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Abstract. Malicious JavaScript is one of the most common tools for at-
tackers to exploit the vulnerability of web applications. It can carry po-
tential risks such as spreading malware, phishing, or collecting sensitive
information. Though there are numerous types of malicious JavaScript
that are difficult to detect, generalizing the malicious script’s signature
can help catch more complex JavaScripts that use obfuscation tech-
niques. This paper aims at detecting malicious JavaScripts based on
structure and attribute analysis of abstract syntax trees (ASTs) that
capture the generalized semantic meaning of the source code. We apply
a graph convolutional neural network (GCN) to process the AST features
and get a graph representation via neural message passing with neigh-
borhood aggregation. The attention layer enriches our method to track
pertinent parts of scripts that may contain the signature of malicious
intent. We comprehensively evaluate the performance of our proposed
approach on a real-world dataset to detect malicious websites. The pro-
posed method demonstrates promising performance in terms of detection
accuracy and robustness against obfuscated samples.

Keywords: Cyber security · Malicious JavaScript · Abstract Syntax
Tree · Graph neural network

1 Introduction

Javascript payload injection into legitimate or fake websites has been one of the
largest attack on the web. The malicious script can exploit the vulnerability
of the web applications to perform a drive-by download attack [2] or cross-site
scripting (XSS) [19]. When the attack is succesful, attackers distribute malware
to clients, which can cause damage such as sensitive data leakage, wire transfer,
or integrating into distributed denial-of-service (DDoS) attacks [3]. For instance,
one of the most famous examples of XSS vulnerability is the Myspace Samy
worm by Samy Kamkar in 2005 [9]. He exploited a vulnerability on the target
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that could give him priviledge to store a JavaScript payload on his Myspace
profile. Moreover, web technology improvement helps attackers use the latest
method to avoid detection, such as the obfuscation techniques.

Researchers have identified the malicious JavaScript payload, which is typi-
cally used by attackers as part of a web security attack. A variety of detection
systems has been proposed that use JavaScript features to detect malicious in-
tent. We can take many approaches to create a detection system for malicious
JavaScript, such as strings, function calls, bytecode sequences, abstract syntax
tree (ASTs), outputs of dynamic analysis tools. Among these features, AST
gives the most notably excellent performance. Fass et al. [6] use this feature for
their static analysis and use the N-gram model to detect malicious obfuscated
JavaScripts. However, their work focused on the frequency analysis of the specific
patterns with the connection between syntactic units of AST feature ignored.
We have to analyze it at the tree level instead of the sequence level when we
want to capture the semantic meaning of the code.

We propose JStrack, a malicious JavaScript detection system using a graph-
based approach on the AST features to capture the whole semantic meaning
which has not been considered in previous works. We hypothesize that the style
of malicious code tends to be better structured due to the decryption or deob-
fuscation process that should exist inside the code instead of having an abstract
structure. Analyzing the whole AST as a graph structure also gives us more
information about the actual intent of the source code. To capture that infor-
mation thoroughly, we use a supervised graph neural network (GNN), known
as a graph convolutional neural network (GCN) model. This model can capture
the connections between nodes in the graph structures and formulate them as
vectorial features to be used in a neural network model. Moreover, we try to com-
bine it with the attention layer to know which parts of AST carry a significant
information to detect malicious JavaScript code.

To summarize, our contributions are as follow:

– We introduce JStrack, a static analysis method, to detect malicious Java-
Script using the AST features as a graph. We applied GCN to capture the
typical structure and attribute of the AST representation from malicious
JavaScript samples. The GCN model is built by stacking multiple convolu-
tional layers to be used as a layer-wise linear model in our detection system.

– We track the suspicious part of the AST graph, which corresponds to the
actual JavaScript code, by using the attention layer in our proposed model.
The attention scores give us significant code segments that can lead us to
the signature of a malicious script.

– We evaluate our proposed approach using real-world malicious samples and
collected JavaScript files from the top domain list as benign. We show that
our graph-based approach can accurately detect malicious JavaScript even
with the presence of the obfuscation techniques to evade the detection sys-
tem. Moreover, our approach detects the obfuscation pattern of AST-graph
by observing the similarity of graph structures and attributes among mali-
cious or benign samples.
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The rest of the paper is organized as follows. Section 2 provides the back-
ground of JavaScript-based attack and related works. Then, we will explain how
we parse JavaScript code to get the AST representation and how we construct
the graph based on that. Section 3 explains our proposed approach, which uses
a graph-based model to extract the AST feature. Section 4 presents our experi-
ment and evaluation result of our JStrack in Section 5. Finally, we provide our
concluding remarks.

2 Background and Related Works

In this section, we explain the background of JavaScript-based attacks and how
attackers use obfuscation technique to hide their malicious intent. We also give
an overview of the AST feature as an abstract representation of JavaScript and
the derivation of the graph from the characteristics of the AST features.

2.1 JavaScript-based attack

According to Web Technology surveys [16], JavaScript is the most used client-
side programming language on websites, reaching about 97.4%. Because of that,
malicious JavaScript code is one of the most common web security vulnerabil-
ities that are frequently found in buttons, text, images, or pop-up pages. For
instance, if a website does not sanitize angle brackets (< >), attackers can insert
<script></script> to inject payload, which this tag instructs the browser to
execute the JavaScript between them [21]. The injected script can be triggered
when a single HTTP request runs the malicious payload and attackers did not
store it anywhere on the website or when a site saves and renders it unsanitized
[21].

The malicious JavaScript code generally contains some function calls that
attackers usually use to execute their intended action. Examples of function calls
include document.write(), eval(), unenscape(), SetCookie(), GetCookie(),
or newActiveXObject() [7]. Attackers will activate the malicious payload by
altering the document object model (DOM) to drop the malware or steal users’
sensitive data. Due to many malicious samples have these functions, we can
assume that this part of the code gives more important information about the
maliciousness of code. However, in practice, attackers hide the malicious code
by particular means to take advantage of the security flaw. It won’t be easy to
detect such kinds of payload that it can bypass the system. In addition, they
utilize obfuscation techniques to hide their malicious code, making it harder to
find the signature.

2.2 Related Works

Previous researches have thoroughly explored the machine learning-based method
for detecting malicious JavaScript. They used various features of JavaScript and
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applied a different approach to increase the performance. Ndichu et al. [12] ap-
plied the FastText model to detect the malicious JavaScript based on AST fea-
tures. They tried to deobfuscate the source code to catch the identical actual
malicious payload before modeling. However, their approach handles the short
relationship between syntactic units in AST that they forgot to consider the edge
connection. Besides that, Fass et al. [6] did a similar work that they proposed
a syntactical analysis approach using a low-overhead solution that mixes AST
feature extraction sequences and a random forest classifier model.

Differently, Rozi et al. [14] used bytecode sequences as the main features of
JavaScript code, which is the middle language between machine and high-level
code. Due to the super long problem in the bytecode sequence, they used a deep
pyramid convolutional neural network (DPCNN) that contains a pyramid shape
network to get a more straightforward representation. The limitation is that
they have to declare all possible DOM objects in every sample to generate the
sequences.

Moreover, Song et al. [15] and Fang et al. [5] used recurrent neural networks
(RNNs) architectures to capture the semantic meaning of JavaScript. Song et
al. [15] tried to use the Program Dependency Graph (PDG), AST, and control
flow diagram (CFG), which preserve the semantic information of JavaScript.
However, Fang et al. [5] only relied on AST features to capture the sequence
patterns of syntactic unit sequences. Both of them applied Bidirectional Long-
Short Term Memory (BiLSTM) and Long-Short Term Memory (LSTM) to learn
the long-term dependencies.

3 Proposed approach

To overcome such challenges from malicious JavaScript, we propose a detection
system that can predict the label of a given source code, whether it is malicious
or benign. Our proposed approach uses AST as the feature of JavaScript that
can define the style and semantic meaning of the source code. By analyzing
this feature, we can capture the malicious intent based on the typical structure
and attribute of the AST graph. We use GCN to learn the graph to have the
generalization of malicious and benign samples.

3.1 Overview

We can see the entire detection system framework in Figure 1. It begins with
a JavaScript file that we want to predict the malicious intent. After that, we
parse it using a parser to get the AST representation, describing how program-
mers write the code. The output is a JSON format file where each record is
a syntactic unit object based on ESTree standardization [4]. We can construct
graph objects from a JSON file as a simplification of its data structure. The
graph generator creates syntactic unit types as finite nodes, and the hierarchi-
cal connection among nodes is an edge of the AST graph. Next, we create two
matrices, feature matrix X and adjacency A, representing the feature value of
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Fig. 1. The overview of proposed approach. (a) The original architecture consists of
three layers of convolutional and pooling layers. (b) The combination of GCN and
attention mechanism to locate the suspicious codes of JavaScript. To get the whole
information of nodes, we put the pooling layer after attention layer before going to
fully-connected layer.

each node and all connections of edges, respectively. The GCN is similar to the
convolutional neural network (CNN) in that it consists of two main layers, the
convolutional and pooling layers. The difference is that GCN applies these layers
on a graph structure to get a suitable vector representation for the graph. The
output is the prediction score to determine the JavaScript label.

3.2 AST graph construction

We often find many systems around us that use graph representation to solve
many problems. Graph representation can render a complex system become
more structured so that the problem will be easier to solve. A graph is a ubiqui-
tous data structure and universal language consisting of a collection of objects,
including a set of interactions between pairs of objects [8].

Formally, we can define graph G(V, E) as a set of nodes v ∈ V and edges e ∈ E .
(u, v) denotes an edge going from node u ∈ V to node v ∈ V [8]. We can represent
a finite graph G in a squared matrix called adjacency matrix A ∈ R|V|×|V|. Each
row and column indicates all nodes that a finite graph G has. Furthermore, edges
represent entries in A where A[u, v] = 1 if (u, v) ∈ E and otherwise A[u, v] = 0.
Matrix A will not necessarily be symmetric if graph G has directed edges. Some
graphs also have weighted edges, where the entries in the adjacency matrix are
real-values. Besides that, a graph may have an attribute or feature information
for each node that using a real-valued matrix X|V|×m where m is the feature size
of nodes, and the ordering of the nodes is consistent with the adjacency matrix
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A. In some cases, edges also have real-valued features in addition to discrete
edge types.

We can use a graph-based approach to represent the AST feature with a tree
graph structure. AST is a top-down parsing structure in which each syntactic
unit has at least one hierarchical connection where the root is always a ’program’
type. Based on that, we consider each syntactic unit as a node and hierarchical
link as an edge. Using graph representation simplifies the AST feature in a fixed
form to help the feature extraction process. This representation also allows us
to capture the big picture of the source code, which shows the complexity yet
the programmer’s obfuscation style.

3.3 Learning AST graph feature

Suppose we have G = {G1,G2,G3, ...,GN}, a set of all graphs in our dataset. We
can define a graph Gi(Vi, Ei) consisting of nodes V and edges E . In our problem,
we assume our target for the model is t ∈ {0, 1} which 0 as benign and 1 as the
malicious.

Graph Convolutional Neural Networks. The basic idea of GCN is ac-
tually from convolutional neural networks (CNNs), where it also uses the convo-
lution and pooling function for getting feature information of each node in the
graph. Originally, Kipf et al. proposed GCN to solve semi-supervised classifica-
tion tasks such as graph Laplacian regularization include label propagation [22],
manifold regularization [1], and deep semi-supervised embedding [20]. The basic
idea is to generate embedding information of nodes via neural message pass-
ing to aggregate information from all neighborhoods. GCN consists of a stack
of graph convolution layers, where a point-wise non-linearity follows each layer.
The number of layers is the farthest distance that node features can travel. The
number of layers also influence the performance. More layers are not guaranteed
to get a good result because it makes the aggregation less meaningful if it goes
further.

The multi-layer network in GCN follows layer-wise propagation rule:

H(l+1) = σ

(
D̃
− 1

2 ÃD̃
− 1

2H(l)W(l)

)
. (1)

Where Ã = A + IN is the adjacency matrix of the undirected graph G with
added self-connections. D̃ii =

∑
j Ãij and W(l) is trainable weight matrix in

specific layer. H(l) ∈ RN×m is the matrix of activations in the lth layer with m

is the feature size of nodes; H(0) = X. σ(·) stands for an activation function,
such as the ReLU(·) = max(0, ·).

Attention mechanism. This mechanism is basically about paying more
focus on some component that significantly influences the system. Precisely, the
attention function map a query and a set of key-value pairs to an output, where
the query, keys, values, and output are all vectors [17]. The computation of
attention function as follows:
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Attention(Q,K,V) = softmax(
QKT

√
dk

)V (2)

where Q, K, V are query, key, and value matrices, respectively. dk is the key
of dimensions.

In this work, the attention mechanism can leverage the learning process of
GCN by giving attention weight to concentrate selectively on a discrete aspect of
the graph convolutional layer. We use a self-attention layer to handle long-range
dependencies and have lower complexity than other layer types (e.g., convolu-
tional or recurrent).

4 Experiments

In this section, we present our experiments to evaluate our proposed approach
for detecting malicious JavaScript samples. We evaluated our framework’s per-
formance by adjusting the maximum number of nodes in each graph. Then, we
compared our results with some related works that have a similar task. Finally,
we give some analysis discussion to find out our limitations.

4.1 Setup

Dataset. We collect malicious and benign JavaScript datasets, where the ma-
licious samples are from two different sources due to the difficulties of getting
the real-world dataset. For our malicious samples, we mixed the dataset from
Rozi et al. [14] and Ndichu et al. [12] that use some different time stamps of files
from 2015 until 2017. We also confirmed that all those datasets are dangerous
scripts based on the VirusTotal scanner [18]. Meanwhile, we collected JavaScript
codes for benign samples by scrapping from the top domain list on the Majestic
website [10], and we combined it with the benign dataset from SRILAB [13]. We
consider all JavaScript codes inside popular websites as safe code without any
attacking intent.

We split our dataset into two parts: training and testing. We used the train-
ing dataset for the learning purpose of our graph learning model. Otherwise,
we evaluated our model with the testing dataset. We conducted 10-folds cross-
validation to see our model’s average performance that generalizes to an inde-
pendent dataset. Because of that, the proportion between training and testing
is 80% and 20%, respectively. Table 1 summarizes the number of JavaScript files
that we use in our experiments.
Hyper-parameters and setup. We set optimal hyper-parameters to conduct
our experiments to control the learning process. We used the Adam algorithm
optimization with a 0.01 learning rate and 32 for the batch size. In addition, the
feature size of the convolutional layer in GCN is 32 and using rectified linear
unit (ReLU) as the activation function. For the pooling layer, we used a 50%
ratio to downsample the matrix node.
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Table 1. The description of our dataset that is used for training and testing process.

Label
Dataset

Training Testing Total

Benign 97,361 24,341 121,702
Malicious 31,560 7,890 39,450

Total 128,921 32,231 161,152

Unlike the usual deep learning model, adding more layers does not correlate
with the performance. When we work with the GNNs, this model will signif-
icantly lose the ability to learn if we have too deep layers, where we call this
problem over-smoothing [23]. The main idea of over-smoothing is that all node
representations look identical and uninformative after too many message passing
rounds due to too many layers. Zhou et al. [22] recommended using between 2
and 4 layers to achieve an optimal solution. Therefore, we used the middle range
number, three layers, in our experiments.

Moreover, we applied a data loader with disjoint mode for creating mini-
batches of data in graph learning. It represents a batch of graphs with a disjoint
union that gives us one big graph [11]. Figure 2 illustrates how the disjoint loader
works.

Fig. 2. Disjoint loader is a method to load dataset in graph learning process that
represents batch of graphs via disjoint union. It uses zero-based indices to keep track
of the different graphs.

5 Evaluation and Discussion

Due to the memory capacity reason, we could not include all nodes in the learning
process. Because of that, we evaluated six different maximum nodes of the AST
graph: 50, 100, 200, 500, 1000, and 2000. This experiment aims to find the
sufficient nodes that we need to detect the maliciousness of JavaScript. Table
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2 shows the performances (precision, recall, F1 score) for each maximum nodes
setting. We can see that the performance of our method will increase in line
with the number of nodes in the AST graph that we can capture. This result
is in accordance with our hypothesis that AST nodes give an abstraction of
the source code where all nodes give essential information. However, using 2000
nodes still give high performance even though we did not include all information.
It is because AST uses the hierarchical structure that each node has summarized
its successor.

Table 2. Overall performances of our detection system using graph-based approach
on accuracy, precision, recall, F1 score, and AUC.

Max Nodes Accuracy Precision Recall F1 score AUC

50 0.9864 0.9872 0.9878 0.9875 0.9878
100 0.9877 0.9881 0.9901 0.9891 0.9901
200 0.9906 0.9929 0.9937 0.9933 0.9937
500 0.9933 0.9940 0.9956 0.9948 0.9956
1000 0.9941 0.9953 0.9965 0.9959 0.9965
2000 0.9940 0.9956 0.9971 0.9963 0.9971

Table 3 shows the comparison between previous works and our proposed
method. GCN has around 98% in terms of F1 score for our dataset with the
maximum 50 nodes of the AST graph. Meanwhile, adding attention layers before
fully connected layers can improve the performance by 99%. Our approaches
outperform the previous works that use the FastText model based on frequency
analysis of syntactic AST units. Even though the difference is relatively small,
our proposed method can predict the part of the source code which gives more
attention to detect malicious intent. This information will be valuable for further
analysis of malicious code. Figure 4 is one of the malicious samples in our dataset
that shows the attention score for each node in a graph. Moreover, the bytecode
sequences feature cannot be implemented on every JavaScript samples because
we have to declare all possible DOM objects.

Moreover, we found in our experiments that the malicious JavaScript has
its obfuscation technique to hide the actual source code. Figure 3 (a) shows the
graph visualization of malicious JavaScript code. The structure of the AST graph
for malicious JavaScript has many repetitions of the subgraph that we rarely find
in benign samples. Some similar styles appear many times within the same time
range, indicating that attackers consistently use their obfuscation function that
normal programmers will not use. On the other hand, most benign samples
in Figure 3 (b) have an arbitrary structure of AST and inconsistent subgraph
patterns. This result is in line with our hypothesis that benign JavaScript mostly
does not use obfuscation techniques, or if it has obfuscated parts, it uses more
complicated methods to protect from reverse engineering.
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Table 3. Performance comparison with closely related works.

Model Feature F1

DPCNN[14] Bytecode Sequence 0.9684
DPCNN+LSTM[14] Bytecode Sequence 0.9657
DPCNN+BiLSTM[14] Bytecode Sequence 0.9683
LSTM[12] AST 0.9234
FastText[12] AST 0.9873

GCN (3-layers;max 50 nodes) AST 0.9875
GCN (w/ attention; max 50 nodes) AST 0.9935

Fig. 3. A sample of AST graph that is constructed from a benign (a) and malicious
(b) JavaScript file.

Fig. 4. (a) A malicious sample where the highlight parts are the vital parts to execute
the code. (b) The AST representation of the malicious code that each node has a color
represents the attention score. Some nodes have high scores that correlate to the vital
part of malicious code.
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However, there are two limitations to our proposed method that we are con-
sidering. First, we lose detailed information about malicious code due to using
the AST feature to represent JavaScript. In the AST graph, we merely use the
syntactic units and omit component details for each unit, which may contain the
essential information for our detection system. Then, the use of deep/machine
learning does not always consider uncertainty in the prediction task. It relies on
statistical assumptions about the distribution of the dataset to train the model.
Consequently, adversaries-based attacks can exploit the machine learning model
to disrupt the analysis process and make false detection.

6 Conclusions and Future Works

In this paper, we proposed an alternative approach to detect malicious JavaScript
based on the analysis of AST representation. The syntactical structure of Java-
Script can give more comprehensive information about the source code’s seman-
tic meaning to capture the generalization of malicious signatures to overcome
future attacks. GCN successfully encodes the whole AST graph via a neural
message from its local neighborhood that leads to high detection performance.
Additionally, the attention layers also help us locate suspicious parts of the mali-
cious samples, significantly contributing to the detection system. As future plan,
we will extend our research for future work to detect malicious websites based on
encoded JavaScript information. We will explore more about other JavaScript
features that probably increase the performance.
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