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Simple Summary: Recent molecularly targeted drugs used to treat castration-resistant prostate
cancer (CRPC) soon lose effectiveness as CRPC develops resistance to these therapeutics. New
molecularly targeted drugs for effective treatment of CRPC are needed. In this study, we investigated
the anticancer activity of nanaomycin K, a novel compound extracted from Streptomyces sp., in
CRPC and non-CRPC cell lines. Nanaomycin K significantly inhibited the growth of CRPC and non-
CRPC cells by inducing apoptosis through the Caspase-3 pathway. Nanaomycin K also significantly
inhibited migration of CRPC, decreasing its invasive potential. The inhibition of migration by
nanaomycin K was shown to be mediated by inhibition of Ras, Slug, and MAPK phosphorylation.
In vivo, nanaomycin K also significantly and safely inhibited the growth of tumors derived from
CRPC. Nanaomycin K’s anti-tumor effects on CRPC are achieved in part by inhibiting growth
and migration.

Abstract: Since castration-resistant prostate cancer (CRPC) acquires resistance to molecularly targeted
drugs, discovering a class of drugs with different mechanisms of action is needed for more efficient
treatment. In this study, we investigated the anti-tumor effects of nanaomycin K, derived from “Strep-
tomyces rosa subsp. notoensis” OS-3966. The cell lines used were LNCaP (non-CRPC), PC-3 (CRPC),
and TRAMP-C2 (CRPC). Experiments included cell proliferation analysis, wound healing analysis,
and Western blotting. In addition, nanaomycin K was administered intratumorally to TRAMP-C2
carcinoma-bearing mice to assess effects on tumor growth. Furthermore, immuno-histochemistry
staining was performed on excised tissues. Nanaomycin K suppressed cell proliferation in all cell
lines (p < 0.001) and suppressed wound healing in TRAMP-C2 (p = 0.008). Nanaomycin K sup-
pressed or showed a tendency to suppress the expression of N-cadherin, Vimentin, Slug, and Ras
in all cell lines, and suppressed the phosphorylation of p38, SAPK/JNK, and Erk1/2 in LNCaP
and TRAMP-C2. In vivo, nanaomycin K safely inhibited tumor growth (p = 0.001). In addition,
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suppression of phospho-Erk1/2 and increased expression of E-cadherin and cleaved-Caspase3 were
observed in excised tumors. Nanaomycin K inhibits tumor growth and suppresses migration by
inhibiting epithelial-mesenchymal transition in prostate cancer. Its mechanism of action is related to
the inhibition of phosphorylation of the MAPK signaling pathway.

Keywords: nanaomycin K; streptomyces; prostate cancer; castration-resistant prostate cancer; tumor
growth; migration; epithelial mesenchymal transition; MAPK signaling pathway

1. Introduction

Prostate cancer (PCa) is the second most frequent cancer and the fifth leading cause of
cancer death in men [1]. Metastatic PCa has a high degree of malignancy, and hormone
therapy aimed at suppressing androgen secretion and activity is the first-line treatment.
However, PCa can acquire castration resistance and become castration-resistant prostate
cancer (CRPC) within a few years [2]. Although docetaxel and other drugs are currently
approved for CRPC, the side effects are strong, continuous administration is difficult, and
further resistance may be acquired [3]. There is a need for new therapeutic agents with
different mechanisms of action and fewer side effects.

One of the mechanisms related to PCa’s acquisition of infiltration ability is epithelial-
mesenchymal transition (EMT). EMT is the process by which epithelial cells acquire the
traits of mesenchymal cells by reducing cell–cell adhesion, degrading the basement mem-
brane, losing cell polarity, and progressing to migration and infiltration [3]. EMT also
contributes to cancer metastasis as cancer cells infiltrate blood vessels and lymph vessels.
Thus, inhibiting EMT can inhibit PCa metastasis.

EMT is defined by decreased expression of epithelial markers such as E-cadherin
and increased expression of mesenchymal markers such as N-cadherin and vimentin [4].
Various signaling pathways such as transforming growth factor beta (TGF-β), Wnt, Notch,
and Hedgehog are known to be involved in EMT [5]. These signaling pathways ultimately
induce EMT-inducing transcription factors such as Slug, Snail, ZEB1/2, and TWIST1/2 [6].

EMT also promotes cancer stem cell transformation and is strongly associated with
resistance to therapeutic drugs [5]. It has also been implicated in ADT resistance in prostate
cancer [7]. Suppressing EMT is therefore important in the treatment of prostate cancer, as
EMT is involved in both metastasis and the induction of drug resistance.

Currently, PARP inhibitors such as Olaparib and Rucaparib are used for the treatment
of CRPC. These molecularly targeted drugs induce cancer cell death by inhibiting Poly
(ADP-ribose) polymerase-1 (PARP-1), which promotes the repair of DNA single-strand
breaks [8]. PARP inhibitors are expected to have anti-tumor effects in PCa where PARP-1 is
overexpressed [9]. However, BRCA1/2 gene mutations are required for PARP inhibitors to
be effective, and the incidence of BRCA1/2 gene mutations in metastatic CRPC patients is
only about 6.2% [10]. Therefore, molecularly targeted drugs with other mechanisms are
needed to treat CRPC without BRCA1/2 gene mutations.

Nanaomycin is a natural compound found in the culture medium of “Streptomyces rosa
subsp. notoensis” OS-3966. Currently, 12 analogues of nanaomycins A–K have been discov-
ered (Figure 1). Nanaomycins A–E have been found to be anti-mycoplasma substances,
and nanaomycin A has been used as a treatment for bovine dermatophytosis [11–13].
Nanaomycins F–K were found to inhibit the proliferation of EMT-induced cells [14]. In
particular, nanaomycin K is produced in higher quantities than nanaomycin H [14], and
nanaomycin K has shown anti-tumor effects on bladder cancer cell lines [15].
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Figure 1. Structure of nanaomycin K.

In this study, we examined the EMT-inhibitory effect of nanaomycin K on PCa in vitro
and in vivo using the human androgen-dependent LNCaP and androgen-independent
PC-3 PCa cell lines as well as the mouse androgen-independent PCa cell line TRAMP-C2.

2. Materials and Methods
2.1. Cells and Reagents

Two human PCa cell lines, androgen-dependent LNCaP and androgen-independent
PC-3, were grown in RPMI-1640 medium containing 10% fetal bovine serum (FBS) (Sigma-
Aldrich, St. Louis, MO, USA) and 1% penicillin/streptomycin (P/S) (FUJIFILM Wako
Pure Chemicals, Osaka, Japan) at 37 ◦C and 5% CO2. Murine androgen-independent PCa
cell line TRAMP-C2 was maintained in D-MEM medium with 10% FBS and 1% P/S at
37 ◦C and 5% CO2. Nanaomycin K was obtained from the culture broth of “Streptomyces
rosa subsp. notoensis” OS-3966 using the previously described purification methods [14].
Nanaomycin K was dissolved in dimethyl sulfoxide (DMSO) and then diluted.

2.2. Cell Proliferation Assays

We conducted cell proliferation assays with LNCaP, PC-3, and TRAMP-C2 in the pres-
ence of nanaomycin K to investigate its anti-tumor activity in vitro. One thousand LNCaP,
PC-3, and TRAMP-C2 cells were seeded and incubated for 24 h before being divided into
two groups. One group was placed in media containing 5 ng/mL of TGF-β (FUJIFILM
Wako Pure Chemicals), while the other group was placed in media without it [16,17]. After
switching media, 5 µg/mL nanaomycin K or DMSO was added to the cultures. Cell prolifer-
ation was assessed at 0, 24, 48, and 72 h of incubation using 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) (Promega Corporation,
Madison, WI, USA). All experiments were carried out in triplicate.

2.3. Wound Healing Assays

To assess the anti-tumor activity of nanaomycin K in vitro, wound healing assays
were conducted using LNCaP, PC-3, and TRAMP-C2 cells. One hundred thousand cells
were seeded and incubated overnight, after which they were divided into two groups and
treated with media containing or lacking 5 ng/mL TGF-β for 24 h. Following incubation,
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nanaomycin K (10 µg/mL) or 0.10% DMSO was added to the culture. The cell monolayers
were scratched using 200 µL micropipette tips in each well after they had been incubated
for 48 h. Then, cells were washed and fresh medium was added. Microscopic images were
obtained at three intervals after the cells were scratched: at the start, 6 h, and 12 h [15]. All
experiments were carried out in triplicate.

2.4. Western Blotting

One hundred thousand cells were seeded and incubated overnight, after which they
were divided into two groups and treated with media containing or lacking 5 ng/mL TGF-
β. A 24 h incubation period was followed by the addition of nanaomycin K (25 µg/mL) or
0.25% DMSO to the cultures. After cells were incubated for an additional 48 h in the pres-
ence of nanaomycin K or DMSO, they were washed and lysed in 8 M urea buffer. The sam-
ple buffer (Nacalai Tesque, Kyoto, Japan) was heated at 95 ◦C for 5 min and then combined
with each sample. The samples were separated using SDS-PAGE and then transferred onto
PVDF membranes. After blocking with Blocking One (Nacalai Tesque) or Blocking One-P
(Nacalai Tesque) and washing, the membranes were left to incubate overnight at 4 ◦C with
antibodies against E-cadherin (Biolegend, Hsinchu City, Taiwan), N-cadherin (Proteintech,
Rosemont, IL, USA), vimentin (Proteintech), phospho-p38 MAPK (Thr180/Tyr182) (Cell
Signaling Technology: CST, Danvers, MA, USA), phospho-SAPK/JNK (Thr183/Tyr185)
(CST), phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (CST), Snail (CST), Slug (CST),
Ras (CST), or β-actin (Santa Cruz Biotechnology, Dallas, TX, USA). After the membranes
had been washed again, they were incubated with HRP-conjugated secondary antibodies
(Anti-IgG (H + L chain) (Mouse) pAb-HRP or Anti-IgG (H + L chain) (Rabbit) pAb-HRP
(MBL, Nagoya, Japan)) for one hour at room temperature. Protein–antibody binding was
then detected using enhanced chemiluminescence.

2.5. Animal Experiments

To investigate the in vivo anti-tumor effects of nanaomycin K, animal experiments
were conducted using a mouse prostate cancer model. Male C57BL/6J mice, aged 6–8 weeks,
were obtained from CLEA Japan, Inc (Tokyo, Japan). One million cells were inoculated sub-
cutaneously at day 0 (n = 5, respectively) with VitroGel 3D (TheWell Bioscience, NJ, USA).
After the tumor’s long axis exceeded 10 mm, mice were randomly assigned to the treatment
group (0.5 mg/mouse and 1.0 mg/mouse of nanaomycin K) or the control group (DMSO).
The solvent used for administration to the animals was PBS, with a dosage of 80 µL. The
proportion of DMSO administered to the control group was 12%. Nanaomycin K was intra-
tumorally injected with Spongel (LTL Pharma, Tokyo, Japan). The size of the tumor was
calculated using the following formula: (longest diameter) × (shortest diameter)2 × 0.5.
The mice were terminated and tumors were harvested after five days of treatment [16].

2.6. Immunohistochemical Staining

Tissue sections were prepared by embedding fixed tumor tissue in paraffin, then de-
waxing and rehydrating them. Antigen retrieval was performed by heating the sections in
citrate buffer (pH 6.0 or 9.0) at 98 ◦C for 20 min. Immunohistochemical staining (IHC) was
performed on the tissue sections using an automatic tissue processor (Bond-Max; Leica Mi-
crosystems, Wetzlar, Germany) according to the standard protocol. Briefly, the sections were
incubated with primary antibodies anti-E-cadherin (Proteintech), anti-phospho-Erk1/2
(Biolegend), and anti-cleaved-Caspase 3 (CST). The sections were then treated with HRP-
conjugated secondary antibody (BOND Polymer Refine Detection (Leica)) according to the
standard protocols of the instrument after washing. The tissue sections were stained with
diaminobenzidine and counterstained with hematoxylin. The resulting tissue slides were
examined using a BZ-X710 microscope (Keyence, Osaka, Japan).
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2.7. Immunohistochemical Analysis

Based on the proportion of positive cells, IHC scoring calculated the staining intensity
as follows: 0 (negative), 1+ (weak), 2+ (medium), or 3+ (strong). The percentage of stained
cells (frequency score) was divided into three categories: 1, 0–10%; 2, 11–50%; and 3, more
than 50% stained cells. The frequency and intensity scores were multiplied to arrive at the
IHC score. This was performed for five fields of view for each group, and the average of
these was used as the final IHC score [16].

2.8. Ethical Approval

All animal studies were carried out in accordance with institutional ethical standards,
the ARRIVE guidelines, and all pertinent rules and regulations. No author has ever
conducted any research using human subjects. The Kobe University institutional ethics
and animal welfare committees reviewed and gave their approval to every aspect of the
experimental design and procedure.

2.9. Statistical Analysis

Comparisons between two different groups were made using Student’s t-test. Statisti-
cal differences between means were regarded as significant when p < 0.05 was reached.

3. Results
3.1. Nanaomycin K Inhibited the Growth of Prostate Cancer Cells

Absorbance at 0 h after the addition of 1.5 µg/mL of nanaomycin K significantly
inhibited LNCaP, PC-3, and TRAMP-C2 cancer cell growth compared to control cells after
24 h of culture (p < 0.05, or p < 0.01) (n = 3, Student’s t-test) (Figure 2). Nanaomycin K at
higher concentrations demonstrated strong cell cytotoxicity in vitro. In LNCaP, 5 µg/mL
nanaomycin K significantly inhibited cell proliferation in the presence of TGF-β.

Cancers 2023, 15, x FOR PEER REVIEW 5 of 13 
 

 

with HRP-conjugated secondary antibody (BOND Polymer Refine Detection (Leica)) ac-
cording to the standard protocols of the instrument after washing. The tissue sections were 
stained with diaminobenzidine and counterstained with hematoxylin. The resulting tissue 
slides were examined using a BZ-X710 microscope (Keyence, Osaka, Japan). 

2.7. Immunohistochemical Analysis 
Based on the proportion of positive cells, IHC scoring calculated the staining inten-

sity as follows: 0 (negative), 1+ (weak), 2+ (medium), or 3+ (strong). The percentage of 
stained cells (frequency score) was divided into three categories: 1, 0–10%; 2, 11–50%; and 
3, more than 50% stained cells. The frequency and intensity scores were multiplied to ar-
rive at the IHC score. This was performed for five fields of view for each group, and the 
average of these was used as the final IHC score [16]. 

2.8. Ethical Approval 
All animal studies were carried out in accordance with institutional ethical standards, 

the ARRIVE guidelines, and all pertinent rules and regulations. No author has ever con-
ducted any research using human subjects. The Kobe University institutional ethics and 
animal welfare committees reviewed and gave their approval to every aspect of the exper-
imental design and procedure. 

2.9. Statistical Analysis 
Comparisons between two different groups were made using Student’s t-test. Statis-

tical differences between means were regarded as significant when p < 0.05 was reached. 

3. Results 
3.1. Nanaomycin K Inhibited the Growth of Prostate Cancer Cells 

Absorbance at 0 h after the addition of 1.5 µg/mL of nanaomycin K significantly in-
hibited LNCaP, PC-3, and TRAMP-C2 cancer cell growth compared to control cells after 
24 h of culture (p < 0.05, or p < 0.01) (n = 3, Student’s t-test) (Figure 2). Nanaomycin K at 
higher concentrations demonstrated strong cell cytotoxicity in vitro. In LNCaP, 5 µg/mL 
nanaomycin K significantly inhibited cell proliferation in the presence of TGF-β. 

 
Figure 2. LNCaP, PC-3 and TRAMP-C2 cell proliferation effects of nanaomycin K in vitro. Cell 
proliferation in LNCaP, PC-3 and TRAMP-C2 cell lines was evaluated in vitro after treating the 
cells with 5 µg/mL nanaomycin K in the presence or absence of TGF-β for 72 h. Cells treated with 
DMSO were used as vehicle treated controls (n = 3, average ± SE bars, * p < 0.05, ** p < 0.01). The 
relative changes in cell proliferation were plotted as a function of time and normalized to the cell 
proliferation at the beginning of the culture period. 

Figure 2. LNCaP, PC-3 and TRAMP-C2 cell proliferation effects of nanaomycin K in vitro. Cell
proliferation in LNCaP, PC-3 and TRAMP-C2 cell lines was evaluated in vitro after treating the cells
with 5 µg/mL nanaomycin K in the presence or absence of TGF-β for 72 h. Cells treated with DMSO
were used as vehicle treated controls (n = 3, average ± SE bars, * p < 0.05, ** p < 0.01). The relative
changes in cell proliferation were plotted as a function of time and normalized to the cell proliferation
at the beginning of the culture period.

3.2. Migration-Inhibitory Effect of Nanaomycin K

Wound healing assays investigated whether cell migration was affected by nanaomycin
K. In LNCaP, nanaomycin K inhibited wound closure, but the difference was not significant.
On the other hand, nanaomycin K significantly inhibited cell closure in TRAMP-C2 12 h
after scratching the culture, in the presence of TGF-β (p = 0.008) (n = 3, Student’s t-test)
(Figure 3).
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Figure 3. Wound-healing inhibitory effect of nanaomycin K. (A) The ability of LNCaP, PC-3, and
TRAMP-C2 cells to migrate was studied in the presence of 10 µg/mL nanaomycin K, with or without
TGF-β, during a culture period of up to 12 h. (B) Wound closures compared to the wound at 0 h
(n = 3, average ± SE bars, ** p < 0.01).

3.3. Expression of EMT-Related Protein and MAPK Signaling after Culture with Nanaomycin K

Nanaomycin K decreased the expression of N-cadherin in LNCaP, PC-3, and TRAMP-
C2, and decreased the expression of Vimentin in LNCaP and PC-3 cells in the absence of
TGF-β as well as in LNCaP cells in the presence of TGF-β. A decreasing trend was observed
under other conditions, but without a significant difference (Figure 4a). Nanaomycin K
appeared to decrease the expression of Slug, a family of transcription factors that induce
EMT, in all cell lines, but Snail showed no significant changes caused by 25 µg/mL of
nanaomycin K (Figure 4b). Regarding the MAPK signaling pathway, the expression of
phospho-p38 and phospho-SAPK/JNK was reduced by nanaomycin K in LNCaP, as was
the expression of phospho-ERK1/2 in LNCaP, while a decreasing trend was observed
in TRAMP-C2 (Figure 4c). In particular, the expression of phospho-p38 in LNCaP and
phospho-ERK1/2 in TRAMP-C2 was suppressed by nanaomycin K in the presence of
TGF-β. Nanaomycin K appeared to decrease the expression of Ras in LNCaP and PC-3 in
the absence of TGF-β, as well as in PC-3 cells in the presence of TGF-β, while a decreasing
trend was observed in TRAMP-C2 in the presence of TGF-β, but without a significant
difference (Figure 4d). Full pictures of the Western blots and the densitometry scans are
presented in Figure S1 and Table S1 of a Supplementary Materials.
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Figure 4. Protein expression of EMT-related markers and MAPK signaling. The expressions of
(a) EMT markers (E-cadherin, N-cadherin, and Vimentin), (b) E-cadherin repressors (Slug, Snail),
(c) MAPK signaling (phospho-p38, phospho-SAPK/JNK, phospho-ERK1/2), and (d) Ras were deter-
mined in the presence of 25 µg/mL nanaomycin K and in the presence or absence of TGF-β in vitro
for 48 h in LNCaP, PC-3, and TRAMP-C2 cells. β-actin was used as a housekeeping protein.

3.4. Nanaomycin K Inhibited Tumor Growth In Vivo

Intratumoral injection of nanaomycin K at both 0.5 mg/body and 1.0 mg/body signifi-
cantly inhibited TRAMP-C2 tumor growth after 2 days of treatment compared to controls,
and the effect of 1.0 mg/body was stronger than that of 0.5 mg/body (p = 0.002 and
p = 0.003, respectively). During treatment days 3–5, the relative tumor volume of the con-
trol group increased, while the relative tumor volume of the 0.5 mg/body and 1.0 mg/body
group changed little. After 5 days of treatment, the 0.5 mg/body and 1.0 mg/body groups
showed significantly inhibited tumor formation compared to controls (both p = 0.001, re-
spectively) (n = 5, Student’s t-test) (Figure 5). There was no significant difference between
0.5 mg/body and 1.0 mg/body. No negative side effects were observed in either group
after treatment.

3.5. Changes of E-Cadherin, Phosho-ERK1/2 and Cleaved-Caspase-3 in Tumor Tissues after
Treatment with Nanaomycin K

In TRAMP-C2, nanaomycin K significantly increased the expression of E-cadherin
(0.5 mg/body and 1.0 mg/body: p < 0.001) (n = 5, Student’s t-test). In addition, phospho-
Erk1/2 expression was decreased by nanaomycin K treatment compared to control mice.
Effects were more pronounced at 1.0 mg/body of nanaomycin K (0.5 mg/body: p = 0.089,
1.0 mg/body: p = 0.031) (n = 5, Student’s t-test). The expression of cleaved-Caspase3
was concentration-dependently increased by nanaomycin K (0.5 mg/body: p = 0.009,
1.0 mg/body: p < 0.001) (n = 5, Student’s t-test) (Figure 6).
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Figure 5. In vivo anti-tumor effects of nanaomycin K. Prostate cancer cell line TRAMP-C2 was
subcutaneously inoculated into C57BL/6 mice. On day 1, mice with confirmed tumor growth
received intratumoral treatment with either 0.5 mg/body or 1.0 mg/body nanaomycin K or vehicle
control. (a) Tumor volume was measured for 5 days and standardized to the volume on day 1
to calculate the tumor growth ratio, which is depicted in the graphs (n = 5, average ± SE bars).
(b) Relative mouse weight was measured for 5 days and standardized to the volume on day 1 to
calculate the tumor growth ratio, which is depicted in the graphs (n = 5, average ± SE bars).
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Figure 6. Immunohistochemical analysis of TRAMP-C2 mouse tumors treated with nanaomycin K for
E-cadherin, phospho-Erk1/2, and cleaved-Caspase 3. (a) Immunohistochemical analysis of TRAMP-C2
mouse tumors for E-cadherin, phospho-Erk1/2, and cleaved-Caspase 3 after nanaomycin K treatment.
Immunohistochemical staining was used to assess the expression of each marker in tumor tissues,
which were then evaluated using a staining score ranging from 0 to 9. (b) Representative images for
each marker are shown.
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4. Discussion

Nanaomycin K is a natural compound found in the cultured broth of “Streptomyces rosa
subsp. notoensis” OS-3966, as a new analog of nanaomycin having an ergothioneine group
in its partial structure [14]. Nanaomycin K has been reported to have strong anti-tumor
and EMT-inhibitory effects on bladder cancer cell lines [15]. In this study, we evaluated the
ability of nanaomycin K to inhibit tumor growth and suppress the process of EMT in vitro
and in vivo in CRPC cell lines.

In vitro, nanaomycin K inhibited the growth, migration, and metastasis of prostate
cancer cell lines. Nanaomycin K inhibited cell proliferation in the presence or absence of
TGF-β. TGF-β is secreted by tumor cells and cells in the tumor microenvironment. In
cancers with advanced malignant transformation, increased expression of TGF-β strongly
induces cancer cell proliferation [18], and TGF-β is known to be associated with prolifer-
ation in prostate cancer [19], suggesting that the growth of prostate cancer cell lines was
inhibited by nanaomycin K. Other studies have reported that the relative fold change after
72 h of treatment with Olaparib in PC-3 was 5.1 [20]. The relative fold change after 72 h of
treatment with nanaomycin K in PC-3 is expected to show a stronger growth inhibitory
effect since it is smaller.

Cancer cell migration is a critical factor in the spread of cancer. Wound healing assays
suggested that nanaomycin K inhibits migration of CRPC cell lines stimulated by TGF-β.
TGF-β promotes EMT through the TGF-β signaling cascade and enhances the migration
ability of cancer cells [21–23]. Nanaomycin K appeared to inhibit the EMT migration
induced by TGF-β.

With regard to the mechanism of EMT suppression, Western blotting showed that
nanaomycin K decreases the expression of the EMT markers N-cadherin and vimentin
at the protein level. Prostate cancer progression increases the mesenchymal markers N-
cadherin and vimentin; N-cadherin promotes EMT via activation of the ErbB signaling
pathway and enhances the migratory and invasive potential of cancer cells [24]. Vimentin
is also used as a marker for EMT since it is barely expressed in epithelial cells, but shows
increased expression when cells acquire a mesenchymal phenotype, and it promotes EMT
by regulating the E-cadherin/β-catenin complex and other functions [25], thus suggesting
that nanaomycin K inhibits EMT at the protein level.

Additionally, Western blotting showed that nanaomycin K decreases the expression
of Slug transcription factors that promote EMT markers at the protein level. In a model
of TGF-β-induced prostatic EMT, Slug is the dominant regulator of EMT initiation [26].
Nanaomycin K may suppress Slug-induced EMT.

The results of cell proliferation and wound healing analyses showed that nanaomycin
K was more effective against cell lines in which TGF-β was applied. In this study, we
focused on the MAPK signaling pathway activated by TGF-β to determine the mechanism
of action, but PI3K is another protein known to be activated by TGF-β [27]. PI3K is involved
in cell proliferation, migration, differentiation, and cell death; its abnormal activity in PCa
and CRPC has been shown to contribute to cancer malignancy [28,29]. It has been reported
that inhibition of both PI3K and MAPK in CRPCs improves the therapeutic efficacy of
microtubule-targeting drugs such as docetaxel [30]. Therefore, in the future, we will
investigate whether nanaomycin K inhibits PI3K activation and whether the combination
of nanaomycin K and PI3K inhibitors will show even better anti-tumor effects.

The MAPK signaling pathway is critical for various cancer processes including EMT,
cell proliferation, differentiation, and apoptosis. Park et al. stated that the knockdown of
Cathepsin A, which is highly expressed compared to normal prostate tissue and causes the
inactivation of p38, a major MAPK signaling pathway protein, has been shown to inhibit
proliferation by arresting the cell cycle and migration by suppressing EMT, and anti-tumor
effects [31]. Our study also demonstrated that it causes the inactivation of Erk1/2, p38, and
JNK, the three main proteins of the MAPK signaling pathway. Thus, nanaomycin K could
be a molecularly targeted drug against the MAPK signaling pathway.
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In addition, Western blot analysis demonstrated that nanaomycin K reduced the
expression of Ras. Ras is an important protein that links PI3K/MAPK signaling [32]. Ras is
overexpressed in many cancers and is involved in cancer growth and metastasis through the
activation of PI3K/MAPK, making it a potential target for cancer therapy [33]. Ras is known
to activate ERK1/2 in the MAPK signaling pathway [34], and it is therefore suggested that
the reduction of Ras expression by nanaomycin K may be one of the mechanisms by which
it inhibits the activation of the MAPK signaling pathway.

In animal experiments, nanaomycin K had an inhibitory effect on tumor growth
compared to controls, without any adverse effects. Our previous study in bladder cancer
cell lines showed that nanaomycin K has a significant dose-dependent anti-tumor effect [15].
In this PCa study, no dose-dependence was observed, and the same level of anti-tumor
effects was observed. Thus, prostate cancer cell lines may be more sensitive to nanaomycin
K than bladder cancer cell lines.

Immunohistochemical analysis suggested that nanaomycin K’s anti-tumor effects
in castration-resistant prostate cancer involve suppressing Erk1/2 phosphorylation and
inducing apoptosis in vivo. Regarding phosphorylated Erk1/2, in a study of prostate
cancer patients, a significant increase was observed in CRPC compared to primary prostate
cancer, confirming the association between phosphorylated Erk1/2 and biochemical recur-
rence [35]. Caspase 3 expression is also decreased in the tissues of patients determined to
have higher-grade prostate cancer associated with apoptosis resistance in CRPC [36,37]
Thus, nanaomycin K’s therapeutic mechanism of action may involve decreasing Erk1/2
and increasing Caspase 3.

Docetaxel is the current standard of care for CRPC. Although the use of docetaxel
improves clinical outcomes and prolongs survival, resistance is acquired in many cases [38],
and EMT is involved in the acquisition of resistance to anticancer drugs by promoting
cancer stemness and mediating resistance to chemotherapy [39]. EMT is also involved
in the acquisition of docetaxel resistance, and suppression of EMT has been reported
to significantly increase chemosensitivity to docetaxel [40,41]. Nanaomycin K inhibits
EMT via suppression of MAPK pathway activation and has shown no significant adverse
effects in animal studies. Therefore, the combination of nanaomycin K with currently used
CRPC drugs such as docetaxel may enhance the efficacy of CRPC drugs and contribute to
improved clinical outcomes and survival.

It is important to note the limitations of this study. First, we used only three prostate
cancer cell lines to evaluate the anti-tumor properties of nanaomycin K. Next, a larger
number of samples for wound healing and Western blotting analysis would obtain more
definitive results. Next, more detailed studies are needed on the mechanisms that inhibit
the EMT and MAPK pathways. Additionally, the number of experimental animals used
in in vivo experiments was not large. Furthermore, a positive subject group needs to
be added to clarify the effect of nanaomycin K. Moreover, the present study used the
TRAMP-C2 cell line as an androgen-independent cell line, as in previous studies [42],
but whether this cell line is androgen-dependent or not is controversial and needs to be
investigated in the future. Lastly, this study needs more detailed mechanical exploration, a
blocking study of the related protein in vivo, pharmacokinetics, an investigation of different
routes of administration, and toxicity examinations in nanaomycin K. Such studies will be
undertaken in the next paper.

5. Conclusions

Our findings suggest that treatment with nanaomycin K resulted in the suppression
of MAPK signaling pathway phosphorylation and reduced the growth and migration of
prostate cancer cells. Our results indicate that the anti-tumor effects of nanaomycin K may
be associated with inhibition of MAPK signaling pathway activation. Additional in vitro
and in vivo research on nanaomycin K is necessary.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers15102684/s1. Figure S1: Expression of EMT Related Protein and
MAPK Signaling after Culture with Nanaomycin K. Protein expression of EMT-related markers and
MAPK signaling. The expressions of (A)EMT markers (E-cadherin, N-cadherin, and Vimentin),
(B)Ecadherin repressors (Slug, Snail), (C)MAPK signaling (phospho-p38, phospho-SAPK/JNK,
phospho-ERK1/2), and (D)Ras were determined in the presence of 25 µg/mL Nanaomycin K and in
the presence or absence of TGF-β in vitro for 48 h in LNCaP, PC-3, and TRAMP-C2 cells. β-actin was
used as a housekeeping protein. In each protein, the left is a whole blot and the right is a molecular
weight marker taken at the same time. The molecular weight markers are all the same, and are shown
from top to bottom as 250, 150, 100, 50, 37, 25, 20, 15, and 10 kD. Table S1: Densitometry measure
reading_intensity ratio for each band in western blot.
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