神戸大学附属図書館デジタルアーカイブ
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/0100482032
このアイテムのアクセス数:
73
件
(
2025-05-28
13:24 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
0100482032 (fulltext)
pdf
9.33 MB
167
メタデータ
ファイル出力
メタデータID
0100482032
アクセス権
open access
出版タイプ
Version of Record
タイトル
Ship Anomalous Behavior Detection Using Clustering and Deep Recurrent Neural Network
著者
Zhang, Bohan ; Hirayama, Katsutoshi ; Ren, Hongxiang ; Wang, Delong ; Li, Haijiang
著者名
Zhang, Bohan
著者ID
A1590
研究者ID
1000000273813
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail?systemId=0feb794542a836a9520e17560c007669
著者名
Hirayama, Katsutoshi
平山, 勝敏
ヒラヤマ, カツトシ
所属機関名
海事科学研究科
著者名
Ren, Hongxiang
著者名
Wang, Delong
著者名
Li, Haijiang
言語
English (英語)
収録物名
Journal of Marine Science and Engineering
巻(号)
11(4)
ページ
763
出版者
MDPI
刊行日
2023-04
公開日
2023-05-22
抄録
In this study, we propose a real-time ship anomaly detection method driven by Automatic Identification System (AIS) data. The method uses ship trajectory clustering classes as a normal model and a deep learning algorithm as an anomaly detection tool. The method is divided into three main steps: (1) quality maintenance of the original AIS data, (2) extraction of normal ship trajectory clusters using Density-Based Spatial Clustering of Applications with Noise (DBSCAN), in which a segmented improved Dynamic Time Warping (DTW) algorithm is used to measure the degree of trajectory similarity, (3) the clustering results are used as a normative model to train a Bi-directional Gated Recurrent Unit (BiGRU) recurrent neural network, which is used as a trajectory predictor to achieve real-time ship anomaly detection. Experiments were conducted using real AIS data from the port of Tianjin, China. The experimental results are manifold. Firstly, the data pre-processing process effectively improves the quality of raw AIS data. Secondly, the ship trajectory clustering model can accurately classify the traffic flow of different modes in the sea area. Moreover, the trajectory prediction result of the BiGRU model has the smallest error with the actual ship trajectory and has a better trajectory prediction performance compared with the Long Short-Term Memory Network model (LSTM) and Gated Recurrent Unit (GRU). In the final anomaly detection experiment, the detection accuracy and timeliness of the BiGRU model are also higher than LSTM and GRU. Therefore, the proposed method can achieve effective and timely detection of ship anomalous behaviors in terms of position, heading and speed during ship navigation, which provides insight to enhance the intelligence of marine traffic supervision and improve the safety of marine navigation.
キーワード
AIS trajectories
anomaly detection
DTW
DBSCAN
BiGRU
カテゴリ
海事科学研究科
学術雑誌論文
権利
© 2023 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
関連情報
DOI
https://doi.org/10.3390/jmse11040763
詳細を表示
資源タイプ
journal article
eISSN
2077-1312
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る