
Kobe University Repository : Kernel

PDF issue: 2025-07-21

Human-Machine Cooperative Echolocation Using
Ultrasound

(Citation)
IEEE Access,10:125264-125278

(Issue Date)
2022

(Resource Type)
journal article

(Version)
Version of Record

(Rights)
This work is licensed under a Creative Commons Attribution 4.0 License

(URL)
https://hdl.handle.net/20.500.14094/0100482013

Watanabe, Hiroki
Sumiya, Miwa
Terada, Tsutomu



Received 20 October 2022, accepted 15 November 2022, date of publication 24 November 2022,
date of current version 5 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3224468

Human-Machine Cooperative Echolocation
Using Ultrasound
HIROKI WATANABE 1, MIWA SUMIYA 2, AND TSUTOMU TERADA 3, (Member, IEEE)
1Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
2Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
3Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan

Corresponding author: Hiroki Watanabe (hiroki.watanabe@ist.hokudai.ac.jp)

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research
(KAKENHI) under Grant JP21K11973, in part by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic
Science and Technology (PRESTO) under Grant JPMJPR2138, and in part by the JST Core Research for Evolutional Science and
Technology (CREST) under Grant JPMJCR18A3.

This work involved human subjects in its research. Approval of all ethical and experimental procedures and protocols was granted by the
Human Ethics Committee of Graduate School of Engineering, Kobe University under Permission No. 04-02, and performed in line with
the Declaration of Helsinki.

ABSTRACT Echolocation has been shown to improve the independence of visually impaired people, and
utilizing ultrasound in echolocation offers additional advantages, such as a higher resolution of object sensing
and ease of extraction from background sounds. However, humans cannot innately make and hear ultrasound.
A wearable device that enables ultrasonic echolocation, i.e., that transmits ultrasound through an ultrasonic
speaker and converts the reflected ultrasound into audible sound, has therefore been attracting interest. Such
a system can be utilized with machine learning (ML) to help visually impaired users recognize objects.
We have therefore been developing a cooperative echolocation system that combines human recognition with
ML recognition. As the first step toward cooperative echolocation, this paper presents the effectiveness of
ML in echolocation. We implemented a prototype device and evaluated the performance of object detection
with/without ML and found that the mental workload on the user was significantly decreased when ML was
used. Based on the findings from the evaluation, we discussed the design of cooperative echolocation.

INDEX TERMS Assistive technology, echolocation, object recognition, ultrasound, wearable computing.

I. INTRODUCTION
According to the World Health Organization, there are
currently 2.2 billion visually impaired people in the world [1];
therefore, creating a supportive environment for them is vital.
Tactile paving and braille are two elements of the support
environments that are already installed around many urban
areas [2]. However, as visually impaired people are often
unable to take advantage of these clues until they directly
touch them, we consider there is considerable room for
improvement. A number of researchers have been developing
systems for supporting visually impaired people by utilizing
the wearable/mobile computing devices that have recently
become more readily available. Most of these methods utilize

The associate editor coordinating the review of this manuscript and
approving it for publication was Sandra Baldassarri.

a camera to recognize the environment [3], [4], [5], [6];
however, this can be problematic because the cameras are
adversely affected by light conditions and thus are difficult
to use in highly dark or bright conditions. Although depth
cameras can mitigate these challenges to some extent, they
are still adversely affected by sunlight because most of them
utilize infrared sensors [7], [8], [9], [10].

Alternatively, sound has also been used for recognizing
the environment. For example, animals such as bats and
dolphins use echolocation, a biological sonar in which
they emit ultrasound to the environment and listen to
the echoes that return from various nearby objects. These
echoes are extremely useful for locating and identifying the
objects. Some visually impaired people make similar use of
echolocation with the auditory information from the sounds
they make [11], which has been shown to enhance their
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independence [12], [13]. Therefore, we consider it can be
beneficial for visually impaired people to use echolocation
to recognize the surroundings with their own auditory
perception.

Humans typically use the audible sounds they make
(e.g., clicking with the mouth or tapping with canes) for
echolocation; however, reports have shown that ultrasonic
echolocation has several advantages, such as a higher
resolution of object sensing, an inaudible clicking sound, and
ease of extraction from background sounds [14]. However,
this potential remains untapped because humans cannot
innately make and hear ultrasound on their own.

In light of this background, we focus on a wearable
computing environment that enables the transmission and
receiving of ultrasound in real time. Earphone-type wearable
computing devices (hearables) have become more common,
and several studies have manipulated external sound by
means of hearables [15], [16]. As such, an environment
for always wearing the device to present converted sound
is already in place. Moreover, we can utilize machine
learning (ML) along with ultrasonic echolocation because
the captured ultrasound is processed inside the device.
One previous study on echolocation focused on interpreting
the sensory perception of ‘‘seeing by sound’’ in bats and
proposed an effective and practical manner of operation for
adoption in human echolocation [14], [17]; however, they did
not consider ML.

In the current work, we propose a cooperative echoloca-
tion system that combines innate human recognition with
recognition by ML to reduce the burden on the user
during echolocation. We assume our target users can use
echolocation and are already wearing an ultrasonic speaker
and microphone set to identify objects they want to find. The
wearable speaker transmits ultrasound and the microphone
captures the reflected sound, and our system converts the
ultrasound into audible sound that the users can recognize.
It also calculates the frequency spectrum and recognizes the
objects by ML, and when the ML recognition result is the
same as the user-specified object, the device vibrates. Users
can search for and recognize objects by using the sounds
and vibrations as clues in real time. In contrast to previous
methods that are purely machine-based, our system is unique
in that not only the machine but also the user senses the
objects. This is important because it is more meaningful
for visually impaired people to recognize the environment
with their own ears, thereby forming a vital element in their
sense of independence [12], [13]. In short, our motivation
is to support users by means of ML without causing them
to lose their sense of independence. Moreover, since we
assume an environment in which users are already wearing an
ultrasonic speaker and microphone set for ultrasonic human
echolocation, there is no need for additional ML devices.

To the best of our knowledge, this is the first system
that combines ML with echolocation. As a first step
toward cooperative echolocation, this paper investigates the
effectiveness of ML in echolocation and clarifies design

principles for its adoption. We implemented a prototype to
evaluate the recognition accuracy for six types of objects
and found that the recognition accuracy of ML was 92.5%.
We also evaluated the changes in object detection behavior
with and without ML and found that the detection time was
decreased from 71.5 s to 45.9 s by using ML. Additionally,
the results of the NASA Task Load Index (NASA-TLX),
an assessment tool for workload, showed that the mental
workload on the user was significantly decreased thanks to
ML. On the basis of our findings, we conclude the paper by
discussing howML should be incorporated into echolocation.
Our main contributions are as follows.
• We propose a cooperative echolocation system that
utilizes not only human but also ML recognition in
ultrasonic echolocation.

• Evaluation results demonstrate that incorporating ML
into echolocation is effective, especially in terms of
significantly decreasing mental workload.

• On the basis of our findings, we present howML should
be incorporated into ultrasonic echolocation.

II. RELATED WORK
A. ECHOLOCATION
Some visually impaired people utilize echolocation, which
is a ‘‘seeing by sound’’ technique that enables them to
perceive their surroundings from the click sounds they make.
Echolocation using audible sounds has been examined in a
number of studies [11], [18], [19].

In other studies, inspired by echolocation in bats,
researchers have investigated the application of ultrasonic
echolocation to humans [14], [17], [20], [21]. Sohl-
Dickstein et al. developed a system that transmits ultra-
sonic signals and converts the echoes into audible sound,
thus enabling recognition of the distance from objects
and the presence/absence of obstacles [20]. In a study
by Sumiya et al., participants were able to discriminate
object shapes and textures by using a system that converts
ultrasonic echoes into audible sound from objects learned
by training [17]. They found that the performance of object
discrimination using ultrasound was higher than that using
audible sound.

Although ultrasonic echolocation has been the focus of
past research, most studies focused on interpreting the
sensory perception of ‘‘seeing by sound’’ in bats and trying
to come up with ways of harnessing this operation in human
echolocation; in other words, a system that can operate in real
time has rarely been considered. Sohl-Dickstein et al. [20]
reported an ultrasonic echolocation system for use in real
time; however, they focused on recognizing the distance to
objects and the presence of objects, and did not consider ML.
In the present work, we focus on recognizing what the object
is and how to combine both human and ML recognition.

B. ASSISTIVE SYSTEMS FOR VISUALLY IMPAIRED PEOPLE
Many assistive systems for the visually impaired have
been studied thanks to the increasing availability of
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mobile/wearable devices. Bing et al. developed a navigation
system using Google Tango [22]. Brock et al. proposed a
method to detect an object by using Microsoft Kinect and
present it to the user by sound [8]. Their system changes
the pitch and volume of the presented sound depending on
the location of the object and its distance from the user.
Kayukawa et al. developed BBeep [23], a system that emits
a warning sound to pedestrians who are likely to collide with
the user by using an RGBD camera attached to a suitcase.
They also developed another suitcase-type system that helps
visually impaired people avoid pedestrians in their path [24].
Zhao et al. proposed an AR system for people with low
vision [25] that displays the edges of stairs. Wang et al.
proposed a system that uses a camera and vibration to guide
the user [26]. Another system called Virtual Paving utilizes
vibration and voice to navigate users in areas where tactile
paving is not available [27]. Several systems for supporting
supermarket shopping have been proposed [28], [29], [30],
[31]. Acoussist is a system that assists visually impaired users
in crossing the road by detecting ultrasound emitted from
vehicles [32]. Mocanu et al. proposed a wearable assistive
device designed to facilitate the autonomous navigation of
visually impaired people in dynamic urban scenes [33]. Their
system exploits ultrasonic sensors and the video camera
embedded in a regular smartphone.

However, while many assistive technologies have been
studied, these systems are based primarily on machine
recognition. Our study differs in that users recognize an
object through a combination of the sound obtained by their
own auditory perception and the results of ML.

C. OBJECT RECOGNITION
Image-based methods are often used for recognizing the
environment. One example is the RGB camera, which
is utilized for recognizing materials/objects [3], [4], [5],
[6], [34]. Although image-based methods provide useful
information similar to what we can pick up with our eyes,
they are susceptible to light conditions (e.g., darkness and
brightness), which can adversely affect the recognition.

The depth camera is also used to recognize the environ-
ment [7], [8], [9], [10]. However, as most depth cameras
utilize infrared, they are adversely affected by sunlight.

Researchers have thus been developing other approaches
for material/object recognition. SpecTrans is an image
sensor-based material recognizer that utilizes reflected light
patterns produced by multi-spectral lighting sources [35].
SpeCam is a lightweight surface color and material sensing
system for mobile devices that uses a front-facing camera and
display as a multi-spectral light source [36]. RadarCat is a
radar-based system for material and object classification [37].
Harrison et al. developed a method for identifying materials
in proximity to the device by means of a multispectral optical
sensor [38]. Liu et al. proposed a method for recognizing
surface material by utilizing the vibrations generated from
contacted objects [39]. Although these methods can be quite
effective, they need to be in direct contact with the materials

FIGURE 1. System configuration.

for recognition. From the perspectives of hygiene and social
acceptance, it is desirable to avoid touching objects more than
necessary.

DeepThermalImaging is a system that recognizes the
material of an object by using a thermal camera [40]. It is
advantageous in that it can recognize material without contact
and is robust against changes in ambient light. However, the
thermal reflection of wet and glossy materials is difficult to
recognize, and since the system uses a thermal camera, this
would need to be added to most smartphones.

There are many studies on object detection/recognition
using sound. Komatsu et al. discriminated the characteristics
of a target object based on the frequency characteristics of
the reflected ultrasonic waves [41]. DeepRange is a deep
learning-based acoustic ranging system [42]. BatMapper is
a system that uses acoustic ranging to detect walls and create
floor plans [43]. BumpAlert is a system to detect obstacles
using embedded sensors in smartphones [44]. It utilizes
sound to detect objects in places with little reverberation
(e.g., outdoors) and images to detect objects in places
with large reverberation (e.g., corridors). ObstacleWatch is
a system that detects objects using the reflected sound
signal [45]. Remaggi et al. proposed a method to estimate
the material of an object by using the attenuation rate of
the reflected sound in the frequency domain [46]. Mao et al.
developed an acoustic imaging method using an off-the-
shelf smartphone [47]. The user moves the phone along a
predefined trajectory to mimic a virtual sensor array, and the
system reproduces the target object using the reflected sound.

Considering the characteristics of wearable computing
environments, additional devices for object recognition (e.g.,
specialized cameras or depth sensors) are not desirable
because of the limited power consumption and the increased
cost. In our study, we assume an ultrasonic human echolo-
cation environment in which the user is already wearing an
ultrasonic speaker and microphone; thus, there is no need
for additional devices. We also utilize recognition by both
machines and humans.

III. PROPOSED METHOD
Fig. 1 shows the system configuration of the proposed
method. It consists of two parts: processing for human
recognition and processing for machine recognition. First, the
speaker transmits ultrasound and stereo microphones capture
the reflected sound. For human recognition, the system
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FIGURE 2. Object and corresponding reflected wave and frequency
spectrum.

converts the ultrasound into audible sound by lowering the
frequency and presents the converted sound to the user via
earphones. For machine recognition, the system applies ML
to the obtained signal and presents the recognition result
to the user by vibration or sound. The device then notifies
the user of the result by vibration when the recognition
result is the same as the user-specified object. Fig. 2 shows
examples of reflected waves and the corresponding frequency
spectra. As we can see, there are several points where
the magnitude of the amplitude of the reflected wave is
different depending on the object, and it also appears in
the frequency spectrum. Humans and machines recognize
these differences by the timbre and by the differences in the
frequency spectra, respectively. Finally, the user recognizes
the object by combining the sound obtained from the ears and
the vibration resulting from the ML recognition. We describe
each process in detail in the following sections.

A. TRANSMITTING AND DETECTING SIGNAL
The speaker transmits the ultrasonic signal and the micro-
phone captures the reflected signal from the target object.
The sampling rate for transmitting/recording is 96 kHz.
The signal is a downward frequency-modulated (FM) sweep
signal that shifts from 40 kHz to 20 kHz in 1 ms. The FM
sweep signal is used for target classification by bats [48],
and a previous study using a similar signal reported that the
downward FM signal was the most effective to discriminate
target objects [17]. Although that study used the frequency
range of 8 k–40 kHz, we selected 20 k–40 kHz here because
the constant generation of audible sound (below 20 kHz)
while using the system is unpleasant for both the user and
surrounding people. Assuming that the speed of the sound in
the air is 340 m/s, the transmitted signal does not overlap with
the reflected signal when the distance between the object and
the microphone/speaker is 17 cm or more. Therefore, we set

FIGURE 3. Multipath.

FIGURE 4. Cross-correlation.

the minimum distance that the object can be detected to 17 cm
in this study.

As shown in Fig. 3, the received signal from the
microphone includes the signal directly from the speaker, the
reflected signal from the target object, and the reflected signal
from other objects. To detect the reflected signal from the
target object only, we calculate the cross-correlation value
between the transmitted signal and the received signal. Fig. 4
shows the envelope of cross-correlation values obtained when
the signal is transmitted 50 cm away from the object. As we
can see, the cross-correlation shows a large value when the
received signal has a similar waveform to the transmitted
signal. The first large peak shows the direct wave from
the speaker to the microphone. In this study, we define the
largest cross-correlation after the direct wave as the reflected
wave from the object since, as preliminary investigation
confirmed that the cross-correlation of the object in front of
the speaker was the largest. We extract 128 samples as the
reflected wave from the above point. Although the number
of transmitted signal samples is 96 (96,000 Hz × 1 ms),
we extract 128 samples to provide a margin.

To enable real-time processing, the above process is
performed after a certain amount of data is stored in a buffer.
We set the buffer size to 4,096 and acquire non-overlapping
buffers with a sliding size of 4,096. If direct and reflected
waves do not exist in a single buffer, false detection of the
reflected sound occurs; thus, we configure the system to
not detect the reflected sound when the distance between
the device and the object is more than a certain range.
We calculate the distance to the object from the time of signal
transmission and reception as

d =
c(t1 − t0)

2
, (1)
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where d is the distance between the device and object, c is
the speed of sound, t0 is the time of signal transmission, and
t1 is the time of signal reception. The detection range is set
to 20–300 cm and when the detected distance is outside this
range, the system does not perform any further processing.
Note that it is possible for a false detection to be included
in the above range. Assuming the human walking speed of
1.3 m/s [49] and the echolocation signal transmission interval
of 600 ms [18], [19], the moving distance between the signal
transmission is considered to be 78 cm (1.3 m/s × 0.6 s).
Therefore, when the difference in distance from the previous
detection is 80 cm or more, the system does not perform
further processing even when the detected distance is in the
range of 20–300 cm.

B. CONVERTING ULTRASOUND INTO AUDIBLE SOUND
1) CONVERSION METHOD
The ultrasound detected in the previous section is next
converted into audible sound. Among the various conversion
methods we could use (e.g., time expansion, heterodyning,
and phase vocoder [50], [51]), we selected time expansion
because it has been used in previous studies [17], [20] and
can preserve all the characteristics of the original signal. The
detected reflected signal is played to the user at 1/m of normal
speed, where m is an adjustable magnification factor. This
magnifies the signal linearly on the time axis by a factor of
m and lowers the frequencies into the audible range. We set
different sampling rates for recording and playing (e.g., when
recording at 96 kHz and playing at 12 kHz,m becomes eight).

2) MINIATURE DUMMY HEAD
We utilize a dummy of a human head for recording in
order to take into consideration the head-related transfer
function (HRTF) [52]. The miniature dummy head (MDH)
is a standard small-scale dummy head and is used to record
ultrasound [14]. Humans can hear echoes in the ultrasonic
range as the audible range in a stereophonic acoustic space
with a realistic feeling. A previous study reported that
MDH has similar characteristics to the standard size dummy
head when the received ultrasound is converted into audible
sounds [21]. In this study, we utilize 1/7 scale MDH, which
was used in the previous studies [14], [17].

3) MAGNIFICATION OF CONVERSION
In the previous study [14], 1/7 magnification for MDH
of 1/7 scale was effective for localization and out-of-
head perception of sound; however, it is not clear whether
this magnification is also suitable for the frequency range
used in this study or for distinguishing the timbre of
reflected waves from objects. For the frequency range
here (20 k–40 kHz), the frequency is lowered to 2.9 k–
5.7 kHz by 1/7 magnification. Since humans can better
discriminate lower timbre than higher timbre [53], converting
to lower frequencies may be more useful for distinguishing

TABLE 1. Signal information after conversion.

objects. Therefore, we conducted a preliminary experiment
to determine the suitable magnification factor.

In this experiment, the reflected waves from no object
and object were converted into an audible sound, and
participants attempted to discriminate the two. As no object
and object, we selected the wall and the doorknob in Fig. 2.
The tested magnifications were 1/7, 1/14, and 1/20. The
signal information after conversion is listed in Table 1.
Magnification of 1/7 is the same as that used in the previous
studies [14], [17]. Also, since one previous study [20] lowered
the frequencies from 25 k–50 kHz to 1 k–2 kHz, we selected
1/20 so that the converted frequencies in this study are
the same. Magnification of 1/14 was the midway point
between the two others. To evaluate the performance of
signal discrimination, we used three-interval two-alternative
forced-choice tasks (3I-2AFC) in which participants listened
to three consecutive sound stimuli consisting of the converted
reflected sound of no object and object and identified whether
the second sound stimulus was the same as the first or
third. The five participants were 23–31-year-old men and
women. The interval between sound stimuli was 300 ms
and there were four possible combinations per magnification.
As a result, we collected 60 data (five participants × three
magnifications × four signal combinations) and calculated
the percentage of correct answers as evaluation metrics.

Fig. 5 shows the correct answer rate for eachmagnification,
where we can see that the magnifications of 1/7, 1/14,
and 1/20 were 55%, 90%, and 95%, respectively. At the
magnification of 1/7, which was used in the previous
study [17], the correct answer rate was the lowest (in fact,
almost the same level as chance), while the magnification
of 1/20 was the best. There are several potential reasons
for this result (e.g., frequency range and signal length
after conversion); however, as we are focused here on a
suitablemagnification for time expansion, we simply selected
1/20. We leave a detailed investigation of the relationship
between magnification and discrimination performance to
future work.

C. MACHINE LEARNING
1) PREPROCESSING
We apply fast Fourier transform (FFT) to the extracted signal
in Section III-A and obtain the frequency spectrum, as shown
in Fig. 2. To resolve waveform discontinuities, we multiply
Hann window to the extracted signal. The extracted wave is
made to be 8,192 samples with zero padding. The frequency
resolution becomes approximately 11.7 Hz (96,000 / 8,192)
by zero padding, which should enable us to acquire more
detailed characteristics of the signal.
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FIGURE 5. Correct answer rate of three conversion rates. Error bars show
standard deviations.

2) FEATURE EXTRACTION AND RECOGNITION
As shown in Fig. 2, the characteristics of the reflected
waves appear in frequency spectra; thus, we utilized sev-
eral spectral features. Linear-frequency cepstral coefficients
(LFCCs) [54], which are a linear version of mel-frequency
cepstral coefficients (MFCCs), were selected as the feature
values. In contrast to the MFCCs typically used for audio
and speech recognition, LFCCs utilize a linear filterbank to
reduce dimensions, andwe opted to use them here because we
want to equally extract features from the frequency spectrum.
The number of used filterbanks was 20. After we removed
the first LFCC, which is the DC component, we acquired
19 features.

We also calculated nine spectral features (mean, variance,
spectral centroid, roll-off, flatness, skewness, kurtosis, band-
width, and entropy) for both the left and right channels of the
microphones. As a result, we obtained 56 feature values in
total (28 features× two channels). Note that we utilized both
channels even when both features were assumed to be similar,
e.g., the device and the object were facing each other. This is
because we confirmed in the preliminary experiment that the
frequency spectra obtained in both channels were different
due to the characteristics of MDH and subtle installation
errors of the microphones.

The classifier needs to be computationally lightweight so
that it can work in real time on wearable devices and have a
high enough performance. Although we do not limit classifier
algorithm, we selected the support vector machine (SVM) as
the classifier in this study.

3) SWITCHING MACHINE LEARNING MODEL DEPENDING
ON DISTANCE
Since sound pressure attenuates as the transmission distance
increases, the frequency spectrum obtained for the same
object may be different depending on the distance. Fig. 6
shows an example of the change in frequency spectrum
depending on the distance. As we can see, the approximate
peak/notch positions of the frequency spectrum are located at
nearby frequencies at all distances; however, there is a slight
shift and the amplitude ratio of the peak to the notch changes
depending on the distance. This suggests that the recognition
rate decreases if the same learning model is used to recognize

FIGURE 6. Change in frequency spectrum depending on distance.

FIGURE 7. Frequency spectrum of doorknob at each angle.

all distances.We therefore switched theMLmodel depending
on the detected distance so as to increase the recognition
accuracy. Specifically, we acquired data at intervals of 25 cm
from 25 cm to 200 cm and trained eight models. The system
calculates the distance to the object based on (1) and switches
to the learning model that is closest to the detected distance.

4) DETECTING ANGLE BETWEEN OBJECT AND DEVICE
When the angle between the object and the device is
different, the obtained frequency spectrum may change due
to the HRTF of the MDH and the characteristics of the
speaker/microphone. Figures 7 and 8 shows the frequency
spectrum at each angle for a doorknob and a blister tactile,
respectively. In Fig. 7, we can see that the frequency spectra
are similar for different angles except for amplitude, while in
Fig. 8, the obtained frequency spectrum differs depending on
the angle. This means that although the frequency spectrum
obtained at each angle is different, the degree of change varies
depending on the object.

Our system therefore performs converting ultrasound and
ML only when the angle between the object and device
is within a certain range depending on the user-specified
object. Concretely, the system estimates the angle with the
object using the arrival time difference between the stereo
microphones (as shown in Fig. 9), which is calculated as

tl − tr =
l sin θ
c

, (2)

where θ is the angle between the device and object, l is the
distance between the stereo microphones, tl and tr are the
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FIGURE 8. Frequency spectrum of blister tactile at each angle.

FIGURE 9. Overview of angle detection.

arrival times of the left and right microphones, respectively,
and c is the speed of sound. On the basis of (2), the angle is
then calculated as

θ = arcsin
c(tl − tr )

l
. (3)

Note that since the sampling rate is 96 kHz and l is 2.2 cm,
the resolution of the detected angle is approximately 9.26◦.

IV. IMPLEMENTATION
We implemented the prototype device shown in Fig. 10.
It consists of a tablet (Huawei MediaPadM5), audio interface
(Zoom U-24), speaker (Peerless S0155), microcontroller
(Sony Spresense), two microphones (Countryman B6), and
headphones (Bose QC35). Note that we did not use the
noise-canceling function that comes with these headphones.
To mitigate the vibration from the speaker to the microphone
through the case and MDH, elastomer resin was sandwiched
between the case and MDH. The frequency response of the
microphone was 30–20 kHz; however, we confirmed that it
can capture the ultrasonic signal, and the previous study also
used the same one [17]. The MDH was the 1/7 scale of the
standard dummy head, which is the same scale used in the
previous studies [14], [17]. Stereo microphones were placed
at the eardrums of the MDH. The height, width, and depth of
the MDH were 6.5 cm, 5.2 cm, and 2.5 cm, respectively. The
MDH was constructed of a silicone rubber material (Shore
A hardness: 35) to mimic the hardness of the human body.
The microphones were connected to the tablet via the audio
interface. The microcontroller was wired to the speaker and
played the sound source that was stored in the microSD card.
Since Spresense supports playing at 96 kHz or higher, it can
transmit ultrasound, and the speaker can transmit a signal
with sufficient sound pressure since Spresense has a built-in
amplifier. Note that while this prototype device is in a form
where the user grasps the speaker part with one hand, it is also

FIGURE 10. (a) Implemented prototype device and (b) side view of MDH
and speaker.

possible to implement it as a hands-free device, e.g., hanging
it from the neck like a pendant.

We also implemented the proposed method in Section III
using an Android application. Although we fixed the
parameters of the proposed method in the experiment, users
can change between with/without the presence of converted
sound, with/without the presence of ML, and magnification
of ultrasound conversion in this application.We utilized SVM
as the classifier, as described in Section III-C2.

V. EVALUATION
We conducted two evaluations: object recognition by ML
(Section V-A) and object detection using human recogni-
tion and machine recognition (Section V-B). Our primary
objective is to determine whether ML can reduce the burden
on the user during echolocation, i.e., the latter evaluation
is the main experiment. However, as far as we know, there
are no studies that recognize objects using only the acoustic
characteristics of reflected sound from the objects assuming
echolocation. Therefore, as a preliminary step to achieving
the research purpose, we also conducted ML evaluation with
several objects.

A. OBJECT RECOGNITION BY MACHINE LEARNING
1) INFLUENCE OF DISTANCE
We selected the target objects based on the idea that it is useful
to know the objects before touching them. Braille and tactile
paving are widely utilized as clues for visually impaired
people; however, they cannot knowwhere these clues are until
they have directly touched them. Also, doorknobs and door
handles are two objects that visually impaired people cannot
know the location of until they have directly touched them,
and although they can search for these objects by groping,
it is desirable to avoid touching unknown objects from the
viewpoints of hygiene and social acceptance. Therefore,
it will be useful if they can identify whether these objects
exist or not—and if they exist, what they are—without
contact. On the basis of these considerations, we selected
six target objects: wall, braille, door handle, doorknob,
directional tactile, and blister tactile (Fig. 11). We used
braille labels as braille. The door handle and doorknob
were made of ABS resin constructed by a 3D printer (UP
Plus 2). The directional/blister tactile was made of synthetic
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FIGURE 11. Tested objects: (a) wall, (b) braille, (c) door handle,
(d) doorknob, (e) directional tactile, and (f) blister tactile.

FIGURE 12. Experimental setup (side view).

rubber. The heights of the braille, door handle, doorknob, and
direction/blister tactile objects were 0.3 mm, 4 cm, 5 cm, and
3 mm, respectively.

A diagram of the evaluation setup is shown in Fig. 12. Each
target object was attached to a whiteboard, and the prototype
device was used to transmit the ultrasonic signal and record
the reflected sound. The distances between the device and
whiteboard were 25, 50, 75, 100, 125, 150, 175, and 200 cm.
Thirty measurements were performed at each distance (one
set). After detaching/attaching the objects and resetting the
device, we measured another set. In total, we obtained 2,880
data (six objects × eight distances × 30 measurements ×
two sets). We calculated the feature values described in
Section III-C2 and performed the evaluation by leave-one-
set-out cross-validation.

Fig. 13 shows the recognition accuracy at each distance.
In the case of without switching model, the system utilized a
25-cm model for all distances. As we can see in the figure,
the recognition accuracies were over 90% except for 100 cm
and the overall recognition accuracy was 92.5% by switching
model while the accuracy significantly decreased in the case
of without switching model. Even when switching model, the
recognition accuracy at 100 cm (75.6%) was lower compared
with other distances. This lower accuracy is presumably due
to the multipath characteristic. Specifically, reflected waves
from non-target objects located 100 cm away from the device
and target objects were recorded at the same time, which

FIGURE 13. Recognition accuracy at each distance. Error bars show
standard deviations between sets.

FIGURE 14. Confusion matrix of object recognition [%].

means the obtained frequency spectrum was different from
the original frequency spectrum.

Fig. 14 shows the confusion matrix of all distances. Each
row is normalized to 100%. As we can see, all recognition
accuracies were over 86% except for directional tactile.
We also found that no object and braille were confused and
that directional tactile was confused as no object, braille,
or blister tactile. This is presumably due to the height of the
objects: for example, the handle and doorknob used in this
study were 4 and 5 cm, respectively, which is higher than that
of the other objects. The previous study [17] also reported
that the depth of the notch in the frequency spectrum increases
with the height of the object; thus, the system could recognize
these objects more correctly than other objects using these
characteristic frequency spectra.

From the above results, we confirmed that the system
can recognize objects based on the reflected sound, and that
switching the ML model depending on the distance was
effective.

2) INFLUENCE OF ANGLE
As discussed in Section III-C4, the obtained frequency
spectrum changes depending on the angle between the device
and the object. Therefore, in this section, we investigated the

VOLUME 10, 2022 125271



H. Watanabe et al.: Human-Machine Cooperative Echolocation Using Ultrasound

FIGURE 15. Angle experiment setup (top view).

FIGURE 16. Recognition accuracy at each angle.

dependence of recognition accuracy on the angle. Fig. 15
shows the experimental setup. The angle between the device
and the object θ was varied from 0◦ to 40◦ in 10◦ increments
and the data was acquired 50 times at each angle. Since the
system could not detect the angles of 50◦ or more, we used
angles up to 40◦ for this evaluation. The data of 0◦ was
utilized as training data and we then tested the data of each
angle. The distance between the device and each object was
set to 50 cm.

Fig. 16 shows the recognition accuracy at each angle.
As we can see, the accuracy of all objects except handle
and doorknob decreased significantly when angles occurred,
and the handle and doorknob could be recognized with
high accuracy up to the angle of 30◦. This is presumably
due to the height of the objects. For example, the height
of braille/tactile paving and handle/doorknob was several
millimeters and 4–5 cm, respectively, and since we know that
the height affects the obtained frequency spectrum, the handle
and doorknob could bemore accurately recognized compared
to other objects.

These results confirm that when an angle occurs between
objects, some objects can be recognized while others cannot.
Our system assumes that the user selects the object to find and
then the machine sends a notification when it finds it. This
suggests that we need to change the acceptable object-device
angle depending on the user-specified object: i.e., for objects
like the handle and doorknob, which have high recognition
accuracy even when an angle occurs, a device-object angle up
to 30◦ is acceptable, while for objects like braille, which have
low recognition accuracy when an angle occurs, the system
should not perform recognition when an angle is detected.

FIGURE 17. Object detection experiment setup.

B. OBJECT DETECTION USING HUMAN RECOGNITION
AND MACHINE RECOGNITION
We next investigated the effect of combining ultrasonic
echolocation with ML. In this evaluation, we focus on the
effects of adding ML to conventional echolocation; thus,
we compare the performance of the ultrasonic echolocation
with and without ML. Fig. 17 shows a diagram of the
experimental setup. We assumed a scene in which the user
enters/exits a room via a door, and selected the doorknob
as the object to be detected. Note that our objective in this
work is not to investigate whether it is possible to search
for an object among multiple objects but rather to determine
whether the introduction of ML to echolocation reduces the
burden on the user. Therefore, we tested only one type of
object here. We placed the doorknob at any one of nine
locations within a height range of 90–110 cm. This range
was determined by considering where the doorknob was
expected to exist. We used the same used doorknob as the
previous evaluation and trained the ML model using the data
obtained in Section V-A1. Also, considering the results of
Section V-A2, we set the acceptable angle as −30◦ to 30◦.
The following experiments were approved by the Human
Ethics Committee of Graduate School of Engineering, Kobe
University (Permission Number: 04-02).

1) SIGNAL TRANSMISSION INTERVAL
We first investigated the suitable interval of signal trans-
mission. Although the signal interval of expert human
echolocation is approximately 600 ms [18], [19], it is not
clear whether this interval is also suitable for object detection
using ultrasonic echolocation. In human echolocation, the
clicking sound is generated by clicks of the tongue, which
limits the interval of signal transmission; however, the system
is capable of transmitting signals at shorter intervals than
human echolocation. Therefore, we investigated the suitable
interval of signal transmission.

Ten sighted echolocation novices aged 21–23 year-old
(all males) participated in this experiment. As shown in
Fig. 17, participants stood 75 cm away from the wall and
moved the device as if scanning the wall to detect the object.

125272 VOLUME 10, 2022



H. Watanabe et al.: Human-Machine Cooperative Echolocation Using Ultrasound

First, we asked them to practice this detection for 5–10
minutes with their eyes open. The practice was finished
when they felt they could find the object with their eyes
closed. The doorknob was then set at a random location
and participants explored it with their eyes closed. They
reported to the experimenter when they thought they had
found it. The experimenter checked the distance between the
positions of the doorknob and the projected position of the
device on the wall, which was visualized by a laser pointer
placed at the bottom of the device. When the distance was
within approximately 5 cm, the experiment was finished;
otherwise, they continued the experiment until they could
find it. Participants tried this experiment for three intervals
of signal transmission:
• 200 ms: the shortest interval of signal transmission that
was possible in the implemented device

• 400 ms: midway point between 200 ms and 600 ms
• 600 ms: interval of human echolocation [18], [19]

The order of tested signal intervals was set randomly.
Participants performed the above three trials under two
conditions: using only the audible sound converted from
the ultrasound (audio) and using converted sound and the
vibration that indicates the ML result (audio + vibra-
tion). Since the proposed method is based on ultrasonic
echolocation, all participants first tested the audio condi-
tion to get familiar with ultrasonic echolocation and then
tested the audio + vibration condition. At the end of
each test, participants were asked which intervals they
preferred.

Table 2 lists the preferred signal intervals. For audio, the
most preferred signal interval was 200 ms (selected by seven
out of ten participants). They commented that the reason for
this was ‘‘shorter signal intervals increased the scanning
speed of the object’’. On the other hand, participants A and D
commented that ‘‘too short a signal interval was annoying’’.
Participants C, E, and G, who selected 400 ms or 600 ms,
commented that ‘‘when the signal interval was too short,
it was difficult to distinguish the sound’’.

For audio + vibration, the most preferred interval was
also 200 ms (selected by nine out of ten participants).
More participants here preferred 200 ms than under the
audio condition, commenting that ‘‘vibration and sound were
presented in short intervals, making it easier to find the
doorknob when moving the device little by little.’’.

Considering these results, we set the interval to 200 ms
in the following experiment. Note that, in the actual use of
the system, users can set their preferred signal interval. Also,
as described above, the short signal interval increased the
obtained information while it was uncomfortable for the user.
We discuss this in detail in Section VI-B.

2) OBJECT DETECTION
Next, we investigated the effect of combining ML with
echolocation. The experimental environment was the same as
in the previous section (see Fig. 17), and the participants were
also the same (i.e., all had already trained with the proposed

TABLE 2. Preferred interval of signal transmission [ms]. 200/400 means
participants felt there was no difference between the two.

method). We investigated the same two methods (audio and
audio+ vibration) as in the previous section. Note that audio
is the baseline, as our method is based on echolocation.
The tested order of audio and audio + vibration was set
to provide a counterbalance across participants. Participants
tested three times for each method. To reduce the influence
of the doorknob position, the three positions were set to
include all three vertical lines (left, middle, and right) and
horizontal lines (top, middle, and bottom) of Fig. 17 (e.g., for
participant A, the positions of the doorknob were 1, 5, and
9 in the case of audio and 2, 4, and 9 in the case of audio
+ vibration). The start position of each experiment was set to
the middle of the area (position 5). A total of 60 measurement
data items (three trials × two methods × ten participants)
were obtained. To investigate how ML affects user behavior,
we placed a laser pointer at the bottom of the device (5
cm below the center of the speaker), recorded the trajectory
of the laser pointer projected on the wall by video, and
obtained the trajectory of the device by image processing. The
participants reported to the experimenter when they thought
they had found the doorknob. The experimenter checked the
position of the device in the same way as in the previous
section. When the distance was within approximately 5 cm,
the experiment was finished; otherwise, it was counted as an
incorrect answer and the experiment was continued. When
the time exceeded 300 s, the experimenter finished the
experiment. After each experiment, the participants were
asked to answer the NASA-TLX as well as to answer open-
ended questions regarding how they felt about the system at
the end of both methods. Evaluation metrics here were the
number of incorrect answers, the required time for detecting
the object, NASA-TLX, and the exploratory behavior of the
user (trajectory of the laser pointer). The obtained results are
shown below.

a: NUMBER OF INCORRECT ANSWERS
Table 3 lists the number of incorrect answers and timeouts
for each participant. As we can see, the total number was the
same for both methods. The number of incorrect answers was
low regardless of ML except for participant G, who stated
that ‘‘I felt the sound changed even in places where the object
did not exist’’, which resulted in a higher number of incorrect
answers compared to the other participants.
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TABLE 3. Number of incorrect answers and (timeouts) for each
participant.

FIGURE 18. Required time for detecting the object.

b: REQUIRED TIME FOR DETECTION
Fig. 18 shows the required time for detecting the object.
By combining ML with echolocation, the required time
decreased from 71.5 s to 45.9 s on average. We conducted
Wilcoxon signed rank tests and while we confirmed that there
was no significant difference between the methods, it was
close to significance (p =.054).

c: NASA-TLX
As overall workload, we selected Raw TLX (RTLX), which
is the average of each subscale [55]. The RTLX of audio
and audio + vibration was 50.6 and 35.6, respectively.
We conducted a paired t-test and found a significant
difference between the methods (t (9)= 2.93, p < .05). Fig. 19
shows the rating of each subscale of NASA-TLX, where
lower values correspond to a lower workload. As we can
see, the overall rating decreased when ML was combined.
In particular, the means of mental demand (67), effort (61.5),
and frustration (50.5) decreased by 43.3% (38), 36.6% (39),
and 30.7% (35), respectively. On the other hand, the means
of physical demand (49.5), temporal demand (50.5), and own
performance (24.8) decreased by 20.2% (39.5), 16.8% (42),
and 19.2% (20), respectively, all of which are smaller than
the other three subscales. It is worth noting that the rating
of own performance was low regardless of the method, i.e.,

FIGURE 19. Subscale ratings of NASA-TLX: mental demand (MD), physical
demand (PD), temporal demand (TD), own performance (OP), effort (EF),
and frustration (FR).

FIGURE 20. Trajectory under audio condition (participant C). Dotted circle
shows location of the doorknob.

even when the participants used only the sound, the sense of
accomplishment was high.

d: EXPLORATORY BEHAVIOR
Figures 20 and 21 show an example of exploratory behavior
by using the trajectory of the third trial of participant C.
Note that, as described above, since the laser pointer was
placed 5 cm below the speaker, the actual search trajectory
of the speaker was 5 cm above the trajectory shown in the
figure. In the case of audio (Fig. 20), the participant scanned
the whole area once and returned to the point where he felt
suspicious. Then, hemoved the device left and right to be sure
of the difference in sound. In contrast, in the case of audio +
vibration (Fig. 21), the participant stopped at the point where
he felt suspicious before scanning the whole area andwhen he
felt the vibration from the machine, he answered the location
of the object with confidence.

VI. DISCUSSION & LIMITATIONS
A. EFFECTIVENESS OF MACHINE LEARNING
The results of our evaluation confirmed that ML can
recognize an object using the reflected sound and that the
required time for object detection was decreased, although
the difference was not statistically significant. Also, the
result of NASA-TLX showed that the mental workload was
significantly different between audio and audio + vibration,
as the participants could detect the object with greater
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FIGURE 21. Trajectory under audio + vib. condition (participant C). Dotted
circle shows location of the doorknob.

confidence by utilizing the ML recognition. As shown in
Fig. 20, with audio, the participant searched the same area
several times to be sure of the difference of sound, whereas
with audio+ vibration, he could detect the object much faster
thanks to being supported by the machine. Thus, we conclude
that theML can both support the decisions of participants and
increase their confidence in responding.

In the questionnaire, nine out of ten participants answered
that they preferred audio + vibration to audio, stating that
they had more confidence compared to when relying on
sound alone. Participant A, who preferred audio, answered
that ‘‘the vibration from the ML distracted me and I could
not concentrate on the sound’’. A possible solution is to use
sound as the main method and offer vibration as an option,
where users turn on ML only when they want it. Users should
also be able to switch the sound presentation on/off when
needed, since unintended sound presentation may interfere
with their perception of acoustic clues from the environment.

In this study, we set the signal interval to 200 ms;
however, the preferred interval was different depending on
the participant (see Table 2). To examine this in greater
detail, we compared the required time for object detection
under the audio condition between participants who preferred
200 ms and those who preferred another interval. Note that
participant I was excluded from this comparison because he
felt both 200 and 400 ms were suitable. The average required
time for participants who selected 200 ms was 58.6 s and for
those who selected another interval was 82.7 s. We presume
that an unsuitable signal interval may have caused extra time
for object detection.

In our evaluation, we controlled the system settings to
observe the changes with and without ML; however, the
proposed system allows users to change various param-
eters (interval of signal transmission, with/without ML,
with/without sound, and magnification of conversion) in
accordance with their preferences. We therefore consider that
the above problem can be solved by adjusting the settings
depending on the preference of each user.

Although there was no significant difference in the number
of incorrect answers or in the required time for detecting the
object with/without ML, our goal is to reduce the burden
of conventional echolocation by introducing ML. Therefore,
we consider that the proposed method has a positive effect by
reducing NASA-TLX, which indicates mental workload.

B. COMBINATION OF HUMAN RECOGNITION AND
MACHINE RECOGNITION
As described in Section V-B1, the system transmitted the
signal every 200 ms, and the converted sound and ML result
were presented for each detected signal. Several participants
were annoyed by the signals presented at short intervals,
while in audio+ vibration, most of the participants preferred
the ML to respond at 200-ms intervals. On the basis of these
findings, we felt that the presentation intervals of audio and
vibration should be different, i.e., the system should transmit
the signal every 200 ms. However, the converted sound is
presented to the user at intervals of 200–600 ms depending
on user preference, and the machine recognizes and presents
the result to the user at intervals of 200 ms.

As shown in Fig. 19, the ratings of own performance were
low (high sense of accomplishment) for most participants
regardless ofML. Subject E commented that ‘‘I felt a stronger
sense of accomplishment when I used only sound because I
felt that I did it on my own’’. Prior studies have indicated that
understanding the surroundings by sound is valuable [12],
[13]. Moreover, in the experiment of participant J, the
required times for detection with and without ML were 69 s
and 300 s (timeout), respectively, even though the position
of the object was the same for each trial. He commented
that ‘‘in the case of audio + vibration, I relied only on the
machine (vibration) without noticing and did not use the
sound’’. Therefore, we conclude that both human and ML
recognition is essential for our system.

C. STRATEGY OF MACHINE LEARNING
Participants I and J commented that ‘‘ML misrecognition
happened in an area where there was no object, and it took
a long time to search for the true position of the object’’.
Considering actual use in a real environment, misrecognition
will probably happen evenmore, andMLmay confuse human
judgment. Therefore, we consider that it is desirable to make
the system a precision priority, i.e., the probability that the
machine judges that the object is the user-specified object
should be high even if the machine makes some mistakes in
detecting objects. Moreover, although we used all of the ML
recognition results in this study, we can utilize the majority
voting of the latest few recognition results.

Finally, our system used a monotonous vibration of
100 ms for presenting the detection result in this study;
however, participant B commented that ‘‘it may be easier
to understand if there were patterns to the vibrations’’.
Therefore, we consider it is effective to provide a pattern to
the vibration depending on the probability of the machine
result (e.g., strong and long vibration when the probability
is high and weak vibration when the probability is low).

D. LIMITATIONS
1) TOWARD COOPERATIVE ECHOLOCATION
In this paper, as a first step toward cooperative echolocation,
we have focused on clarifying the effectiveness of ML in
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echolocation and how best to incorporate it. To the best of
our knowledge, this is the first study to specifically examine
cooperative echolocation. As the next steps, we need to
conduct further investigation related to the effects of using
visually impaired people as participants, long-term effects,
and evaluations across different objects and conditions (e.g.,
wider/more crowded environments).We consider the findings
in this paper to provide a solid basis for implementing the next
steps.

In this study, we set six objects as the targets. It is preferable
if the user remembers the sounds of all objects; however,
of course this becomes more difficult when the number of
objects increases. In such cases, the user should try to identify
a place that sounds different from the surroundings, rather
than to memorize the sound of every object. By obtainingML
results at the location where the user perceives a difference
in sound, the user should be able to detect the object with
confidence.

2) MAGNIFICATION OF TIME EXPANSION
When 1/20 magnification is used, it is desirable to use MDH
of 1/20 scale; however, this was too small to insert the
microphones in this study. If we utilize a smaller microphone,
it will be possible to use MDH of 1/20 scale, which will make
both discrimination and sound source localization easier.
Also, since our system can change the magnification of con-
version, users can change the magnification depending on the
situation: i.e., if they want to grasp the positional relationship
of surrounding objects, they can use 1/7 magnification, and
if they want to recognize the kind of object, they can use
1/20magnification. Further investigation into the relationship
betweenmagnification and ease of recognition will be needed
in the future.

3) DYNAMIC CHANGE OF TRANSMITTED SIGNAL
Bats are known to dynamically change the type and interval
of the signals they transmit depending on the distance to the
target and the information obtained from the echoes, after
which they select the optimal signal for the information they
want [48], [56]. Using the ecology of bats as a reference,
the proposed method can also dynamically change the
transmitting signal according to the situation, which may lead
to more accurate recognition for humans/machines. We leave
the adaptive change of transmitting signal to future work.

4) EFFECT OF MULTIPATH AND ANGLE
In places with many reverberations, it is difficult to recognize
objects because when the system simultaneously captures
the reflected sound of the target object and that of another
object, the frequency spectrum changes, as discussed in
Section V-A1. When the user is close to a certain object, the
distance from the other object presumably increases, which
means the system is less susceptible to the multipath effect.
Therefore, in a reverberant environment, the system should
recognize objects within a close distance.

By setting the acceptable angle depending on objects, the
system can detect the correct objects, as shown in Section V-
B2. Since the signal transmission interval is 200 ms (5
signals/s), we consider there is a certain timing at which the
user should search for the object within the acceptable angle.

5) VISUALLY IMPAIRED PARTICIPANTS
Even when sound and ML were combined, the participants
required 45.9 s on average to detect an object, which
is too long for use in a real environment. However, the
participants were all sighted and were novices when it
came to echolocation; therefore, echolocation experts will
presumably be able to locate target objects faster, especially
when ML is utilized. However, it is difficult to perform
evaluations with echolocation experts because relatively
few visually impaired people can perform echolocation.
We expect that the proposed system will encourage visually
impaired people who are not familiar with echolocation
to try it. In future work, we plan to conduct long-term
experiments with such individuals and include the training
of echolocation.

Since the experiments in this study were conducted with
sighted people, the participants were asked to match the
sounds they heard with the actual environment by using
their own eyes during the training phase. When visually
impaired people use the proposed method, they will need
someone to teach them the correct answer during the training
phase, which is also a necessary procedure for learning
the current echolocation techniques. However, the proposed
method will be able to teach the correct answer through ML,
thus eliminating the need for someone to teach the correct
answer during the training phase.

We should also point out that the participants in this
paper were young while many visually impaired people
are elderly. Since our work here represents the first step
toward cooperative echolocation, our focus was limited to
determining whether combining echolocation with ML is
effective; thus, we tested its effectiveness on participants who
are easy to recruit. We will improve the system based on
our findings here and conduct a long-term evaluation of the
system with actual visually impaired people as the next step.

VII. CONCLUSION
In this paper, we proposed a cooperative echolocation method
that combines human recognition of audible sound converted
from ultrasound with recognition by ML. We implemented
a prototype device and experimentally demonstrated that the
recognition accuracy for six objects was 92.5% on average.
We also found that the detection time was decreased from
71.5 s to 45.9 s when using ML compared to when it was not
used. The results also confirmed that mental workload was
significantly decreased byML. On the basis of these findings,
we were able to clarify how ML should be incorporated into
echolocation.
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