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A relational dataset is often analyzed by optimally assigning a label to each element through clustering
or ordering. While similar characterizations of a dataset would be achieved by both clustering and ordering
methods, the former has been studied much more actively than the latter, particularly for the data represented
as graphs. This study fills this gap by investigating methodological relationships between several clustering and
ordering methods, focusing on spectral techniques. Furthermore, we evaluate the resulting performance of the
clustering and ordering methods. To this end, we propose a measure called the label continuity error, which
generically quantifies the degree of consistency between a sequence and partition for a set of elements. Based
on synthetic and real-world datasets, we evaluate the extents to which an ordering method identifies a module
structure and a clustering method identifies a banded structure.
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I. INTRODUCTION

Identifying macroscopic connection patterns in graphs is a
major challenge in network science. A number of algorithms
have been proposed to extract different features, such as
community structure [1–3], hierarchical community structure
[4,5], core-periphery structure [6], nested structure [7], and
banded structure [8–10], to name a few.

When a graph consists of subgraphs in each of which ver-
tices are densely connected, the graph structure is referred to
as a community structure. A common approach for extracting
a community structure is the partitioning of graphs, termed
community detection [2,3] or graph clustering [1]. In this
approach, an algorithm assigns a group label to each vertex
such that vertices with the same group label are densely con-
nected. Alternatively, we may also identify densely connected
vertices through an ordering method that infers the optimal
ordering of vertices such that vertices close to each other
in the sequence are densely connected. The corresponding
optimization problems are collectively termed the minimum
linear arrangement [11–13] or envelope reduction [14,15], and
the inferred structural property is called a banded structure or
sequentially local structure [10]. As exemplified in Fig. 1, the
densely connected vertices are clearly detected by appropri-
ately visualizing the graph and the adjacency matrix based on
an appropriate vertex ordering.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
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Despite the similarity between these two approaches, the
clustering problem has received considerable attention in the
literature. Figure 2 shows the number of articles with key-
words that represent ordering (pink bars) or clustering (blue
bars) problems. Most of the keywords for ordering problems
represent more general matrix ordering problems rather than
vertex ordering problems for graphs (i.e., adjacency matrices),
whereas the keywords for clustering problems mostly capture
problems for graphs. Clustering methods have been studied
and applied much more actively than ordering methods.

Spectral methods are popular in both ordering and cluster-
ing problems; the former and the latter are respectively termed
spectral ordering [8,14,15] and spectral clustering [17–19]. In
both methods, the leading eigenvector(s) of a Laplacian or its
variant is used to identify the optimal ordering or clustering
of vertices. Specifically, when a graph is partitioned into two
groups based on the sorting of the eigenvector elements [17],
the result of spectral clustering is generally consistent with the
vertex sequence inferred by spectral ordering.

However, spectral ordering and clustering algorithms are
not generally consistent. For instance, when graphs are parti-
tioned into more than two groups, it is common to employ the
K-means algorithm [20] on K (> 2) leading eigenvectors to
achieve a K-way partitioning [19]. By contrast, to identify the
optimal vertex sequence using the spectral ordering method,
we always use the eigenvector associated with the second
leading eigenvalue. Therefore, it is nontrivial to determine the
extent to which the two methods are quantitatively consistent.
Even when we partition a graph into two groups, the result
of spectral clustering may not be consistent with the vertex
sequence obtained by spectral ordering when the K-means
algorithm is used to obtain a partition.
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FIG. 1. Simple example of a graph (left) and its adjacency matrix
(right) for identifying a community structure through the optimal
ordering of vertices without specifying the group labels. The (i, j)
element of the adjacency matrix is one (highlighted) when vertices i
and j are connected, and zero (not highlighted) otherwise.

We conduct a systematic investigation to evaluate the
consistency between the spectral ordering and clustering
methods. We first introduce a generic measure, referred to as
the label continuity error (LCE), to quantify the difference
between a sequence and partition for a set of elements (e.g.,
vertices of graphs). Intuitively, a sequence and partition are
more consistent with each other if, for a given number of
groups, the group label flips less often when following the
elements in the specified order. We provide a more precise
definition in the next section. Although we use this measure
throughout the study, it is not the only method of quantifying
consistency; we will revisit this point in Sec. V.

There are also several modern spectral clustering algo-
rithms with unexplored ordering counterparts. These include
the methods based on the modularity matrix [21,22], Bethe
Hessian [23,24], and regularized Laplacian [25–29]. To fill
this gap, we show how spectral ordering algorithms can be
derived from optimization problems using the matrices on
which these modern spectral clustering methods are based.
Spectral ordering problems based on these matrices are for-
mulated as variants of the classical spectral ordering problem
[14,15] with different penalty terms and/or constraints.

FIG. 2. Number of articles with a keyword related to the ordering
(pink bar) or clustering (blue bar) problems in the title or abstract.
The data was collected from Dimensions [16] on May 30, 2022.

The remainder of this paper is organized as follows. Sec-
tion II formally introduces the LCE to quantitatively evaluate
the consistency between ordering and clustering methods and
examine its properties. Section III formulates spectral or-
dering methods corresponding to existing spectral clustering
methods for graphs. Using the LCE introduced in Sec. II and
the methods formulated in Sec. III, we analyze the consis-
tency between spectral ordering and clustering methods using
synthetic and real-world networks in Sec. IV. Finally, Sec. V
discusses the results of this study.

II. LABEL CONTINUITY ERROR

Let G(V, E ) be a graph, where V = {v1, . . . , vN } is the
vertex set and E is the edge set. We assume that every vertex
in the graph is distinguishable and let I = {1, . . . , N} be the
ordered set indicating the original sequence of the vertices
which corresponds to the subscripts in {v1, . . . , vN }. For ver-
tex vi ∈ V (i ∈ I), we denote π (i) = πi ∈ {1, . . . , N} as the
index after permutation (i.e., we use π as both a mapping and
a variable) and π = {π (i)|i ∈ I} as the reordered sequence
of the vertices. Similarly, we denote σ (i) = σi ∈ {1, . . . , K}
as the group label of vertex vi and σ = {σ (i)|i ∈ I} as the
partition of the vertex set. We also denote Vk = {vi|σi =
k, i ∈ I} and Nk = |Vk| for group k (we let {N1, . . . , NK } =:
{Nk}). Throughout this study, π̂ and σ̂ represent the inferred
sequence and partition using algorithms, respectively. We de-
note di for the degree of vertex vi.

A. Definition

We introduce a measure to quantify the consistency be-
tween a sequence π and partition σ. We define the sequence
π as consistent with σ if vertices with the same group label
are maximally adjacent to each other in the sequence π. For
instance, if the original indices I are consistent with group
labels σ,

N−1∑
i=1

δ(σ (i), σ (i + 1)) (1)

is maximized, where δ(a, b) represents the Kronecker delta;
Fig. 3(a) presents an example. To evaluate the consistency
between π and σ, we introduce a measure that we refer to
as the label continuity, defined by

C(π, σ ) = 1

N − 1

N−1∑
i′=1

δ(σ (π−1(i′)), σ (π−1(i′ + 1))), (2)

where π−1 is the inverse mapping of π and i′ is the index
label after the permutation; that is, π−1(i′) is the label i in the
original indices satisfying π (i) = i′. The number of times that
the group labels are flipped when following the vertices in the
order of π is expressed as (N − 1)(1 − C(π, σ )), for which the
group labels must be flipped at least K − 1 times. Considering
this feature, we define the label continuity error (LCE) as

�(π, σ ) = 1 − K − 1

N − 1
− C(π, σ ). (3)

Hereafter, we abbreviate C(π, σ ) and �(π, σ ) as C and �,
respectively, as long as there is no possibility of confusion.
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FIG. 3. Examples of the label continuity C(π, σ) and the label
continuity error �(π, σ ) for different sequences and partitions for the
same vertex set. The number on each vertex represents the original
index of the vertex.

For a given partition σ and different vertex sequences, we
can evaluate which vertex sequence is more consistent with
σ using the LCE [e.g., Figs. 3(a) and 3(b)]. Similarly, for a
given sequence π and different partitions, we can also evaluate
which partition is more consistent with π, keeping the group
sizes {Nk} fixed [e.g., Figs. 3(a) and 3(c)].

B. Properties of the LCE

The LCE can take only small values when the number of
groups K is very small or large. For example, it is obvious
that � is zero when K = 1 or K = N . In other words, the
resolution of the LCE is low in such regions. Moreover, this
property would depend on the distribution of the group sizes
{Nk}. In this section, we quantify these intuitions.

The minimum value of � is zero by construction. The
maximum value of � is obtained when labels are flipped
the maximum number of times. The maximization of � by
optimizing the sequence π, given an arbitrary partition σ with
{Nk}, is equivalent to maximizing � by optimizing partition σ

(constrained to {Nk}) for a given sequence π. We denote the
maximum by max � as

max
π

�(π, σ ) = max
σ({Nk})

�(π, σ ) = max �. (4)

As derived in Appendix A, we have

max � =
{

2(N−maxk Nk )
N−1 − K−1

N−1

(
maxk Nk >

⌈
N
2

⌉)
1 − K−1

N−1 (otherwise)
, (5)

where �·� denotes the ceiling function.
We next investigate statistical properties of the LCE. First,

we calculate the probability P (m) that the number of times
that two consecutive vertices in a sequence have the same
group label is m, where m = (N − 1)C(π, σ ). When any se-
quence realizes at random, we have

P (m) = 1

N!

∑
π′

δ(m, (N − 1)C(π′, σ )), (6)

where σ is an arbitrary partition with group sizes {Nk} and
the sum is over all possible sequences (|{π′}| = N!). Note that
Eq. (6) is also a distribution in which each distinct partition

realizes at random. This equivalence might sound peculiar be-
cause there are only N!/

∏K
k=1 Nk! distinct partitions, whereas

there are N! possible sequences. However, because every dis-
tinct partition is overcounted exactly

∏K
k=1 Nk! times in the

summation of Eq. (6), the distribution P (m) is identical for
both random sequences and random partitions.

Although Eq. (6) is a straightforward expression, a strict
constraint on {Nk} makes analytical calculations complicated.
Therefore, we instead calculate the distribution of boot-
strapped group labels σ∗ as an approximation. That is, we
generate a random group assignment σ∗ by sampling indepen-
dently from the empirical distribution Prob[k] = Nk/N (k ∈
{1, . . . , K}); in other words, we randomly resample group
labels from σ with replacement. The distribution of group
labels σ∗ is

P(σ∗) =
N∏

i=1

Nσ ∗(i)

N
. (7)

This approximation for random group labels is expected to be
accurate if each element in {Nk} is sufficiently large.

Using the bootstrapped group labels, the mean value of C
is obtained as

E[C] =
∑
σ∗

P(σ∗)

∑N−1
i=1 δ(σ ∗(i), σ ∗(i + 1))

N − 1

= 1

N − 1

N−1∑
i=1

⎡
⎣ ∑

σ ∗
i ,σ ∗

i+1

P(σ ∗
i )P(σ ∗

i+1)δ(σ ∗(i), σ ∗(i + 1))

×
∏

j( �=i,i+1)

⎛
⎝∑

σ ∗
j

P(σ ∗
j )

⎞
⎠
⎤
⎦

=
K∑

k=1

(
Nk

N

)2

. (8)

Therefore, the mean value of LCE under random partitioning
is

�({Nk}) := E[�] = N − K

N − 1
−

K∑
k=1

(
Nk

N

)2

. (9)

As the LCE does not practically become greater than �({Nk}),
this mean value is a more meaningful reference value than
Eq. (5) as the upper bound.

We can also derive the variance Var[�] (the derivation is
shown in Appendix B) as

Var[�] = 1

N − 1

K∑
k=1

(
Nk

N

)2

+ 2(N − 2)

(N − 1)2

K∑
k=1

(
Nk

N

)3

− 3N − 5

(N − 1)2

(
K∑

k=1

(
Nk

N

)2
)2

, (10)

showing that � converges to E[�] by the law of large
numbers. Furthermore, in Appendix C, we show that the prob-
ability distribution is asymptotically normal when the group
sizes are equal and K = O(1), implying that higher-order
moments will vanish.
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FIG. 4. Upper bound max � (solid line) of the LCE and boot-
strap estimate of the mean values � (dashed line) of the LCE under
a random sequence as functions of the number of groups K : (a) an
equipartition (i.e., Nk/N = 1/K for any k ∈ {1, . . . , K}) and (b) a
skewed partition [i.e., Nk = 1 (2 � k � K − 1) and N1 = N − K +
1]. We set N = 25 in these examples. Continuous approximations of
max � and � are shown to highlight their dependency on K .

Let us summarize the results we obtained in this section. As
the number of groups K (> 1) increases, the upper bound of
the LCE [max � in Eq. (5)] decreases monotonically as long
as the partitions are not highly skewed, i.e., maxk Nk < �N/2�.
However, as illustrated in Fig. 4, the LCE for a random se-
quence [� in Eq. (9)] is a convex function with respect to K .
When K is small, the LCE increases because the chance for
label flips increases, while the LCE decreases owing to the
increase in the minimum number of label flips. For equipar-
titioning [Fig. 4(a)], the mean LCE � is peaked at an integer
of approximately K = √

N − 1. As a partition becomes more
skewed [Fig. 4(b)], max � and � are peaked at larger values
of K . Therefore, when evaluating the LCE, we must imple-
ment appropriate normalizations.

In this study, we focus on comparing partitions with the
same number of groups K . In Appendix D, however, we dis-
cuss nested partitions (subpartitions of another partition) as an
example in which different partitions have different numbers
of groups.

III. SPECTRAL ORDERING METHODS

In this section, we describe variants of spectral ordering
methods using different matrices. After reviewing the deriva-
tion of the standard methods based on the unnormalized
and normalized Laplacians, we show how spectral ordering
problems can be formulated with the modularity matrix, reg-
ularized Laplacian, and Bethe Hessian.

A. Unnormalized Laplacian

Spectral ordering is derived as a continuous relaxation of
the discrete optimization problem called envelope reduction
[14]. This problem optimizes the vertex sequence π such that
each connected pair of vertices is located close to each other
in the sequence. To this end, the following objective function

is considered:

H2(π; A) = 1

2

∑
i, j

Ai j (πi − π j )
2, (11)

which is the sum of squared distances (πi − π j )2 with respect
to the set of connected vertices. The sequence that minimizes
this function is the solution to envelope reduction.

As the minimization of Eq. (11) is not computationally
feasible, we consider its continuous relaxation. That is, we
represent π using a continuous vector x ∈ RN . However, if
we simply replace π with x, x = 0 would be the trivial min-
imizer of H2(x; A). Thus, we constrain x such that

∑N
i=1 x2

i
is a positive constant (i.e., the spherical constraint) to reflect
the fact that

∑N
i=1 π2

i is positive regardless of the choice of
sequence. Therefore, we consider the minimization of the
following function:

1

2

∑
i, j

Ai j (xi − x j )
2 − λ

(
N∑

i=1

x2
i − 1

)
, (12)

where λ is the Lagrange multiplier. The extremum condition
in Eq. (12) yields the following eigenvalue equation with an
eigenvector ν,

L ν = λν. (13)

Here, L ≡ D − A is the unnormalized (or combinatorial)
Laplacian, where D = diag(d1, . . . , dN ) is the degree matrix
(di =∑N

j=1 Ai j). Although we would have a vector propor-
tional to 1 (a vector of ones) as the minimizer of Eq. (12),
which is also the eigenvector associated with the smallest
eigenvalue of L, we cannot infer the optimal sequence from 1
because all the elements are identical. Therefore, we exclude
vectors proportional to 1, which is equivalent to imposing a
perpendicular constraint to 1 in Eq. (12), i.e.,

∑N
i=1 xi = 0.

Then, the minimizer of the objective function is the eigenvec-
tor ν2 of L associated with the second-smallest eigenvalue.

The estimate of the optimal sequence π̂ using the spectral
ordering method is

π̂ = {rank(ν2i )|i ∈ I}, (14)

where ν2i is the ith element of ν2, and rank(ν2i ) is the index of
ν2i in an array in which the vector elements of ν2 are sorted in
the ascending or descending order.

B. Normalized Laplacian

A spectral ordering method with the normalized Laplacian
was derived in [15]. Note that the objective function (11) does
not have a periodic boundary condition. Therefore, while the
distance from one vertex at the end of the sequence to another
vertex ranges from 1 to N − 1, the distance from the vertex
at the middle of the sequence ranges from 1 to 
N/2�, where

·� is the floor function. This implies that when a graph has
a vertex with a considerably large degree (i.e., a hub), it is
typically more beneficial for the minimization objective to
assign such a vertex near the middle of the sequence. To
incorporate this feature, we replace the spherical constraint
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in Eq. (12) with the following ellipsoidal constraint:

N∑
i=1

dix
2
i = const., (15)

which tends to restrict xi with a large di to be relatively small
(recall that a variable with a large coefficient typically has
relatively small values on an ellipsoid). Therefore, Eq. (15)
constrains x such that xi of a hub vertex vi is near the origin,
and when x is discretized, the hub vertices are likely to be lo-
cated near the middle of the sequence. Note also that the mean
of {xi} is located at the origin because of the perpendicular
constraint

∑N
i=1 xi = 0.

Consequently, Eq. (13) is replaced with the following
generalized eigenvalue equation with respect to its second-
smallest eigenvalue λ2:

L ν2 = λ2Dν2. (16)

This is equivalent to

Lz2 = λ2z2, (17)

where L ≡ D− 1
2 LD− 1

2 is the normalized Laplacian and z2 ≡
D

1
2 ν2. As ν2 is a continuous relaxation of the sequence π, we

estimate the optimal sequence π̂ as

π̂ = {rank
(
d−1/2

i z2i
)∣∣i ∈ I

}
. (18)

C. Modularity matrix

The modularity matrix Q appears in the spectral clustering
method for modularity maximization in community detection
[21]. The matrix element is commonly defined as

Qi j = Ai j − did j

2M
, (19)

where M is the total number of edges in the graph.
To formulate the spectral ordering problem with the mod-

ularity matrix, we again consider the objective function
H2(π; A) in the envelope reduction problem and its continuous
relaxation with the spherical constraint

∑N
i=1 x2

i = 1. Herein,
we add the following penalty terms to the objective function:(∑

i dixi
)2

2M
−
∑

i

dix
2
i . (20)

The penalty terms ensure that {xi} are “balanced” around the
origin. The first term prohibits {xi} for hub vertices from being
located only on the positive or negative side of the real interval
[−1, 1]. Owing to the second term, {xi} associated with hub
vertices also tend to be away from the origin. Therefore, the
penalty term Eq. (20) decreases when {xi} are more symmet-
rically distributed around the origin.

Using Lagrange multipliers, the objective function to be
minimized is then

1

2

∑
i, j

Ai j (xi − x j )
2 +

(∑
i dixi

)2
2M

−
∑

i

dix
2
i + λ

(
N∑

i=1

x2
i − 1

)

= −
∑
i, j

xiQi jx j + λ

(
N∑

i=1

x2
i − 1

)
. (21)

Here, we do not impose the perpendicular constraint in
Eq. (21), because a vector proportional to 1 is not a trivial
minimizer. The extremum conditions in Eq. (21) yield

Qν1 = λ1ν1, (22)

where λ1 represents the largest eigenvalue of Q and ν1 is
the associated eigenvector. ν1 is the minimizer in Eq. (21)
provided that it is not a vector proportional to 1. Anal-
ogously to Eq. (14), we estimate the optimal sequence
π̂ as

π̂ = {rank(ν1i )|i ∈ I}. (23)

The ellipsoidal constraint enforces {xi} for hub vertices to
be concentrated around the origin, whereas the penalty terms
(20) enforce them to be evenly distributed at both the positive
and negative ends of the real line. Therefore, the results of the
spectral ordering methods using the normalized Laplacian and
modularity matrix are expected to be quite distinct for graphs
with heterogeneous degree distributions.

D. Bethe Hessian

Bethe Hessian is also a matrix that is originally formulated
to perform spectral clustering [23,24]. This method is inspired
by the statistical inference of the stochastic block model,
which will be explained in Sec. IV A. This section considers
a spectral ordering method using the Bethe Hessian.

The derivation of spectral ordering with the Bethe Hessian
is analogous to that with the normalized Laplacian. How-
ever, instead of imposing an ellipsoidal constraint (15), we
introduce

∑N
i=1 dix2

i as a penalty term. Thus, we consider the
following objective function:

1

2

∑
i, j

Ai j (xi − x j )
2 + τ

N∑
i=1

dix
2
i , (24)

where τ is an arbitrary constant (hyperparameter) that can be
either positive or negative. To avoid the trivial minimizer x =
0, we impose the spherical constraint

∑N
i=1 x2

i = 1.
Using Lagrange multipliers, the objective function to be

minimized is then

1

2

∑
i, j

Ai j (xi − x j )
2 + τ

∑
i

dix
2
i − λ

(
N∑

i=1

x2
i − 1

)

= (1 + τ )
∑
i, j

xiBi jx j − λ

(
N∑

i=1

x2
i − 1

)
, (25)

where

Bi j = Di j − rAi j

(
r = 1

1 + τ

)
(26)

is a matrix element of Bethe Hessian. The extremum condi-
tions in Eq. (25) yield an eigenvalue equation with respect
to B.

We estimate the optimal sequence π̂ as follows:

π̂ = {rank(ν2i )|i ∈ I}, (27)
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where ν2 is the eigenvector associated with the second-
smallest eigenvalue λ2, i.e.,

B ν2 = λ2ν2. (28)

Note that there is no guarantee that ν2 always provides the
best estimate in terms of H2(π̂; A) among all the eigenvectors.
In fact, we confirmed that the eigenvector that yields the best
estimate in terms of H2(π̂; A) [when we employ the rounding
rule in Eq. (27)] depends sensitively on the value of r, partic-
ularly when r is small (see Sec. S1 in Supplemental Material
[30] for details). However, we employ Eq. (27) because the
estimate with ν2 offers the smallest value of H2(π̂; A) as long
as r is sufficiently large.

Throughout this study, we set r =
√∑

i d2
i /
∑

i di − 1
(>1), because it is a commonly employed value in spectral
clustering. The hyperparameter τ is negative when r > 1.
Thus, {xi} for hub vertices are aligned near the ends of the
real line [−1, 1] so that a sequence achieves a lower value
of Eq. (24) using the penalty term. By contrast, when r < 1
(τ > 0), {xi} for hub vertices are likely to be located near
the origin, implying that the resulting sequence is similar to
that obtained by the spectral ordering method based on the
normalized Laplacian.

E. Regularized Laplacian

During the past decade, it has been found that the per-
formance of the Laplacian-based spectral clustering can be
considerably improved by adding a constant value to every
element in the adjacency matrix [26,28] or the diagonal ele-
ments in the degree matrix [25,27]. Although the two variants
of the Laplacian are often termed differently, we collectively
refer to them as the regularized Laplacian [28] for simplicity,
and we denote the former version of the regularized Laplacian
as L(τ ) and the latter version as L. The spectral clustering
method based on L can also be interpreted as a continuous
relaxation of the minimization of the core cut function [29].
This section considers the spectral ordering method using a
regularized Laplacian.

Similar to the formulation of the spectral ordering method
with the modularity matrix, we consider the continuous re-
laxation of H2(π; A) with a penalty term. We consider the
following objective function:

1

2

∑
i, j

Ai j (xi − x j )
2 + τN Var[x], (29)

which is minimized with respect to the continuous vector x. τ

is an arbitrary positive constant (hyperparameter) and

Var[x] =
⎛
⎝ 1

N

N∑
i=1

x2
i −

(
1

N

N∑
i=1

xi

)2
⎞
⎠ (30)

is the variance with respect to the elements in x. To ensure that
x is not a vector of zeros, we impose the following ellipsoidal
constraint:

N∑
i=1

(di + τ )x2
i = 1. (31)

FIG. 5. Ellipse equation x2
1/a2 + x2

2/b2 = 1 (a = 3 and b = 1),
where x2 corresponds to the variable for a hub vertex. The color depth
represents the variance Var[x] for x = (x1, x2). Although most of the
coordinates on the ellipse have x1 > x2, the variance is smaller when
x1 and x2 are closer.

By incorporating this constraint, the objective function to be
minimized is given by

1

2

∑
i, j

Ai j (xi − x j )
2 + τ

N∑
i=1

x2
i − τ

N

(
N∑

i=1

xi

)2

− λ

(
N∑

i=1

(di + τ )x2
i − 1

)
. (32)

Because a vector proportional to 1 is a trivial minimizer of
Eq. (32), we also impose the constraint that x is perpendicular
to 1, i.e.,

∑N
i=1 xi = 0. Then, the extremum conditions in

Eq. (32) yield

A(τ ) ν2 = (1 − λ2)(D + τ I )ν2,
(

A(τ )
i j = Ai j + τ

N

)
, (33)

where I is the identity matrix. λ2 is the second-smallest eigen-
value of the generalized eigenvalue equation and ν2 is the
associated generalized eigenvector. Equation (33) is equiva-
lent to

L(τ ) z2 = λ2z2, (34)

where

L(τ ) = I − (D + τ I )−1/2A(τ )(D + τ I )−1/2 (35)

is the regularized Laplacian and z2 = (D + τ I )1/2ν2. Similar
to the spectral ordering method with the normalized Lapla-
cian, we estimate the optimal sequence π̂ as

π̂ = {rank((di + τ )−1/2z2i )|i ∈ I}. (36)

The contribution of hub vertices is more complicated than
that of other methods. As shown in Fig. 5, whereas {xi} for the
hub vertices tend to be relatively small because of the ellip-
soidal constraint, the variance Var[x] is minimized when all
{xi} have the same value. Therefore, when the hyperparameter
τ is small, the result is similar to that obtained by using the
spectral ordering method based on the normalized Laplacian.
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TABLE I. Summary of constraints and penalty terms in spectral methods, and their effect on hub location in vertex sequence.

Matrix Constraints Penalty terms Effects on hub locations

Unnormalized Laplacian

L = D − A

∑N
i=1 x2

i = 1∑N
i=1 xi = 0

Normalized Laplacian

L = D− 1
2 LD− 1

2

∑N
i=1 dix2

i = 1∑N
i=1 xi = 0

Concentrate around the middle

Modularity matrix
Q = A + d�d

2M

(d = (d1, . . . , dN ))
∑N

i=1 x2
i = 1 (

∑
i dixi )2

2M −∑i dix2
i Distribute at both ends

Bethe Hessian

B = D − rA

∑N
i=1 x2

i = 1

perpendicular to ν1

τ
∑N

i=1 dix2
i

τ > 0 : Concentrate around the middle
τ < 0 : Distribute at either/both ends

Regularized Laplacian
L(τ ) = I − D−1/2

(τ ) A(τ )D−1/2
(τ )

(D(τ ) = D + τ I )

∑N
i=1(di + τ )x2

i = 1∑N
i=1 xi = 0

τN Var[x]
small τ : Concentrate around the middle
large τ : Avoid concentration around the middle

Regularized Laplacian

L = D−1/2
(τ ) AD−1/2

(τ )

∑N
i=1(di + τ )x2

i = 1

perpendicular to ν1

τ
∑N

i=1 x2
i

small τ : Concentrate around the middle
large τ : Avoid concentration around the middle

As τ increases, the hub vertices are less likely to be located in
the middle of the sequence because of the penalty term.

As mentioned above, we also consider

L = (D + τ I )−1/2A(D + τ I )−1/2 (37)

as the definition of a regularized Laplacian. Unlike L(τ ), only
the degree matrix is perturbed by a constant value in L. If we
consider

1

2

∑
i, j

Ai j (xi − x j )
2 + τ

N∑
i=1

x2
i (38)

as the objective function to be minimized, and impose the
ellipsoidal constraint (31), we obtain the eigenvalue equa-
tion with respect to L as a result of the extremum conditions.

If we also impose the constraint
∑N

i=1 xi = 0 in Eq. (38),
this objective function becomes equivalent to Eq. (29). We
do not have such a constraint because L does not have 1 as
a trivial eigenvector unlike L(τ ). The eigenvectors of L(τ ) and
L are therefore distinct. As a spectral ordering method with
the regularized Laplacian L, we replace z2 in Eq. (36) with
the eigenvector associated with the second-smallest eigen-
value of L. Here, we use the second-smallest value because
L approaches L as τ → 0, and L has z1 ∝ 1. Hereafter, when
we refer to the spectral ordering method with the regularized
Laplacian, we employ L because it is more computationally
efficient. Throughout this study, we set τ as the average degree
of the graph, as it is a commonly employed value [27].

The constraints and penalty terms for each method are
summarized in Table I. Compared to the classical method
based on the normalized Laplacian, where hub vertices
are concentrated around the middle of the sequence (“hub-

centered”), the spectral ordering methods obtained with the
modularity matrix, Bethe Hessian, and the regularized Lapla-
cian may assign hub vertices at both ends of the sequence
(“hub-at-the-corner”). Particularly, for the Bethe Hessian and
the regularized Laplacian, we can choose the “hub-centered”
or “hub-at-the-corner” alignment by tuning the hyperparame-
ter.

Although we found the penalties and constraints that pro-
vide the spectral ordering methods corresponding to the ones
considered in spectral clustering, we have not confirmed
whether these choices of penalties and constraints are unique.
In addition, there is no guarantee that the resulting spectral
ordering methods exhibit high performance in practice. The
next section investigates the practical performance of these
spectral ordering and clustering methods using synthetic and
real-world datasets. Although one might expect all the meth-
ods to work similarly when the graph is close to regular, it
is not trivial to determine whether this always holds; this
is investigated using synthetic datasets in Secs. IV A and
IV B. The effect of heterogeneous degree distribution in each
method is examined using real-world datasets in Sec. IV C.

IV. PERFORMANCE ANALYSIS

We conduct a numerical performance analysis of the
spectral ordering and clustering methods using synthetic
graphs and real-world networks. For experiments on synthetic
graphs, we consider a random graph model with a prespecified
module structure, which is referred to as the stochastic block
model (SBM) [31–33], and a random graph model with a
prespecified sequentially local structure, which is referred to
as the ordered random graph model (ORGM) [10].
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A. Stochastic block model

The SBM is often used as a generative model for the
inference of module structures in graphs [34,35] and in several
theoretical studies in the community detection literature [36].
In the SBM, each vertex has a “planted” (or preassigned)
group assignment; we denote the corresponding partition as
σB. Each vertex pair is connected by an edge, independently
and randomly, based on the planted group assignments. The
probabilities for the upper-right elements of the adjacency
matrix are given as follows:

Prob[{Ai j}i< j] =
∏
i< j

p
Ai j

σ B
i σ B

j

(
1 − pσ B

i σ B
j

)1−Ai j
, (39)

where pk	 is the probability that a vertex in group k and vertex
in group 	 are connected [in Eq. (39), k = σ B

i and 	 = σ B
j ]. We

have Ai j = Aji for any pair of elements because we consider
undirected graphs. In general, the SBM can generate graphs
with complex module structures. Herein, however, we focus
on the SBM with a community structure that is characterized
by the following group-wise connection probability:

pk	 =
{

pin (k = 	)
pout (k �= 	) , (40)

where 0 < pout � pin � 1, that is, vertices are more densely
connected within the same planted group than between differ-
ent groups. In particular, when the group sizes are equal, it is
common to parametrize the model using the average degree
c and the fuzziness parameter ε, which are related to pin and
pout as

c = N

K
(pin + (K − 1)pout ), ε = pout

pin
. (41)

As ε approaches unity, the planted community structure be-
comes less clear. This particular case of the SBM is known as
the planted partition model [37]. For a given average degree c,
the critical value of ε above which an algorithm cannot detect
the planted block structure better than chance is called the
(algorithmic) detectability limit [38–43].

Using the SBM and spectral ordering methods, we investi-
gate the following questions:

(1) How would the reordered adjacency matrix look like?
Can we visually identify the community structure through the
matrix?

(2) When and how would the spectral ordering methods
lose their correlations with the planted partition in the SBM?
Are the spectral ordering methods superior or inferior to
their clustering counterparts in detecting the planted partition?
Does the choice of matrix matter?

To answer these questions, we apply both spectral ordering
and clustering methods to graphs generated by the SBM.

We first investigate the former question. Figure 6 shows the
results of spectral ordering applied to instances of SBM. Ver-
tices in the same planted group are indeed located closely in
the inferred sequence when the community structure is strong.
Even when the community structure is weak, the planted
group labels and the inferred sequence are correlated. In both
examples, the boundaries of the groups are ambiguous. There-
fore, if we do not know the planted group labels (and without
the coloring of the adjacency matrix elements), it is not clear
whether the identified structure is a community structure or

FIG. 6. Spectral ordering with the regularized Laplacian for
graphs generated by the SBM (N = 60 and c = 8). The top panels
show the adjacency matrices of a graph with a strong community
structure where vertices are aligned by (a) the sequence based on the
planted partition σB and (b) an inferred sequence π̂. The bottom pan-
els show the adjacency matrices of a graph with a weak community
structure where vertices are aligned based on (c) σB and (d) π̂. The
matrix elements indicating the connections within the same planted
group are represented in the same color; otherwise, the elements are
colored in gray.

a banded structure from the reordered adjacency matrix. Note
that, as discussed in [10], even when we generate a graph from
a uniformly random graph model, one could identify a weak
banded structure owing to the ordering of vertices.

Next, we address the latter question. The consistency be-
tween the sequence inferred by a spectral ordering method π̂

and planted partition σB is measured with the normalized LCE
�(π̂, σB)/�({NB

k }). Here, {NB
k } is the set of group sizes in σB

and �({NB
k }) is the LCE under a random sequence defined in

Eq. (9). When �(π̂, σB) saturates (i.e., the normalized LCE
equals unity) as ε increases, the spectral ordering method
does not infer σB better than random; it is deemed that the
algorithm has reached the detectability limit.

The consistency between the inferred partition σ̂ by a spec-
tral clustering method and planted partition σB is measured
using the normalized mutual information (NMI) [44], which
is defined as

NMI(σ̂, σB) = 2I (σ̂; σB)

H (σ̂ ) + H (σB)
, (42)

where

H (σ ) = −
∑

k∈{1,...,K}
q(k) log q(k)

(
q(k) = Nk

N

)
(43)
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FIG. 7. Detectability of the SBM for the spectral ordering and spectral clustering methods. The top panels show the result for small graphs
with K = 2, K = 3, and K = 4. The bottom panels show the result for large graphs with K = 2, K = 3, and K = 4. In each panel, the values
of the NMI obtained by the spectral clustering methods (top) and the values of the LCE obtained by the spectral ordering methods (bottom) are
shown. The horizontal axis represents the fuzziness of community structure ε. Each symbol and error bar represents the mean and the standard
deviation of 30 samples that are obtained with the same SBM parameters.

is the entropy with respect to the frequency of group labels,
and

I (σ1; σ2) =
∑

k∈{1,...,K}

∑
k′∈{1,...,K}

q(k, k′) log
q(k, k′)

q(k)q(k′)
(44)

is the mutual information. Here, q(k, k′) is the fraction of
co-occurrences that a vertex belonging to group k in partition
σ1 belongs to group k′ in partition σ2. The NMI is unity when
a pair of partitions coincides perfectly. When NMI(σ̂, σB)
reaches (nearly) zero as ε increases, the spectral clustering
method does not infer σB better than random, which again
represents the detectability limit. The detectability analysis of
spectral clustering methods is not new and has been analyzed
in several theoretical and benchmark studies [41–43,45,46].
We evaluate �(π̂, σB) and NMI(σ̂, σB) to compare the per-
formances of the spectral ordering and clustering methods for
each of the matrices considered in the previous section.

Figure 7 shows the performances of the ordering and clus-
tering methods based on the SBM for different graph sizes
N , numbers of blocks K , and fuzziness parameter ε. When
graphs are small (and thus relatively dense), there is no clear

saturation in the curves of the LCE and the NMI, and it is
difficult to evaluate whether the ordering methods or clus-
tering methods exhibit superior performance in terms of the
detectability limit. Moreover, the differences in performances
are not noticeable among the different matrices, except for
the unnormalized Laplacian. When graphs are large, we can
clearly identify the saturation. For the unnormalized and nor-
malized Laplacians, the values of LCE gradually decrease,
even when the values of NMI saturate, indicating that the
spectral ordering methods are superior to their clustering
counterparts. By contrast, the detectability limits of the mod-
ularity matrix, regularized Laplacian, and Bethe Hessian are
not very different between the ordering and clustering meth-
ods. In addition, the methods with the regularized Laplacian
and Bethe Hessian perform similarly and are superior to the
other matrices, whereas the methods with the unnormalized
Laplacian are clearly inferior.

B. Ordered random graph model

We have observed how and to what extent the community
structure can be inferred using spectral ordering methods. This
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section discusses the opposite scenario. That is, we analyze
whether the spectral clustering methods can infer banded
structures. To this end, we conduct a performance analysis
using the ORGM. This section uses the K-means method to
determine the group labels in spectral clustering.

The vertex set in the ORGM has a planted sequence, as
the vertex set in the SBM has a planted partition. We let
the planted sequence coincide with the original sequence
I. The edges in the ORGM are generated independently
and randomly by referring to the planted sequence. We
divide the space of the adjacency matrix elements into two
regions, �in and �out. �in (resp. �out) is the set of elements
in which an edge connects two vertices that are deemed
to be “close” (resp. “not close”) to each other. An edge is
generated between a vertex pair with probability pin if they
are “close” and with probability pout otherwise. Therefore,
the probabilities of the upper-right elements of the adjacency
matrix are given as follows:

P({Ai j}i< j |{pi j}) =
∏
i< j

p
Ai j

i j (1 − pi j )
1−Ai j , (45)

pi j =
{

pin (i, j) ∈ �in

pout (i, j) ∈ �out
. (46)

We set the boundary of �in and �out as

�in = {(i, j)||i − j| � r}
�out = {(i, j)||i − j| > r}, (47)

where r is the bandwidth that specifies the boundary of the
regions. Although Eq. (47) is a simple one, we note that the
boundary in the ORGM can be more complex in general. In
the following, instead of pin and pout, we specify the edge
density by the average degree c and the strength of the banded
structure ε = pout/pin; when ε = 0, nonzero elements in
the adjacency matrix are completely confined within �in,
whereas the model is uniformly random when ε = 1. [See
Fig. 8(a) for an example of the resulting adjacency matrix of
the ORGM.] In summary, except for the number of vertices N ,
which is a nuisance parameter, the parameters in the ORGM
are the average degree c, strength of the banded structure ε,
and bandwidth ratio r/N .

Using the ORGM and the spectral clustering methods, we
investigate the following questions:

(1) How would the reordered adjacency matrix look like?
Can we visually identify the banded structure through the
matrix?

(2) How and when would the spectral clustering algo-
rithms lose their correlations with the planted ordering in the
ORGM?

We first investigate the former question. Figure 8 shows the
results of a spectral clustering method with different values
of K applied to a graph generated by the ORGM. A graph
tends to be partitioned into equally-sized groups (see also
Fig. S2 in the Supplemental Material [30] for a quantitative
evidence). Recall that we observe a banded structure through
a spectral ordering method even when the graph is gener-
ated from the SBM (Fig. 6). Analogously, we can identify
block-diagonal structures in Fig. 8 although the graph is gen-
erated from the ORGM. This is an interesting observation

FIG. 8. Results of the spectral clustering methods using the nor-
malized Laplacian with different numbers of groups K , applied to
a graph generated by the ORGM. The parameters of the ORGM
are N = 50, c = 10, ε = 0.2, and r/N = 0.16. (a) The vertices of
the adjacency matrix are ordered based on the original ordering in
the ORGM. For panels (b)–(d), the vertices are ordered such that
the vertices in the same inferred group are close to each other:
(b) K = 2, (c) K = 3, and (d) K = 4. The nonzero matrix elements
are represented by the same color when they are edges connecting
the vertices within an inferred group; otherwise, the nonzero matrix
elements are colored in gray.

because it implies that some of the community structures
identified in the literature may be better described by banded
structures.

Figure 9 shows the normalized LCE �(I, σ̂)/�({N̂k}) be-
tween the planted sequence I and inferred partition σ̂, where
{N̂k} is the set of group sizes in σ̂. The normalized LCE is
generally low when r/N is not too small or large and ε is
small.

The existence of detectability limits is implied from
Figure 9. In the limit of N → ∞, there exists a critical value
of ε above which the normalized LCE is unity for any value
of r/N . Moreover, for a given ε, there also exists an upper
limit (and possibly a lower limit) of the bandwidth ratio r/N
beyond which a spectral clustering method is not correlated
with the planted sequence better than a random guess. These
critical values depend on the average degree (see Fig. S3
in the Supplemental Material [30] for the numerical phase
diagrams).

Analogous to the analysis for the SBM, the performance
of the unnormalized Laplacian is notably inferior in terms of
the normalized LCE; in most of the parameter sets, it does
not perform better than a random guess. The behaviors of the
modularity matrix, Bethe Hessian, and regularized Laplacian
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FIG. 9. Performance of the spectral clustering method for the graphs generated by the ORGM. The graphs are generated by the ORGM
with N = 1, 000 and c = 6. Each panel shows the normalized LCE �(I, σ̂ )/�({N̂k}) for various parameter sets of the ORGM for a matrix
used in the spectral clustering method. Each point represents the 10-sample average of the normalized LCE under the same parameter set.

are similar. Moreover, the results for the latter two matrices
are apparently identical. In contrast to the analysis of graphs
generated by the SBM, the performance of the normalized
Laplacian is as good as or even better than that of the Bethe
Hessian and regularized Laplacian.

The inferior performance of the spectral clustering with
the unnormalized Laplacian can also be characterized by the
distribution of the group sizes {Nk}. The fraction of the largest
group maxk Nk/N is nearly unity, i.e., most of the vertices
belong to the same group (see Fig. S2 in the Supplemental
Material [30] for the experimental results). In such a case, the

result of clustering contains very little information about the
inherent ordering in the graph; as shown in Fig. 4(b), the upper
bound max � and the mean value under the random sequence
� are small when a partition is highly skewed, reflecting the
fact that the group labels tend to be aligned consecutively
for any sequence. A possible mechanism for such skewed
distributions of group sizes is the emergence of localized
eigenvectors [42,47], which deteriorates the performance of
spectral clustering. However, we do not pursue the detailed
mechanisms that could have caused the outcome obtained in
this study.
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(a)

(b)

FIG. 10. Adjacency matrix aligned with spectral ordering based on a matrix annotated at the top and its corresponding LCE, �/�̄. Colors
denote vertex groups inferred by the K-means method. (a) Zachary’s karate club network [48] and (b) a network of political books [49].

In summary, we have confirmed that some spectral cluster-
ing methods detect community structures that are correlated to
the inherent sequential structure of the ORGM, and that there
are nontrivial limits of detectability.

C. Real-world networks

We now apply the spectral ordering and clustering meth-
ods to five empirical adjacency matrices. Descriptions of
the empirical datasets examined are provided in Table S1 in
the Supplemental Material [30]. Note that many empirical
datasets exhibit a high degree heterogeneity, whereas the syn-
thetic graphs in Secs. IV A and IV B do not. As discussed in
Sec. III, spectral orderings with different matrices are char-
acterized as the minimization problem of H2 with different

constraints and penalty terms (Table I), and these differences
become prominent when vertex degrees are heterogeneous.

In Fig. 10, we see a banded structure for the vertex order-
ings based on the normalized and unnormalized Laplacians,
L and L, for the karate club [Fig. 10(a)] and political books
datasets [Fig. 10(b)], where the hub vertices tend to be located
around the middle of the optimized sequence. In contrast,
the ordering method with the modularity matrix Q locates
vertices with large degrees at both ends of the sequence, as
expected from the penalty term in the objective function (20).
A similar observation applies to the methods using the Bethe
Hessian B and regularized Laplacian L (Figs. 10, S4, and S7 in
the Supplemental Material [30]). Importantly, however, vertex
orderings based on these matrices is critically influenced by
the regularization parameter τ .
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For many empirical graphs, the hyperparameter r =√∑
i d2

i /
∑

i di − 1 in the Bethe Hessian takes a large positive
value, i.e., τ < 0 [Eq. (24)]. Thus, the penalty term τ

∑
dix2

i
contributes to reducing the objective function. Hence, hub
vertices tend to be aligned at the ends of the vertex sequence.
However, the spectral ordering with the regularized Laplacian
has an exogenous regularization parameter τ in its constraint
and penalty terms [see Eqs. (32) and (38)], where we set τ

as the average degree. As discussed in Sec. III E, a larger
value of τ tends to avoid locating hub vertices around the
middle of the sequence. Although the validation analysis
based on synthetic graphs suggested that the sequences in-
ferred based on these matrices are fairly similar (Sec. IV),
they do not necessarily coincide in general. Note also that,
as τ → 0, the Bethe Hessian B approaches the unnormal-
ized Laplacian L, and the regularized Laplacian L approaches
the normalized Laplacian L (Table I). Therefore, when τ is
small in absolute value, the optimal vertex sequences based
on the Bethe Hessian and regularized Laplacian are close
to those obtained from the unnormalized and normalized
Laplacians, respectively (Figs. S8 and S9 in the Supplemental
Material [30]). Indeed, the location of vertices with large
degrees in optimal vertex sequence can be tuned by varying
τ , from a “hub-centered” alignment to a “hub-at-the-corner”
alignment.

Figure 10 also shows the normalized LCE representing the
consistency between the inferred sequence π̂ and group labels
σ̂ for each matrix used in the spectral ordering and clustering
methods. When we set K = 2 in the clustering method, as
shown in Figs. 10(a) and 10(b), π̂ and σ̂ are perfectly con-
sistent in terms of the LCE. For K � 3, the LCEs are mostly
lower than 0.8 and are typically approximately 0.5 (Fig. 10
and Figs. S10–S14 in the Supplemental Material [30]), sug-
gesting that the optimized vertex sequences using spectral
ordering convey some information about a nonrandom struc-
ture. We also find that some methods yield similar LCEs for all
datasets, whereas the LCEs obtained with the (un)normalized
Laplacian exhibit different behaviors (Figs. S10–S14 in the
Supplemental Material [30]). This is consistent with the pre-
vious numerical observation that the spectral ordering based
on the (un)normalized Laplacian is quite distinct from those
obtained from the modularity matrix, Bethe Hessian, and reg-
ularized Laplacian (Fig. 10).

Interestingly, despite having distinct optimized sequences
using different objective functions, the value of the nor-
malized LCE can be very close to each other. Therefore,
adjacency matrices may exhibit the same or similar struc-
tures from the perspective of community structure, and they
are differentiated only by detailed orderings within each
group.

V. SUMMARY AND DISCUSSION

This study analyzed the relationship between the ordering
and clustering methods for graphs by quantifying the extent to
which vertices close to each other in the optimized sequence
have the same group label through the LCE. To obtain an-
alytical insight into spectral ordering, we first showed that
the spectral ordering problem is formulated as a minimization
of the squared sequential distance H2 subject to a particular

FIG. 11. Vertex sequence yielding the maximum LCE for a given
group sizes {Nk}. Panels (a) and (b) are cases where N1 > �N/2�
and N1 = N/2, respectively, and panels (c) and (d) are cases where
N1 < N/2. The sequence with the maximum LCE can be con-
structed by aligning the vertices with different labels alternately in
the procedure shown in each step. Vertices in the box indicate that
they are to be aligned in the following steps. The vertex indices
are omitted because they are not essential for the construction of
a sequence.

penalty function and constraints, depending on the matrix rep-
resentation of a graph (i.e., normalized Laplacian, modularity
matrix, etc). The numerical results suggested that the spectral
ordering methods, except that based on unnormalized Lapla-
cian, often yield optimized sequences such that vertices in the
same group are close to each other; that is, the normalized
LCEs are considerably below 1 as long as strong community
structures exist.

Several issues remain to be addressed in future studies.
First, we defined LCE to quantify the continuity of group
labels for a given vertex sequence. The consistency between
ordering and clustering can also be measured in other ways;
for example, one can quantify the continuity of indices in
a vertex sequence for given group labels on the vertices,
whereas the LCE quantifies the continuity of group labels for
a given vertex sequence. Second, we focused on unipartite
graphs for which the connectivities are represented by square
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matrices (i.e., adjacency matrices). In principle, the proposed
method can also be applied to study non-square matrices,
such as bipartite graphs. Third, we implemented ordering and
clustering methods independently and examined their consis-
tency. Given that we found some consistency between the
two, it would be possible to develop a clustering method that
incorporates information about the inherent vertex sequence.
Analogously, the spectral ordering method can be adjusted in
such a way that the obtained vertex sequence reflects group
labels. We expect our paper will stimulate further research in
these directions.
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APPENDIX A: UPPER BOUND OF THE LABEL
CONTINUITY ERROR

We derive the upper bound of the LCE by explicitly con-
structing a worst-case sequence. We assume that a partition
σ is given (i.e., the number of groups K and group sizes
{Nk} are given), and the first group is the largest group (i.e.,
maxk Nk = N1 = |V1|). When N1 satisfies N1 > �N/2�, some
vertices in V1 must be aligned consecutively. As exemplified
in Fig. 11(a), the LCE is maximized when the vertices in V1

and those in ∪k>1Vk are aligned alternately as possible. In
this case, there are 2(N − N1) vertices that are aligned alter-
nately with different group labels, and the label continuity is
C = (2N1 − N − 1)/(N − 1). Therefore, the maximum LCE

leads to

� = 1 − K − 1

N − 1
− 2N1 − N − 1

N − 1

= 2(N − N1)

N − 1
− K − 1

N − 1
, (A1)

which corresponds to the upper case of Eq. (5).
When N1 is less than or equal to the sum of the vertices

in all other groups [Figs. 11(b), 11(c), and 11(d)], vertices
can be aligned such that no group labels are consecutive.
Such a sequence is constructed as follows. We first align the
vertices in V1 and the vertices in ∪k>1Vk as alternately as
possible. In this step, all the vertices in V1 are aligned, and
there are

∑
k>1 Nk − N1 vertices that are not yet aligned; here,

in ∪k>1Vk , we preferentially consume the labels with larger
Nk [Fig. 11(b) and Step 1 in Figs. 11(c) and 11(d)]. When
there are remaining vertices, we regard a set of alternately-
aligned vertices as a fundamental unit and treat all such sets
as “super vertices” with the same labels. We then align the
super vertices and the remaining vertices in the same manner
as in the previous step. We repeat this procedure until all
vertices are aligned. We can always align vertices and super
vertices alternately because the number of remaining vertices
with the same label never exceeds the number of already
aligned vertices or super vertices. Therefore, we can establish
a sequence for which the label continuity C is zero, and the
upper bound of the LCE leads to

� = 1 − K − 1

N − 1
. (A2)

APPENDIX B: VARIANCE OF THE LABEL CONTINUITY
ERROR IN RANDOM PARTITIONS

The second moment of � is

E[�2] =
∑
σ∗

P(σ∗)

(
N − K

N − 1
−
∑N−1

i=1 δ(σ ∗(i), σ ∗(i + 1))

N − 1

)2

=
(

N − K

N − 1

)2

− 2
N − K

N − 1
E[C] + 1

(N − 1)2

N−1∑
i=1

∑
σ ∗

i ,σ ∗
i+1

P(σ ∗
i )P(σ ∗

i+1)δ(σ ∗(i), σ ∗(i + 1))

+ 2

(N − 1)2

N−2∑
i=1

∑
σ ∗

i ,σ ∗
i+1,σ

∗
i+2

P(σ ∗
i )P(σ ∗

i+1)P(σ ∗
i+2)δ(σ ∗(i), σ ∗(i + 1))δ(σ ∗(i + 1), σ ∗(i + 2))

+ 1

(N − 1)2

∑
i, j

(|i− j|>2)

∑
σ ∗

i ,σ ∗
i+1,

σ ∗
j ,σ ∗

j+1

P(σ ∗
i )P(σ ∗

i+1)P(σ ∗
j )P(σ ∗

j+1)δ(σ ∗(i), σ ∗(i + 1))δ(σ ∗( j), σ ∗( j + 1)) (B1)

=
(

N − K

N − 1

)2

− 2
N − K

N − 1

K∑
k=1

(
Nk

N

)2

+ 1

N − 1

K∑
k=1

(
Nk

N

)2

+2(N − 2)

(N − 1)2

K∑
k=1

(
Nk

N

)3

+ (N − 2)(N − 3)

(N − 1)2

(
K∑

k=1

(
Nk

N

)2
)2

. (B2)
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Thus, the variance Var[�] is

Var[�] = E[�2] − E[�]2

= 1

N − 1

K∑
k=1

(
Nk

N

)2

+ 2(N − 2)

(N − 1)2

K∑
k=1

(
Nk

N

)3

− 3N − 5

(N − 1)2

(
K∑

k=1

(
Nk

N

)2
)2

. (B3)

APPENDIX C: PROBABILITY DISTRIBUTION OF THE
LABEL CONTINUITY ERROR IN RANDOM PARTITIONS

This section derives the probability distribution of the la-
bel continuity error �(π, σ ) when group labels are assigned
randomly based on bootstrapped group labels σ∗.

To derive the probability distribution of �(π, σ ), it is
sufficient to calculate that of label continuity C(π, σ ). The
probability of (N − 1)C = m is

P[(N − 1)C = m]

=
∑
σ∗

P(σ∗)δ

(
m,

N−1∑
i=1

δ(σ ∗(i), σ ∗(i + 1))

)

=
∑
σ∗

N∏
i=1

Nσ ∗(i)

N

∮
dz

2π i
z
∑N−1

i=1 δ(σ ∗(i),σ ∗(i+1))−m−1

=
∮

dz

2π i
z−(1+m)

∑
σ∗

Nσ ∗(N )

N

N−1∏
i=1

(
Nσ ∗(i)

N
zδ(σ ∗(i),σ ∗(i+1))

)

=
∮

dz

2π i
z−(1+m)1�D(FD)N−11, (C1)

where

D ≡ diag

(
N1

N
, . . . ,

NK

N

)
, F ≡ 11� + (z − 1)I. (C2)

Here, I is the identity matrix. In Eq. (C1), we used the identity

δ(x, y) =
∮

dz

2π i

1

zx−y+1
, (C3)

which is an integral around the origin of the complex plane.
Using the eigenvalue decomposition, F can be

expressed as

z − 1 + K

K
11� + (z − 1)

K∑
k=2

uku�
k , (C4)

where uk (2 � k � K) is an eigenvector of F that is perpen-
dicular to 1, and we have

FD1 = z − 1 + K

K
1 + (z − 1)

K∑
k=2

uku�
k D1. (C5)

Because the second term in Eq. (C5) vanishes when the group
sizes are equal, the exact probability distribution can be de-
rived as follows:

P[(N − 1)C = m]

= 1

KN−1

∮
dz

2π i
z−(1+m)(z − 1 + K )N−1

= 1

KN−1

∮
dz

2π i
z−(1+m)

N−1∑
k=0

(
N − 1

k

)
zk (K − 1)N−1−k

=
(

N − 1

m

)(
1

K

)m(
1 − 1

K

)N−1−m

. (C6)

Equivalently,

P(C) =
(

N − 1

(N − 1)C

)(
1

K

)(N−1)C(
1 − 1

K

)(N−1)(1−C)

. (C7)

Therefore, (N − 1)C follows a binomial distribution. This re-
sult can be interpreted as follows. We suppose that there are N
elements that are linearly aligned, and we assign group labels
from one end. As we focus only on the consecutive property
of the group labels, the label of the first element can be
arbitrary. For the next N − 1 elements, the probability that the
label is consecutive to the previous one is 1/K , whereas the
complement probability is 1 − 1/K because the group label
can be arbitrary as long as it is not identical to the previous
one. We sum over all possible patterns that have consecutive
labels m times to obtain P[C = m

N−1 ].
Even when the group sizes are not equal, Eq. (C6) is

close to the actual distribution as long as the second term
in Eq. (C5) is negligible. When N � 1 and the size of each
group is of constant order, i.e., N/K = O(1), Eq. (C6) is well
approximated as a Poisson distribution. Furthermore, when
N/K � 1, the distribution is nearly normal. The distribution
of �(π, σ ) is obtained by shifting the distribution (C7) by a
constant factor.

APPENDIX D: LABEL CONTINUITY ERRORS FOR
NESTED PARTITIONS

As an example of partitions with different numbers of
groups, here we investigate the difference in the LCEs be-
tween a partition σ with K groups and its nested partition
σ ′. The partition σ ′ is obtained by subpartitioning the ver-
tices VK having K th group label in σ into VK,1 and VK,2

(VK,1 ∪ VK,2 = VK ); we denote the sizes of these two groups
as N ′

K,1 and N ′
K,2 (N ′

K,1 + N ′
K,2 = NK ), and also denote {N ′

k} =
{N1, . . . , NK−1, N ′

K,1, N ′
K,2}. The partitions σ and σ ′ are only

locally different. The difference in the LCEs for σ and σ ′ with
the same sequence π is bounded as

− 1

N − 1
� �(π, σ ′) − �(π, σ )

�
2 min{N ′

K,1, N ′
K,2} − δ(N ′

K,1, N ′
K,2) − 1

N − 1
. (D1)

The lower bound is trivial because the label continuity C is
a nonnegative quantity and C cannot be smaller when C = 0
before subpartition. The upper bound of Eq. (D1) can be
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derived as follows. The difference in the LCE is maximized
when the difference in C is maximized. Note that the number
of flips of the labels can be maximized when the labels before
the subpartition are aligned completely consecutively, e.g., the
case in Fig. 12(a). In this case, we can maximize the difference
in C by aligning the vertices in VK,1 and VK,2 as alternately as
possible. The achieved difference is

C(π, σ ′) − C(π, σ ) =
⎧⎨
⎩

−NK −1
N−1 (N ′

K,1 = N ′
K,2)

− 2 min{N ′
K,1,N

′
K,2}

N−1 (N ′
K,1 �= N ′

K,2)

= δ(N ′
K,1, N ′

K,2) − 2 min{N ′
K,1, N ′

K,2}
N − 1

.

(D2)

Equation (D1) indicates that the LCE is a local quantity,
that is, the bound of variation in the LCE is characterized
by N ′

K,1 and N ′
K,2; the variation tends to be small when

min{N ′
K,1, N ′

K,2} is small. However, when it comes to the
specific difference, not bounds, it depends not only on the
subsequence within VK , but also on the position VK in the
entire sequence π (see Fig. 12 for specific examples). The
present result implies that comparison of the LCEs is gener-
ally complicated when partitions have different numbers of
groups.

FIG. 12. Effect of subpartitioning on the label continuity C and
label continuity error �. The partition σ ′ is a nested partition of σ; the
yellow label in σ is subpartitioned into the yellow and green labels in
σ ′. (a) When the group labels are maximally consecutive (sequence
π), C becomes smaller by subpartitioning. (b) When the group labels
are not consecutive at all (sequence π̃), C does not change regardless
of the choice of the nested partition. Although σ and σ ′ are the same
between (a) and (b), the value of C is affected by the locations of the
blue labels.
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