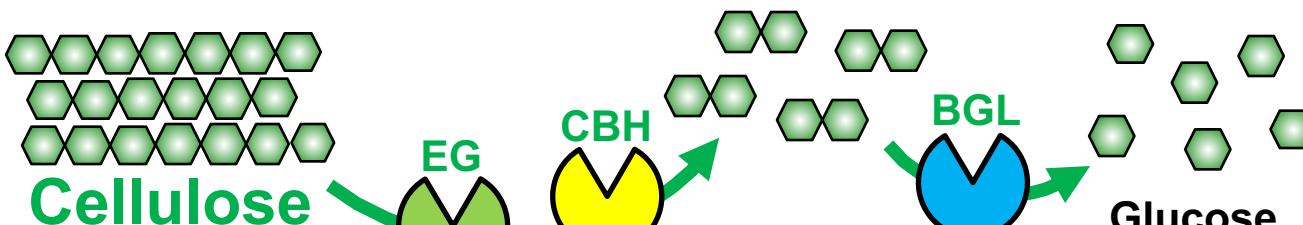
journal article

(Version)

Accepted Manuscript

(Rights)

This is the peer reviewed version of the following article: [Inokuma, K., Miyamoto, S., Morinaga, K., Kobayashi, Y., Kumokita, R., Bamba, T., Ito, Y., Kondo, A., & Hasunuma, T. (2023). Direct production of 4-hydroxybenzoic acid from cellulose using cellulase-displaying *Pichia pastoris*. *Biotechnology and Bioengineering*, 120, 1097-...]





(URL)

<https://hdl.handle.net/20.500.14094/0100479390>

Graphical Abstract

A recombinant *Pichia pastoris* strain co-displaying three cellulases and expressing chorismate pyruvate-lyase was constructed for direct production of 4-hydroxybenzoic acid (4-HBA) from cellulose. This strain produced 975 mg/L of 4-HBA from phosphoric acid swollen cellulose, with a yield of 11.6% after 96 h of batch fermentation without commercial cellulase addition.

Pichia pastoris

1 **Direct production of 4-hydroxybenzoic acid from cellulose using cellulase-displaying *Pichia***
2 ***pastoris*.**

3

4 Kentaro Inokuma,¹ Shunya Miyamoto,¹ Kohei Morinaga,¹ Yuma Kobayashi,¹ Ryota Kumokita,¹
5 Takahiro Bamba,² Yoichiro Ito², Akihiko Kondo,^{1,2,3} Tomohisa Hasunuma,^{1,2,*}

6

7 ¹ Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho,
8 Nada-ku, Kobe 657-8501, Japan

9 ² Engineering Biology Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-
10 8501, Japan

11 ³ Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa
12 230-0045, Japan

13

14 *Corresponding author:

15 Tomohisa Hasunuma

16 Telephone: +81-78-803-6461, Fax: +81-78-803-6362

17 E-mail: hasunuma@port.kobe-u.ac.jp

18

19 **Running title**

20 Direct 4-HBA production from cellulose

21

22

23 **Abstract**

24 4-hydroxybenzoic acid (4-HBA) is an industrially important aromatic compound, and there is an
25 urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally
26 friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a
27 bioprocess to directly produce 4-HBA from cellulose using a recombinant *Pichia pastoris* strain that
28 displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol
29 (GPI)-anchoring system. β -glucosidase (BGL) from *Aspergillus aculeatus*, endoglucanase (EG)
30 from *Trichoderma reesei*, and cellobiohydrolase (CBH) from *Talaromyces emersonii* were co-
31 displayed on the cell surface of *P. pastoris* using an appropriate GPI-anchoring domain for each
32 enzyme. The cell-surface cellulase activity was further enhanced using *P. pastoris* *SPI1* promoter-
33 and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen
34 cellulose (PASC) to glucose. Then, we expressed a highly 4-HBA-resistant chorismate pyruvate-
35 lyase (UbiC) from *Providencia rustigianii* in the cellulase-displaying strain. This strain produced 975
36 mg/L of 4-HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after
37 96 h of batch fermentation without the addition of commercial cellulase. This 4-HBA yield was over
38 two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our
39 knowledge, this is the first report on the direct production of an aromatic compound from cellulose
40 using cellulase-displaying yeast.

41

42 **Keywords:** *Pichia pastoris*, yeast surface display, 4-hydroxybenzoic acid, cellulase, simultaneous
43 saccharification and fermentation

44

45

46 **1. Introduction**

47 4-hydroxybenzoic acid (4-HBA) is an important aromatic compound used as a raw material for
48 liquid crystal production. 4-HBA and its derivatives such as parabens also have diverse biological
49 properties and are widely used as additives in many pharmaceuticals, cosmetics, food, and beverages
50 (Manuja et al. 2013). Currently, 4-HBA is chemically produced on an industrial scale using the
51 Kolbe-Schmitt reaction from petroleum-derived phenol (Lindsey and Jeskey 1957). This reaction
52 requires high alkalinity, high-temperature, and high-pressure conditions and produces solid waste
53 such as tar residues (Thomas et al. 2002). Therefore, 4-HBA production from renewable feedstocks
54 under ambient temperature and pressure is attracting attention as an alternative sustainable and
55 environmentally friendly method (Yu et al. 2016).

56 In plants and microorganisms, 4-HBA is biosynthesized via the shikimate pathway which starts
57 with the condensation of phosphoenolpyruvate (PEP) from glycolysis and erythrose-4-phosphate
58 (E4P) from the pentose phosphate pathway (Averesch and Kromer 2018; Tzin and Galili 2010).
59 After a seven-step reaction, PEP and E4P are converted into chorismate, followed by 4-HBA
60 synthesis via chorismate pyruvate-lyase (UbiC) (Figure 1). Several bioprocesses for 4-HBA
61 production via the shikimate pathway using recombinant microorganisms (*Corynebacterium*
62 *glutamicum*, *Escherichia coli*, *Klebsiella pneumoniae*, *Pseudomonas putida*, and *Saccharomyces*
63 *cerevisiae*) have been reported (Barker and Frost 2001; Kitade et al. 2018; Meijnen et al. 2011;
64 Müller et al. 1995; Verhoef et al. 2007; Yin et al. 2020). The highest reported concentration of
65 microbial 4-HBA production was achieved in an aerobic growth-arrested bioprocess using
66 recombinant *C. glutamicum*. By metabolic engineering for enhancing flux to and through the
67 shikimate pathway and expressing a highly 4-HBA-resistant UbiC from *Providencia rustigianii*, 4-
68 HBA titer of the recombinant *C. glutamicum* was 36.6 g/L after 24 h of incubation using a jar
69 fermenter (Kitade et al. 2018). However, these bioprocesses used model renewable feedstocks such
70 as glucose, xylose, and glycerol as substrates for 4-HBA production. Renewable biomass feedstocks

71 such as cellulose require high dosages of hydrolytic enzymes for digestion and thereby impede the
72 economic feasibility of direct 4-HBA production from these feedstocks. To our knowledge, there is
73 no report on the direct production of 4-HBA from cellulosic materials.

74 The cell surface expression of heterologous cellulolytic enzymes is a promising approach to
75 construct whole cell catalysts for the direct production of fuels and chemicals from cellulose. In yeast
76 cells, cellulolytic enzymes (cellulases) can be immobilized in their cell wall via a
77 glycosylphosphatidylinositol (GPI)-anchoring domain, and cellulase-displaying yeast strains have
78 been used for ethanol production from cellulosic substrates (Inokuma et al. 2018). *S. cerevisiae* is the
79 most frequently used yeast species for this system due to its high fermentation capacity and well-
80 developed genetic engineering tools (Ko and Lee 2018; Lian et al. 2018). However, the high ethanol
81 fermentation capacity of *S. cerevisiae* makes it difficult to produce aromatic compounds in high
82 yields (Patra et al. 2021). In fact, the only reported aromatic compound production from cellulosic
83 materials by simultaneous saccharification and fermentation (SSF) using *S. cerevisiae* is resveratrol
84 production from the cellulosic fraction of hydrothermally pretreated *Eucalyptus globulus* wood with
85 the addition of commercial cellulase, and the resveratrol yield was 1.2% of the theoretical maximum
86 value (Costa et al. 2021). To the best of our knowledge, production of aromatic compounds from
87 cellulose by SSF using cellulase-displaying yeast has not been reported.

88 The Crabtree-negative, methylotrophic yeast *Pichia pastoris* (*Komagataella phaffii*) has several
89 attractive characteristics as a host for cell-surface display, including fast cell growth, high cell density
90 culture, and high secretion of heterologous recombinant proteins compared to *S. cerevisiae*
91 (Karbalaei et al. 2020). Moreover, the metabolism of Crabtree-negative yeasts including *P. pastoris*
92 is well balanced in carbon partitioning among the various pathways including the shikimate pathway
93 (Rajkumar and Morrissey 2020). Kumokita et al. (2022) reported the production of various aromatic
94 compounds produced via the shikimate pathway, including resveratrol, naringenin, norcoclaurine,
95 and reticuline, using metabolically engineered *P. pastoris*. Meanwhile, there are few reports of cell-

96 surface display of heterologous enzymes in *P. pastoris* compared to that of *S. cerevisiae*, and there is
97 insufficient knowledge of *P. pastoris* as a platform for the GPI-anchoring system. For example, the
98 appropriate GPI-anchoring domains for exo- and endo-cellulases significantly differ in *S. cerevisiae*
99 (Inokuma et al. 2020), while such studies have not been conducted in *P. pastoris*.

100 In this study, we developed a recombinant *P. pastoris* strain that efficiently displays cellulolytic
101 enzymes on its cell surface via the GPI-anchoring system and used it to directly produce 4-HBA
102 from cellulose. First, we confirmed that *P. pastoris* produces 4-HBA by expression of a heterologous
103 UbiC. Then, the appropriate GPI-anchoring domain for each cellulolytic enzyme was screened to
104 maximize enzyme activity on the *P. pastoris* cell surface. We also evaluated the effect of promoter-
105 and secretion signal sequence on cellulase display efficiency. Finally, SSF of phosphoric acid
106 swollen cellulose (PASC) was conducted using a recombinant *P. pastoris* strain displaying cellulases
107 on its cell surface and expressing UbiC as a whole-cell biocatalyst.

108

109 **2. Materials and Methods**

110 **2.1. Microorganisms and media**

111 Characteristics of all yeast strains used in this work are summarize in Table 1. *P. pastoris*
112 CBS7435 was used as a parent strain. *P. pastoris* strains were cultivated in YPD medium [10 g/L
113 yeast extract, 20 g/L Bacto-peptone (Difco Laboratories, Detroit, MI, USA), and 20 g/L glucose]
114 supplemented with 500 µg/mL G418 (FUJIFILM Wako Pure Chemical, Osaka, Japan), 300 µg/mL
115 hygromycin (Nacalai Tesque), 100 µg/mL Zeocin (Nacalai Tesque), and/or 50 µg/mL clonNAT (Jena
116 Bioscience, Löbstedter, Germany) as required. *Escherichia coli* strain DH5 α (Toyobo, Osaka, Japan)
117 was used for construction and amplification of plasmid DNA. The medium for *E. coli* growth was
118 prepared as previously described (Inokuma et al. 2016a).

119

120 **2.2. Plasmid construction and yeast transformation**

121 The plasmids and primers used in this study are listed in Table 1 and Supplementary Table S1,
122 respectively. Detailed methods for construction of plasmids and yeast strains were provided as
123 Supplementary Text S1.

124

125 **2.3. 4-HBA production from glucose**

126 Yeast cells were pre-cultured at 30 °C in 5 mL of YPD medium supplemented with 500 µg/mL
127 G418 in a BR-43FL shaker incubator (200 rpm; Taitec, Saitama, Japan) for 18 h. This was used to
128 inoculate 20 mL of YPD medium in 100-mL Erlenmeyer flasks at an initial cell density (OD₆₀₀) of
129 0.05, and cultivated at 30 °C and 150 rpm in a shaker incubator. The culture broth was sampled every
130 24 h for 3 days and the glucose concentration in each sample was determined using high-performance
131 liquid chromatography (HPLC) (Shimadzu, Kyoto, Japan) as previously described (Inokuma et al.
132 2016b). 4-HBA concentration in the culture medium was assessed using HPLC equipped with a
133 Cosmosil 5C₁₈-AR-II column (4.6 × 250 mm; Nacalai Tesque, Kyoto, Japan) and an SPD-20A
134 UV/VIS detector (Shimadzu). The column was kept at 40 °C, and acetonitrile/H₂O (30:70)
135 containing 0.1% (v/v) formic acid was used as the mobile phase at a flow rate of 1.0 mL/min. 4-HBA
136 was detected by absorbance at 280 nm.

137

138 **2.4. Preparation of cellulase-displaying yeast cells**

139 *P. pastoris* strains were pre-cultured in 5 mL of YPD medium supplemented with appropriate
140 antibiotics at 30 °C and 200 rpm for 18 h, inoculated in 50 mL (for enzyme assays) or 400 mL (for
141 cellulolytic activity assay and direct 4-HBA production from cellulose) of YPD medium in
142 Erlenmeyer flasks at an initial OD₆₀₀ of 0.05, and cultivated at 30 °C and 150 rpm for 48 h in a shaker
143 incubator. The cells were collected by centrifugation at 1000×g for 5 min and washed twice with
144 distilled water. The washed cell pellets were used in the following experiments.

145

146 **2.5. Enzyme assays**

147 β -glucosidase (BGL) and endoglucanase (EG) activities of yeast cells were evaluated using *p*-
148 nitrophenyl- β -D-glucopyranoside (*p*NPG, Sigma-Aldrich, Saint Louis, MO, USA) using AZCL-HE-
149 cellulose (Cellazyme C tablets; Megazyme, Bray, Ireland) as the substrates, respectively, according
150 to previous methods (Inokuma et al. 2016a).

151

152 **2.6. Cellulolytic activity assay**

153 PASC was prepared from Avicel PH-101 (Sigma-Aldrich) as previously described (Den Haan et
154 al. 2007). The cellulolytic activity of yeast cells was measured using PASC according to a previously
155 described method with slight modifications (Liu et al. 2016). Briefly, the reaction mixture contained
156 1% (w/v) PASC, 50 mM sodium citrate buffer (pH 5.0), 100 mM methyl glyoxal (Nacalai Tesque,
157 Inc., Kyoto, Japan), and 100 g wet cell/L of yeast cell suspension. The reaction was carried out at
158 50 °C for 60 min while rotating at 35 rpm using a heat block (Thermo Block Rotator SN- 06BN;
159 Nissin, Tokyo, Japan) and the glucose concentration in the supernatant was quantified using
160 LabAssay Glucose (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan). One unit of
161 cellulolytic activity was defined as the activity that released 1 μ mol of glucose per min.

162

163 **2.7. Direct 4-HBA production from cellulose**

164 The fermentation medium contained 10 g/L yeast extract, 20 g/L Bacto-peptone (Difco
165 Laboratories, Detroit, MI, USA), 50 mM sodium citrate buffer (pH 5.0), and 10 g/L PASC. Yeast
166 cells were inoculated into 10 mL of the fermentation medium in 100-mL screw-cap bottles at an
167 initial cell concentration of 100 g wet cells/L, and fermentation was conducted at 35 °C with stirring
168 at 150 rpm. The fermentation medium was sampled every 24 h for 4 days and their 4-HBA
169 concentrations were determined as described above.

170

171 **2.8. Tolerance assay**

172 *P. pastoris* CBS7435 was pre-cultivated in 5 mL of YPD medium at 30°C and 200 rpm for 18 h,
173 then inoculated into 5 mL of YPD medium supplemented with various 4-HBA concentrations (0,
174 0.5, 1.0, 3.0, and 5.0 g/L) in L-shaped test tubes at an initial OD₆₆₀ of 0.05. Cell growth was monitored
175 every 30 min using a TVS062CA Bio-photorecorder (Advantec Toyo, Tokyo, Japan) at 30°C and
176 70 rpm.

177

178 **2.9. Statistical analysis**

179 The data are presented as the mean \pm standard deviation of three independent experiments.
180 Significant differences between groups of values were calculated according to paired comparisons
181 using Student's *t*-tests using the Excel software (Microsoft-365). Difference with confidence level of
182 95% (*p* < 0.05) was considered statistically significant.

183

184 **3. Results**

185 **3.1. Construction of the recombinant *P. pastoris* strain for 4-HBA production**

186 Wild type *P. pastoris* lacks the enzyme required to convert chorismate to 4-HBA (UbiC).
187 Therefore, heterologous expression of UbiC was conducted in *P. pastoris* to confirm that 4-HBA can
188 be produced by this yeast. A highly 4-HBA-resistant UbiC from the intestinal bacterium *P.*
189 *rustigianii* (PrUbiC) was employed because it achieved the highest reported 4-HBA production in *C.*
190 *glutamicum* (Kitade et al. 2018). The PrUbiC expression cassette was constructed under the control
191 of the endogenous promoter of glyceraldehyde-3-phosphate dehydrogenase (*GAP*) and integrated
192 into the *P. pastoris* CBS7435 genome to construct the Pp-UbiC strain. This strain produced 594 \pm
193 54 mg/L of 4-HBA from 20 g/L glucose after 48 h fermentation in YPD medium, while its parent
194 strain (CBS7435) did not show significant 4-HBA production (Figure 2).

195

196 **3.2. Screening of GPI-anchoring domains for cell-surface cellulase display in *P. pastoris***

197 The hydrolysis of cellulose to glucose requires the cooperative action of multiple hydrolytic
198 enzymes (cellulases) with different roles. It is important to select the appropriate GPI-anchoring
199 domain for each enzyme to maximize cellulase hydrolytic activity on the yeast cell surface (Inokuma
200 et al. 2020). Thirteen cell wall proteins can be used as GPI-anchoring domains for lipase cell-surface
201 display in *P. pastoris* (Zhan et al. 2013), while Sed1p from *S. cerevisiae* is one of the most widely
202 used GPI-anchoring domains for yeast cell surface display of heterologous proteins including lipase
203 display in *P. pastoris* (Su et al. 2010). These 14 GPI-cell wall proteins were fused to the C-terminus
204 of *Aspergillus aculeatus* β -glucosidase 1 (BGL1) and *Trichoderma reesei* endoglucanase II (EGII)
205 to identify the appropriate GPI-anchoring domain for each cellulase. The expression cassettes of
206 these fusion proteins with the *GAP* promoter and the secretion signal from *S. cerevisiae* alpha-factor
207 (Ito. et al. 2022) were integrated into the *P. pastoris* CBS7435 genome, and the cell-surface enzyme
208 activities of the constructed strains were evaluated as described in the Materials and Methods. BGL1
209 activity was detected from the yeast cell surface in all GPI-anchoring domains tested in this study
210 (Figure 3a). There was a 3- to 4-fold variation in BGL activity depending on the GPI-anchoring
211 domain used; the highest cell-surface activity was observed using GCW61 as the GPI-anchoring
212 domain. These trends are like those previously reported for lipase (Zhang et al. 2013). In contrast,
213 EG activity markedly changed depending on the fused GPI-anchoring domains (Figure 3b); the
214 highest EG activity was observed using GCW34, while GCW61 was unsuitable for EG display.
215 Meanwhile, both BGL- and EG activity was relatively high using GCW30- and GCW51 GPI-
216 anchoring domains.

217

218 **3.3. Improving cell-surface cellulase activity by replacing promoter- and secretion signal
219 sequences**

220 We previously reported that the utilization of promoter and secretion signal sequence of genes
221 encoding GPI-anchoring cell wall proteins improves cellulase display efficiency (Inokuma et al.
222 2016a; Inokuma et al. 2014). *P. pastoris* *SPII* encodes a GPI-anchoring cell wall protein
223 corresponding to GCW14 in Figure 3, and its promoter has been used as the strong constitutive
224 promoter comparable to *GAP* promoter in *P. pastoris* (Ata et al. 2017). Therefore, the *GAP* promoter
225 and the secretion signal from *S. cerevisiae* alpha-factor of the expression cassette for BGL and EGII
226 display were replaced by those derived from *P. pastoris* *SPII*. The *SPII* promoter and the *SPII*
227 secretion signal exhibited approximately 1.3- and 2.4-fold higher cell-surface BGL and EG activity
228 compared with the conventional *GAP* promoter and the secretion signal from *S. cerevisiae* alpha-
229 factor, respectively (Figure 4a and b).

230

231 **3.4. Construction of a *P. pastoris* strain co-displaying BGL, EG, and CBH**

232 Three major types of cellulases (BGL, EG, and CBH) that play important roles in the hydrolysis
233 of cellulose to glucose were co-displayed on the cell surface of *P. pastoris* to produce 4-HBA from
234 cellulose. *A. aculeatus* BGL1 and *T. reesei* EGII were fused with the GPI-anchoring domains that
235 exhibited the highest activity in Figure 3, respectively (BGL1-GCW61 and EGII-GCW34).
236 *Talaromyces emersonii* CBH1 was fused with GCW34 (CBH1-GCW34) to make it work
237 collaboratively with EGII. Gene cassettes for the expression of BGL1-GCW61, EGII-GCW34, and
238 CBH1-GCW34 with the *SPII* promoter and the *SPII* secretion signal were integrated into the
239 genome of *P. pastoris* CBS7435 to construct the Pp-BEC strain. Then, the cellulolytic activity of the
240 constructed strain to change cellulose to glucose was evaluated. The cellulolytic reaction was
241 performed at 50°C with the addition of methylglyoxal to completely inhibit glucose uptake in *P.*
242 *pastoris* cells. The Pp-BEC strain produced approximately 1.4 g/L of glucose from PASC within the
243 first 1 h of the reaction, and approximately 4.0 g/L at 18 h (Figure 5). This result clearly indicated
244 that this strain acquired the ability to break down cellulose to glucose by cell-surface display of the

245 cellulases. The gradually declining glucose production rate over time is probably due to product
246 inhibition of the cellulases by glucose accumulation. The PASCase activity of this strain was $8.36 \pm$
247 0.71 U/g dry cells based on glucose produced within the first 1 h.

248

249 **3.5. Direct 4-HBA production from cellulose**

250 The PrUbiC expression cassette was integrated into the genome of the Pp-BEC strain to achieve
251 direct 4-HBA production from cellulose. Then, SSF of cellulose (PASC) was performed using the
252 Pp-BEC-UbiC strain as a whole-cell biocatalyst. The Pp-UbiC strain expressing only PrUbiC
253 produced 59 ± 6 mg/L 4-HBA after 96 h of fermentation. Since this strain produced similar amounts
254 of 4-HBA in the fermentation without PASC (Supplementary Figure S1), the 4-HBA production was
255 probably derived from carbon sources other than cellulose such as yeast extract, peptone, and citrate
256 used as a buffer. Meanwhile, the Pp-BEC-UbiC strain displaying cellulases and expressing PrUbiC
257 produced 975 ± 22 mg/L of 4-HBA from 10 g/L of PASC (Figure 6). Based on stoichiometric
258 network analysis, theoretical maximum yield of 4-HBA from glucose in yeast under anaerobic
259 condition is 242 mg/g glucose (Krömer et al. 2013). Since complete hydrolysis of 10 g/L cellulose
260 yields 11 g/L of glucose, the 4-HBA titer of the Pp-BEC-UbiC strain corresponds to 36.8% of the
261 theoretical maximum yield.

262

263 **4. Discussion**

264 4-HBA is an industrially important aromatic compound and there is an urgent need to establish a
265 bioprocess to produce it from renewable feedstocks such as cellulosic biomass in a sustainable and
266 environmentally friendly manner. However, there are no reports on the direct production of 4-HBA
267 from cellulose due to the need for high-dosages of costly commercial cellulases for the hydrolysis of
268 cellulose to glucose. In this study, a recombinant *P. pastoris* strain was constructed containing both
269 cellulolytic- and 4-HBA production capacities by displaying three cellulases (BGL, EG, and CBH)

270 on the yeast cell surface and expressing a highly 4-HBA-resistant chorismate pyruvate-lyase
271 (PrUbiC). The constructed strain (Pp-BEC-UbiC) produced 4-HBA from cellulose substrate (PASC)
272 without the addition of any commercial cellulase (Figure 6). To our knowledge, this is the first report
273 on the direct production of 4-HBA by SSF of cellulose. Moreover, this is the first bioproduction of
274 an aromatic compound by SSF using cellulase-displaying yeast.

275 Cell-surface display of multiple cellulases in *P. pastoris* was previously reported by Dong et al.
276 (2020); cellulases were produced by recombinant *E. coli* and then immobilized on the cell surface of
277 *P. pastoris* expressing scaffold proteins (Dong et al. 2020). In contrast, this study constructed
278 recombinant *P. pastoris* expressing cellulases by itself and immobilizing them on the cell surface via
279 GPI-anchoring domains, which is a more cost-effective consolidated bioprocess.

280 The cell-surface cellulase activity was enhanced by screening the GPI-anchoring domains and
281 adopting the promoter and secretion signal derived from *P. pastoris* *SPII*. The *P. pastoris* strain
282 expressing *A. aculeatus* BGL1 fused with the GCW61 under the control of the *SPII* promoter and
283 the *SPII* secretion signal (Pp-BG-SSG61) showed cell-surface BGL activity of 3399 U/g dry cells.
284 This was approximately 2.7-fold higher than that of the previously recorded highest level in *S.*
285 *cerevisiae* (1250 U/g dry cells) in our previous study (Inokuma et al. 2021) measured by the same
286 method. Although no reports have directly compared the performance of *S. cerevisiae* and *P. pastoris*
287 as hosts for yeast cell-surface display technology, these results clearly demonstrate the potential of *P.*
288 *pastoris* as a host for this technology.

289 *T. reesei* EGII showed an entirely different suitability of GPI-anchoring domains than that of *A.*
290 *aculeatus* BGL1. The cell surface EG activity markedly changed depending on the fused GPI-
291 anchoring domains, and the highest EG activity was observed using GCW34 (Figure. 3b). This
292 phenomenon may be because the localization tendency of the target protein in the yeast cell wall
293 differs depending on the GPI-anchoring domains. Our previous study with *S. cerevisiae* suggested
294 that the GPI-anchoring domain affects not only the cell-surface display efficiency of target proteins,

295 but also their anchorage position in the cell wall (Inokuma et al. 2020). The anchorage position of the
296 enzyme, and the depth in the cell wall is a particularly important factor for yeast cell-surface display
297 because the yeast cell wall is a thick structure composed of microfibrillar array of glucan chains
298 (Dupres et al. 2010). Cellobiose and *p*NPG are small molecule substrates with relatively easy access
299 to the BGL binding site. Meanwhile, macromolecules such as the water-insoluble cellulose substrate
300 can only access EG that are exposed on the external surface of the cell wall. GCW34 may be a
301 promising GPI-anchoring domain to display the enzyme to the external surface of the *P. pastoris* cell
302 wall. However, further investigations such as immunoelectron-microscopic observation are required.
303 GCW30 and GCW51 exhibit relatively high activity in both BGL and EG; therefore they are
304 potential options as versatile GPI-anchoring domains in *P. pastoris*.

305 The 4-HBA yield from PASC by the Pp-BEC-UbiC strain was 36.8% of the theoretical maximum
306 yield based on stoichiometric network analysis. This was over two times higher than that obtained
307 from glucose by the Pp-UbiC strain (12.3% of the theoretical maximum yield). This is probably due
308 to the slow glucose release in PASC fermentation. Significant improvements in the yields of aromatic
309 compounds produced via the shikimate pathway by glucose limitation were previously reported in *S.*
310 *cerevisiae* (Liu et al. 2021; Liu et al. 2019) and *Scheffersomyces stipitis* yeasts (Kobayashi et al. 2021).
311 This is likely due to the higher flux from the pentose phosphate pathway under glucose-limited
312 conditions resulting in higher E4P availability compared to normal batch conditions (Liu et al. 2019).
313 SSF of cellulose which slowly releases glucose might be a promising approach for producing
314 aromatic compounds in high yields.

315 Nevertheless, the titer (975 mg/L) and yield (36.8%) of 4-HBA from PASC by the Pp-BEC-UbiC
316 strain is too low to apply the bioproduction process on a commercial basis. Thus, it is essential to
317 improve the 4-HBA titer and yield of recombinant *P. pastoris*. The highest reported titer of microbial
318 4-HBA production using metabolically engineered *C. glutamicum* expressing PrUbiC is 36.6 g/L
319 after 24 h incubation in fed-batch fermentation by overexpressing genes in the shikimate pathway

320 and deleting genes involved in by-product formation (Kitade et al. 2018). Employing similar
321 metabolic engineering strategies may be effective in improving 4-HBA productivity in *P. pastoris*.

322 Phenolic acids including 4-HBA can be toxic compounds for microorganisms (Valanciene et al.
323 2020) and this must be overcome for the commercialization of 4-HBA production using a
324 recombinant *P. pastoris* strain. The cell growth of *P. pastoris* CBS7435 was inhibited by 4-HBA >
325 1 g/L, and this strain did not grow at 5 g/L of 4-HBA (Supplementary Figure S2). This concentration
326 is lower than that of *E. coli* and *C. glutamicum* (Barker and Frost 2001; Kitade et al. 2018) which
327 have been reported to achieve over 10 g/L of 4-HBA production. This indicates that *P. pastoris* is
328 more sensitive to 4-HBA than these bacteria. Therefore, it is necessary to improve 4-HBA tolerance
329 of *P. pastoris* by genetic engineering or to develop a technology to remove this compound from the
330 fermentation system to achieve over 5 g/L of 4-HBA production using a recombinant *P. pastoris*
331 strain. This may be possible using *in situ* two-phase extractive fermentation systems combining
332 organic solvents as extractants with the fermentation medium to overcome the microbial toxicity of
333 phenolic compounds (Luo et al. 2019; Salgado et al. 2014).

334

335 **5. Conclusions**

336 Direct production of 4-HBA was demonstrated through SSF of cellulose using a recombinant *P.*
337 *pastoris* strain co-displaying three cellulases (BGL, EG, and CBH) and expressing PrUbiC. The
338 recombinant *P. pastoris* strain produced 975 mg/L of 4-HBA from PASC, with a yield of 36.8%
339 after 96 h of batch fermentation without commercial cellulase addition. These results indicate that
340 SSF using cellulase-displaying yeast is a sustainable and environmentally friendly technology to
341 produce 4-HBA as an alternative to its chemical synthesis, and that *P. pastoris* has high potential for
342 this bioprocess. However, metabolic engineering of recombinant *P. pastoris* is required to improve
343 the 4-HBA titer and yield. Furthermore, countermeasures are required against the microbial toxicity
344 of 4-HBA to apply this bioprocess on a commercial basis.

345

346 **Data availability statement**

347 All data generated or analyzed during this study were included in this published article.

348

349 **Acknowledgements**

350 We thank Misa Ishigami for technical assistance. We are also grateful for support from NEDO
351 Project P20011 (Development of bioderived product production technology that accelerates the
352 realization of carbon recycling).

353

354 **Conflict of Interest Statement**

355 The authors declare that they have no competing interests.

356

357 **Ethical approval Statement**

358 This article does not contain any studies with human participants or animals performed by any of the
359 authors.

360

361 **Author Contribution Statement**

362 Kentaro Inokuma, Shunya Miyamoto, Kohei Morinaga, and Yoichiro Ito conducted experiments.
363 Kentaro Inokuma, Yuma Kobayashi, Ryota Kumokita, and Takahiro Bamba conceived the topic and
364 designed the study. Kentaro Inokuma analyzed the results and wrote the manuscript with support
365 from Tomohisa Hasunuma. Akihiko Kondo and Tomohisa Hasunuma supervised all aspects of the
366 study. All authors read and approved the manuscript.

367

368 **References**

369 Ata, Ö., Prielhofer R, Gasser, B., Mattanovich, D., & Çalik, P. (2017). Transcriptional engineering
370 of the glyceraldehyde-3-phosphate dehydrogenase promoter for improved heterologous
371 protein production in *Pichia pastoris*. *Biotechnology and Bioengineering*, 114(10), 2319-
372 2327. doi:10.1002/bit.26363

373 Averesch, N. J. H., & Krömer, J. O. (2018). Metabolic Engineering of the Shikimate Pathway for
374 Production of Aromatics and Derived Compounds-Present and Future Strain Construction
375 Strategies. *Frontiers in Bioengineering and Biotechnology*, 6, 32.
376 doi:10.3389/fbioe.2018.00032

377 Barker, J. L., & Frost, J. W. (2001). Microbial synthesis of *p*-hydroxybenzoic acid from glucose.
378 *Biotechnology and Bioengineering*, 76(4), 376-390. doi:10.1002/bit.10160

379 Costa, C. E., Møller-Hansen, I., Romání, A., Teixeira, J. A., Borodina, I., & Domingues, L. (2021).
380 Resveratrol Production from Hydrothermally Pretreated Eucalyptus Wood Using
381 Recombinant Industrial *Saccharomyces cerevisiae* Strains. *ACS Synthetic Biology*, 10(8),
382 1895-1903. doi:10.1021/acssynbio.1c00120

383 Den Haan, R., Rose, S. H., Lynd, L. R., & van Zyl, W. H. (2007). Hydrolysis and fermentation of
384 amorphous cellulose by recombinant *Saccharomyces cerevisiae*. *Metabolic Engineering*,
385 9(1):87-94. doi:10.1016/j.ymben.2006.08.005

386 Dong, C., Qiao, J., Wang, X., Sun, W., Chen, L., Li, S., Wu, K., Ma, L., & Liu, Y. (2020).
387 Engineering *Pichia pastoris* with surface-display minicellulosomes for carboxymethyl
388 cellulose hydrolysis and ethanol production. *Biotechnology for Biofuels*, 13, 108.
389 doi:10.1186/s13068-020-01749-1

390 Dupres, V., Dufrêne, Y. F., & Heinisch J. J. (2010). Measuring cell wall thickness in living yeast
391 cells using single molecular rulers. *ACS Nano*, 4(9), 5498-5504. doi:10.1021/nn101598v

392 Inokuma, K., Bamba, T., Ishii, J., Ito, Y., Hasunuma, T., & Kondo, A. (2016a). Enhanced cell-surface
393 display and secretory production of cellulolytic enzymes with *Saccharomyces cerevisiae*

394 Sed1 signal peptide. *Biotechnology and Bioengineering*, 113(11), 2358-2366.
395 *doi:10.1002/bit.26008*

396 Inokuma, K., Hasunuma, T., & Kondo, A. (2014). Efficient yeast cell-surface display of exo- and
397 endo-cellulase using the *SED1* anchoring region and its original promoter. *Biotechnology for
398 Biofuels*, 7, 8. *doi:10.1186/1754-6834-7-8*

399 Inokuma, K., Hasunuma, T., & Kondo, A. (2016b). Ethanol production from *N*-acetyl-D-
400 glucosamine by *Scheffersomyces stipitis* strains. *AMB Express*, 6(1), 83.
401 *doi:10.1186/s13568-016-0267-z*

402 Inokuma, K., Hasunuma, T., & Kondo, A. (2018). Whole cell biocatalysts using enzymes displayed
403 on yeast cell surface. In: Chang H (ed.) *Emerging Areas in Bioengineering*, Wiley-VCH,
404 New York, pp 81–92

405 Inokuma, K., Kitada, Y., Bamba, T., Kobayashi, Y., Yukawa, T., den Haan, R., van Zyl, W. H.,
406 Kondo, A., & Hasunuma, T. (2021). Improving the functionality of surface-engineered yeast
407 cells by altering the cell wall morphology of the host strain. *Applied Microbiology and
408 Biotechnology*, 105(14-15), 5895-5904. *doi:10.1007/s00253-021-11440-6*

409 Inokuma, K., Kurono, H., den Haan, R., van Zyl, W. H., Hasunuma, T., & Kondo, A. (2020). Novel
410 strategy for anchorage position control of GPI-attached proteins in the yeast cell wall using
411 different GPI-anchoring domains. *Metabolic Engineering*, 57, 110-117.
412 *doi:10.1016/j.ymben.2019.11.004*

413 Ito, Y., Ishigami, M., Hashiba, N., Nakamura, Y., Terai, G., Hasunuma, T., Ishii, J., & Kondo, A.
414 (2022). Avoiding entry into intracellular protein degradation pathways by signal mutations
415 increases protein secretion in *Pichia pastoris*. *Microbial Biotechnology*, 15(9), 2364-2378.
416 *doi:10.1111/1751-7915.14061*

417 Ito, Y., Terai, G., Ishigami, M., Hashiba, N., Nakamura, Y., Bamba, T., Kumokita, R., Hasunuma,
418 T., Asai, K., Ishii, J., & Kondo, A. (2020). Exchange of endogenous and heterogeneous yeast

419 terminators in *Pichia pastoris* to tune mRNA stability and gene expression. *Nucleic Acids*
420 *Research*, 48(22), 13000-13012. doi:10.1093/nar/gkaa1066

421 Karbalaei, M., Rezaee, S. A., & Farsiani, H. (2020). *Pichia pastoris*: A highly successful expression
422 system for optimal synthesis of heterologous proteins. *Journal of Cellular Physiology*,
423 235(9), 5867-5881. doi:10.1002/jcp.29583

424 Kitade, Y., Hashimoto, R., Suda, M., Hiraga, K., & Inui, M. (2018). Production of 4-Hydroxybenzoic
425 Acid by an Aerobic Growth-Arrested Bioprocess Using Metabolically Engineered
426 *Corynebacterium glutamicum*. *Applied and Environmental Microbiology*, 84(6), e02587-17.
427 doi:10.1128/AEM.02587-17

428 Ko, J. K., & Lee, S. M. (2018). Advances in cellulosic conversion to fuels: engineering yeasts for
429 cellulosic bioethanol and biodiesel production. *Current Opinion in Biotechnology*, 50, 72-80.
430 doi:10.1016/j.copbio.2017.11.007

431 Kobayashi, Y., Inokuma, K., Matsuda, M., Kondo, A., & Hasunuma, T. (2021). Resveratrol
432 production from several types of saccharide sources by a recombinant *Scheffersomyces*
433 *stipitis* strain. *Metabolic Engineering Communications*, 13, e00188.
434 doi:10.1016/j.mec.2021.e00188

435 Krömer, J. O., Nunez-Bernal, D., Averesch, N. J. H., Hampe, J., Varela, J., & Varela, C. (2013).
436 Production of aromatics in *Saccharomyces cerevisiae*—A feasibility study. *Journal of*
437 *Biotechnology*, 163(2), 184-193. doi:10.1016/j.jbiotec.2012.04.014

438 Kumokita, R., Bamba, T., Inokuma, K., Yoshida, T., Ito, Y., Kondo, A., & Hasunuma, T. (2022).
439 Construction of an L-Tyrosine Chassis in *Pichia pastoris* Enhances Aromatic Secondary
440 Metabolite Production from Glycerol. *ACS Synthetic Biology*, 11(6), 2098-2107.
441 doi:10.1021/acssynbio.2c00047

442 Lian, J., Mishra, S., & Zhao, H. (2018). Recent advances in metabolic engineering of *Saccharomyces*
443 *cerevisiae*: New tools and their applications. *Metabolic Engineering*, 50, 85-108.
444 *doi:10.1016/j.ymben.2018.04.011*

445 Lindsey, A. S., & Jeskey, H. (1957). The Kolbe-Schmitt Reaction. *Chemical Reviews*, 57(4), 583-
446 620. *doi:10.1021/cr50016a001*

447 Liu, Q., Liu, Y., Li, G., Savolainen, O., Chen, Y., & Nielsen, J. (2021). De novo biosynthesis of
448 bioactive isoflavonoids by engineered yeast cell factories. *Nature Communications*, 12(1),
449 6085. *doi:10.1038/s41467-021-26361-1*

450 Liu, Q., Yu, T., Li, X., Chen, Y., Campbell, K., Nielsen, J., & Chen, Y. (2019). Rewiring carbon
451 metabolism in yeast for high level production of aromatic chemicals. *Nature
452 Communications*, 10(1), 4976. *doi:10.1038/s41467-019-12961-5*

453 Liu, Z., Ho, S. H., Sasaki, K., den Haan, R., Inokuma, K., Ogino, C., van Zyl, W. H., Hasunuma, T.,
454 & Kondo, A. (2016). Engineering of a novel cellulose-adherent cellulolytic *Saccharomyces*
455 *cerevisiae* for cellulosic biofuel production. *Scientific Reports*, 6, 24550.
456 *doi:10.1038/srep24550*

457 Luo, Z. W., Cho, J. S., & Lee, S. Y. (2019). Microbial production of methyl anthranilate, a grape
458 flavor compound. *PNAS*, 116(22), 10749-10756. *doi:10.1073/pnas.1903875116*

459 Manuja, R., Sachdeva, A., Jain, A., & Chaudhary, J. (2013). A comparative review on biological
460 activities of *p*-hydroxy benzoic acid and its derivatives. *International Journal of
461 Pharmaceutical Sciences Review and Research*, 22(2), 109-115.

462 Meijnen, J. P., Verhoeef, S., Briedjilal, A. A., de Winde, J. H., & Ruijsenaars, H. J. (2011). Improved
463 *p*-hydroxybenzoate production by engineered *Pseudomonas putida* S12 by using a mixed-
464 substrate feeding strategy. *Applied Microbiology and Biotechnology*, 90(3), 885-893.
465 *doi:10.1007/s00253-011-3089-6*

466 Müller, R., Wagener, A., Schmidt, K., & Leistner, E. (1995). Microbial production of specifically
467 ring-¹³C-labelled 4-hydroxybenzoic acid. *Applied Microbiology and Biotechnology*, 43(6),
468 985-988. doi:10.1007/BF00166913

469 Patra, P., Das, M., Kundu, P., & Ghosh, A. (2021). Recent advances in systems and synthetic biology
470 approaches for developing novel cell-factories in non-conventional yeasts. *Biotechnology
471 Advances*, 47, 107695. doi:10.1016/j.biotechadv.2021.107695

472 Rajkumar, A. S., & Morrissey, J. P. (2020). Rational engineering of *Kluyveromyces marxianus* to
473 create a chassis for the production of aromatic products. *Microbial Cell Factories*, 19(1), 207.
474 doi:10.1186/s12934-020-01461-7

475 Salgado, J. M., Rodríguez-Solana, R., Curiel, J. A., de Las, Rivas, B., Muñoz, R., & Domínguez, J.
476 M. (2014). Bioproduction of 4-vinylphenol from corn cob alkaline hydrolyzate in two-phase
477 extractive fermentation using free or immobilized recombinant *E. coli* expressing pad gene.
478 *Enzyme and Microbial Technology*, 58-59, 22-28. doi:10.1016/j.enzmictec.2014.02.005

479 Su, G. D., Zhang, X., & Lin, Y. (2010). Surface display of active lipase in *Pichia pastoris* using Sed1
480 as an anchor protein. *Biotechnology Letters*, 32(8), 1131-1136. doi:10.1007/s10529-010-
481 0270-4

482 Thomas, S. M., DiCosimo, R., & Nagarajan, V. (2002). Biocatalysis: applications and potentials for
483 the chemical industry. *Trends in Biotechnology*, 20(6), 238-242. doi:10.1016/s0167-
484 7799(02)01935-2

485 Tzin, V., & Galili, G. (2010). New Insights into the Shikimate and Aromatic Amino Acids
486 Biosynthesis Pathways in Plants. *Molecular Plant*, 3(6), 956-972. doi:10.1093/mp/ssq048

487 Valanciene, E., Jonuskiene, I., Syrpas, M., Augustiniene, E., Matulis, P., Simonavicius, A., & Malys,
488 N. (2020). Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis.
489 *Biomolecules*, 10(6), 874. doi:10.3390/biom10060874

490 Verhoef, S., Ruijssenaars, H. J., de Bont, J. A., & Wery, J. (2007). Bioproduction of *p*-
491 hydroxybenzoate from renewable feedstock by solvent-tolerant *Pseudomonas putida* S12.
492 *Journal of Biotechnology*, 132(1), 49-56. doi:10.1016/j.jbiotec.2007.08.031

493 Yin, H., Hu, T., Zhuang, Y., & Liu, T. (2020). Metabolic engineering of *Saccharomyces cerevisiae*
494 for high-level production of gastrodin from glucose. *Microbial Cell Factories*, 19(1), 218.
495 doi:10.1186/s12934-020-01476-0

496 Yu, S., Plan, M. R., Winter, G., & Krömer, J. O. (2016). Metabolic Engineering of *Pseudomonas*
497 *putida* KT2440 for the Production of *para*-Hydroxy Benzoic Acid. *Frontiers in*
498 *Bioengineering and Biotechnology*, 4, 90. doi:10.3389/fbioe.2016.00090

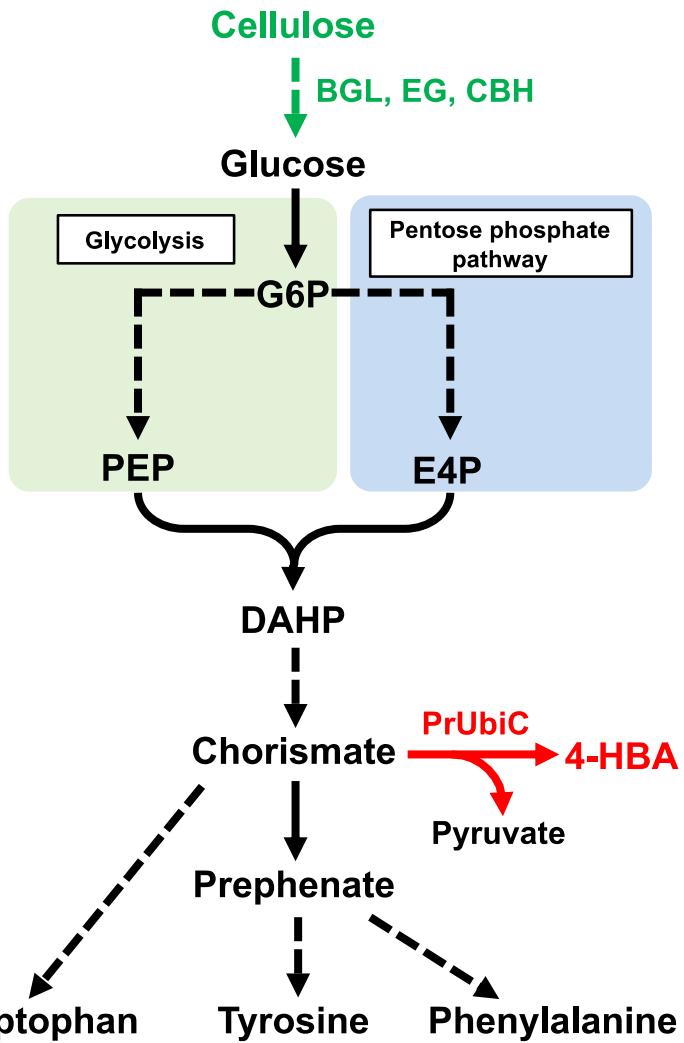
499 Zhang, L., Liang, S., Zhou, X., Jin, Z., Jiang, F., Han, S., Zheng, S., & Lin, Y. (2013). Screening for
500 glycosylphosphatidylinositol-modified cell wall proteins in *Pichia pastoris* and their
501 recombinant expression on the cell surface. *Applied and Environmental Microbiology*,
502 79(18), 5519-5526. doi:10.1128/AEM.00824-13

503

504

Table 1 Characteristics of yeast strains and plasmids used in this study

Yeast strains and plasmids	Relevant genotype	Source
<i>P. pastoris</i>		
CBS7435	Wild type	ATCC
Pp-UbiC	CBS7435/pIPrUbiC [<i>GAP_P-PrUbiC-AOXI_T, G418^R</i>]	This study
Pp-BG-GMSed1	CBS7435/pIBG-PpGMSed1 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-SEDI_A-AOXI_T, G418^R</i>]	This study
Pp-BG-GMG5	CBS7435/pIBG-PpGMG5 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW5_A-AOXI_T, G418^R</i>]	This study
Pp-BG-GMG12	CBS7435/pIBG-PpGMG12 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW12_A-AOXI_T, G418^R</i>]	This study
Pp-BG-GMG14	CBS7435/pIBG-PpGMG14 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW14_A-AOXI_T, G418^R</i>]	This study
Pp-BG-GMG19	CBS7435/pIBG-PpGMG19 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW19_A-AOXI_T, G418^R</i>]	This study
Pp-BG-GMG21	CBS7435/pIBG-PpGMG21 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW21_A-AOXI_T, G418^R</i>]	This study
Pp-BG-GMG28	CBS7435/pIBG-PpGMG28 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW28_A-AOXI_T, G418^R</i>]	This study
Pp-BG-GMG30	CBS7435/pIBG-PpGMG30 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW30_A-AOXI_T, G418^R</i>]	This study
Pp-BG-GMG34	CBS7435/pIBG-PpGMG34 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW34_A-AOXI_T, G418^R</i>]	This study
Pp-BG-GMG42	CBS7435/pIBG-PpGMG42 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW42_A-AOXI_T, G418^R</i>]	This study
Pp-BG-GMG45	CBS7435/pIBG-PpGMG45 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW45_A-AOXI_T, G418^R</i>]	This study
Pp-BG-GMG49	CBS7435/pIBG-PpGMG49 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW49_A-AOXI_T, G418^R</i>]	This study
Pp-BG-GMG51	CBS7435/pIBG-PpGMG51 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW51_A-AOXI_T, G418^R</i>]	This study
Pp-BG-GMG61	CBS7435/pIBG-PpGMG61 [<i>GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW61_A-AOXI_T, G418^R</i>]	This study
Pp-BG-SSG61	CBS7435/pIBG-PpSSG61 [<i>SPII_P-SPII_{SP}-A. aculeatus BGL1-GCW61_A-AOXI_T, G418^R</i>]	This study
Pp-EG-GMSed1	CBS7435/pIBG-PpGMSed1 [<i>GAP_P-MFα(L42S)_{SP}-T. reesei EGII-SEDI_A-AOXI_T, G418^R</i>]	This study

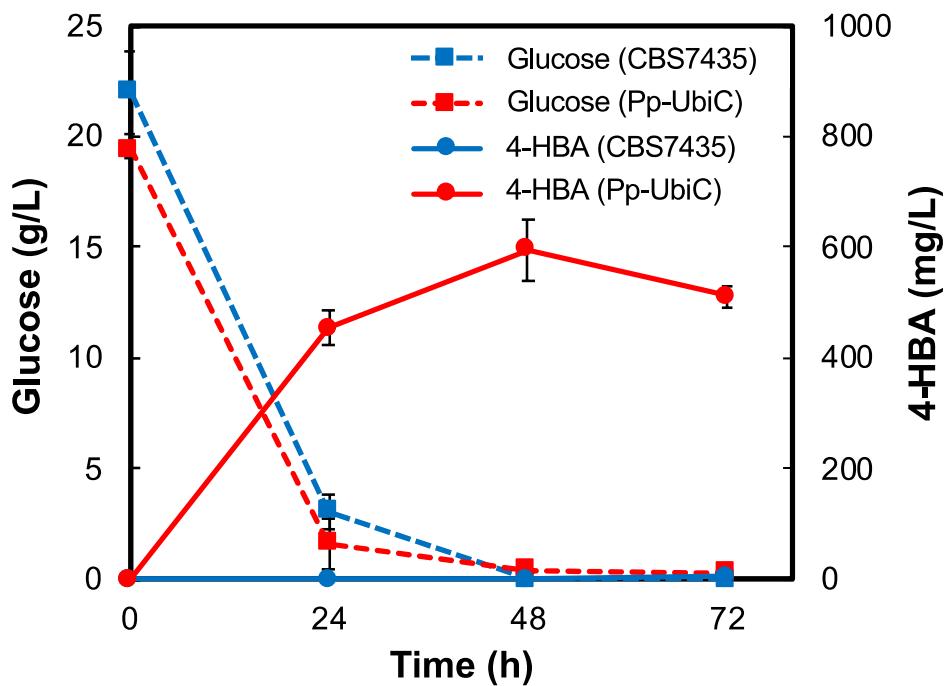

Pp-EG-GMG5	CBS7435/pIBG-PpGMG5 [GAP_p - $MF\alpha(L42S)_{SP}$ - <i>T. reesei</i> EGII- $GCW5_A$ - $AOX1_T$, $G418^R$]	This study
Pp-EG-GMG12	CBS7435/pIBG-PpGMG12 [GAP_p - $MF\alpha(L42S)_{SP}$ - <i>T. reesei</i> EGII- $GCW12_A$ - $AOX1_T$, $G418^R$]	This study
Pp-EG-GMG14	CBS7435/pIBG-PpGMG14 [GAP_p - $MF\alpha(L42S)_{SP}$ - <i>T. reesei</i> EGII- $GCW14_A$ - $AOX1_T$, $G418^R$]	This study
Pp-EG-GMG19	CBS7435/pIBG-PpGMG19 [GAP_p - $MF\alpha(L42S)_{SP}$ - <i>T. reesei</i> EGII- $GCW19_A$ - $AOX1_T$, $G418^R$]	This study
Pp-EG-GMG21	CBS7435/pIBG-PpGMG21 [GAP_p - $MF\alpha(L42S)_{SP}$ - <i>T. reesei</i> EGII- $GCW21_A$ - $AOX1_T$, $G418^R$]	This study
Pp-EG-GMG28	CBS7435/pIBG-PpGMG28 [GAP_p - $MF\alpha(L42S)_{SP}$ - <i>T. reesei</i> EGII- $GCW28_A$ - $AOX1_T$, $G418^R$]	This study
Pp-EG-GMG30	CBS7435/pIBG-PpGMG30 [GAP_p - $MF\alpha(L42S)_{SP}$ - <i>T. reesei</i> EGII- $GCW30_A$ - $AOX1_T$, $G418^R$]	This study
Pp-EG-GMG34	CBS7435/pIBG-PpGMG34 [GAP_p - $MF\alpha(L42S)_{SP}$ - <i>T. reesei</i> EGII- $GCW34_A$ - $AOX1_T$, $G418^R$]	This study
Pp-EG-GMG42	CBS7435/pIBG-PpGMG42 [GAP_p - $MF\alpha(L42S)_{SP}$ - <i>T. reesei</i> EGII- $GCW42_A$ - $AOX1_T$, $G418^R$]	This study
Pp-EG-GMG45	CBS7435/pIBG-PpGMG45 [GAP_p - $MF\alpha(L42S)_{SP}$ - <i>T. reesei</i> EGII- $GCW45_A$ - $AOX1_T$, $G418^R$]	This study
Pp-EG-GMG49	CBS7435/pIBG-PpGMG49 [GAP_p - $MF\alpha(L42S)_{SP}$ - <i>T. reesei</i> EGII- $GCW49_A$ - $AOX1_T$, $G418^R$]	This study
Pp-EG-GMG51	CBS7435/pIBG-PpGMG51 [GAP_p - $MF\alpha(L42S)_{SP}$ - <i>T. reesei</i> EGII- $GCW51_A$ - $AOX1_T$, $G418^R$]	This study
Pp-EG-GMG61	CBS7435/pIBG-PpGMG61 [GAP_p - $MF\alpha(L42S)_{SP}$ - <i>T. reesei</i> EGII- $GCW61_A$ - $AOX1_T$, $G418^R$]	This study
Pp-EG-SSG34	CBS7435/pIBG-PpSSG34 [$SPII_p$ - $SPII_{SP}$ - <i>T. reesei</i> EGII- $GCW34_A$ - $AOX1_T$, $G418^R$]	This study
Pp-BEC	CBS7435/ pIBG-PpSSG61 [$SPII_p$ - $SPII_{SP}$ - <i>A. aculeatus</i> $BGL1$ - $GCW61_A$ - $AOX1_T$, $G418^R$], pIH-EG-PpSSG34 [$SPII_p$ - $SPII_{SP}$ - <i>T. reesei</i> EGII- $GCW34_A$ - $AOX1_T$, Hyg^R], pIZ-CBH-PpSSG34 [$SPII_p$ - $SPII_{SP}$ - <i>T. emersonii</i> $CBH1$ - $GCW34_A$ - $AOX1_T$, Zeo^R]	This study
Pp-BEC-UbiC	CBS7435/ pIBG-PpSSG61 [$SPII_p$ - $SPII_{SP}$ - <i>A. aculeatus</i> $BGL1$ - $GCW61_A$ - $AOX1_T$, $G418^R$], pIH-EG-PpSSG34 [$SPII_p$ - $SPII_{SP}$ - <i>T. reesei</i> EGII- $GCW34_A$ - $AOX1_T$, Hyg^R], pIZ-CBH-PpSSG34 [$SPII_p$ - $SPII_{SP}$ - <i>T. emersonii</i> $CBH1$ - $GCW34_A$ - $AOX1_T$, Zeo^R], pIN-PrUbiC [GAP_p - $PrUbiC$ - $AOX1_T$, NAT^R]	This study
Plasmids		
pPGP_L42S_scFv	$G418^R$ GAP_p - $MF\alpha(L42S)_{SP}$ - $scFv$ - $AOX1_T$	(Ito et al. 2022)

pPGPH_DO	<i>Hyg^R GAP_P-MjDOD-AOXI_T</i>	(Ito et al. 2020)
D		
pPGPZ-	<i>Zeo^R GAP_P-EGFP-AOXI_T</i>	(Kumokita et al. 2022)
EGFP		
pPNS-NHCH	<i>NAT^R GAP_P-EcNMCH-AOXI_T</i>	(Kumokita et al. 2022)
pIPrUbiC	<i>G418^R GAP_P-PrUbiC-AOXI_T</i>	This study
pIN-PrUbiC	<i>NAT^R GAP_P-PrUbiC-AOXI_T</i>	This study
pIBG-SS	<i>HIS3 SED1_P-GLUA_{SP}-A. aculeatus BGL1-SEDI_A-SAGI_T</i>	(Inokuma et al. 2014)
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-SEDI_A-AOXI_T</i>	This study
PpGMSed1		
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW5_A-AOXI_T</i>	This study
PpGMG5		
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW12_A-AOXI_T</i>	This study
PpGMG12		
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW14_A-AOXI_T</i>	This study
PpGMG14		
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW19_A-AOXI_T</i>	This study
PpGMG19		
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW21_A-AOXI_T</i>	This study
PpGMG21		
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL11-GCW28_A-AOXI_T</i>	This study
PpGMG28		
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW30_A-AOXI_T</i>	This study
PpGMG30		
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW34_A-AOXI_T</i>	This study
PpGMG34		
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW42_A-AOXI_T</i>	This study
PpGMG42		
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW45_A-AOXI_T</i>	This study
PpGMG45		
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW49_A-AOXI_T</i>	This study
PpGMG49		
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW51_A-AOXI_T</i>	This study
PpGMG51		
pIBG-	<i>G418^R GAP_P-MFα(L42S)_{SP}-A. aculeatus BGL1-GCW61_A-AOXI_T</i>	This study
PpGMG61		
pIBG-	<i>G418^R SPII_P-SPII_{SP}-A. aculeatus BGL1-GCW61_A-AOXI_T</i>	This study
PpSSG61		

pIEG-SS	<i>HIS3 SED1_P-GLU4_{SP}-T. reesei EGII-SED1_A-SAG1_T</i>	(Inokuma et al. 2014)
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-SED1_A-AOX1_T</i>	This study
PpGMSed1		
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-GCW5_A-AOX1_T</i>	This study
PpGMG5		
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-GCW12_A-AOX1_T</i>	This study
PpGMG12		
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-GCW14_A-AOX1_T</i>	This study
PpGMG14		
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-GCW19_A-AOX1_T</i>	This study
PpGMG19		
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-GCW21_A-AOX1_T</i>	This study
PpGMG21		
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-GCW28_A-AOX1_T</i>	This study
PpGMG28		
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-GCW30_A-AOX1_T</i>	This study
PpGMG30		
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-GCW34_A-AOX1_T</i>	This study
PpGMG34		
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-GCW42_A-AOX1_T</i>	This study
PpGMG42		
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-GCW45_A-AOX1_T</i>	This study
PpGMG45		
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-GCW49_A-AOX1_T</i>	This study
PpGMG49		
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-GCW51_A-AOX1_T</i>	This study
PpGMG51		
pIEG-	<i>G4I8^R GAP_P-MFα(L42S)_{SP}-T. reesei EGII-GCW61_A-AOX1_T</i>	This study
PpGMG61		
pIEG-	<i>G4I8^R SPII_P-SPII_{SP}-T. reesei EGII-GCW34_A-AOX1_T</i>	This study
PpSSG34		
pIH-EG-	<i>Hyg^R SPII_P-SPII_{SP}-T. reesei EGII-GCW34_A-AOX1_T</i>	This study
PpSSG34		
<hr/>		
pIU5-CBH1 _D	<i>URA3 SED1_P-GLU4_{SP}-T. emersonii CBH1-SED1_A-SAG1_T</i>	(Liu et al. 2016)
pICBH1-	<i>G4I8^R SPII_P-SPII_{SP}-T. emersonii CBH1-GCW34_A-AOX1_T</i>	This study
PpSSG34		
pIZ-CBH1-	<i>Zeo^R SPII_P-SPII_{SP}-T. emersonii CBH1-GCW34_A-AOX1_T</i>	This study
PpSSG34		

506 *A. aculeatus*, *Aspergillus aculeatus*; *T. reesei*, *Trichoderma reesei*; *T. emersonii*, *Talaromyces*
 507 *emersonii*; P, promoter; SP, secretion signal peptide sequence; A, anchoring region; T, terminator,

508 *PrUbiC*, *Providencia rustigianii* chorismate pyruvate-lyase; *scFv*, single-chain variable fragment;
509 *GLUA*, *Rhizopus oryzae* glucoamylase; *MFα*, *S. cerevisiae* alpha-factor; *MjDOD*, *Mirabilis jalapa*
510 DOPA deoxygenase; *EcNMCH*, *Eschscholzia californica* *N*-methylcoclaurine hydroxylase
511
512

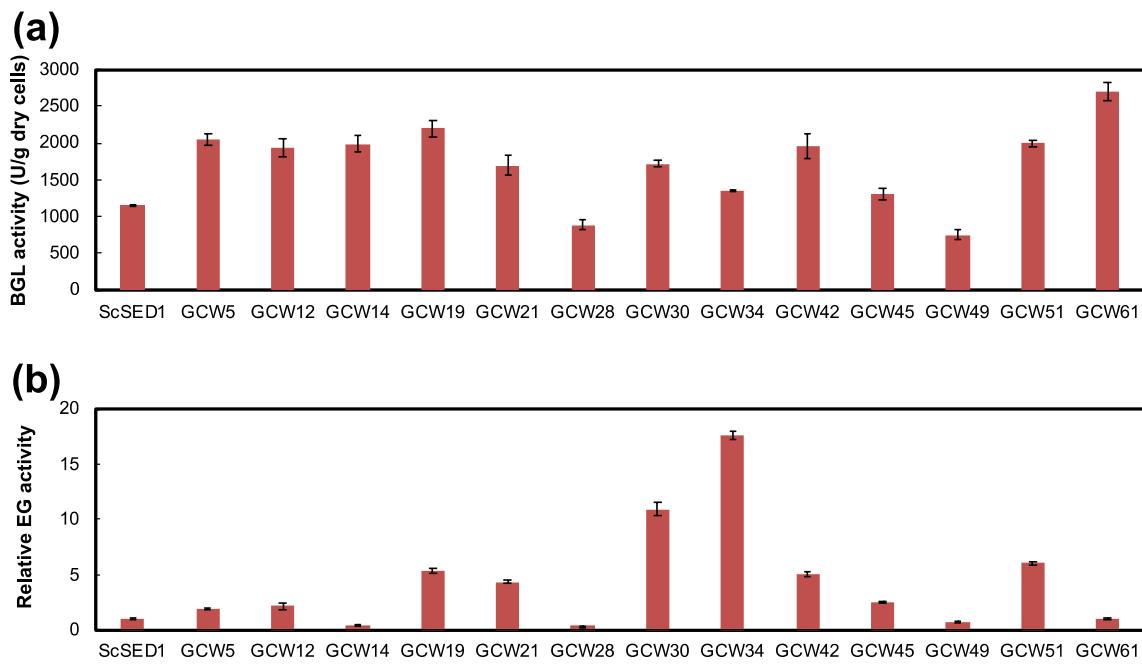


513

514 **Figure 1** Schematic pathway of 4-HBA biosynthesis in *P. pastoris*. Green and red arrows represent
 515 reactions by heterologous enzymes. The dashed arrows indicate multiple enzymatic steps. G6P,
 516 glucose-6-phosphate; PEP, phosphoenolpyruvate; E4P, erythrose-4-phosphate; DAHP, 3-deoxy-D-
 517 arabinohexitulonate 7-phosphate.

518

519

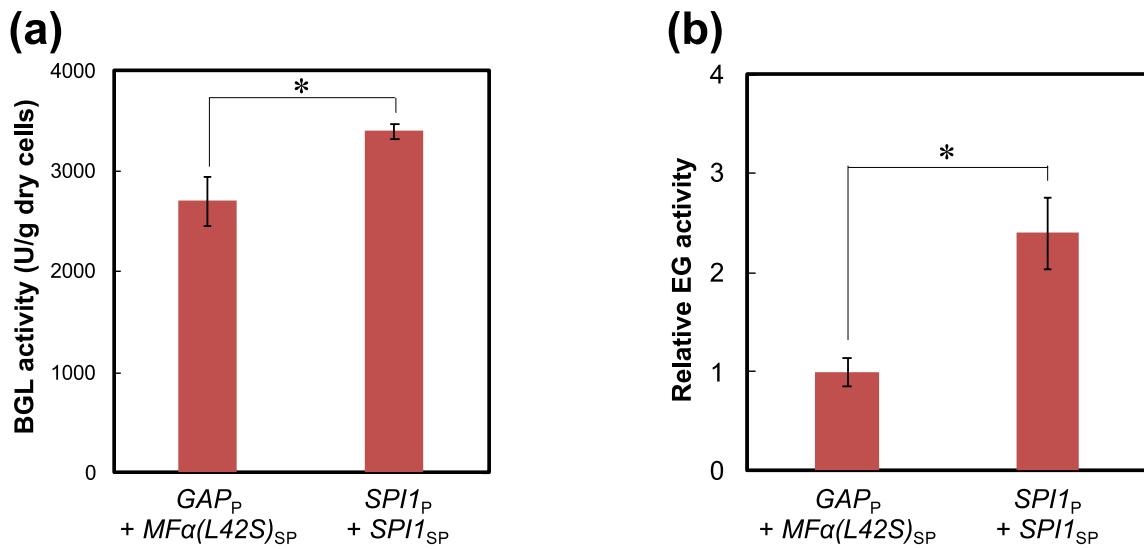


520

521 **Figure 2** Time course of 4-HBA production in YPD medium by *P. pastoris* strains.

522

523


524

525

526 **Figure 3** Comparison of cell-surface activity of **(a)** BGL and **(b)** EG. The enzymes were displayed
 527 using different GPI-anchoring domains in *P. pastoris* after cultivation in YPD medium for 48 h. The
 528 relative EG activity of each strain is shown as a fold-change in EG activity relative to the average
 529 level observed with strain Pp-EG-GMSed1 which uses Sed1p.

530

531

532

533

534 **Figure 4** The effect of replacing the promoter- and secretion signal sequences on cell-surface activity

535 of **(a)** BGL and **(b)** EG. * $p < 0.05$ for significant differences between two compared groups.

536

537



538

539 **Figure 5** PASCase activity of the BGL-, EG-, and CBH co-displaying *P. pastoris* strain (Pp-BEC).

540

541

542

543 **Figure 6** Time course of direct 4-HBA production through SSF of 10 g/L PASC by Pp-UbiC and

544 Pp-BEC-UbiC strains.

545

546