

PDF issue: 2025-06-21

Strategy for preventing skin paddle necrosis in mandibular reconstruction with free fibula osteocutaneous flap

Kusumoto, Junya Hashikawa, Kazunobu Sakakibara, Akiko Murai, Nobuyuki Akashi, Masaya

(Citation)

Microsurgery, 42(5):451-459

(Issue Date) 2022-07

(Resource Type) journal article

(Version) Accepted Manuscript

(Rights)

This is the peer reviewed version of the following article: [Kusumoto, J., Hashikawa, K., Sakakibara, A., Murai, N., & Akashi, M. (2022). Strategy for preventing skin paddle necrosis in mandibular reconstruction with free fibula osteocutaneous flap. Microsurgery, 42(5), 451-459.], which has been published in final form at…

(URL)

https://hdl.handle.net/20.500.14094/0100481692

1	Strategy for preventing skin paddle necrosis in mandibular reconstruction with free
2	fibula osteocutaneous flap
3	
4	Junya Kusumoto DDS, PhD ¹ , Kazunobu Hashikawa MD, PhD ^{2,3} , Akiko Sakakibara DDS,
5	PhD ¹ , Nobuyuki Murai MD ² , Masaya Akashi DDS, PhD ¹
6	¹ Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of
7	Medicine, Kobe, Japan
8	² Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
9	³ Department of Plastic Surgery, Nagoya University Graduate School of Medicine, Nagoya,
10	Japan
11	
12	Correspondence
13	Junya Kusumoto
14	Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of
15	Medicine
16	7-5-1, Kusunoki-cho Chuo-ku, Kobe 650-0017, Japan
17	Tel.: +81-78-382-6213; Fax: +81-78-382-6229
18	E-mail: chivalry_2727@yahoo.co.jp
19	Running title: Skin paddle necrosis prevention in mandibular reconstruction

20 Data availability statement

21 J	The	datasets	used	and/or	analyzed	during	the	current	study	are	available	from	the
------	-----	----------	------	--------	----------	--------	-----	---------	-------	-----	-----------	------	-----

22 corresponding author on reasonable request.

23 Funding statement

- 24 This research did not receive any specific grant from funding agencies in the public,
- 25 commercial, or not-for-profit sectors.

26 Declaration of conflicts of interest

27 The authors declare no competing interests.

28 Ethics approval statement

- 29 This study was approved by the Ethics committee of Kobe University Hospital (certificate no.
- 30 B200135).

31 Patient consent statement

32 All subjects provided written informed consent for their participation in this study.

- 34 **Manuscript word count (including abstract and references):** 3,999 words
- 35 Abstract word count: 230 words
- 36 Number of tables: 5
- 37 Number of figures: 3
- 38 Number of references: 34

39	Strategy for preventing skin paddle necrosis in mandibular reconstruction with free
40	fibula osteocutaneous flap
41	
42	Abstract
43	Background: Non-thrombotic skin paddle necrosis occasionally occurs during mandibular
44	reconstructions with free fibula osteocutaneous flaps. The number of perforators, size of the
45	skin paddle, and ischemia time of the flap are considered as causes of skin paddle necrosis.
46	The importance of donor side selection has also been highlighted. This study aimed to
47	investigate the leading cause of skin paddle necrosis and the optimal reconstructive
48	procedure.
49	Methods: A total of 66 patients who underwent mandibular reconstruction using a free fibula
50	osteocutaneous flap were retrospectively analyzed. Skin paddle necrosis, number of
51	cutaneous perforators, size of the skin paddle, and ischemia time of the flap were investigated.
52	An incorrect "laterality" was defined as a skin paddle (septum) covering the reconstruction
53	plate. Donor-site morbidity was recorded.
54	Results: Skin paddle necrosis occurred in 15.2% of patients. An incorrect laterality was
55	associated with a higher incidence of skin paddle necrosis (odds ratio, 22.0; 95% confidence
56	interval, 2.5–195; $p = 0.005$). Donor-site morbidity was noted in 18.8% of the patients,
57	without any significant difference in terms of the donor side with and without skin graft ($p =$

58 0.592). The postoperative activities of daily living were not affected.

59	Conclusions: To prevent skin paddle necrosis, donor side selection is an important safety
60	strategy during mandibular reconstruction with free fibula osteocutaneous flap. The
61	postoperative activities of daily living were found to be little affected by differences in the
62	donor side.
63	
64	Keywords: Donor side selection; donor-site morbidity; free fibula osteocutaneous flap;

65 mandibular reconstruction; skin paddle necrosis.

67 1 INTRODUCTION

Options for mandibular reconstruction include metallic plates, non-vascular bone grafts, and 68 vascularized bone flaps^{1, 2}. Recently, the use of free vascularized bone flaps, such as the free 69 fibula osteocutaneous flap (FFOF), has been gaining wide acceptance. It is considered the 70first-line approach for mandibular reconstructions. Despite its advantages in reconstructing 71composite bone and soft tissue defects^{1, 3}, the FFOF occasionally undergoes skin paddle 72necrosis, which may result in surgical site and/or instrument infection. In turn, the infection 73may induce vascular pedicle thrombosis. Moreover, in cases of reconstruction with FFOF 74after ablation of malignant tumors, such complications possibly delay the initiation of 75adjuvant therapy for malignant tumors⁴. 7677With respect to the pathogenesis of skin paddle necrosis, unstable local blood flow has been proposed as a potential mechanism. Previous reports have described the skin paddle 78design using a reliable perforator^{4, 5}, number and diameter of perforators used⁶, size of the 79skin paddle⁷, and ischemia time of the flap⁸. Unfortunately, skin paddle necrosis can still 80 occur when all of these conditions are optimal. Yagi et al.⁹ proposed an algorithm for donor 81 side selection in which the skin paddle naturally reaches the defect at the shortest distance 82 during mandibular reconstruction with the FFOF; they also reported that reliable 83 reconstruction of the mandible could be performed using their algorithm. 84

85 This study aimed to investigate the main causes of skin paddle necrosis and identify

86	predictors of a good outcome of mandibular reconstruction with an FFOF. To this purpose,
87	the relationship between the reconstruction side and the donor side in terms of flap
88	arrangement and flap characteristics, such as the number of septal cutaneous perforators, size
89	of the skin paddle, and ischemia time of the flap, was investigated.
90	
91	2 PATIENTS AND METHODS
92	In this retrospective study, the authors reviewed the data of patients who underwent
93	reconstructive surgery with an FFOF after segmental mandibulectomy or
94	hemimandibulectomy from January 2013 to September 2020 at the Department of Oral and
95	Maxillofacial Surgery and Plastic Surgery of Kobe University Hospital. Subjects who
96	developed anastomotic thrombosis were excluded from the analysis. This study was
97	conducted in accordance with the principles embodied in the Declaration of Helsinki and was
98	independently reviewed and approved by the Ethics Committee of Kobe University Hospital
99	(certificate no. B200135). All subjects provided written informed consent for their
100	participation in this study.
101	Data regarding clinicodemographic characteristics (age, sex, body mass index, primary
102	disease, preoperative albumin levels, smoking status, presence of immunocompromise, and
103	preoperative radiation therapy \geq 60 Gy) and surgical characteristics (type of mandibular
104	defect according to the "CAT" classification ¹⁰ , operative time, volume of blood loss, need for

105	blood transfusions, and tourniquet time) were retrieved. Additionally, flap-related factors,
106	such as flap arrangement, number and type of septal cutaneous perforators (septocutaneous or
107	septomusculocutaneous) branched peroneal artery in the skin paddle, size of the skin paddle,
108	and ischemia time of the flap, were investigated. The skin paddle area was measured based on
109	an intraoperative photograph using ImageJ (National Institutes of Health).
110	
111	2.1 Donor side selection
112	In the Department of Oral and Maxillofacial Surgery and Plastic Surgery of Kobe University
113	Hospital, the non-dominant side has traditionally been selected as the donor side (the
114	dominant side being that used for kicking a ball) due to patients' preference. All patients
115	underwent preoperative magnetic resonance angiography of the non-dominant lower leg to
116	assess the anatomy of the three main vessels (anterior tibial, posterior tibial, and peroneal
117	arteries) and cutaneous perforators ¹¹ . If abnormal findings were observed on the
118	non-dominant side, the dominant side was chosen as the donor side instead.
119	
120	2.2 Classification of the flap arrangement and definition of "laterality"
121	According to the algorithm proposed by Yagi et al.9, fibula osteocutaneous flaps are classified
122	into four groups based on the relationship between the direction of the vascular pedicle, the
123	position of the skin paddle, and the ideal donor side to the mandibular defect side, as follows:

124	Group A: The vascular pedicle was directed posteriorly, and the skin paddle was fixed to the
125	oral mucosa; Group B: The vascular pedicle was directed posteriorly, and the skin paddle was
126	fixed to the cervicofacial skin; Group C: The vascular pedicle was directed anteriorly, and the
127	skin paddle was fixed to the oral mucosa; Group D: The vascular pedicle was directed
128	anteriorly, and the skin paddle was fixed to the cervicofacial skin.
129	In this algorithm, the donor side is contralateral to the reconstruction side in Groups A
130	and D and ipsilateral to the reconstruction side in Groups B and C. In this study, "laterality"
131	was considered as "correct" when the flap arrangement and the donor side fitted within this
132	algorithm (Figure 1).

134 2.3 Endpoints

The primary endpoint was the occurrence of skin paddle necrosis (including partial necrosis) 135without vascular anastomotic thrombosis. The absence of anastomotic thrombosis or vascular 136pedicle thrombosis was assessed using enhanced computed tomography and/or 137ultrasonography (Figure 2). In cases with little soft tissue defect after resection, even when 138thought to be partial necrosis, the reefing cases following removing the entire skin paddle to 139minimize damage were also included in total necrosis. The secondary endpoint was the 140incidence of late-onset complications on the donor-site (i.e., pain and numbness, toe 141deformity, edema, difficulty with stair climbing, and anxiety during gait). Donor-site 142

143	morbidity was evaluated at \geq 3 months postoperatively ¹² . All patients underwent
144	rehabilitation under a physical therapist's guidance during 2 weeks of hospital stay.
145	

146 **2.4 Statistical analyses**

For comparisons between the groups of skin paddle necrosis and engraftment survival, 147Fisher's exact test and Mann-Whitney U test were used for nominal and continuous variables, 148respectively. The relationship among Groups A–D, laterality, and skin paddle necrosis was 149evaluated using the Mantel-Haenszel test. Variables associated with skin paddle necrosis in 150previous reports (number of septal cutaneous perforators, size of the skin paddle, and 151ischemia time of the flap) and laterality were included in a multivariate logistic regression 152model^{7, 8}. The relationship among complications, donor side, and use of skin graft was 153evaluated using the Mantel-Haenszel test. Regarding the skin paddle size, the relationship 154between the skin paddle size and the number of cutaneous perforators was evaluated using 155Pearson's product-moment correlation coefficient. The cutoff value of skin paddle size for 156preventing skin paddle necrosis was determined using the receiver operating characteristic 157158analysis with Youden's index. The relationship between the area of (length \times width) and the one calculated using ImageJ was evaluated using simple regression analysis. The significance 159level was set at p = 0.05. Statistical analyses were performed using R software version 3.4.1 160(R Development Core Team, 2017; R Foundation for Statistical Computing, Austria). 161

10

163 3 RESULT	163	3 RESULT
---------------------	-----	-----------------

164 Of 76 patients who underwent reconstructive surgery with an FFOF during the study period,

165 10 (13.2%) presented with thrombosis on the anastomosis site and were thus excluded;

- 166 overall, 66 patients were eligible for analysis. Skin paddle necrosis was noted in 10 cases
- 167 (15.2%) [total necrosis, 7 cases (2 reefing cases); partial necrosis, 3 cases]. Laterality was
- 168 correct in 43 cases (65.2%) and incorrect in 23 cases (34.8%). Skin paddle necrosis was noted
- 169 in 4 cases (10.8%, incorrect = 3) in Group A (n = 37, incorrect = 11), 2 cases (40%, incorrect

170 = 2) in Group B (n = 5, incorrect = 4), 3 cases (20%, incorrect = 3) in Group C (n = 15,

171 incorrect = 4), and 1 case (11.1%, incorrect = 1) in Group D (n = 9, incorrect = 4);

- 172 between-group differences in this regard were not significant (Mantel-Haenszel test, p =
- 173 0.585). Similarly, demographic, clinical, and surgical characteristics were not significantly

174 different between patients with or without necrosis (Tables 1 and 2).

175 Regarding flap-related factors, the median ischemia time of the flap was comparable

- between the necrosis and engraftment groups (p = 0.458). Furthermore, there was no
- 177 significant difference in the number of cutaneous perforators (p = 0.319). Conversely, the size
- 178 of the skin paddle was significantly smaller in the necrosis group (median, 18.6 cm²; range of
- 179 length \times width, 5 \times 3 cm to 15 \times 4 cm) than in the engraftment group (median, 26.4 cm²;

range of length × width, 6×3 cm to 9×8 cm) (p = 0.036). The size of the skin paddle did not

r = 0.09, p = 0.484).

183	Of note, incorrect laterality was present in 90% of patients in the necrosis group,
184	compared with 25% of patients in the engraftment group ($p < 0.001$) (Table 2). Additionally,
185	multivariate logistic regression analysis revealed that incorrect laterality was associated with
186	a significantly higher risk of skin paddle necrosis (adjusted odds ratio, 22.0; 95% confidence
187	interval, 2.5–195; $p = 0.005$) (Table 3). In cases of incorrect laterality, cutoff value of the size
188	of the skin paddle to prevent necrosis was 18.0 cm^2 (n = 23, sensitivity = 55.6%, specificity =
189	92.9%, area under the curve = 0.651). The relationship between the area of (length \times width)
190	and the one calculated by ImageJ was expressed using the following formula: $y = 4.19090 + 10000$
191	1.29871 x (n = 66, R^2 = 0.90, p < 0.001). The outcomes of patients with skin paddle necrosis
192	were as follows: six cases of bone flap survival, two cases of bone flap removal, and two
193	cases in whom bone flap preservation was possible with residual infection.
194	Donor-site complications were noted in 18.8%. The most common complications were
195	pain and numbness and toe deformity (6.3% each), followed by edema (4.7%). None of these
196	complications affected the activities of daily living. No significant association among the use
197	of the skin graft, donor side, and donor-site complications was observed (Mantel-Haenszel
198	test, $p = 0.592$) (Table 4).

correlate with the number of cutaneous perforators (Pearson's conduct correlation coefficient

200 4 DISCUSSION

217

In this study, incorrect laterality was found to be closely associated with the development of 201skin paddle necrosis. Other flap-related factors, such as ischemia time of the flap, number of 202cutaneous perforators, and size of the skin paddle, were not significantly associated with this 203complication. However, a tendency toward better outcomes with larger skin paddles was 204205noticed. Therefore, the direction of the vascular pedicle (orientation of the cranial side of the harvested fibula), location of the skin paddle (characteristics of the soft tissue defect), and 206region of mandibular defect should be considered at the time of donor side selection. 207In previous studies, the incidence of non-thrombotic skin paddle necrosis in FFOF was 208reported to be approximately $14.1\% (3.6-30.4\%)^{4, 5, 8, 13-19}$. The present study's result is in 209210line with previous results. Regarding the cause of non-thrombotic skin paddle necrosis, the authors speculate that transferring the skin paddle through the outer side of the reconstruction 211plate (i.e., covering the reconstruction plate with the septum, including the perforator) to the 212intraoral or cutaneous side (i.e., incorrect laterality) renders the blood flow unstable due to 213compression of the cutaneous perforator and/or overstress of the skin paddle, even when a 214215reliable cutaneous perforator is present. In practice, the ischemia time of the flap is relatively short (approximately 1 h) because 216

unlikely when the ischemia time of the flap is $< 5 h^8$; hence, the current approach is

the fibular bone is modeled after performing vessel anastomosis. Skin paddle necrosis is very

220	Although the size of skin paddle was reported as length \times width in previous reports, the
221	actual size was calculated more accurately in this study. Considering that one or two
222	septocutaneous perforators of the peroneal artery provide perfusion to a skin paddle of
223	approximately 22–25 cm in length and 10–14 cm in width ²⁰ , it is not surprising that the size
224	of the skin paddle was not associated with paddle necrosis. However, univariate analysis
225	revealed that the size of the skin paddle was significantly smaller in the necrosis group than
226	in the engraftment group, which was contrary to what was reported in a previous study ⁷ . This
227	inconsistency may be explained if the size of the skin paddle is considered as a confounding
228	factor; that is, many subjects with a small skin paddle also had incorrect laterality
229	coincidentally. In these cases, a small flap would further compromise the blood supply,
230	thereby increasing the stress to both the skin paddle and the cutaneous perforator. Therefore,
231	it is likely that necrosis may be prevented by increasing the size of the skin paddle. Based on
232	these results, it may be desirable that the size of the skin paddle be at least 18.0 cm^2 (27.6 cm ²
233	when calculated as length \times width) in cases of incorrect laterality, although this depends on
234	the characteristics of the soft tissue defect.
235	Donor-site morbidity rates and the type of complications in this study were comparable
236	to those reported in previous studies ²¹⁻²⁶ . No significant difference was noted between the
237	donor sides in this regard; this is in accordance with the findings of a previous report ²⁷ . It is

238	worth emphasizing that activities of daily living were not affected by these complications,
239	regardless of the donor side. In previous studies, the limb functions were comparable between
240	the sides in which the fibular flap was harvested and the non-harvested side ²⁸ . Further, the
241	limb functions were comparable between the side of the harvested fibular flap and the limbs
242	of healthy controls ²⁹ . As a result, in the present study, it was suggested that daily life was
243	almost unaffected, even when the flap was harvested from the dominant leg.
244	A simple method for selecting the donor side was devised. In the present study, the
245	most common location of the defect was the mandibular body (between points A and T of the
246	CAT classification), and flaps were most commonly arranged with a posterior direction of the
247	vascular pedicle and intraoral location of the skin paddle. This situation (i.e., Group A), in
248	which the donor side was contralateral to the reconstruction side, was considered the basic
249	pattern (Figure 3a). When either the direction of the vascular pedicle or the position of the
250	skin paddle was different from the basic pattern, the donor side was ipsilateral to the defect
251	side (Figure 3b, c). When both these characteristics differed from the basic pattern, the donor
252	side was contralateral to the defect side (Figure 3d).
253	Based on the present study's results, the selection of a donor side with correct laterality
254	may promote improved outcomes, regardless of whether the flap is harvested from the
255	dominant or non-dominant leg. There was scarcity of studies that described donor side

selection; the few studies identified were reviewed based on the "laterality" concept (Table

258	Incorrect laterality may be inevitable in cases of vascular anomalies of the lower
259	extremity and the absence of reliable cutaneous perforators. In this situation, two major
260	alternative approaches can be taken. One is altering the direction of the vascular pedicle.
261	However, even if a long recipient vasculature is secured and changing the direction of the
262	vessel from posterior to anterior seems feasible, kinking of the vascular pedicle may still
263	occur. The other alternative to overcome incorrect laterality would be to relieve the overstress
264	of the cutaneous perforator and skin paddle by enlarging the latter. In a cadaveric study ³⁴ , it
265	was reported that when the skin paddle was passed through the outside of the reconstruction
266	plate, approximately 3-4 cm of the skin paddle's width was required to be larger than when it
267	was not passed through the outside of the plate. Considering this, it would be necessary to use
268	a skin paddle that is at least 3 cm wider than the area of the defect when the laterality is
269	incorrect. However, if the skin paddle is large, it may be difficult to obtain a good match
270	between the harvested skin paddle and the defect area.
271	In the case of the composite defect (i.e., both oral and cutaneous defect), which is not
272	too large, if one of the defects is significantly smaller than the other, it is considered
273	reasonable to apply the concept of laterality to the side with the larger defect. However, if
274	both defects are large, it may be difficult to apply the concept of laterality. In such cases, it
275	may be advisable to use two skin paddles, a double flap (with such as a radial forearm free

flap), or change the type of flap, such as a rectus abdominis myocutaneous flap.

277	This study has several limitations. First, due to the retrospective design, observer and
278	recorder biases might have been introduced during data collection. Second, the size and blood
279	flow of cutaneous perforators could not be evaluated. Third, late-onset complications were
280	evaluated subjectively. Therefore, a future prospective study on this topic, including objective
281	assessments of both cutaneous perforators and complications, is warranted.
282	
283	5 CONCLUSIONS
284	The present study showed that in patients undergoing mandibular reconstruction with an
285	FFOF, skin paddle necrosis was closely related to incorrect laterality. Additionally, donor-site
286	complications did not affect the activities of daily living, regardless of whether these occurred
287	on the dominant or the non-dominant leg. Therefore, it is considered that the concept of
288	laterality, rather than considering the dominant/non-dominant limb, should guide the choice
289	of an appropriate FFOF for mandibular reconstruction. Based on the present study's results, it
290	is believed that more reliable and safer mandibular reconstructive surgeries, using FFOF,
291	could be performed.
292	

293 ACKNOWLEDGMENTS

294 The authors thank Editage (<u>www.editage.com</u>) for English language editing.

296 AUTHOR CONTRIBUTIONS

- J.K. and K.H. designed the study. J.K., A.S., and N.M. performed data collection. J.K.
- 298 performed most of the statistical analyses and wrote the initial draft of the manuscript. K.H.,
- A.S., N.M., and M.A. critically reviewed the manuscript. All authors read and approved the
- 300 final manuscript.

301

303 REFERENCES

504 1. UTKEII ML. COMPOSITE HEE MAPS IN OTOMANUTURA TECONSTRUCTION. REVIEW OF THE INCLA	304	1. Urken ML	. Composite f	ree flaps in	oromandibular recons	truction.	Review of	f the literate
---	-----	-------------	---------------	--------------	----------------------	-----------	-----------	----------------

- 305 Arch Otorhinolaryngol Head Neck Surg 1991;117:724–732.
- 306 2. Pogrel MA, Podlesh S, Anthony JP, Alexander J. A comparison of vascularized and
- 307 nonvascularized bone grafts for reconstruction of mandibular continuity defects. J Oral
- 308 Maxillofac Surg 1997;55:1200–1206.
- 309 3. Hidalgo DA. Fibula free flap: a new method of mandible reconstruction. Plast Reconstr
- 310 Surg 1989;84:71–79.
- 4. Beckler AD, Ezzat WH, Seth R, Nabili V, Blackwell KE. Assessment of fibula flap skin
- 312 perfusion in patients undergoing oromandibular reconstruction: comparison of clinical
- findings, fluorescein, and indocyanine green angiography. JAMA Facial Plast Surg
- 314 2015;17:422–426.
- 5. Yu PY, Chang EI, Hanasono MM. Design of a reliable skin paddle for the fibula
- 316 osteocutaneous flap: perforator anatomy revisited. Plast Reconstr Surg 2011;128:440–446.
- 6. Anthony JP, Ritter EF, Young DM, Singer MI. Enhancing fibula free flap skin island
- reliability and versatility for mandibular reconstruction. Ann Plast Surg 1993;31:106–111.
- 319 7. Said M, Heffelfinger R, Sercarz JA, Abemayor E, Head C, Blackwell KE. Bilobed fibula
- 320 flap for reconstruction of through-and-through oromandibular defects. Head Neck
- 321 2007;29:829–834.

322	8. Chang SY, Huang JJ, Nguyen A, Mittakanti K, Lin CY, Cheng MH. Does ischemia time
323	affect the outcome of free fibula flaps for head and neck reconstruction? A review of 116
324	cases. Plast Reconstr Surg 2010;126:1988–1995.
325	9. Yagi S, Kamei Y, Torii S. Donor side selection in mandibular reconstruction using a free
326	fibular osteocutaneous flap. Ann Plast Surg 2006;56:622-627.
327	10. Akashi M, Hashikawa K, Kakei Y, Sakakibara A, Hasegawa T, Minamikawa T, Komori T.
328	Sequential evaluation for bone union of transferred fibula flaps in reconstructed
329	mandibles: panoramic X-ray versus computed tomography. International J Oral
330	Maxillofac Surg 2015;44:942–947.
331	11. Akashi M, Nomura T, Sakakibara S, Sakakibara A, Hashikawa K. Preoperative MR
332	angiography for free fibula osteocutaneous flap transfer. Microsurgery 2013;33:454-459.
333	12. Lee JH, Chung CY, Myoung H, Kim MJ, Yun PY. Gait analysis of donor leg after free
334	fibular flap transfer. International J Oral Maxillofac Surg 2008;37:625-629.
335	13. Schusterman MA, Reece GP, Miller MJ, Harris S. The osteocutaneous free flap: Is the
336	skin paddle reliable? Plast Reconstr Surg 1992;90:787–793.
337	14. Hidalgo DA, Rekow A. A review of 60 consecutive fibula free flap mandible
338	reconstructions. Plast Reconstr Surg 1995;96:585–596.
339	15. Lee KH, Kim MJ, Kim JW. Mandibular reconstruction with free vascularized fibular flap.
340	J Craniomaxillofac Surg 1995;23:20–26.

341	16. Takushima A, Harii K, Asato H, Nakatsuka T, Kimata Y. Mandibular reconstruction using
342	microvascular free flaps: a statistical analysis of 178 cases. Plast Reconstr Surg
343	2001;108:1555–1563.
344	17. Papadopulos NA, Schaff J, Sader R, Kovacs L, Deppe H, Kolk A, Biemer E. Mandibular
345	reconstruction with free osteofasciocutaneous fibula flap: a 10 years experience. Injury
346	2008;39S:S75–S82.
347	18. Trignano E, Fallico N, Faenza M, Rubino C, Chen HC. Free fibular flap with periosteal
348	excess for mandibular reconstruction. Microsurgery 2013;33:527-533.
349	19. Van Genechten MLV, Batstone MD. The relative survival of composite free flaps in head
350	and neck reconstruction. Int J Oral Maxillofac Surg 2016;45:163–166.
351	20. Wei FC, Chen HC, Chuang CC, Noordhoff MS. Fibular osteoseptocutaneous flap:
352	anatomic study and clinical application. Plast Reconstr Surg 1986;78:191-200.
353	21. Vail TP, Urbaniak JR. Donor-site morbidity with use of vascularized autogenous fibular
354	grafts. J Bone Joint Surg 1996;78:204–211.
355	22. Babovic S, Johnson CH, Finical SJ. Free fibula donor-site morbidity: the Mayo
356	experience with 100 consecutive harvests. J Reconstr Microsurg 2000;16:107-110.
357	23. Momoh AO, Yu PR, Skoracki RJ, Liu S, Feng L, Hanasono MM. A prospective cohort
358	study of fibula free flap donor-site morbidity in 157 consecutive patients. Plast Reconstr
359	Surg 2011;128:714–720.

360	24. Ling XF, Peng X. What is the price to pay for a free fibula flap? A systematic review of
361	donor-site morbidity following free fibula flap surgery. Plast Reconstr Surg
362	2012;129:657–674.
363	25. Li P, Fang Q, Qi J, Luo R, Sun C. Risk factors for early and late donor-site morbidity
364	after free fibula flap harvest. J Oral Maxillofac Surg 2015;73:1637–1640.
365	26. Attia S, Diefenbach J, Schmermund D, Böttger S, Kühnemann JP, Scheibelhut C, Heiss C,
366	Howaldt HP. Donor-site morbidity after fibula transplantation in head and neck tumor
367	patients: a split-leg retrospective study with focus on leg stability and quality of life.
368	Cancers 2020;12:2217.
369	27. Fang H, Liu F, Sun C, Pang P. Impact of wound closure on fibular donor-site morbidity: a
370	meta-analysis. BMC Surg 2019;19:81.
371	28. Maurrer-Ertl W, Glehr M, Friesenbichler J, Sadoghi P, Wiedner M, Haas F, Leithner A,
372	Windhager R, Zwick EB. No adverse affect after harvesting of free fibula
373	osteoseptocutaneous flaps on gait function. Microsurgery 2012;32:364-369.
374	29. Bodde EW, de Visser E, Duysens JE, Hartman EH. Donor-site morbidity after free
375	vascularized autogenous fibular transfer: subjective and quantitative analyses. Plast
376	Reconstr Surg 2013;111:2237–2242.
377	30. Wei FC, Seah CS, Tsai YC, Liu SJ, Tsai MS. Fibula osteoseptocutaneous flap for
378	reconstruction of composite mandibular defects. Plast Reconstr Surg 1994;93:294–304.

379	31. Lorentz RR, Esclamado R. Preoperative magnetic resonance angiography in fibular-free
380	flap reconstruction of head and neck defects. Head Neck 2001;23:844-850.
381	32. Yadav PS, Ahmad QG, Shankhdhar VK, Nambi GI. There is no donor side specificity of
382	fibula free flap for complex oromandibular reconstruction. Indian J Plast Surg
383	2010;43:177–180.
384	33. Kim JW, Hwang JH, Ahn KM. Fibular flap for mandible reconstruction in
385	osteoradionecrosis of the jaw: selection criteria of fibula flap. Maxillofac Plast Reconstr
386	Surg 2016;38:46.
387	34. Sharma M, Wakure A, Thankappan K, Mathew J, Jairaj D, Dudipala RR, Iyer S.
388	Anatomic basis for an algorithmic approach for free fibula flap donor side selection in
389	composite oro-mandibular defects. Indian J Plast Surg 2015;48:43-47.
390	

391 FIGURES LEGENDS

FIGURE 1 Concept of "laterality". Cases matching those in the algorithm were defined as 392having correct "laterality", and the unmatched cases were considered to have incorrect 393 "laterality". (a) In this case, the mandibular defect was on the left side, the direction of the 394 vascular pedicle was anterior, and the location of the skin paddle was intraoral. As the donor 395396 side was on the left, and thus, ipsilateral to the mandibular defect, the "laterality" was correct. (b) In this case, the mandibular defect was on the left side, the direction of the vascular 397pedicle was posterior, and the location of the skin paddle was intraoral. As the donor side was 398on the left (leg), and thus, ipsilateral to the mandibular defect, the "laterality" was incorrect. 399400 FIGURE 2 Skin paddle necrosis. A case of skin paddle necrosis with no underlying 401 thrombosis of vascular anastomoses. (a) Congestive change in skin paddle. Subsequently, the 402skin paddle progressed to necrosis. (b, c) Enhanced computed tomography showing the 403

404 vascular pedicle until caudal ligation (white arrow).

405

FIGURE 3 The proposed method for donor side selection in relation to the reconstruction side, direction of the vascular pedicle, and position of the skin paddle. (a) The basic pattern was the combination of "the mandibular defect was in the body," "the direction of the vascular pedicle was anterior," and "the location of skin paddle was intraoral." When the

410	reconstruction side was on the right, the donor side was on the left (i.e., opposite of the
411	reconstruction side), and vice versa. (b) In this case, the direction of the vascular pedicle was
412	anterior. When there was only one difference with respect to the basic pattern, the donor side
413	was opposite to the basic pattern. (c) In this case, there was also only one difference with
414	respect to the basic pattern, but it referred to the cutaneous position of the skin paddle. (d)
415	Here, both the direction of the vascular pedicle (anterior) and the position of the skin paddle
416	(cutaneous) were different from those of the basic pattern. When there were two differences
417	with respect to the basic pattern, the donor side was opposite to the "opposite to basic
418	pattern"; that is, the donor side was on the left (contralateral to the reconstruction side).

Table 1. Comparison of baseline characteristics between patients with and without skin

Verichles	Necrosis	Engraftment	<i>p</i> -value	
variables	group (n = 10)	group (n = 56)		
Age	69 (62.0, 78.3)	68 (60.3, 73.0)	0.415	
Male sex	6 (60%)	33 (58.9%)	1.000	
Body mass index (kg/m ²)	22.4 (20.1, 25.7)	21.8 (20.0, 24.1)	0.426	
Albumin (g/dl)	3.9 (3.8, 4.4)	4.1 (3.7, 4.3)	0.993	
Smoking	6 (60%)	26 (46.4%)	0.505	
Radiotherapy (≥ 60 Gy)	4 (40%)	18 (32.1%)	0.720	
Immunocompromise	7 (70%)	26 (46.4%)	0.303	
Primary disease			0.332	
Malignant tumor ^a	3 (30%)	28 (50.0%)		
Osteomyelitis ^b	4 (40%)	18 (32.1%)		
Reconstruction plate problem ^c	3 (30%)	5 (8.9%)		
Benign tumor, cyst ^d	0	3 (5.4%)		
Other	0	2 (3.6%)		

paddle necrosis: univariate analysis

Data are shown as median (first quartile, third quartile) or n (%).

^a Squamous cell carcinoma; adenoid cystic carcinoma; ameloblastic carcinoma

^b Osteoradionecrosis; medication-related osteonecrosis of the jaw; idiopathic osteomyelitis

^c Exposure; fracture; infection

^d Ameloblastoma; odontogenic keratocyst

X7	Necrosis	Engraftment		
Variables	group (n = 10)	group $(n = 56)$	<i>p</i> -value	
Operation time (min)	653 (528, 699)	658 (582, 721)	0.617	
Tourniquet time (min)	46 (43, 50)	48 (42, 54)	0.579	
Bleeding (ml)	275 (223, 505)	430 (288, 645)	0.406	
Blood transfusion	2 (20%)	11 (20%)	1.000	
Recipient artery			0.631	
Facial	5 (50%)	28 (50%)		
Superior thyroid	3 (30%)	13 (23.2%)		
Cervical transverse	0	8 (14.3%)		
Other	2 (20%)	7 (12.5%)		
Recipient vein			0.780	
Facial	3 (30%)	19 (33.9%)		
External jugular	3 (30%)	20 (35.7%)		
Internal jugular	1 (10%)	8 (14.3%)		
Other	3 (30%)	9 (16.1%)		
Defect region ("CAT" classification)			0.801	
Body	3 (30%)	20 (35.7%)		

Table 2. Surgical and flap factors affecting skin paddle necrosis risk: univariate analysis

Т	2 (20%)	12 (21.4%)	
А	1 (10%)	7 (12.5%)	
TT'	1 (10%)	5 (8.9%)	
CA	3 (30%)	5 (8.9%)	
CAT	0	4 (7.1%)	
AT	0	2 (3.6%)	
ATT'A'	0	1 (1.8%)	
Time of flap ischemia (min)	46.5 (41.8, 50.8)	48.0 (42.0, 58.3)	0.458
Number of perforators	1 (1, 1)	1 (1, 2)	0.319
Skin paddle size (cm ²)	18.6 (16.4, 22.5)	26.4 (21.8, 32.6)	0.036*
Laterality			< 0.001*
Correct	1 (10%)	42 (75%)	
Incorrect	9 (90%)	14 (25%)	

Data are shown as median (first quartile, third quartile) or n (%).

* Statistically significant (p < 0.05)

Variables	β	OR	95% CI		<i>p</i> -value
		_	Lower	Upper	
Incorrect laterality	3.09	22.0	2.50	195	0.005*
Skin paddle size	-0.06	0.94	0.85	1.05	0.285
Number of perforators	-0.53	0.59	0.11	3.03	0.525
Time of flap ischemia	0.01	1.01	0.98	1.05	0.521

Table 3. Variables affecting the risk of skin paddle necrosis: multivariate logistic regression analysis

*Statistically significant (p < 0.05)

Abbreviations: OR, odds ratio; CI, confidence interval

T	Skin graft —	Donor-site complications		
Leg		Yes (n = 12)	No (n = 52)	
Dominant	With $(n = 9)$	1	8	
(n = 20)	Without $(n = 11)$	4	7	
Non-dominant	With $(n = 7)$	2	5	
(n = 44)	Without $(n = 37)$	5	32	

Table 4. The relationship among donor-site complications, dominant foot, and skin graft

Study	Total number	Donor side selection	Skin paddle	Remarks
		("laterality")	necrosis	
Wei, et al. ³⁰ (1994)	27 (25 patients)	Not necessary	1 (3.7%)	Large skin paddles were harvested in all patients.
Hidalgo, et al. ¹⁴ (1995)	32	Incorrect	-	No details of the skin paddle was provided.
Lorenz, et al. ³¹ (2001)	29	Correct: 25 (86.2%)	-	The usefulness of preoperative MRA was indicated.
		Incorrect: 4 (13.8%)	-	No details of the skin paddle was provided.
Yagi, et al. ⁹ (2006)	15	Correct	1 (6.7%)	Small number of cases
Yadav, et al ³² (2010)	386	Not necessary	40 (10.4%)	Large skin paddles were harvested probably.
Kim, et al. ³³ (2016)	8	Correct	1 (12.5%)	Small number of cases (all osteoradionecrosis)
Present study	66	Correct: 43 (65.2%)	1 (2.3%)	-
		Incorrect: 23 (34.8%)	9 (39.1%)	

 Table 5.
 Review of literature related to donor side selection in mandibular reconstruction with free fibula osteocutaneous flap