

PDF issue: 2025-12-05

Social network and health behaviors among Japanese older adults: a three-wave longitudinal study

Harada, Kazuhiro Masumoto, Kouhei Okada, Shuichi

(Citation)

Health Promotion International, 38(2):daad013

(Issue Date) 2023-04

(Resource Type) journal article

(Version)

Accepted Manuscript

(Rights)

This is a pre-copyedited, author-produced version of an article accepted for publication in [Health Promotion International] following peer review. The version of record [Kazuhiro Harada, Kouhei Masumoto, Shuichi Okada, Social network and health behaviors among Japanese older adults: a three-wave longitudinal study, Health...

(URL)

https://hdl.handle.net/20.500.14094/0100481763

Title: Social network and health behaviors among Japanese older adults: A three-wave longitudinal study

Authors: Kazuhiro Harada, Ph.D.¹⁾, Kouhei Masumoto, Ph.D.¹⁾, Shucihi Okada, Ph.D.¹⁾

Institution: 1) Active Aging Research Hub, Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe, 657-8501 Japan

Correspondence: Kazuhiro Harada, Ph.D.

Active Aging Research Hub, Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe, 657-8501 Japan

E-mail: harada@harbor.kobe-u.ac.jp

Tel. & Fax: +81-78-803-7886

ORCID & E-Mail Address:

Kazuhiro Harada, 0000-0002-5798-3912, <harada@harbor.kobe-u.ac.jp>
Kouhei Masumoto, 0000-0003-0696-7952, <masumoto@people.kobe-u.ac.jp>
Shuichi Okada, not available for ORCID, <shuokada@kobe-u.ac.jp>

Conflict of Interest Declaration: The authors declare that they have no conflict of interest.

Ethics Information: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Ethical Committee of the Graduate School of Human Development and Environment, Kobe University (No. 549-2). Informed consent was obtained from all participants included in the study.

Funding Information: This work was supported by a Grant-in-Aid for Scientific Research (15KT0006, 17H04757, 19H01755) from the Japan Society for the Promotion of Science; the

Promotion Project of Creating Industry Extending Healthy Life Expectancy (FY2016) from

the Ministry of Economy, Trade and Industry; and the Lotte Research Promotion Grant

(FY2018) from the Lotte Foundation. None of these funders played any role in the design,

analysis, or writing of this article.

Data Availability Statements

The data that support the findings of this study are available from the corresponding author

upon reasonable request.

Type: original article

Words counts

4311 words (excluding references) plus 4 figures and 1 table

1	Social network and health behaviors among Japanese older adults: A three-wave
2	longitudinal study
3	
4	Abstract
5	Identifying modifiable determinants of behavior is essential for developing effective strategies
6	to promote health behaviors among older adults. Although social networks are potentially
7	modifiable determinants of health behaviors, their longitudinal associations have not been
8	established in previous studies. The present study examined whether a larger social network is
9	associated with higher dietary variety, longer time spent exercising, and shorter time spent
10	viewing TV among older adults. This is a longitudinal study. The data of 908 Japanese older
11	adults were obtained through a three-wave questionnaire survey (Wave 1, December 2017 to
12	January 2018; Wave 2, after one year; Wave 3, after three years) and analyzed. In each wave
13	of the survey, dietary variety (dietary variety score), exercise time (hours per day), TV
14	viewing time (hours per day), and social network (family and friend subscales of the Japanese
15	version of the abbreviated Lubben Social Network Scale) were measured. The present study
16	used latent growth, cross-lagged, and simultaneous effect models to investigate the
17	longitudinal associations of family and friend social networks with dietary variety, exercise
18	time, and TV viewing time. However, these models did not show clear and robust
19	associations. Whether social networks are determinants of health behaviors among older
20	adults remains inconclusive.
21	
22	Keywords: Determinants; Health Behavior: Older People; Social Networks
23	
24	Lay Summary

The importance of promoting health behaviors among older adults is obvious. Identifying the

modifiable determinants of health behaviors is essential for developing effective strategies to promote health behaviors. Although social networks are potentially modifiable determinants of health behaviors, their longitudinal associations have not been established in previous studies. This study examined the longitudinal associations between social networks and health behaviors among older adults. To address this issue, we conducted a three-wave questionnaire. However, we failed to find clear and robust associations between social networks and health behaviors. Whether social networks are determinants of health behaviors among older adults remains inconclusive.

35 Introduction

The importance of health behaviors such as a high-quality diet, exercising well, and reducing TV time for health promotion among older adults is obvious. One essential aspect of diet quality among older adults is dietary variety. Dietary variety is associated with various geriatric health problems (Motokawa et al., 2018; Otsuka et al., 2017; Yokoyama et al., 2017). The health benefits of incorporating physical activity are evident (Ministry of Health, Labour, and Welfare, 2013; World Health Organization, 2020). Exercise is a major component of physical activity performed during leisure time (Ministry of Health, Labour, and Welfare, 2013; World Health Organization, 2020). Since older adults tend to lose the opportunity to accumulate physical activity in occupational and transportation settings due to retirement (Barnett et al., 2014), leisure time is a relatively more important setting for incorporating physical activity among them. The Japanese government recommends engaging in exercise for at least 30 minutes per day, twice a week or more, regardless of its intensity (Ministry of Health, Labour, and Welfare, 2013). As recommended by the World Health Organization (2020), the health impacts of sedentary behavior are widely accepted. The major domain of sedentary behavior among older adults is TV viewing (Shibata et al., 2019). Meta-analyses

confirmed that longer TV viewing time is associated with higher mortality risks (Grøntved & Hu 2011; Sun et al., 2015). Identifying modifiable determinants of behavior is essential for developing effective strategies to promote health behaviors (Sallis et al., 2000). Since behavior-specific approaches are recommended when examining the determinants of health behavior (Sallis & Owen, 2015), examining the determinants specified for dietary variety, exercising behavior, and TV viewing behavior is meaningful apart from determinants of overall indices of dietary habits, physical activity, and sedentary behavior. Social networks are modifiable determinants of dietary variety, exercise behavior, and TV viewing behavior among older adults. Social networks refer to connections and ties between individuals and represent the structural aspect of social relationships (Holt-Lunstad & Uchino, 2015). Umberson et al. (2010) proposed a conceptual model to theoretically explain the link between social networks and health behaviors. This model (Umberson et al., 2010) assumes that social networks influence healing behaviors mediated by multiple pathways, such as social support, social and personal control, social norms, stress, and mental health. The ecological model of health behavior (Sallis & Owen, 2015) proposes that health behaviors are determined by multilevel factors, such as individual, social, and environmental factors. Social networks can be categorized as one factor at the social level. While various social-level factors have been investigated as determinants of health behaviors, one potential advantage of examining social networks is that a desirable social network could connect with health outcomes not only through health behaviors (Xiao et al., 2019) but also through other mediating processes such as stress (Ellwardt et al., 2020) and well-being (Harada et al., 2021), as conceptually proposed (Thoits, 2011). Another potential advantage is that previous studies have developed intervention strategies to enhance social network among older adults (Fujiwara et al., 2009; Harada et al., 2021; Jones et al., 2015; Rook & Sorkin, 2003). By employing such strategies, it is possible to modify social networks among older adults.

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Although previous studies have examined this, it remains unclear whether social networks are determinants of health behaviors among older adults. Some cross-sectional studies have reported that desirable social networks are associated with greater consumption of fruits and vegetables (Choi et al., 2020; Sahyoun et al., 2005), higher levels of physical activity (Shiovitz-Ezra & Litwin, 2012), and lower levels of sedentary behavior (Asiamah et al., 2021; Tully et al., 2020). However, other cross-sectional studies have reported null results regarding its association with fruit and vegetable consumption (Doubova et al., 2016), exercise behavior (Doubova et al., 2016), physical activity (Chen et al., 2021; Harada et al., 2019; Tully et al., 2020), sedentary behavior (Chen et al., 2021; Loprinzi & Crush, 2018), and TV viewing time (Russell & Chase, 2019; Van Cauwenberg et al., 2014). While one potential reason for inconsistencies in their associations would be the cross-sectional study design, only a few studies have examined their longitudinal associations among older adults. Moreover, the findings from longitudinal studies are also inconsistent. Shatenstein et al. (2016) reported that, while the cross-sectional association between a higher social network and dietary quality was null, a higher social network was longitudinally associated with lower dietary quality among older adults. Bloom et al. (2017) showed that higher social networks were cross-sectionally associated with higher diet quality among older women but not among older men and not longitudinally associated among both older women and men. Nemoto et al. (2021) revealed a cross-sectional association between social contact and physical activity but failed to show significant longitudinal associations among older adults. Therefore, more longitudinal studies are necessary to confirm whether social networks are the determinants of health behaviors. The present study examined whether a larger social network is associated with higher

The present study examined whether a larger social network is associated with higher dietary variety (Hypothesis 1), longer time spent exercising (Hypothesis 2), and shorter time spent viewing TV (Hypothesis 3) among older adults.

100 Methods

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

Participants and Procedures (Figure 1)

This study had a longitudinal design. The present study analyzed data obtained from a three-wave questionnaire survey targeting older adults living in Nada Ward of Kobe City, Hyogo Prefecture, Japan. The survey was conducted via mail. From the official register of residents of Nada Ward, the survey extracted all men aged 64, 69, and 74 years on the first day of April 2017 (n = 2204) and all their wives aged within ten years of men (n = 1516). We asked 3720 individuals to complete the baseline questionnaire from December 2017 to January 2018 (Wave 1). Among them, 1784 individuals (48.0%) answered the questionnaire. Among the 1784 individuals, 1079 agreed to provide further contact with our research group. We conducted a one-year follow-up survey of 1079 individuals, of which 919 individuals answered (December 2018 to January 2019: Wave 2). We also conducted a three-year follow-up survey of 1079 individuals who answered (December 2020 to January 2021: Wave 3).

[insert - Figure 1. Flowchart of the participants and procedure - here]

Among the 1784 respondents of Wave 1, the present study excluded 876 individuals because 1) they did not answer both Wave 2 and Wave 3 surveys (n=807) and 2) they had certification of long-term care, support, or missing values of the certification at any wave (n=69). Thus, the remaining data from 908 individuals were analyzed in the present study.

The survey was conducted as a large-scale research project. Using the data from this survey, the authors of this study have already published two papers (Harada, Masumoto, & Okada, 2021; Harada et al. 2022), and submitted several other papers. None of these studies treated the association between social networks and health behavior as the primary research question.

Written informed consent was obtained from all participants. Approval was obtained from the Ethical Committee of the Graduate School of Human Development and

Environment, Kobe University (No. 549-2). All the procedures were conducted in accordance with the principles of the Declaration of Helsinki.

Measures

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

Social Network

Health Behaviors

The survey at each wave measured dietary variety using the Dietary Variety Score (Kumagai et al., 2003). This is one of the most used scales with older Japanese adults (Motokawa et al., 2018; Uemura et al., 2018; Yokoyama et al., 2017). This score evaluates frequencies of consuming ten components (meat, fish, eggs, milk, soy products, green and yellow vegetables, potatoes, fruit, seaweed, and fats and oils) in a usual week by four choices: "almost every day," "3 or 4 days a week," "1 or 2 days a week," and "almost never." The present study calculated the sum of the number of components to which a respondent answered "almost every day" as the dietary variability score (range, 0–10) (Kumagai et al., 2003). Higher scores represent greater dietary variety. Following research trends in Japan (Chen et al., 2013; Harada, in press; Ministry of Health, Labour, and Welfare, 2020; Sugisawa et al., 2020), at each wave the survey asked individuals to indicate how many days they engaged in exercise in a usual week (0 to 7 days). If they answered one to seven days, the survey also asked them to indicate the average exercise time (hours and minutes) for days when they engaged in exercise. The present study calculated weekly exercise time (hours per day) by multiplying the frequency by time. For TV viewing time among nonworkers, the survey, at each wave, was asked to report the average TV viewing time (hours per day) on a typical day. For workers, the survey asked to answer the weekly frequencies of working, the time spent viewing TV on typical non-working days, and the time spent viewing TV on typical working days. From these responses, the TV viewing time (hours per day) among the workers was calculated.

The survey in each wave employed the Japanese version of the abbreviated Lubben Social Network Scale (Lubben et al., 2006; Kurimoto et al., 2011). For the reliability of the Japanese version, Cronbach's alpha was 0.82, and Pearson's correlation coefficient for test-retest was 0.92 (Kurimoto et al., 2011). For validity, significant associations of this scale with the risk of suicide, depression, and social support have been confirmed (Kurimoto et al., 2011). This scale consists of family and friend subscales: the family subscale has three items, and the friend subscale has three items. Each item asks about the number of qualified persons from "none (0)," one (1)," two (2)," three or four (3)," "five through eight (4)," or "nine or more (5)." Several studies have reported that the relationships between social networks and health behaviors differ according to social network sources (Choi et al., 2020; Nemoto et al., 2021; Shiovitz-Ezra et al., 2012). Thus, instead of calculating total scores by combining the family and friends subscales, the present study summed the scores of the items for the family (range, 0 to 15) and friend (range, 0 to 15) social networks separately. Higher scores represent larger social networks.

Basic Factors

The present study analyzed the data on age, gender (men, women), educational background (junior high or high school, more than high school), living alone (no, yes), current employment (no, yes), and frailty (no, yes) in Wave 1 as basic factors. The survey evaluated frailty by the Kihon Checklist (Ministry of Health, L. and Welfare, 2009; Satake et al., 2016). This scale has 25 items, and the sensitivity and specificity to detect frailty status by its cut-off point (7/8) were 89.5% and 80.7%, respectively (Satake et al., 2016).

Analysis

Overall Plan

This study investigated the associations between social networks and health behaviors using three models: a latent growth model, a cross-lagged model, and a

simultaneous effect model. As the conceptual model (Umberson et al., 2010) proposes that various factors would mediate the associations among them, the present study examined both time-lagged and simultaneous associations. Such models have several advantages. While the latent growth model cannot examine bidirectional associations directly, it can examine time-lagged and simultaneous associations together:1) whether the initial status of the social networks is associated with the initial status of health behaviors (i.e., simultaneous associations); 2) whether the initial status of the social networks predicts further changes in health behaviors (i.e., time-lagged associations); and 3) whether changes in social networks over time accompany changes in health behaviors (i.e., simultaneous associations). While a cross-lagged model and simultaneous effect model cannot examine both time-lagged and simultaneous associations in one model, they can directly examine bidirectional associations. Concordance of the results for their associations from different models strengthens the robustness of the findings.

The present study employed the comparative fit index (CFI), the Tucker–Lewis index (TLI), and root-mean-square error of approximation (RMSEA) as model fit indices. The cut-off for CFI and TLI was 0.95 and 0.06 for RMSEA (Hu & Bentler, 1999). The present study handled missing data using a full information maximum likelihood estimation (FIML). IBM SPSS AMOS 25.0 was utilized to conduct both models. Statistical significance was set at P < 0.05.

Latent Growth Model

As shown in Supplementary Figure 1, the latent growth model estimated the intercept (initial level) and slopes (longitudinal change over time) of social networks with family, social networks with friends, and health behaviors from the observed data at each wave. The factor loadings for the intercept were set at 1 for all waves, and the slope was set at 0, 1, and 3 for Wave 1, Wave 2, and Wave 3, respectively. The present study investigated three types of

paths: 1) the paths from the intercepts of social networks with family and friends to the intercepts of health behavior, 2) the paths from the intercepts of social networks with family and friends to the slope of health behavior, and 3) the path from the slopes of social networks with family and friends to the slope of health behavior. The correlations between the intercept of social network with family, the intercept of social network with friends, the slope of social network with family, and the slope of social network with friends, and the correlation between the intercept and slope of health behavior were included. The present study did not include paths from basic factors to the intercepts and slopes of the social network variables and health behavior because improper solutions were obtained if such paths were included. If the paths from the intercepts of the family and friends social networks to the intercepts of health behaviors were significant, this would support the existence of simultaneous associations between them. If the paths from the intercepts of the family and friends social networks to the slopes of health behaviors were significant, then the existence of time-lagged associations would be supported. Furthermore, if the slopes of family and friends social networks to the slopes of health behaviors were significant, then the existence of simultaneous associations would be supported.

Cross-lagged Model

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

As shown in Supplementary Figure 2, the cross-lagged model specified six types of paths: 1) autoregressive paths within social networks with family, social networks with friends, and health behaviors; 2) paths from the social network with family and friends at prior waves to health behaviors at posterior waves; 3) paths from health behaviors at prior waves to social network with family and friends at posterior waves; 4) paths from the social network with family at prior waves to social network with friends at posterior waves; 5) paths from the social network with friends at prior waves to social network with friends at posterior waves; and 6) paths from basic factors at Wave 1 to social network with family, the social

network with friends, and health behaviors at Wave 1. The cross-sectional correlations among social networks with family, social networks with friends, and health behaviors at each wave, and the cross-sectional correlations among basic factors were included in the model. If the paths from the prior-wave family and friends social networks to posterior-wave health behaviors were significant, the existence of time-lagged associations would be supported.

Simultaneous Effect Model

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

As shown in Supplementary Figure 3, the simultaneous model specified six types of paths:1) autoregressive paths within family and friends social networks with family and health behaviors; 2) paths from family and friends social networks to health behaviors within the same wave; 3) paths from health behaviors to family and friends social networks within the same wave; 4) paths from family social networks to those of friends within the same wave; 5) paths from the friends social networks to the same within the same wave; and 6) paths from Wave 1 basic factors to family and friends social networks and health behaviors in Wave 1. The cross-sectional correlations among family and friends social networks and health behaviors in Wave 1 and the cross-sectional correlations among the basic factors were included in the model. If the paths from the family and friends social networks to health behaviors within the same wave were significant, simultaneous associations were supported. Additional Analyses

To examine the potential influences of excluding 807 individuals who did not respond to both Wave 2 and 3 surveys, the present study included their data with FIML to conduct latent growth, cross-lagged, and simultaneous effect models. While weightadjustment approaches such as the response propensity model (Little, 1986) have also been used in such cases (e.g. Neumark-Sztainer et al., 2006), Lee et al. (2019) recommends FIML or multiple imputation to reduce non-response bias in the longitudinal studies. Previous longitudinal studies have also employed FIML to handle non-respondents' data (e.g., Mallory 251 et al., 2021).

252 Results

Characteristics of Participants

Table 1 shows the baseline characteristics of the participants. Compared to those excluded from the analyses, those included in the analyses were likely to have a higher educational background, not have frailty, consume varied diets, spend more time exercising, spend less time watching TV, and have a higher social network with family and friends.

[insert - Table 1. Baseline characteristics of participants - here]

Supplementary Table 1 shows longitudinal changes in health behaviors and social network variables. Compared with Wave 1, the respondent spent longer time exercising and viewing TV and reduced their social network with friends at Wave 3. Dietary variety and social network with family did not significantly change from Wave 1 to Wave 2 and Wave 3.

Supplementary Table 2 shows Pearson's correlation coefficients among basic factors, health behaviors, and social network variables at Wave 1. At Wave 1, social network with family was positively and significantly correlated with dietary variety. Social network with friends was positively and significantly correlated with dietary variety and exercise time, and was negatively and significantly correlated with TV viewing time.

Latent growth model for Associations of Social Network with Health Behaviors

Figure 2 shows the results of the latent growth model for the associations between social networks and health behaviors. As shown in Figure 2, the paths from the intercepts of social networks with family and friends to the intercept of dietary variety and the path from the intercept of social networks with friends to the intercept of exercise time were positive and significant. The path from the intercept of social networks with friends to the intercept of TV time was negative and significant. However, all paths from the slopes and intercepts of social networks with family and friends to the slopes of dietary variety, exercise time, and TV

276	viewing time were not significant.
277	[insert - Figure 2. Results of latent growth model for associations of social network with
278	dietary variety (A), exercise time (B), and TV viewing time (C) - here]
279	Cross-lagged model for Associations of Social Network with Health Behaviors
280	Figure 3 shows the results of the cross-lagged models for the associations of social
281	networks with health behaviors. The path from the friends social network in Wave 1 to dietary
282	variety in Wave 2 and the path from the friends social network in Wave 2 to exercise time in
283	Wave 3 were significant and positive. However, other cross-lagged paths from social
284	networks with family or friends to health behaviors were not significant.
285	[insert - Figure 3. Results of cross-lagged model for associations of social network with
286	dietary variety (A), exercise time (B), and TV viewing time (C) - here]
287	Simultaneous effect model for Associations of Social Network with Health Behaviors
288	Figure 4 shows the results of the simultaneous effect models for the associations
289	between social networks and health behaviors. The path from the friends social network to
290	dietary variety was significant and positive within Wave 2. However, other simultaneous
291	paths from family or friends social networks to health behaviors were not significant.
292	[insert — Figure 4. Results of simultaneous effect model for associations of social network
293	with dietary variety (A), exercise time (B), and TV viewing time (C) - here]
294	Additional Analyses for Associations of Social Network with Health Behaviors
295	The additional analyses for the latent growth model (Supplementary Figure 4), cross-
296	lagged model (Supplementary Figure 5), and the simultaneous effect model (Supplementary
297	Figure 6), showed the same results as the corresponding main analyses reported in Figures 2
298	to 4.
299	Discussions
300	The present study did not obtain clear and robust findings regarding the cross-lagged

and simultaneous associations of social networks with dietary variety, exercise time, and TV viewing time. In particular, significant and positive associations of friends social network with dietary variety were observed for the intercepts in the latent growth model, Waves 1 to 2 in the cross-lagged model, and Wave 2 in the simultaneous effect model. Moreover, a significant and positive association of family social network with dietary variety was observed for the intercepts in the latent growth model. However, regarding other time frames and other analyses, the associations of social networks with dietary variety were null. Regarding exercise behavior, while significant and positive associations of friends social network with exercise time were revealed in the intercept in the latent growth model and Waves 2 to 3 in the cross-lagged model, the other associations were null. Regarding TV viewing behavior, only one significant and negative association of friends social network with TV viewing time was observed for the intercept in the latent growth model. Because eating with others is associated with higher dietary variety (Kimura et al., 2012), sufficient social networks may provide more opportunities for eating with others. Regarding the association of friends social network with exercise behavior, many prefer to exercise with people of the same age (Beauchamp et al., 2007) and gender (Dunlop & Beauchamp, 2011); therefore, friends might be a good source of group exercise. For the significant association of friends' social network with TV viewing, having a social network is a predictor of spending more time outside the home (Harada et al., 2019). Therefore, insufficient friend networks might lead to older adults staying at home more and watching more TV. However, null results were also revealed for their associations in the different time frames and models. From these equivocal and inconsistent findings, the present study failed to show robust results. It remains inconclusive whether social networks are determinants of health behaviors among older adults. Only a few previous studies have examined longitudinal associations between social networks and health behaviors (Bloom et al., 2017; Nemoto et al., 2021; Shatenstein et al., 2016), and they have failed to show clear

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

and desirable associations. Similarly, inconsistent findings on the associations among older adults have been reported in previous cross-sectional studies (Asiamah et al., 2021; Chen et al., 2021; Choi et al., 2020; Doubova et al., 2016; Harada et al., 2019; Loprinzi & Crush, 2018; Russell & Chase, 2019; Sahyoun et al., 2005; Shiovitz-Ezra & Litwin, 2012; Tully et al., 2020; Van Cauwenberg et al., 2014). One potential reason for their inconsistencies might be that the pathways from social networks to health behaviors are distal and indirect. A conceptual model (Umberson et al., 2010) proposes that social networks influence healing behaviors mediated by various factors, such as social support, social and personal control, social norms, stress, and mental health. It should be noted that this study did not measure these potential mediators. However, from this model, it is reasonable to assume the associations between social networks and health behaviors may not be proximal or direct. While several previous studies have supported the mediating role of social support (Thanakwang & Soonthorndhada, 2011; Wu & Sheng, 2019), the mediating role of these factors has not been comprehensively established. Further well-organized studies are necessary to clarify the mechanisms underlying the link between social networks and health behaviors among older adults.

The present study contributes to establishing determinants of health behaviors among older adults. The strength of the present study is its three-wave longitudinal study design. However, the present study has some limitations. First, it had a selection bias. As shown in Figure 1, only 908 of the 3720 individuals were analyzed in the present study. Moreover, Table 1 indicates that the individuals included in the present study tended to have better frailty status, health behavior, social network, and higher educational backgrounds than those excluded from the analyses. Since the additional analyses showed the same results as the main analyses, the influences of the non-response bias might not be critical. Nevertheless, selection bias is the most serious limitation of the present study and possibly weakens

the generalizability of the findings. Second, this study did not employ objective methods to measure health behaviors. Third, the latent growth model did not statically adjust for the potential influences of basic factors because an improper solution was obtained when including them. Fourth, it is unclear whether the intervals of each wave are appropriate for capturing the time-lagged association between social networks and health behaviors. Fifth, this study conducted a Wave 3 survey during the COVID-19 pandemic. The pandemic might have confounded the associations between social networks and health behaviors. Finally, measures of dietary variety and exercise time were based on domestic research trends in Japan. They are inconsistent with global research trends.

Regarding the practical implications of the findings from the present study, the effectiveness of providing social network interventions for promoting health behaviors among older adults remains unclear. Previous studies have reported that various types of programs such as event-based programs (Harada et al., 2021), intergenerational volunteer programs (Fujiwara et al., 2009; Rook & Sorkin, 2003), and online programs (Jones et al., 2015), are effective in promoting social networks among older adults. However, from the findings of the present study, the desirable translating effects of such programs on changes in health behaviors may be equivocal.

368 Conclusions

The present study examined whether a larger social network is associated with higher dietary variety, longer time spent exercising, and shorter time spent viewing TV among older adults. From the three-wave longitudinal survey, the present study failed to demonstrate clear and robust findings regarding the associations of social networks with dietary variety, exercise time, and TV viewing time among older adults. Given this, it remains unclear whether social networks are determinants of health behaviors.

376	References
377	Asiamah, N., Petersen, C., Kouveliotis, K., & Eduafo, R. (2021). The built environment and
378	socio-demographic correlates of partial and absolute sedentary behaviours in
379	community-dwelling older adults in Accra, Ghana. Journal of Cross-Cultural
380	Gerontology, 36(1), 21-42. https://doi.org/10.1007/s10823-020-09417-5
381	Barnett, I., van Sluijs, E., Ogilvie, D., & Wareham, N. J. (2014). Changes in household,
382	transport and recreational physical activity and television viewing time across the
383	transition to retirement: longitudinal evidence from the EPIC-Norfolk cohort. Journal of
384	Epidemiology and Community Health, 68(8), 747–753. https://doi.org/10.1136/jech-
385	2013-203225
386	Beauchamp, M. R., Carron, A. V., McCutcheon, S., & Harper, O. (2007). Older adults'
387	preferences for exercising alone versus in groups: considering contextual congruence.
388	Annals of Behavioral Medicine, 33(2), 200-206. https://doi.org/10.1007/BF02879901
389	Bloom, I., Edwards, M., Jameson, K. A., Syddall, H. E., Dennison, E., Gale, C. R., Baird, J.,
390	Cooper, C., Aihie Sayer, A., & Robinson, S. (2017). Influences on diet quality in older
391	age: the importance of social factors. Age and Ageing, 46(2), 277–283.
392	https://doi.org/10.1093/ageing/afw180
393	Chen, S., Calderón-Larrañaga, A., Saadeh, M., Dohrn, I. M., & Welmer, A. K. (2021).
394	Correlations of subjective and social well-being with sedentary behavior and physical
395	activity in older adults-A population-based study. The Journals of Gerontology. Series A,
396	Biological Sciences and Medical Sciences, 76(10), 1789–1795.
397	https://doi.org/10.1093/gerona/glab065
398	Chen, T., Lee, J. S., Kawakubo, K., Watanabe, E., Mori, K., Kitaike, T., & Akabayashi, A.
399	(2013). Features of perceived neighborhood environment associated with daily walking
400	time or habitual exercise: differences across gender, age, and employment status in a

401	community-dwelling population of Japan. Environmental Health and Preventive
402	Medicine, 18(5), 368–376. https://doi.org/10.1007/s12199-013-0334-x
403	Choi, Y. J., Ailshire, J. A., & Crimmins, E. M. (2020). Living alone, social networks in
404	neighbourhoods, and daily fruit and vegetable consumption among middle-aged and
405	older adults in the USA. Public Health Nutrition, 23(18), 3315–3323.
406	https://doi.org/10.1017/S1368980020002475
407	Doubova, S. V., Sánchez-García, S., Infante-Castañeda, C., & Pérez-Cuevas, R. (2016).
408	Factors associated with regular physical exercise and consumption of fruits and
409	vegetables among Mexican older adults. BMC Public Health, 16(1), 952.
410	https://doi.org/10.1186/s12889-016-3628-2
411	Dunlop, W. L., & Beauchamp, M. R. (2011). En-gendering choice: preferences for exercising
412	in gender-segregated and gender-integrated groups and consideration of overweight
413	status. International Journal of Behavioral Medicine, 18(3), 216–220.
414	https://doi.org/10.1007/s12529-010-9125-6
415	Ellwardt, L., Wittek, R. P. M., Hawkley, L. C., & Cacioppo, J. T. (2020). Social network
416	characteristics and their associations with stress in older adults: Closure and balance in a
417	population-based sample. The Journals of Gerontology. Series B, Psychological Sciences
418	and Social Sciences, 75(7), 1573-1584. https://doi.org/10.1093/geronb/gbz035
419	Fujiwara, Y., Sakuma, N., Ohba, H., Nishi, M., Lee, S., Watanabe, N., Kousa, Y., Yoshida,
420	H., Fukaya, T., Yajima, S., Amano, H., Kureta, Y., Ishii, K., Uchida, H., & Shinkai, S.
421	(2009). REPRINTS: Effects of an intergenerational health promotion program for older
422	adults in Japan. Journal of Intergenerational Relationships, 7(1), 17–39.
423	https://doi.org/10.1080/15350770802628901

424 Grøntved, A., & Hu, F. B. (2011). Television viewing and risk of type 2 diabetes, 425 cardiovascular disease, and all-cause mortality: a meta-analysis. JAMA, 305(23), 2448– 426 2455. https://doi.org/10.1001/jama.2011.812 427 Harada, K. (2022). Effectiveness, Moderators and Mediators of Self-regulation Intervention 428 on Older Adults' Exercise Behavior: a Randomized, Controlled Crossover Trial. 429 *International Journal of Behavioral Medicine*, 29(5), 659–675. 430 https://doi.org/10.1007/s12529-021-10049-3 431 Harada, K., Lee, S., Lee, S., Bae, S., Harada, K., & Shimada, H. (2019). Environmental 432 predictors of objectively measured out-of-home time among older adults with cognitive 433 decline. Archives of Gerontology and Geriatrics, 82, 259–265. 434 https://doi.org/10.1016/j.archger.2019.01.021 Harada, K., Lee, S., Lee, S., Bae, S., Harada, K., Suzuki, T., & Shimada, H. (2019). 435 436 Psychological and environmental correlates of moderate-to-vigorous physical activity 437 and step counts among older adults with cognitive decline. Perceptual and Motor Skills, 438 126(4), 639–655. https://doi.org/10.1177/0031512519846026 439 Harada, K., Masumoto, K., Katagiri, K., Fukuzawa, A., Touyama, M., Sonoda, D., 440 Chogahara, M., Kondo, N., & Okada, S. (2021). Three-year effects of neighborhood 441 social network intervention on mental and physical health of older adults. Aging & 442 Mental Health, 25(12), 2235–2245. https://doi.org/10.1080/13607863.2020.1839858 443 Harada, K., Masumoto, K., & Okada, S. (2021). Distance to supermarkets and dietary variety 444 among Japanese older adults: examining the moderating role of grocery delivery 445 services. Public Health Nutrition, 24(8), 2077–2084. 446 https://doi.org/10.1017/S1368980020002219 447 Harada, K., Masumoto, K., Kikumasa, Y., & Okada, S. (2022). Hilly environment and 448 frequency of going out-of-home among older adults: Examining moderating effect of

- driving status. Geriatrics & Gerontology International, 22(11), 961–967.
- 450 https://doi.org/10.1111/ggi.14495
- Holt-Lunstad, J., & Uchino, B. N. (2015). Social support and health. In G. Karen, B. K.
- Rimer, & K. Viswanath (Eds.), Health behavior: Theory, research, and practice (5th ed.,
- 453 pp. 183–204). Jossey-Bass.
- Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure
- analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A
- 456 *Multidisciplinary Journal*, *6*(1), 1–55. https://doi.org/10.1080/10705519909540118
- Jones, R. B., Ashurst, E. J., Atkey, J., & Duffy, B. (2015). Older people going online: its
- value and before-after evaluation of volunteer support. *Journal of Medical Internet*
- 459 Research, 17(5), e122. https://doi.org/10.2196/jmir.3943
- Kimura, Y., Wada, T., Okumiya, K., Ishimoto, Y., Fukutomi, E., Kasahara, Y., Chen, W.,
- Sakamoto, R., Fujisawa, M., Otsuka, K., & Matsubayashi, K. (2012). Eating alone
- among community-dwelling Japanese elderly: association with depression and food
- diversity. *The Journal of Nutrition, Health & Aging, 16*(8), 728–731.
- 464 https://doi.org/10.1007/s12603-012-0067-3
- Kumagai, S., Watanabe, S., Shibata, H., Amano, H., Fujiwara, Y., Shinkai, S., Yoshida, H.,
- Suzuki, T., Yukawa, H., Yasumura, S., & Haga, H. (2003). Chiiki zaiju koreisya ni okeru
- syokuhin sessyu no tayosei to koji seikatu kino teika no kanren[Effects of dietary variety
- on declines in high-level functional capacity in elderly people living in a community.
- Nihon Koshu Eisei Zasshi [Japanese Journal of Public Health], 50(12), 1117–1124.
- 470 https://doi.org/10.11236/jph.50.12 1117
- Kurimoto, A., Awata, S., Ohkubo, T., Tsubota-Utsugi, M., Asayama, K., Takahashi, K.,
- Suenaga, K., Satoh, H., & Imai, Y. (2011). Reliability and validity of the Japanese
- version of the abbreviated Lubben Social Network Scale. *Nihon Ronen Igakkai Zasshi*.

474	Japanese Journal of Geriatrics, 48(2), 149–157.
475	https://doi.org/10.3143/geriatrics.48.149
476	Lee, D. Y., Harring, J. R., & Stapleton, L. M. (2019). Comparing methods for addressing
477	missingness in longitudinal modeling of panel data. The Journal of Experimental
478	Education, 87(4), 596-615. https://doi.org/10.1080/00220973.2018.1520683
479	Little, R. J. A. (1986). Survey nonresponse adjustments for estimates of means. <i>International</i>
480	Statistical Review, 54(2), 139. https://doi.org/10.2307/1403140
481	Loprinzi, P. D., & Crush, E. A. (2018). Source and size of social support network on
482	sedentary behavior among older adults. American Journal of Health Promotion, 32(1),
483	28-31. https://doi.org/10.1177/0890117116686888
484	Lubben, J., Blozik, E., Gillmann, G., Iliffe, S., von Renteln Kruse, W., Beck, J. C., & Stuck,
485	A. E. (2006). Performance of an abbreviated version of the Lubben Social Network Scale
486	among three European community-dwelling older adult populations. The Gerontologist,
487	46(4), 503-513. https://doi.org/10.1093/geront/46.4.503
488	Mallory, A. B., Pollitt, A. M., Bishop, M. D., & Russell, S. T. (2021). Changes in disclosure
489	stress and depression symptoms in a sample of lesbian, gay, and bisexual youth.
490	Developmental Psychology, 57(4), 570–583. https://doi.org/10.1037/dev0001168
491	Ministry of Health, L. and Welfare. (2009). Kaigo yobo no tameno seikatsu kino hyoka ni
492	kansuru manyuaru (kaitei ban) [Revised Manual for life function assessment for
493	prevention of long-term care] (in Japanese).
494	https://www.mhlw.go.jp/topics/2009/05/dl/tp0501-1c_0001.pdf
495	Ministry of Health, Labour, and Welfare. (2013). Kenko dukuri no tameno shintai-katsudo
496	kijun 2013 [recommended levels of physical activity for health promotion] (in Japanese).
497	https://www.mhlw.go.jp/stf/houdou/2r9852000002xple-att/2r9852000002xpqt.pdf

498 Ministry of Health, Labour, and Welfare. (2020). Reiwa gan-nen kokumin kenko eiyo chosa 499 hokoku [Report on Japan National Health and Nutrition Survey 2019] (in Japanese). 500 https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou iryou/kenkou/eiyou/r1-501 houkoku 00002.html 502 Motokawa, K., Watanabe, Y., Edahiro, A., Shirobe, M., Murakami, M., Kera, T., Kawai, H., 503 Obuchi, S., Fujiwara, Y., Ihara, K., Tanaka, Y., & Hirano, H. (2018). Frailty severity and 504 dietary variety in Japanese older persons: a cross-sectional study. The Journal of 505 Nutrition, Health & Aging, 22(3), 451–456. https://doi.org/10.1007/s12603-018-1000-1 506 Nemoto, Y., Sakurai, R., Matsunaga, H., Murayama, Y., Hasebe, M., Nishi, M., Narita, M., & 507 Fujiwara, Y. (2021). Social contact with family and non-family members differentially 508 affects physical activity: a parallel latent growth curve modeling approach. *International* 509 *Journal of Environmental Research and Public Health*, 18(5), 2313. 510 https://doi.org/10.3390/ijerph18052313 511 Neumark-Sztainer, D., Wall, M., Eisenberg, M. E., Story, M., & Hannan, P. J. (2006). 512 Overweight status and weight control behaviors in adolescents: longitudinal and secular 513 trends from 1999 to 2004. Preventive Medicine, 43(1), 52–59. 514 https://doi.org/10.1016/j.ypmed.2006.03.014 515 Otsuka, R., Nishita, Y., Tange, C., Tomida, M., Kato, Y., Nakamoto, M., Imai, T., Ando, F., 516 & Shimokata, H. (2017). Dietary diversity decreases the risk of cognitive decline among 517 Japanese older adults. Geriatrics & Gerontology International, 17(6), 937–944. 518 https://doi.org/10.1111/ggi.12817 519 Rook, K. S., & Sorkin, D. H. (2003). Fostering social ties through a volunteer role: 520 implications for older-adults' psychological health. *International Journal of Aging &* 521 Human Development, 57(4), 313–337. https://doi.org/10.2190/NBBN-EU3H-4Q1N-522 **UXHR**

523 Russell, D., & Chase, J. A. D. (2019). The social context of sedentary behaviors and their 524 relationships with health in later life. Journal of Aging and Physical Activity, 27(4), 797– 525 806. https://doi.org/10.1123/japa.2018-0109 526 Sahyoun, N. R., Zhang, X. L., & Serdula, M. K. (2005). Barriers to the consumption of fruits 527 and vegetables among older adults. *Journal of Nutrition for the Elderly*, 24(4), 5–21. 528 https://doi.org/10.1300/j052v24n04 03 529 Sallis, J. F., Owen, N., & Fotheringham, M. J. (2000). Behavioral epidemiology: a systematic 530 framework to classify phases of research on health promotion and disease prevention. 531 Annals of Behavioral Medicine: A Publication of the Society of Behavioral Medicine, 532 22(4), 294–298. https://doi.org/10.1007/BF02895665 Sallis, J. F., & Owen, N. (2015). Ecological models of health behavior. In K. Glanz, B. Rimer, 533 534 & K. Viswanath (Eds.), Health behavior: theory, research, and practice (5th ed., pp. 43– 535 64). Jossey-Bass. 536 Satake, S., Senda, K., Hong, Y. J., Miura, H., Endo, H., Sakurai, T., Kondo, I., & Toba, K. 537 (2016). Validity of the Kihon Checklist for assessing frailty status. Geriatrics & 538 Gerontology International, 16(6), 709–715. https://doi.org/10.1111/ggi.12543 539 Shatenstein, B., Gauvin, L., Keller, H., Richard, L., Gaudreau, P., Giroux, F., Jabbour, M., 540 Morais, J. A., & Payette, H. (2016). Individual and collective factors predicting change

544 Shibata, A., Oka, K., Ishii, K., Miyawaki, R., Inoue, S., Sugiyama, T., & Owen, N. (2019).

in diet quality over 3 years in a subset of older men and women from the NuAge cohort.

European Journal of Nutrition, 55(4), 1671–1681. https://doi.org/10.1007/s00394-015-

- Objectively-assessed patterns and reported domains of sedentary behavior among
- Japanese older a dults. *Journal of Epidemiology*, 29(9), 334–339.
- 547 https://doi.org/10.2188/jea.JE20180041

541

542

543

0986-y

548 Shiovitz-Ezra, S., & Litwin, H. (2012). Social network type and health-related behaviors: 549 evidence from an American national survey. Social Science & Medicine (1982), 75(5), 901–904. https://doi.org/10.1016/j.socscimed.2012.04.031 550 551 Sugisawa, H., Harada, K., Sugihara, Y., Yanagisawa, S., & Shimmei, M. (2020). Time 552 perspectives as mediators of the associations between socio-economic status and health 553 behaviours in older Japanese adults. Psychology & Health, 35(8), 1000–1016. 554 https://doi.org/10.1080/08870446.2019.1686505 555 Sun, J. W., Zhao, L. G., Yang, Y., Ma, X., Wang, Y. Y., & Xiang, Y. B. (2015). Association 556 between television viewing time and all-cause mortality: a meta-analysis of cohort 557 studies. American Journal of Epidemiology, 182(11), 908–916. 558 https://doi.org/10.1093/aje/kwv164 559 Thanakwang, K., & Soonthorndhada, K. (2011). Mechanisms by which social support 560 networks influence healthy aging among Thai community-dwelling elderly. Journal of 561 Aging and Health, 23(8), 1352–1378. https://doi.org/10.1177/0898264311418503 562 Thoits, P. A. (2011). Mechanisms linking social ties and support to physical and mental 563 health. Journal of Health and Social Behavior, 52(2), 145–161. https://doi.org/10.1177/0022146510395592 564 565 Tully, M. A., McMullan, I. I., Blackburn, N. E., Wilson, J. J., Coll-Planas, L., Deidda, M., 566 Caserotti, P., Rothenbacher, D., & . (2020). Is sedentary behavior or physical activity 567 associated with loneliness in older adults? Results of the European-Wide SITLESS 568 Study. Journal of Aging and Physical Activity, 28(4), 549–555. 569 https://doi.org/10.1123/japa.2019-0311 570 Umberson, D., Crosnoe, R., & Reczek, C. (2010). Social relationships and health behavior 571 across the life course. Annual Review of Sociology, 36, 139–157. 572 https://doi.org/10.1146/annurev-soc-070308-120011

5/3	Van Cauwenberg, J., De Donder, L., Clarys, P., De Bourdeaudhuij, I., Owen, N., Dury, S., De
574	Witte, N., Buffel, T., Verté, D., & Deforche, B. (2014). Relationships of individual,
575	social, and physical environmental factors with older adults' television viewing time.
576	Journal of Aging and Physical Activity, 22(4), 508–517.
577	https://doi.org/10.1123/JAPA.2013-0015
578	World Health Organization. (2020). WHO guidelines on physical activity and sedentary
579	behaviour. World Health Organization.
580	https://apps.who.int/iris/bitstream/handle/10665/336656/9789240015128-eng.pdf
581	Wu, F., & Sheng, Y. (2019). Social support network, social support, self-efficacy, health-
582	promoting behavior and healthy aging among older adults: A pathway analysis. Archives
583	of Gerontology and Geriatrics, 85(April), 103934.
584	https://doi.org/10.1016/j.archger.2019.103934
585	Xiao, Q., Wu, M., & Zeng, T. (2019). Social support networks in Chinese older adults: health
586	outcomes and health related behaviors: a path analysis. Aging & Mental Health, 23(10),
587	1382-1390. https://doi.org/10.1080/13607863.2018.1488941
588	Yokoyama, Y., Nishi, M., Murayama, H., Amano, H., Taniguchi, Y., Nofuji, Y., Narita, M.,
589	Matsuo, E., Seino, S., Kawano, Y., & Shinkai, S. (2017). Dietary variety and decline in
590	lean mass and physical performance in community-dwelling older Japanese: A 4-year
591	follow-up study. <i>Journal of Nutrition, Health and Aging</i> , 21(1), 11–16.
592	https://doi.org/10.1007/s12603-016-0726-x

593	Figure and Table Captions
594	Figure 1. Flowchart of the participants and procedure
595	
596	Table 1. Baseline characteristics of participants
597	
598	Figure 2. Results of latent growth model for associations of social network with dietary
599	variety (A), exercise time (B), and TV viewing time (C). The values represent unstandardized
600	path coefficients and standard errors. Bold lines represent significant paths and dashed lines
601	represent insignificant paths. For clarity, observed variables at each wave were not displayed.
602	Model fit indices were $\chi^2(20)=63.70(p<0.001)$, CFI = 0.988, TLI = 0.974, and RMSEA =
603	0.049 for dietary variety; $\chi^2(20)$ =64.55(p<0.01), CFI = 0.987, TLI = 0.971, and RMSEA =
604	0.050 for exercise time; and $\chi^2(20)=64.32(p<0.001)$, CFI = 0.988, TLI = 0.974, and RMSEA
605	= 0.049 for TV viewing time. *p<0.05, **p<0.01, ***p<0.001.
606	
607	Figure 3. Results of cross-lagged model for associations of social network with dietary variety
608	(A), exercise time (B), and TV viewing time (C). The values represent unstandardized path
609	coefficients and standard errors. Bold lines represent significant paths and dashed lines
610	represent insignificant paths. For clarity, autoregressive paths within social network variables
611	and health behaviors, paths from basic factors, cross-sectional correlations among social
612	network variables and health behaviors, and cross-sectional correlations among basic factors
613	were not displayed. Model fit indices were $\chi 2(42)=81.00(p<0.001)$, CFI=0.991, TFI=0.974,
614	and RMSEA=0.032 for dietary variety; $\chi 2(42)$ =95.66(p<0.001), CFI=0.987, TFI=0.962, and
615	RMSEA=0.038 for exercise time; and χ 2(42)=61.90(p=0.024), CFI=0.995, TFI=0.987, and
616	RMSEA=0.023 for TV viewing time. *p<0.05, **p<0.01, ***p<0.001.

Figure 4. Results of simultaneous model for associations of social network with dietary variety (A), exercise time (B), and TV viewing time (C). The values represent unstandardized path coefficients and standard errors. Bold lines represent significant paths, and dashed lines represent insignificant paths. For clarity, autoregressive paths within social network variables and health behaviors, paths from basic factors, cross-sectional correlations among social network variables and health behaviors, and cross-sectional correlations among basic factors were not displayed. Model fit indices were $\chi^2(48)=84.65(p=0.001)$, CFI=0.991, TFI=0.979, and RMSEA=0.029 for dietary variety; $\chi^2(48)=105.23(p<0.001)$, CFI=0.986, TFI=0.964, and RMSEA=0.036 for exercise time; and $\chi^2(48)=67.63(p=0.032)$, CFI=0.995, TFI=0.989, and RMSEA=0.021 for TV viewing time. *p<0.05, **p<0.01, ***p<0.001.

528	Online supplementary material.
529	Supplementary Figure 1. Conceptual diagram of latent growth model for associations of social
630	network with health behaviors.
631	
632	Supplementary Figure 2. Conceptual diagram of the cross-lagged model for associations of
633	social network with health behaviors. Basic factors were age, gender (men=0, women=1),
634	educational background (junior high or high school=0, more than high school=1), living alone
635	(no=0, yes=1), current employment (no=0, yes=1), and frailty (no=1, yes=1). Cross-sectional
636	correlations among basic factors were included in the model.
637	
638	Supplementary Figure 3. Conceptual diagram of the simultaneous effect model for associations
639	of social network with health behaviors. Basic factors were age, gender (men=0, women=1),
540	educational background (junior high or high school=0, more than high school=1), living alone
541	(no=0, yes=1), current employment (no=0, yes=1), and frailty (no=1, yes=1). Cross-sectional
542	correlations among basic factors were included in the model.
543	
544	Supplementary Table 1. Longitudinal changes in health behavior and social network at each
645	wave
646	
647	Supplementary Table 2. Pearson's correlation coefficients among basic factors, health behaviors
548	and social network variables at Wave 1
549	
650	Supplementary Figure 4. Results of latent growth model for associations of social network
651	with dietary variety (A), exercise time (B), and TV viewing time (C), including the non-
552	respondents of both Waves 2 and 3. The present study handled the data of non-respondents

through full information maximum likelihood. The values represent unstandardized path coefficients and standard errors. Bold lines represent significant paths and dashed lines represent insignificant paths. For clarity, observed variables at each wave were not displayed. Model fit indices were $\chi^2(20)=65.43$ (p<0.001), CFI = 0.988, TLI = 0.974, and RMSEA = 0.037 for dietary variety; $\chi^2(20)=63.67$ (p<0.01), CFI = 0.988, TLI = 0.973, and RMSEA = 0.036 for exercise time; and $\gamma^2(20)=64.46$ (p<0.001), CFI = 0.988, TLI = 0.974, and RMSEA = 0.037 for TV viewing time. *p<0.05, **p<0.01, ***p<0.001. Supplementary Figure 5. Results of cross-lagged model for associations of social network with dietary variety (A), exercise time (B), and TV viewing time (C), including the nonrespondents of both Waves 2 and 3. The present study handled the data of non-respondents through full information maximum likelihood. The values represent unstandardized path coefficients and standard errors. Bold lines represent significant paths and dashed lines represent insignificant paths. For clarity, autoregressive paths within social network variables and health behaviors, paths from basic factors, cross-sectional correlations among social network variables and health behaviors, and cross-sectional correlations among basic factors were not displayed. Model fit indices were χ 2(42)=80.99(p<0.001), CFI=0.992, TFI=0.977, and RMSEA=0.024 for dietary variety; $\chi^2(42)=97.46$ (p<0.001), CFI=0.988, TFI=0.965, and RMSEA=0.028 for exercise time; and $\chi^2(42)=61.79(p=0.024)$, CFI=0.996, TFI=0.988, and RMSEA=0.017 for TV viewing time. *p<0.05, **p<0.01, ***p<0.001. Supplementary Figure 6. Results of simultaneous model for associations of social network with dietary variety (A), exercise time (B), and TV viewing time (C), including the nonrespondents of both Waves 2 and 3. The present study handled the data of non-respondents through full information maximum likelihood. The values represent unstandardized path

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

coefficients and standard errors. Bold lines represent significant paths, and dashed lines represent insignificant paths. For clarity, autoregressive paths within social network variables and health behaviors, paths from basic factors, cross-sectional correlations among social network variables and health behaviors, and cross-sectional correlations among basic factors were not displayed. Model fit indices were $\chi 2(48)=84.65(p=0.001)$, CFI=0.992, TFI=0.981, and RMSEA=0.021 for dietary variety; $\chi 2(48)=107.14(p<0.001)$, CFI=0.987, TFI=0.967, and RMSEA=0.027 for exercise time; and $\chi 2(48)=61.77(p=0.025)$, CFI=0.996, TFI=0.988, and RMSEA=0.017 for TV viewing time. *p<0.05, **p<0.01, ***p<0.001.

Table 1. Baseline characteristics of participants

	Exclud	led from analyses	Inclu		
	n	M (SD) or %	n	M (SD) or %	p-value
Age (years), M (SD)	876	68.3 (4.1)	908	67.9 (4.3)	0.058
Gender (women), %	876	39.6%	908	40.0%	0.875
Educational background (beyond high school), %	852	43.2%	904	56.8%	<0.001
Living alone (yes), %	864	8.1%	902	7.1%	0.425
Current employment (yes), %	817	44.8%	872	49.2%	0.070
Frailty (yes), %	834	14.4%	897	8.4%	<0.001
Dietary variety (score), M (SD)	849	3.1 (2.3)	892	3.6 (2.2)	<0.001
Exercise time (minutes per day), M (SD)	713	32.1 (43.3)	746	36.6 (41.4)	0.046
TV viewing time (hours per day), M (SD)	749	4.3 (2.6)	826	3.9 (2.4)	0.003
Social network with family, M (SD)	843	7.6 (3.6)	897	8.2 (3.5)	0.001
Social network with friends, M (SD)	840	6.6 (4.8)	897	7.9 (4.6)	<0.001

^at-test, ^bchi-squared test

Sample size of each variable varies due to missing values.

Supplementary Figure 1. Conceptual diagram of latent growth model for associations of social network with health behaviors.

Supplementary Figure 2. Conceptual diagram of the cross-lagged model for associations of social network with health behaviors. Basic factors were age, gender (men=0, women=1), educational background (junior high or high school=0, more than high school=1), living alone (no=0, yes=1), current employment (no=0, yes=1), and frailty (no=1, yes=1). Cross-sectional correlations among basic factors were included in the model.

Supplementary Figure 3. Conceptual diagram of the simultaneous effect model for associations of social network with health behaviors. Basic factors were age, gender (men=0, women=1), educational background (junior high or high school=0, more than high school=1), living alone (no=0, yes=1), current employment (no=0, yes=1), and frailty (no=1, yes=1). Cross-sectional correlations among basic factors were included in the model.

Supplementary Table 1. Longitudinal changes in health behavior and social network at each wave

		Wave 1		Wave 2		Wave 3			
	n	M (SD)	n	M (SD)	p-value ^a	n	M (SD)	p-value ^a	
Dietary variety (score)	892	3.6 (2.2)	845	3.7 (2.2)	0.745	779	3.7 (2.3)	0.340	
Exercise time (minutes per day)	746	36.6 (41.4)	810	38.7 (43.3)	0.837	756	41.7 (44.2)	0.045	
TV viewing time (hours per day)	826	3.9 (2.4)	790	3.9 (2.4)	0.514	723	4.1 (2.5)	0.002	
Social network with family (score)	897	8.2 (3.5)	852	8.2 (3.5)	0.525	790	8.2 (3.5)	0.784	
Social network with friends (score)	897	7.9 (4.6)	851	7.8 (4.6)	0.820	789	7.6 (4.5)	0.005	

^aChanges from Wave 1 estimated by a linear mixed model with setting variance of intercept as a random effect.

Supplementary Table 2. Pearson's correlation coefficients among basic factors, health behaviors, and social network variables at Wave 1

<u></u>	1	2	3	4	5	6	7	8	9	10
1.Age (years)										
2.Gender (women)	-0.35 (p<0.001)									
3.Educational background	-0.16	-0.04								
(beyond high school)	(<u> </u>	(p=0.213)								
4.Living alone (yes)	0.09 (p=0.009)	-0.21 (p<0.001)	-0.07 (p=0.043)							
5.Current employment (yes)	-0.19	-0.04 (p=0.218)	0.05	-0.02						
6 Frailty (ves)	0.08	-0.09	-0.05	0.14	-0.09					
0.12 1.11.15 () 1.5)	(I	(p=0.007)	· ·	(I	(1					
7.Dietary variety (score)	-0.03	0.31	0.05	-0.16	-0.08	-0.11				
	· · ·	\ 1	· · /	\ 1	(p=0.024)	(1	0.00			
8.Exercise time	0.19	-0.20	0.02	0.00	-0.23	-0.06	0.08			
(minutes per day)	(I	(I	· ·	· ·	(p<0.001)	· ·	(I			
9.TV viewing time	0.08	-0.05	-0.10	0.11	-0.30	0.12	-0.05	0.05		
(hours per day)	(p=0.018)	(p=0.166)	(p=0.005)	(p=0.001)	(p<0.001)	(p<0.001)	(p=0.169)	(p=0.231)		
10.Social network with family	-0.03	0.15	0.08	-0.23	0.03	-0.18	0.17	0.04	-0.05	
	(p=0.367)	(p<0.001)	(p=0.013)	(p<0.001)	(p=0.338)	(p<0.001)	(p<0.001)	(p=0.314)	(p=0.141)	
11.Social network with friends	0.03	0.13	0.15	-0.11	0.02	-0.20	0.16	0.12	-0.12	0.47
	(p=0.416)	(p<0.001)	(p<0.001)	(p=0.001)	(p=0.565)	(p<0.001)	(p<0.001)	(p=0.001)	(p=0.001)	(p<0.001)

Supplementary Figure 4. Results of latent growth model for associations of social network with dietary variety (A), exercise time (B), and TV viewing time (C), including the non-respondents of both Waves 2 and 3. The present study handled the data of non-respondents through full information maximum likelihood. The values represent unstandardized path coefficients and

standard errors. Bold lines represent significant paths and dashed lines represent insignificant paths. For clarity, observed variables at each wave were not displayed. Model fit indices were $\chi^2(20)=65.43$ (p<0.001), CFI = 0.988, TLI = 0.974, and RMSEA = 0.037 for dietary variety; $\chi^2(20)=63.67$ (p<0.01), CFI = 0.988, TLI = 0.973, and RMSEA = 0.036 for exercise time; and $\chi^2(20)=64.46$ (p<0.001), CFI = 0.988, TLI = 0.974, and RMSEA = 0.037 for TV viewing time. *p<0.05, **p<0.01, ***p<0.001.

Supplementary Figure 5. Results of cross-lagged model for associations of social network with dietary variety (A), exercise time (B), and TV viewing time (C), including the non-respondents of both Waves 2 and 3. The present study handled the data of non-respondents through full information maximum likelihood. The values represent unstandardized path coefficients and

standard errors. Bold lines represent significant paths and dashed lines represent insignificant paths. For clarity, autoregressive paths within social network variables and health behaviors, paths from basic factors, cross-sectional correlations among social network variables and health behaviors, and cross-sectional correlations among basic factors were not displayed. Model fit indices were χ 2(42)=80.99(p<0.001), CFI=0.992, TFI=0.977, and RMSEA=0.024 for dietary variety; χ 2(42)=97.46(p<0.001), CFI=0.988, TFI=0.965, and RMSEA=0.028 for exercise time; and χ 2(42)=61.79(p=0.024), CFI=0.996, TFI=0.988, and RMSEA=0.017 for TV viewing time. *p<0.05, **p<0.01, ***p<0.001.

Supplementary Figure 6. Results of simultaneous model for associations of social network with dietary variety (A), exercise time (B), and TV viewing time (C), including the non-respondents of both Waves 2 and 3. The present study handled the data of non-respondents through full information maximum likelihood. The values represent unstandardized path coefficients and standard errors. Bold lines represent significant paths, and dashed lines represent insignificant paths. For clarity, autoregressive paths within social network variables and health behaviors,

paths from basic factors, cross-sectional correlations among social network variables and health behaviors, and cross-sectional correlations among basic factors were not displayed. Model fit indices were $\chi 2(48)=84.65(p=0.001)$, CFI=0.992, TFI=0.981, and RMSEA=0.021 for dietary variety; $\chi 2(48)=107.14(p<0.001)$, CFI=0.987, TFI=0.967, and RMSEA=0.027 for exercise time; and $\chi 2(48)=61.77(p=0.025)$, CFI=0.996, TFI=0.988, and RMSEA=0.017 for TV viewing time. *p<0.05, **p<0.01, ***p<0.001.