
Kobe University Repository : Kernel

PDF issue: 2025-07-26

Sequential locality of graphs and its
hypothesis testing

(Citation)
Physical Review Research,5(2):023007

(Issue Date)
2023-04

(Resource Type)
journal article

(Version)
Version of Record

(Rights)
Published by the American Physical Society under the terms of the Creative Commons
Attribution 4.0 International license. Further distribution of this work must maintain
attribution to the author(s) and the published article's title, journal citation, and
DOI.

(URL)
https://hdl.handle.net/20.500.14094/0100482176

Kawamoto, Tatsuro
Kobayashi, Teruyoshi



PHYSICAL REVIEW RESEARCH 5, 023007 (2023)

Sequential locality of graphs and its hypothesis testing

Tatsuro Kawamoto
Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan

Teruyoshi Kobayashi
Department of Economics, Kobe University, Hyogo 657-8501, Japan

(Received 7 March 2022; accepted 16 March 2023; published 4 April 2023)

The adjacency matrix is the most fundamental and intuitive object in graph analysis that is useful not only
mathematically but also for visualizing the structures of graphs. Because the appearance of an adjacency matrix
is critically affected by the ordering of rows and columns, or vertex ordering, statistical assessment of graphs
together with their vertex sequences is important in identifying the characteristic structures of graphs. In this
paper, we propose a hypothesis-testing framework that assesses how locally vertices are connected to each other
along a specified vertex sequence, which provides a statistical foundation for an optimization problem called
envelope reduction or minimum linear arrangement. The proposed tests are particularly suitable for moderately
small data sets and formulated based on a combinatorial approach and a block model with intrinsic vertex
ordering.
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I. INTRODUCTION

Much effort has been devoted to identifying the charac-
teristic structures in graph data [1,2]. The most fundamental
representation of a graph is the adjacency matrix, in which the
row and column indices correspond to the vertices, and the
matrix elements represent the connectivity among the vertices.
Adjacency matrix is not only essential in theoretical graph
analysis, but also useful for visualization [3–6].

However, the appearance of an adjacency matrix critically
depends on vertex ordering, and the interpretation of the graph
structure can differ as vertex ordering varies. This issue has
often been ignored, mainly because vertices usually do not
have intrinsic ordering, and it is common to study character-
istics that are invariant under a permutation of vertex labels.
Figure 1 shows adjacency matrices of the same graph, called
political books [7], with different vertex orderings (the ver-
tices represent books about U.S. politics, and two vertices
are connected if the two books are copurchased frequently).
When the vertices are ordered randomly, as shown in Fig. 1(a),
the adjacency matrix is apparently uniformly random. On
the other hand, when we run a community detection algo-
rithm (e.g., spectral clustering [8,9]) and align the vertices
such that the vertices with the same group label are close to
each other, as shown in Fig. 1(b), we can identify a nearly
block-diagonal structure, indicating that the graph consists of
densely connected components, a structure usually referred to
as community structure. As the political books data set has a
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label for each vertex (“conservative,” “liberal,” and “neutral”),
it is confirmed that the two “blocks” at the corners of the
adjacency matrix are associated with the sets of “conserva-
tive” and “liberal” vertices. However, this is not the only
structure that can be found in this data set. If we optimize
the ordering so that the nonzero elements are concentrated
around the diagonal components, we obtain the adjacency
matrix shown in Fig. 1(c). In other words, the vertex sequence
is permuted so that the sum of distances between connected
vertices along the sequence is minimized (we used a method
called spectral ordering [10] in Fig. 1(c)). Such an optimiza-
tion is known as envelope reduction [10,11] or minimum
linear arrangement [12–16], which is also closely related to
the seriation problem [17,18], the consecutive ones problem
(C1P) [19–23], and the k-sum minimization problem [24].
The optimized adjacency matrix reveals that, in addition to
the community structure, the political books data set also has
a locality structure along the optimized sequence.

In this paper, we establish a statistical framework for the
envelope reduction problem, which is formulated as an opti-
mization problem that aims to find the best vertex ordering.
While optimization algorithms and their efficiencies have
been studied extensively in computer science, the extent to
which such optimized ordering reflects the inherent structure
of a graph is generally unknown. Therefore, independently
of finding the best vertex ordering, a method that enables us
to assess whether the adjacency matrix with a given vertex
sequence exhibits a statistically significant structure needs to
be developed.

To this end, we introduce a notion of sequential local-
ity. It is a test statistic that captures how locally vertices
are connected to each other along a given sequence based
on a given metric. We let G = (V, E ) be a graph, where V
(|V | = N) denotes the set of vertices and E (|E | = M) is the
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(a) (b) (c)

FIG. 1. The political books data set with different orderings of the adjacency matrix elements. In (a), the vertices are ordered randomly.
In (b) and (c), the orderings are determined by the spectral clustering (i.e., community detection) and spectral ordering, respectively; in both
cases, we use the normalized Laplacian as the regularized matrix. This graph has metadata on each vertex, showing the category of each book:
We indicate them in red (“conservative”), blue (“liberal”), and gray (“neutral”) in the network plots. The adjacency matrix elements and the
edges in the network plot are indicated in red (blue) if both ends of the edge are “conservative” (“liberal”); otherwise, they are indicated in
gray. In each panel, the bar plot represents the microscopic measure of locality hi := median{|πi − π j | : Ai j > 0, j ∈ I} for i ∈ I .

set of edges. We refer to the set of raw (or original) vertex
indices as I = {1, . . . , N} and define the inferred sequence
π = {πi|i ∈ I, πi ∈ I} as a permutation of the raw indices. We
let A be the adjacency matrix for a graph, where Ai j repre-
sents the number of edges between the ith and jth vertices
in the original sequence. Throughout this paper, we con-
sider undirected graphs without self-loops. We consider both
simple graphs and multigraphs, i.e., graphs with multiedges
(multiple edges between a pair of vertices). We specify a
metric that represents the affinity among vertices by a ma-
trix J . Then, the measure of sequential locality is defined
as

HJ =
∑
i< j

Ai jJπiπ j , (1)

where
∑

i< j is the sum with respect to i ∈ I and j ∈ I with
i < j.

We employ HJ as a test statistic and use it to assess the
statistical significance of graphs and their inferred vertex se-
quences. HJ is a quantity that depends on graph A, vertex
sequence π, and affinity matrix J . Traditionally, the envelope
reduction problem employs the squared Euclidean distance
Ji j ∝ (i − j)2, and the minimum linear arrangement problem
employs the sequential distance Ji j ∝ |i − j| as the affinity
matrix. Alternatively, we can also consider other metrics such
as the logarithmic semimetric Ji j ∝ − ln(1 − |i − j|/N ), or a
piecewise constant distance Ji j ∝ θ (|i − j| − r), where r is
a constant and θ (·) is the step function. In these cases, HJ

indicates the degree of nonlocality. In this paper, we employ
the sequential distance as J (see Refs. [5,25,26] for other
measures considered in the literature).

Equation (1) can also be expressed as

HJ = 1
2 trA(PπJP�

π ) = 1
2 tr(P�

π APπ )J, (2)

where tr represents the trace operation and Pπ and P�
π are

the permutation matrix and its transpose. Thus Eq. (1) can be
interpreted as a quantity obtained after permuting A to P�

π APπ

for a given J . Although A and J apparently play symmet-
rical roles, they are conceptually distinct objects; J defines
the similarity between each pair of vertices regardless of the
graph structure, while the adjacency matrix A is responsible
for vertex connectivity in a graph. A possible generalization of
Eq. (1) would be to replace A with a modified matrix A′, whose
element represents the shortest-path distance [18,27] between
a pair of vertices, although such an extension is beyond the
scope of this study.

We can also consider a microscopic measure of the se-
quential locality for each vertex. For example, among the
sequential distances between neighboring vertices, we can use
their maximum or median as the degree of sequential locality
of a target vertex. In Fig. 1, we plot the microscopic sequential
localities based on medians, which we denote by hi (i ∈ I), as
a bar plot in each panel. While hi may not be suitable for a
statistical assessment of the entire graph, it is a useful measure
for quantifying the degree of locality of each vertex.

We define that a graph exhibits significant sequential
locality if there exists a vertex sequence such that HJ is
significantly small compared with those realized under a null
hypothesis. We refer to a sequence obtained as a solution of
an envelope reduction algorithm as an optimized sequence,
regardless of its statistical significance. In the following anal-
ysis, we first assess the statistical significance of sequential
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locality based on an unoptimized vertex sequence. Next, we
develop statistical tests for optimized sequences. Finally, we
formulate a statistical assessment under the null hypothesis
that the vertex sequence is randomly ordered.

II. SEQUENTIAL LOCALITY
OF UNOPTIMIZED SEQUENCES

A. Statistical test

We consider a statistical test for graphs with a given vertex
sequence π that is not explicitly optimized to achieve a small
value of HJ . In other words, vertices are “naturally” ordered
(e.g., the original indexing in the data set). To assess statistical
significance, we evaluate whether the observed sequential lo-
cality can be commonly achieved by the graphs generated by
a uniform random graph model.

We denote H1(A,π) as the HJ test statistic with the sequen-
tial distance. Specifically,

H1(A,π) = 1

β1

∑
i< j

Ai j |πi − π j |, (3)

where β1 = M(N + 1)/3 is a normalization factor. As shown
below, β1 corresponds to the mean value of

∑
i< j Ai j |πi − π j |

under a uniform random graph model. In fact, H1 is equivalent
to the objective function considered in the minimum linear
arrangement problem [12], and its minimization is known to
be NP-complete [28]. Note, however, that our objective here
is to provide a statistical test for a given vertex sequence, not
to solve an optimization problem.

As a uniform random graph model, we consider the Erdős-
Rényi random graph model (Erdős-Rényi model, henceforth)
with a fixed number of edges, allowing multiedges. A graph
instance is generated uniformly randomly from all possible
graphs with N vertices and M edges. Because every element
in the adjacency matrix is statistically identical, we consider
the following random variable that approximately obeys the
distribution for H1(A,π):

H1 = 1

β1

M∑
m=1

Xm, (4)

where Xm ∈ N is a random non-negative integer drawn from
the discrete triangular distribution

Prob[Xm = x] =
{ 2(N−x)

N (N−1) (0 < x � N − 1)
0 (otherwise).

(5)

This is because the number of elements with |πi − π j | = x is
N − x in the affinity matrix, which determines the frequency
of the outcome of Xm. Therefore we have

Prob[H1(A,π) = E ] � Prob[H1 = E ]

=
∑

{1�xm�N−1}
δ

(
β1E ,

M∑
m=1

xm

)
M∏

m=1

2(N − xm)

N (N − 1)
(6)

as the null probability, where δ(a, b) is the Kronecker delta.
The normalization factor β1 in Eq. (3) is determined from the
fact that E[Xm] = (N + 1)/3.

(a) (b)

FIG. 2. Hypothesis testing of an adjacency matrix with unopti-
mized vertex sequence. (a) An adjacency matrix of a small graph
(white cells for Ai j = 0 and black cells for Ai j = 1) that has z1 =
−1.61. (b) The null hypothesis is not rejected (with α = 0.05) be-
cause the z1 value (dashed line) is not located in the rejection region.
The empirical distribution (green histogram) is obtained by calcu-
lating z1 values for graphs generated from the Erdős-Rényi model
without multiedges.

In the limit of large M, the central limit theorem guarantees
that H1 asymptotically follows a normal distribution. Thus

Prob

[√
2M(N + 1)

N − 2
(H1 − 1) � a

]
=
∫ a

−∞

dx√
2π

e− 1
2 x2

. (7)

In fact, this is a moderately accurate estimate of the distri-
bution even when M is not very large, as long as a graph is
sparse. Hereinafter, we denote the standardized H1 statistic,
or the z-statistic, as

z1(A,π) =
√

2M(N + 1)

N − 2
(H1(A,π) − 1). (8)

The standardization factors are obtained by calculating the
mean and variance of H1, which are derived in Appendix A.

Using Eq. (7), we can conduct the significance test of
sequential locality (see Fig. 2 for an example). Under the null
hypothesis that the graph is generated from the Erdős-Rényi
model, we reject the hypothesis if

|z1(A,π)| > z∗
1 (α), (9)

for a given significance level α. Here, z∗
1 (α) is defined such

that �(z < −z∗
1 (α)) = α/2, where � is the standard normal

cumulative distribution function. Note that Eq. (9) represents
a two-sided test that allows us to make a dichotomous decision
as to whether we can reject the hypothesis that the graph is
generated from the Erdős-Rényi model or not. In other words,
because no model is assumed as an alternative hypothesis,
a low value of z1(A,π) being smaller than −z∗

1 (α) does not
necessarily imply that the graph is generated from a model
that typically yields a stronger sequential locality [i.e., smaller
z1(A,π)] than the Erdős-Rényi model. We can only conclude
that the observed graph happened to exhibit a strong sequen-
tial locality when z1(A,π) is relatively small.

In passing, we discuss how the entropic evaluation in
Eq. (6) differs from the exact distribution. Note that the or-
der of the outcome of the sequence (X1, . . . , XM ) matters
in Eq. (3). It implies that the same graphs with different
edge orderings are overcounted. This overcounting would
have no effect on the distribution if all graph instances are
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simple, because every graph is overcounted exactly M! times.
However, the order of the edges within a multiedge is not
distinguished [29,30]. In other words, when every outcome of
(X1, . . . , XM ) is reweighted by 1/M!, the contribution from
the multigraphs is counted less than it should be (see Ap-
pendix B for an illustration using a small graph). Therefore
Eq. (6) can be regarded as the distribution for the Erdős-Rényi
model that is mildly restricted to simple graphs.

In Appendix C, we show the exact distribution of a test
statistic in which the multiedges are counted correctly and
discuss the relationship with the present result. However, it
should be emphasized that the exact distribution is not neces-
sarily a better choice. The assessment using Eq. (7) is more
appropriate than that based on the exact distribution when
simple graphs are assumed as the null hypothesis. Moreover,
we cannot apply the central limit theorem to the exact distri-
bution, implying that we cannot evaluate p values efficiently.

Although we consider a model in which every graph
instance has exactly M edges (i.e., the microcanonical con-
straint), we could alternatively consider the Erdős-Rényi
model in which the number of edges is constrained only on
average (i.e., the canonical constraint) as a null hypothesis.
In fact, its exact test-statistic distribution asymptotically coin-
cides with Eq. (7) as M becomes large (see Appendix D).

B. Ordered random graph model and the power analysis

To analyze the performance of the statistical test using
Eq. (7), we introduce a random graph model that has an intrin-
sic vertex sequence exhibiting a desired strength of sequential
locality. That is, edges are generated with high probabilities
between vertices that are deemed to be close to each other in
the intrinsic sequence. We refer to this model as the ordered
random graph model (ORGM). This model is categorized in
the family of block models; as we describe below, the ORGM
partly overlaps with the stochastic block model [29,31,32].
Note that there are several distance-dependent random graph
models that have been proposed in the literature, such as the
latent space model [33,34], geometric random graphs [35],
and some random graph models [36,37] inspired by the Watts-
Strogatz model [38].

We define an envelope function F (i) ∈ I , which is a dis-
crete function of vertex index that specifies the upper bound
of the sequential distance below which a pair of vertices are
regarded as being close to each other. As illustrated in Fig. 3,
we denote �in as the set of the upper-right triangle elements
of the adjacency matrix that satisfies |i − j| � F (i) (i, j ∈ I).
The rest of the upper-right triangle elements is denoted by
�out. We randomly draw Min edges for vertex pairs belonging
to �in. Similarly, we randomly draw Mout edges for vertex
pairs belonging to �out. The probability distribution of the
adjacency matrix A for the ORGM is given by

Prob[A] = 1

NG

N∏
i=1

δ(Aii, 0)
∏
i< j

δ(Ai j, Aji )

× δ

⎛
⎝Min,

∑
(i, j)∈�in

Ai j

⎞
⎠δ

⎛
⎝Mout,

∑
(i, j)∈�out

Ai j

⎞
⎠;

(10)

(a) (b)

FIG. 3. ORGM with (a) banded and (b) community structures.
We randomly select Min elements within �in (light-shaded cells)
with or without repetition. We randomly select Mout elements within
�out (dark-shaded cells) with or without repetition. The boundary
between the dark- and light-shaded regions (solid line) in each panel
represents the envelope function F (i).

NG is the total number of graphs, which can take different
values depending on whether the graph is constrained to a
simple graph or allowed to be a multigraph:

NG =
{(|�in|

Min

)(|�out |
Mout

)
(simple graph)((|�in|

Min

))((|�out |
Mout

))
(multigraph),

(11)

where |�in| =∑N
i=1(F (i) − i), |�out| = (N2)− |�in|, and(( n

m

))
≡ (n + m − 1)!

(n − 1)!m!
=
(

n + m − 1

m

)
(12)

is the number of combinations of m elements taken from
n elements with repetition. Instead of Min and Mout, the
model can also be parametrized using the total number of
edges M = Min + Mout and the density ratio defined by ε ≡
(Mout/|�out|)/(Min/|�in|); the ORGM becomes a uniform
model when ε = 1, while the nonzero elements are strictly
confined in �in when ε = 0. In the ORGM, there is no finer
structure within �in, unlike some other order-dependent mod-
els (e.g., Refs. [36,37]). Depending on the envelope function
F (i), some of the vertices are statistically equivalent.

In this paper, we focus on a simple envelope function that
represents a “banded” structure [Fig. 3(a)]:

F (i) =
{

i + r (i + r � N )
N (i + r > N ). (13)

That is, edges are generated with a high probability within the
diagonal band with “bandwidth” r from the main diagonal.
In this case, we have |�in| = r(2N − r − 1)/2. Note that the
expected degrees of vertices are lower at both ends of the
vertex sequence in this model. In addition, when the ORGM
is constrained to simple graphs, r is constrained such that
Min � |�in| and Mout � |�out| are satisfied. In summary, the
ORGM is parametrized by N , M, r, and ε.

If we set F (i) such that �in constitutes a block-diagonal
form, as illustrated in Fig. 3(b), the ORGM with this enve-
lope function is equivalent to the stochastic block model with
two statistically identical groups. Therefore the ORGM partly
overlaps with the stochastic block model, while it is flexible
enough to represent a banded structure as well. Although
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(a) (b) (c)

FIG. 4. Power of the test for unoptimized sequences. While the null hypothesis is the Erdős-Rényi model, the graphs are generated by
the ORGM. The rejection rate (dark-shaded region) of the null hypothesis and the acceptance rate (light- and dark-shaded regions) of the
alternative hypothesis (r/N = 0.75, ε = 0) are shown in (a) for graphs with N = 50 and M = 200. The density plots represent the power,
the true-positive rate, that we calculated analytically based on Eqs. (15) and (F5), in (b) the (r/N, ε) plane (N = 50, M = 200) and (c) the
(N, 2M/N ) plane (r/N = 0.75, ε = 0).

Eq. (13) is an appropriate envelope function for the purpose
of this study, the ORGM with a more complicated envelope
function will be useful when it is used as an inference model.
This is left for future work.

Using the ORGM, we investigate the extent to which the
proposed test (9) is effective. Because it is a test of uniformity,
the p value of the statistical test is highly nontrivial when
an adjacency matrix is close to uniformly random (ε ≈ 1 or
r/N ≈ 1 in the ORGM). On the other hand, there would be no
need for the statistical test when we can visually confirm a se-
quentially local structure; the p value would be trivially small.
We quantify this intuition in terms of the ORGM parameters
via power analysis.

We assume that graphs are generated from the Erdős-Rényi
model as the null hypothesis, while we use the ORGM as
the alternative hypothesis. The critical value H1 = E∗ below
which the null hypothesis is rejected is determined by

∫ √
2M(N+1)

N−2 (E∗−1)

−∞

dx√
2π

e− 1
2 x2 = α, (14)

where α is again the significance level; we let α = 0.05. As
the power is the true-positive rate of the alternative hypothesis,
we have

Power(N, M, r, ε) =
∫ E∗

−∞
dE Prob[H1 = E ; N, M, r, ε],

(15)

where Prob[H1 = E ; N, M, r, ε] is the probability distribution
of the H1 test statistic in the ORGM. Its specific form is
derived in Appendix F. Note that, unlike Eq. (9), Eq. (14)
is a one-sided test because we accept the ORGM if the null
hypothesis is not true. In Fig. 4(a), the rejection region deter-
mined by Eq. (14) (dark-shaded region) and acceptance region
determined by Eq. (15) (light- and dark-shaded regions) are
shown for a specific parameter set.

Note that our usage of the power analysis is slightly dis-
tinct from the common usage. Although one usually considers
the condition where a higher power can be achieved, we

consider the parameter region where the power is not very
high. For example, although the power is nearly zero when
ε ≈ 1 or r/N ≈ 1, it is certainly the case where we wish to
try the statistical test; note that we do not know the model
parameters in practice, and we cannot figure it out from the
visual inspection. Another distinction from the common usage
is that we are not certain about the alternative hypothesis.
Although we consider the ORGM as the alternative hypoth-
esis, this is only one of many models that can generate a
sequentially local structure. Therefore, even in the param-
eter region where the power is low, it does not imply the
test is useless there. In such a region, we should execute
the test and confirm whether the locality is significant or
not.

Figure 4(b) shows the r-ε dependency of the power for
a given set of N and M. Furthermore, Fig. 4(c) shows the
N-M dependency of the power when r and ε are fixed. As
observed in Fig. 4(b), the power is not nearly 1 for r/N � 0.75
even when ε � 0. This result implies that the present test is
expected to be meaningful (i.e., the p value would not be ex-
tremely small) when a graph has edges between vertices with
sequential distance |πi − π j | � 0.75N . Similarly, Fig. 4(c)
indicates that the present test is expected to be meaningful
for small sparse graphs. The plot represents the quantitative
relationship between the sparsity and graph size. Figure 4(b)
also indicates the finite-size detectability of the ORGM. For
example, as long as the density ratio ε is sufficiently large
[e.g., ε � 0.8 in Fig. 4(b)], the null hypothesis of the Erdős-
Rényi model is rarely rejected, that is, the power is close to
zero, for any bandwidth r.

III. SEQUENTIAL LOCALITY
OF OPTIMIZED SEQUENCES

The statistical test in the previous section assumed that
the vertex sequence is not optimized. This assumption is
important because the results in the previous section imply
that the test is not suitable for cases with optimized vertex
sequences. For example, for the political books data set with
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FIG. 5. Average of the adjacency matrices for the Erdős-Rényi
model in optimized vertex orderings. The vertex sequences are
optimized using (a) the spectral ordering and (b) the reversed Cuthill-
McKee algorithm. In each case, we set N = 100 and M = 250. Each
cell in a density plot represents the average value of the adjacency
matrix element in 100 samples.

the adjacency matrix in Fig. 1(c), testing based on Eq. (6)
is not a fair comparison because the vertex sequence is opti-
mized so that the adjacency matrix exhibits strong sequential
locality. In fact, even graphs generated by the Erdős-Rényi
model can exhibit significant sequential locality under Eq. (6)
when the vertex sequence is optimized. In Fig. 5, we show
the average adjacency matrices of the Erdős-Rényi model in
which the vertices are ordered using different algorithms: the
spectral ordering [10] [Fig. 5(a)] and reversed Cuthill-McKee
algorithm [39,40] [Fig. 5(b)].

A simple approach to dealing with this problem is to
calculate an empirical distribution of the test statistic for a
set of optimized vertex sequences obtained from randomized
graphs, e.g., graphs obtained via rewiring of an input graph.
If the observed test statistic of the actual graph is sufficiently
far apart from those of the randomized samples, we conclude
that the graph has a sequentially local structure that cannot be
commonly obtained by randomized counterparts. However, a
disadvantage of this simple approach is that, in many cases,
it can only be used for descriptive purposes. Note that the
empirical distribution of the test statistics is generally affected
not only by the intrinsic structure of the graph, but also by the
optimization algorithm used to obtain the vertex sequence. In
other words, the null hypothesis is often highly complicated.
Therefore, even if we conduct a formal statistical test, we
can hardly interpret what the resulting p value really implies
(see Appendix E for more discussion). Although the null hy-
pothesis can be algorithm independent when an optimization
is executed exactly, such a test would be computationally
infeasible.

Herein, instead of considering a random model for a matrix
before optimization and including algorithmic dependencies
in the null hypothesis, we consider a random model for a ma-
trix after optimization and exclude algorithmic dependencies
from the null hypothesis. To this end, we propose a statistical
test in which the ORGM is used to define a null hypothesis.
We let N and M be equal to the observed numbers of vertices
and edges in the data set, respectively, with which we obtain
the maximum likelihood estimators (MLEs) for the bandwidth

r and the density ratio ε (we describe the details of the MLEs
in Appendix G). Then, we assess whether the elements of the
optimized adjacency matrix are uniformly distributed within
�in. In other words, we ignore the observed elements in �out

and compute the H1 value (i.e., “in-envelope H1”). Using the
theoretical mean EA[H1(π ; A)] [Eq. (F3)] and second moment
EA[H2

1 (π ; A)] [Eq. (F4)] of the H1 statistic, we can analyti-
cally compute the p value of the observed graph. Importantly,
in contrast to the aforementioned simple approach, there is
no algorithmic uncertainty at the stage of the statistical test
because the null hypothesis is specified exclusively by the
fitted ORGM without any influence from the optimization
algorithm.

This test can be viewed as a variant of the test for unop-
timized sequences in Sec. II A. Instead of testing a uniform
structure in the entire matrix space, we execute it in a subspace
of the adjacency matrix. However, the implication of the p
value is very different from that in Sec. II A. Here, a smaller
p value implies that the graph is expected to have a finer local
structure than that assumed in the ORGM.

The (masked) adjacency matrices for different real-world
data sets are shown in Fig. 6(a), for which we use the esti-
mated bandwidth r∗, and the corresponding test statistics are
plotted in Fig. 6(b) (see Table I for a description of the data
sets). All the data sets in Table I are downloaded from the
network repository Netzschleuder [53]. The statistical tests
based on �in allow us to classify the data sets into four types.

Type I. In type I data sets, the observed in-envelope H1

is lower than the confidence interval (CI) of the ORGM hy-
pothesis (see Table I for the corresponding p value), meaning
that the edges in �in exhibit a finer structure in the sense
of sequential locality (e.g., States, Polbooks, Celegans, and
Transport).

Type II. In type II data sets, the observed in-envelope H1

is within the CI, meaning that we cannot reject the hypothesis
that the edges in �in are connected uniformly at random as
suggested by the ORGM; i.e., the data set is well characterized
solely by the sequentially local structure (e.g., Tribes and
Ugandan).

Type III. In type III data sets, the observed in-envelope H1

is above the CI; yet the observed H1 based on all the edges is
far below those of the Erdős-Rényi model, indicating that the
data set is not well characterized by the ORGM. However, the
graph has some extent of sequential locality compared with its
randomized counterpart (e.g., Highschool and Football).

Type IV. In type IV data sets, the observed H1 value for
the entire adjacency matrix can be typically achieved by
the Erdős-Rényi model, and thus the graph does not exhibit
a strong sequential locality compared with the randomized
counterpart (e.g., Montreal and Adjnoun).

The number of edges in �in can vary as r changes, and
therefore the in-envelope CI may also change accordingly.
When the evaluated p value is unfairly low owing to the fact
that r∗ is too large (which can be visually confirmed from
the adjacency matrix as long as the data set is not too large),
one ought to confirm whether the in-envelope CI is highly
sensitive to r (Fig. 7). Note that the MLE r∗ is provided
only to determine a plausible bandwidth systematically and
automatically. It is ultimately the analyst’s choice as to which
region to consider as �in.
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(a)

(b)

FIG. 6. Statistical tests for optimized sequence using real-world data sets. (a) Optimized adjacency matrices. The white and gray areas
denote �in and �out , respectively, obtained via the estimated bandwidth r∗. The black cells represent the elements with Ai j = 1. (b) H1 values
for different data sets. For each data set, the triangle represents the observed H1 value (“observed, all”), while the violin plot represents the
kernel density estimate [52] of the empirical H1 distribution based on 100 optimized samples of the Erdős-Rényi model (“Erdős-Rényi”).
The circles and error-bar plots describe the statistical tests using the ORGM. Each circle is the observed H1 value within �in (“observed,
in-envelope”). The corresponding error-bar plot (red) represents the mean and 95% confidence interval of the fitted ORGM in which the
elements in �out are ignored (“ORGM, in-envelope”).

The present statistical test implies a connection between
envelope reduction and community detection. As mentioned
in Sec. I, a graph can have a community structure either with
or without a banded structure. Our ORGM hypothesis will
be rejected in both of these cases owing to the heterogeneity
of edge density characterized by the community structure
(these cases typically fall within either type I or type III
under the above criteria). Therefore it is natural that data sets
often used for a benchmark test in community detection (e.g.,
Polbooks, Celegans, and Football) exhibit extremely low p
values.

For a more quantitative insight, let us consider the upper
bound of the in-envelope H1 value. The H1 statistic can be
regarded as a rescaled average sequential distance between

connected vertices because we have
1

M

∑
i< j

Ai j |πi − π j | = N + 1

3
H1(A,π). (16)

As the average sequential distance within the estimated enve-
lope cannot be larger than r∗, we have max H1 = 3r∗/(N + 1)
as an upper bound; only when every connected vertex pair is
separated by r∗ does it actually become the maximum. Using
Eq. (F3) in Appendix F, we have

max H1

EA[H1]
= 3r(2N − r − 1)

(r + 1)(3N − 2r − 1)
. (17)

When N � 1, this fraction is a monotonically increasing
function with respect to r∗/N (0 < r∗/N < 1), indicating that
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TABLE I. Description of data sets. The p value for the two-sided test is obtained from the ORGM hypothesis based on �in (ORGM), and
the z1 factor for the random sequence hypothesis is defined as z1/

√
Varπ[z1(π; A)] (rand. seq.). DLR, Docklands Light Railway; rand. seq.,

random sequence.

Data set N M r∗ p value (ORGM) z1 factor (rand. seq.) Data description Refs.

Tribes 16 58 8 0.126 −3.563 Friendship network of tribes in New Guinea [41]
Montreal 29 75 8 <0.001 −1.275 Relationships between gangs, obtained from the Montreal police

department’s central intelligence database
[42]

States 49 107 6 <0.001 −9.017 Network of contiguous states in the United States [43]
Highschool 70 366 9 <0.001 −10.884 Friendship network of male students in a high school in Illinois [44]
Polbooks 105 441 21 <0.001 −13.551 Copurchase network of books about U.S. politics [45]
Adjnoun 112 425 30 <0.001 −3.323 Word adjacencies of common adjectives and nouns in the novel [46]

David Copperfield
Football 115 613 23 <0.001 −3.476 Network of American football games between Division IA

colleges
[47,48]

Ugandan 181 774 70 0.968 −3.888 Social network in a Ugandan village [49]
Celegans 297 2359 82 <0.001 −12.655 Neural connections of the Caenorhabditis elegans nematode [50]
Transport 369 441 15 <0.001 −10.846 Network of London train stations: Underground, Overground, and

DLR
[51]

max H1 becomes relatively larger than EA[H1] when the band-
width ratio r∗/N is large. Using the max-average ratio (17), in
addition to the assessment of statistical significance, we can
evaluate how close the observed H1 value is to its upper bound.
The variance VarA[H1(A,π)], however, is not solely described
by r∗/N .

IV. SEQUENTIAL LOCALITY OF RANDOM VERTEX
SEQUENCES

So far, we have considered tests in which a vertex sequence
π is given and assessed the statistical significance of graphs,
or adjacency matrices. Here we assess whether the inferred
sequence is a significantly better choice than a random guess
given a graph in the sense of stronger sequential locality.

To this end, we consider random sequences in which every
possible sequence occurs with equal probability.

The mean and variance of the z1 test statistic for random
sequences are given by

Eπ[z1(A,π)] = 0, (18)

Varπ[z1(A,π)]

= N + 1

N − 2

(
5N − 8

5(N + 1)
+ M3(N − 4)

5M(N + 1)
− 2M

5(N + 1)

)
,

(19)

where M3 is the total number of connected edge pairs, or
wedges. The detailed derivations of Eqs. (18) and (19) can be
found in Appendix I. Importantly, the mean value is zero for

FIG. 7. Confidence intervals of H1 based on the ORGM for different values of the bandwidth r. Each confidence interval is obtained using
the matrix elements in �in for given r, i.e., the interval for the in-envelope estimate. The red error bar represents the confidence interval with
r∗, the value employed in Fig. 6(b). The crosses represent the observed in-envelope H1 values. These plots represent the sensitivity of the
statistical test with respect to the bandwidth estimate.
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FIG. 8. List of all distinguishable isomorphisms and adjacency matrices (white cells for Ai j = 0 and black cells for Ai j = 1) of a small
graph and the histogram of the z1 test statistic with respect to all vertex sequences. Among 4! = 24 permutations of the vertex sequence, 12
of them are distinct isomorphisms. Therefore every graph is counted twice (|Aut(G)| = 2) in the histogram, although it has no effect on the
assessment of statistical significance.

an arbitrary graph, and the variances depend only on the set
of macroscopic quantities (N, M, M3). In other words, it has
no dependency on microscopic quantities, such as the degree
sequence.

Unfortunately, deriving an analytical form of the proba-
bility distribution for the z1 test statistic is not trivial. It is
expected from the calculation of the second moment that the
higher-order moments depend on the total number of triangles
and other types of motifs. Therefore it is not straightforward to
compute the p value and conduct a statistical test because we
cannot generally assume that the test-statistic distribution is
nearly normal. However, unlike the test of adjacency matrices
with optimized vertex sequences, there are no fundamental
difficulties. We can obtain the exact distribution by computing
z1 for all possible vertex sequences as long as it is computa-
tionally feasible (see Fig. 8 for a simple example). If not, we
can estimate the distribution via uniform sampling of vertex
sequences.

We emphasize that this hypothesis testing assesses the
quality of vertex sequences for a given graph but does not
test whether a graph is sequentially local or not. For example,
even when a graph is generated from a uniform random graph
model, the p value for an optimal sequence is exactly zero
by definition. In the example of Fig. 8, the sequences with
z1 = −1.12 have a p value equal to zero. Empirically, unless
an optimization algorithm works very poorly, the hypothesis
of a random sequence is often rejected when a well-permuted
vertex sequence is tested. Therefore, similar to the test based
on the Erdős-Rényi model in Eq. (7), the null hypothesis is
more suitable for testing unoptimized vertex sequences than
for testing optimized sequences.

In Table I, we show the results for real-world data sets in
which the vertex sequences are not optimized. Instead of the
p value, we show the factor z1/

√
Varπ[z1(A,π)], which we

refer to as the z1 factor, for each data set to indicate the extent
to which the test statistic under the original vertex ordering
is different from the typical scale of random sequences. It is

observed that the original vertex sequences in most of these
data sets are not likely to be sampled uniformly randomly.

It is worth mentioning the difference between the test-
statistic distribution for random sequences and that under
the Erdős-Rényi hypothesis [Eq. (7)]. Note that although the
mean value is always zero in both cases, the variance (19)
may not be equal to unity. In fact, we have M3/M � M/N
unless most of the vertices have very low degrees, and thus
the variance (19) is typically considerably larger than unity. A
consequence of having a variance larger than unity is that a
graph associated with a randomized vertex sequence is likely
to be identified as having significant sequential locality when
the adjacency matrix is assessed based on the Erdős-Rényi
model. The parametric plot in Fig. 9 quantitatively shows
this tendency. As we make z1 smaller, both of the cumulative
probabilities, PER(< z1) and Prandom(< z1), decrease. How-
ever, PER(< z1) decreases more rapidly. Therefore, whereas
the adjacency matrix with a small value of z1 commonly
emerges within the graphs with randomized vertex sequences
[because Prandom(< z1) is relatively large], it can be assessed
as statistically significant in the test under the Erdős-Rényi
model [because PER(< z1) is relatively small]. This tendency
explains why the instances of the Erdős-Rényi model can
exhibit a strong sequential locality if one carefully chooses
the vertex sequence, as shown in Fig. 5.

Before concluding this section, let us mention the over-
counting of automorphisms in random sequences. The order-
ing of each vertex sequence is regarded as a permutation of
the original ordering. Among all possible permutations, the
subgroup that yields the same adjacency matrix as the original
matrix constitutes the automorphism group [54], that is,

{π|P�
π APπ = A} =: Aut(G), (20)

where the vertex set V of graph G is indexed by the raw
indices I . If we assume that distinct adjacency matrices are
drawn uniformly randomly, the sequences yielding the identi-
cal adjacency matrix are overcounted in Eqs. (18) and (19).
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FIG. 9. Parametric plot for the assessment of z1 statistics under
the Erdős-Rényi hypothesis and under random sequences. PER(< z1)
and Prandom(< z1) denote the cumulative probabilities for the Erdős-
Rényi and random sequence hypotheses, respectively. Each colored
line is obtained by sweeping the value of z1 for a given M3/(cM ).
The boundary of the vertical (horizontal) shaded area represents the
points at which the cumulative probability PER(< z1) [Prandom(< z1)]
is 0.05. We set N = 100 and M = 200 (c = 2M/N).

However, as described below, the number of overcounts is
equal for every distinct adjacency matrix. This implies that
overcounting within each automorphism group has no effect
on the probability distribution after all (see Fig. 8 for an
example).

To evaluate the number of overcounts, we use the La-
grange theorem [55]. Let us consider a permutation τ such
that P�

τ APτ =: A′ = A, and we denote the graph G′ = (V ′, E ′)
in which the vertex set V ′ is indexed based on the permuta-
tion τ. The coset of the automorphism group Aut(G) with τ

reads

τ · Aut(G) = {τ · π|P�
τ P�

π APπ Pτ = A′}
= {τ · π|(P�

τ PπPτ

)�
A′P�

τ PπPτ = A′}
= Aut(G′). (21)

Hence a coset of Aut(G) constitutes the automorphism group
Aut(G′) with respect to G′. The Lagrange theorem states that
the cardinality of every coset of a subgroup [Aut(G)] is equal
to the the cardinality of the subgroup, indicating that the
number of permutations yielding the the identical adjacency
matrix is equal for every distinct adjacency matrix.

V. DISCUSSION

Matrix optimization problems with respect to row and
column permutations have been extensively studied in the
literature. The main contribution of our study is that we
developed a hypothesis-testing framework to assess the
sequentially local structure of graphs along a specified ver-
tex sequence. Essentially, our work provides a statistical

foundation for envelope reduction (or minimum linear ar-
rangement), which has been formulated as an optimization
problem, just as the stochastic block modeling placed the min-
imum cut and related problems in a framework of statistical
inference [56–62].

The statistical test for sequential locality can be useful even
when no optimization algorithms are applied. In constructing
empirical graph data, vertex indices often reflect an intrinsic
vertex ordering such as chronological ordering unless they are
carefully labeled to be random. Even when no evident char-
acteristic structure is identified through a visual inspection of
the adjacency matrix, it is still a nontrivial task to investigate
whether such an ordering is statistically deemed to be random
or exhibits a significant sequential locality. The proposed test
and statistical assessment for unoptimized vertex sequences
are useful tools in such cases. Looking at this differently,
we would not learn much from the test we proposed if a
vertex sequence clearly achieves a strong sequential locality.
We quantified when and to what extent the proposed test is
effective via power analysis in Sec. II B.

When the vertex sequence is optimized, the statistical test
for unoptimized vertex sequences is not directly applicable
because a strong sequential locality can be achieved even
when a graph is generated uniformly randomly (Sec. III).
To this end, we used the ORGM that divides the space of
an adjacency matrix into the region �out where the ele-
ments are typically zero and the region �in where the same
test as for the unoptimized test is applicable. Although the
ORGM is a special case of more general models such as
exponential random graph models [63,64] or latent space
models [33,34], it is more tractable because its statistics can
be calculated in a combinatorial manner. The test for opti-
mized vertex sequences can be useful even when we do not
perform optimization by ourselves. For example, the original
vertex indices in a data set may already be nonrandom, if not
optimal.

We emphasize that our statistical tests have explicit de-
pendencies on the total number of vertices N and edges M.
Moreover, N and M are strictly constrained in the null models
to make them consistent with the observed data. Although we
used normal approximations based on the central limit theo-
rem, the estimated distribution is moderately accurate unless
the data set is extremely small and/or dense. In large-scale
graphs, on the other hand, typical graph instances generated
from the Erdős-Rényi model cover only a small fraction of
the entire space of graph instances. Consequently, the p value
for the test of sequential locality can easily be small when
N is large; that is, the power of a test tends to be very high.
This phenomenon simply indicates that the finite-size effect
of graphs is considered in the statistical assessment.

As mentioned in Sec. II B, the vertices at both ends of the
vertex sequence have relatively low degrees in the ORGM.
This tendency could be eliminated by imposing a periodic
boundary condition in the sequence. However, the boundary
effect can be important for the assessment of adjacency matri-
ces because adjacency matrices do have boundaries.

Although we focused only on the affinity matrix J with the
sequential distance, we also briefly investigated the perfor-
mance of the test statistic using the logarithmic semimetric,
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which we refer to as HG, in Appendix J. We confirmed
that the test with HG has a higher power than that of H1.
However, we conclude that H1 is more useful because its
analytical estimates of moments are more tractable than those
of HG.

Graphs with high-degree vertices tend to have significant
sequential locality in our tests for graphs, particularly in
the test with unoptimized vertex sequences. Because a high-
degree vertex is connected to relatively distant vertices, they
tend to increase the nonlocal nature of the graph. When we
wish to eliminate such an effect due to degree distributions,
we should consider a degree-corrected random graph model
as a null model. This is left for future work.

The code for the statistical tests is available on Github [65].

ACKNOWLEDGMENT

The authors acknowledge the financial support from JSPS
KAKENHI [Grant No. 19H01506 (T. Kawamoto and T.
Kobayashi) and Grants No. 20H05633 and No. 22H00827 (T.
Kobayashi)].

APPENDIX A: MOMENTS AND STANDARDIZATION
OF THE H1 STATISTIC

The first and second moments of the random variable X
that obey the triangular distribution are

E[X] =
N∑

k=1

k
2(N − k)

N (N − 1)
= N + 1

3
, (A1)

E[X2] =
N∑

k=1

k2 2(N − k)

N (N − 1)
= N (N + 1)

6
. (A2)

According to the central limit theorem, the following quantity
follows the standard normal distribution:√

M

Var[X]

(
1

M

M∑
m=1

Xm − E[X]

)

= E[X]

√
M

Var[X]
(H1 − 1) =

√
2M(N + 1)

N − 2
(H1 − 1).

(A3)

APPENDIX B: COMPARISON OF THE H1 AND H1

STATISTICS WITH A SPECIFIC EXAMPLE

We illustrate how the statistics with H1 random variable
differs from those with H1(A; π) using a small graph. In
Fig. 10, we consider graphs with N = 3 and M = 2. The table
on the left-hand side of Fig. 10 shows the possible outcomes
of (X1, X2) and the corresponding edges for each element.
Graph instances corresponding to each row are shown on the
right. Herein, we assume that the vertex sequence is fixed; the
sequence coincides with the labels on vertices. H1(A; π) is de-
termined based on graph instances, whereas H1 is determined
based on (X1, X2).

The ordering of the edges matters in (X1, X2). For ex-
ample, there are two graphs corresponding to (X1, X2) =
(1, 2) or (X1, X2) = (2, 1). However, according to Eq. (5),
the probability of (X1, X2) = (1, 2) or (X1, X2) = (2, 1) is
2/3 × 1/3 + 2/3 × 1/3 = 4/9, where the factor 4 indicates
the four realizations in the table on the left-hand side of Fig. 10
(third, sixth, seventh, and eighth rows). That is, each of the two
graphs corresponds to two realizations representing different
edge orderings. Similarly, the second and fourth rows in the
table, which have (X1, X2) = (1, 1), correspond to the same
graph. In contrast, for the other graph instances, each graph

FIG. 10. Illustration of the possible patterns of (X1, X2) (left) for the graph ensemble with N = 3 and M = 2 and the corresponding graph
instances (right). Each element in (X1, X2) is an outcome of the random variable defined by Eq. (5). The vertex sequence is fixed in this
example.
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corresponds to only one realization because the graph consists
of a multiedge. This example illustrates that, whereas each
simple graph has M! realizations in (X1, . . . , XM ), there are
fewer than M! realizations corresponding to a multigraph.

APPENDIX C: EXACT PROBABILITY DISTRIBUTION
OF A TEST STATISTIC UNDER THE ERDŐS-RÉNYI

RANDOM GRAPH MODEL

In the main text, we employed approximate probability dis-
tributions of the H1 test statistics for the Erdős-Rényi model.
The treatment in the main text was not exact because the
number of multigraphs was not counted exactly. Here, we
derive the exact probability distribution in which we accu-
rately count the number of multigraphs. In this Appendix, we
consider an arbitrary affinity matrix J . We then show how the
exact distribution becomes approximately equivalent to that
considered in the main text.

We first count the total number of graphs with a fixed
number of edges M. Using an integral representation of
the Kronecker delta and the residue theorem, we obtain the
following:

∑
{Ai j}i< j

δ

⎛
⎝M,

∑
i< j

Ai j

⎞
⎠

=
∮

dz

2π i
z−(1+M )

∏
i< j

⎛
⎝ ∞∑

Ai j=0

zAi j

⎞
⎠

=
∮

dz

2π i

1

z1+M

1

(1 − z)(
N
2 )

= 1

M!

dM

dzM
(1 − z)−(N

2 )
∣∣∣∣
z=0

=
(((N

2

)
M

))
. (C1)

Because all the allowed graph instances occur with equal
probability, the probability with respect to the adjacency ma-
trix is

Prob[A] = δ
(
M,
∑

i< j Ai j
)∏N

i=1 δ(Aii, 0)
∏

i< j δ(Ai j, Aji )((
(N

2 )
M

)) .

(C2)

Thus

Prob[HJ = E ]

=
∑

A

Prob[A]δ

(
βJE ,

∑
i< j

Jπiπ j Ai j

)

=
∑

{Ai j}i< j
δ
(
M,
∑

i< j Ai j
)
δ
(
βJE ,

∑
i< j Jπiπ j Ai j

)
((

(N
2 )

M

)) (C3)

is the exact probability for HJ . Here, the choice of the vertex
sequence π does not really matter because we take the sum
over all possible combinations of {Ai j}i< j , and we can replace
Jπiπ j with Ji j .

Next, we investigate how the exact distribution (C3) is
related to the approximate distribution. Analogous to the

calculations in Eq. (C1), Eq. (C3) can be modified as follows:

Prob[HJ = E ] = 1((
(N

2 )
M

)) ∮ dz̃

2π i
z̃−(1+βJ E )

∮
dz

2π i
z−(1+M )

×
∏
i< j

⎛
⎝ ∞∑

Ai j=0

z̃Ji j Ai j zAi j

⎞
⎠

= 1((
(N

2 )
M

)) ∮ dz̃

2π i
z̃−(1+βJ E )

∮
dz

2π i
z−(1+M )

× exp

⎛
⎝−

∑
i< j

ln(1 − z̃Ji j z)

⎞
⎠. (C4)

The complex integral can be computed with respect to z̃ by
applying the residue theorem and conducting the Mth-order
derivative of an exponential function (the Faà di Bruno’s
formula):

dM

dzM
e f (z) = e f (z)

∑
{nk}

M!∏M
k=1 nk!k!nk

M∏
k=1

(
dk f (z)

dzk

)nk

, (C5)

where {nk} indicates the set

{nk} =
{

nk

∣∣∣∣∣
M∑

k=1

knk = M

}
. (C6)

Here, we do not employ the expansion in Eq. (C5) although
it is exact. Instead, we expand the logarithm up to the first
order in z in Eq. (C4). This approximation allows us to clarify
the difference between the exact and approximate distribu-
tions. Then,

Prob[HJ = E ] ≈ 1((
(N

2 )
M

)) ∮ dz̃

2π i
z̃−(1+βJ E )

× 1

M!

∂M

∂zM
exp

⎛
⎝z
∑
i< j

z̃Ji j

⎞
⎠
∣∣∣∣∣∣
z=0

= 1((
(N

2 )
M

)) 1

M!

∮
dz̃

2π i
z̃−(1+βJ E )

⎛
⎝∑

i< j

z̃Ji j

⎞
⎠

M

.

(C7)

Here, we let the population of the affinity matrix elements be
P(J). Then, we have

∑
i< j

z̃Ji j =
(

N

2

) ∞∑
J=0

z̃JP(J). (C8)

Therefore

Prob[HJ = E ]

=
(N

2

)M((
(N

2 )
M

))
M!

∮
dz̃

2π i
z̃−(1+βJ E )

∑
{Jm}

z̃
∑

m Jm

M∏
m=1

P(Jm)

=
(N

2

)M((
(N

2 )
M

))
M!

∑
{Jm}

δ

(
βJE ,

∑
m

Jm

)
M∏

m=1

P(Jm). (C9)
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This is equivalent to Eq. (6), except for the normalization
factor.

The normalization is violated because of the approxima-
tion, that is, Eq. (C9) is no longer a probability distribution.
The amount of violation indicates how much we overcount
the number of graphs; as we mentioned in the main text,
we enumerate all possible sequences of edges including its
order, which is ((N

2 ))M , and correct it by M!. When the graph
is sparse [M = O(N )], the amount of overcounting is of a
constant order:(N

2

)M
M!

/(((N
2

)
M

))
= exp

(
M−1∑
k=0

ln

(
1 + k(N

2

)
))

≈ exp

(
1(N
2

) M−1∑
k=0

k

)

= e
M(M−1)
N (N−1) = O(1). (C10)

The fact that the violation of the overall normalization is O(1)
implies that the deviation of the probability Prob[HJ ] at each
point becomes negligibly small as the data size increases. In
other words, when graphs are sufficiently dense, the effect of
multiedge indistinguishability can significantly contribute to
the null distribution.

APPENDIX D: PROBABILITY DISTRIBUTION OF A TEST
STATISTIC UNDER THE ERDŐS-RÉNYI RANDOM GRAPH

MODEL WITH THE CANONICAL CONSTRAINT

In this Appendix, as a variant of the Erdős-Rényi model
considered in the main text, we consider the model in which
the adjacency matrix elements are generated independently as
follows:

Prob[A] =
N∏

i=1

δ(Aii, 0)
∏
i< j

λAi j

Ai j!
e−λδ(Ai j, Aji ), (D1)

where λ is determined such that the total number of edges
coincides with the observed value M on average, that is,

EA

[∑
i< j

Ai j

]
= λ

(
N

2

)
= M. (D2)

This is often referred to as the canonical constraint.
Using the tricks used in Appendix C, we obtain the prob-

ability distribution for HJ in terms of the population of the
affinity matrix elements P(J) as follows:

Prob[HJ = E ]

=
∑

{Ai j}i< j

δ

(
βJE ,

∑
i< j

Jπiπ j Ai j

)∏
i< j

λAi j

Ai j!
e−λ

= e−λ(N
2 )
∮

dz

2π i
z−(1+βJ E )

∏
i< j

⎛
⎝ ∞∑

Ai j=0

λAi j

Ai j!
zJπiπ j Ai j

⎞
⎠

= e−λ(N
2 )
∮

dz

2π i
z−(1+βJ E ) exp

⎛
⎝λ
∑
i< j

zJi j

⎞
⎠

= e−λ(N
2 )
∮

dz

2π i
z−(1+βJ E ) exp

(
λ

(
N

2

)∑
J

zJP(J)

)

= e−λ(N
2 )

∞∑
k=0

(
λ
(N

2

))k
k!

∑
{Jm}

δ

(
βJE ,

k∑
m=1

Jm

)
k∏

m=0

P(Jm)

=
∞∑

k=0

Poi(k; M )
∑
{Jm}

δ

(
βJE ,

k∑
m=1

Jm

)
k∏

m=0

P(Jm). (D3)

Here, Poi(k; M ) is the Poisson distribution with respect to k
with mean M. Note that the latter half of Eq. (D3) is analogous
to the null distributions considered in the main text.

Because the Poisson distribution is highly peaked around
its mean when the mean value is sufficiently large, we have

Prob[HJ = E ] �
∑
{Jm}

δ

(
βJE ,

M∑
m=1

Jm

)
M∏

m=0

P(Jm). (D4)

Therefore, when M is large, the null hypothesis in this Ap-
pendix yields the same null distributions as Eq. (6). Note that
this is also the case in which the normal approximation is
accurate because of the central limit theorem.

APPENDIX E: FALLACY OF STATISTICAL TEST FOR
OPTIMIZED SEQUENCES

It is difficult to formulate a hypothesis testing in which we
consider adjacency matrices with optimized vertex sequences
as a null hypothesis. Here, we explain the reasons for this with
some specific examples.

Even when graphs are generated from a random graph
model, the adjacency matrices can exhibit strong locality
structures when an envelope reduction algorithm is executed
on each generated graph (Fig. 5). Thus the resulting HJ test
statistics corresponding to the optimized adjacency matri-
ces may sensitively depend on the tuning parameters of the
optimization algorithm. Different null distributions may be
obtained depending on the initial condition of an iterative
algorithm because the algorithm may converge to different
local optima. Moreover, the test statistic HJ may no longer be
expressed as a sum of identically distributed random variables,
indicating that there is no guarantee that the distribution is
approximately normal. This is easy to imagine, for example, if
we consider HJ written as a function of matrix eigenvalues and
recall that a random matrix often has a “semicircle law” as a
limiting eigenvalue distribution. Therefore we cannot naively
use the built-in standard error of a statistical analysis package
in which a normal distribution is assumed.

An empirical distribution of the test statistic can be
obtained by generating synthetic graphs and performing op-
timization on each of them. One might be tempted to use
this empirical distribution (or its bootstrap distribution) to
draw the standard error and compute the p value. However,
we still have the problem of algorithmic uncertainty. Even
if the observed data set is identified as having a significant
sequentially local structure based on the empirical null distri-
bution, we cannot conclude whether it is because of the data
set itself, or because of the choice of the algorithm and its
tuning parameters. However, one can assess the significance
of a graph without being affected by algorithmic uncertainties
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when one uses, for instance, a deterministic algorithm without
tuning parameters or an algorithm that always yields a unique
solution. Nevertheless, even in these cases, one needs to keep
in mind that the statistical assessment is conditioned on the
algorithm employed.

In summary, the crucial issue in using optimized adjacency
matrices as a null hypothesis is that the null distribution of

the test statistic is generally affected by the optimization al-
gorithm in a nontrivial way. As a result, one does not exactly
know what is really assumed as the null hypothesis and, ac-
cordingly, how to interpret the obtained p value. To conduct
a statistical test of sequential locality, therefore, we have to
have an interpretable null hypothesis, such as that based on
the ORGM.

APPENDIX F: DISTRIBUTION OF THE TEST STATISTIC IN THE ORDERED RANDOM GRAPH MODEL

We derive the H1-statistic distribution when the graphs are generated from the ORGM, which we denote as Prob[H1 =
E ; N, M, r, ε]. We assume that the vertex sequence π∗ is aligned in the intrinsic order of the ORGM. Herein, we focus on the
ORGM that is constrained to simple graphs. The ORGM without this constraint is analyzed in Appendix H.

The first moment of an adjacency matrix element with respect to Eq. (10) is

EA[Ai j] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(|�in|−1
Min−1

)
(|�in|

Min

) = Min

|�in| for (i, j) ∈ �in

(|�out |−1
Mout−1

)
(|�out |

Mout

) = Mout

|�out| for (i, j) ∈ �out,

(F1)

where the numerator represents the number of allowed adjacency matrices given that Ai j = 1. The second moment is obtained
similarly as

EA[Ai jAk] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(|�in|−1
Min−1

)
(|�in|

Min

) = Min

|�in| for (i, j) = (k, ) ∈ �in

(|�out |−1
Mout−1

)
(|�out |

Mout

) = Mout

|�out| for (i, j) = (k, ) ∈ �out

(|�in|−2
Min−2

)
(|�in|

Min

) = Min(Min − 1)

|�in|(|�in| − 1)
for (i, j) = (k, ) ∈ �in

(|�out |−2
Mout−2

)
(|�out |

Mout

) = Mout (Mout − 1)

|�out|(|�out| − 1)
for (i, j) = (k, ) ∈ �out

(|�in|−1
Min−1

)
(|�in|

Min

)
(|�out |−1

Mout−1

)
(|�out |

Mout

) = Min

|�in|
Mout

|�out| for

{
(i, j) ∈ �in, (k, ) ∈ �out

(i, j) ∈ �out, (k, ) ∈ �in.

(F2)

Using these moments, the first and second moments of the H1 statistic are

EA[H1(A,π∗)] = 1

β1

∑
i< j

EA[Ai j]|i − j|

= 1

β1

Min

|�in|
r(r + 1)(3N − 2r − 1)

6
+ 1

β1

Mout

|�out|
N3 − N (3r2 + 3r + 1) + r(2r2 + 3r + 1)

6
(F3)

and

EA
[
H2

1 (A,π∗)
] = 1

β2
1

∑
i< j

∑
k<

EA[Ai jAk]|πi − π j ||πk − π|

= 1

β2
1

Min

|�in|
r2(r + 1)2

6

(
N (2r + 1)

r(r + 1)
− 3

2

)
+ 1

β2
1

Mout

|�out|
(N − r)(N − r − 1)

12

((
N + r + 1

2

)2

+ 2r(r + 1) − 1

4

)

+ 1

β2
1

Min(Min − 1)

|�in|(|�in| − 1)

r2(r + 1)2

6

(
(3N − 2r − 1)2

6
− N (2r + 1)

r(r + 1)
+ 3

2

)

+ 1

β2
1

Mout (Mout − 1)

|�out|(|�out| − 1)

(N − r)(N + 2r)(N − r − 1)(N − r + 1)(N − r − 2)(N + 2r + 2)

36

+ 2

β2
1

MinMout

|�in||�out|
r(r + 1)(N − r)(N − r − 1)(N + 2r + 1)(3N − 2r − 1)

36
. (F4)
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Then, the variance of the H1 statistic is given by
VarA[H1(A,π)] = EA[H2

1 (A,π)] − EA[H1(A,π)]2. In princi-
ple, we can also compute higher-order moments analogously.

Note that we cannot apply the central limit theorem to
Eq. (10) and obtain the asymptotic distribution of H1. This
is because the edge generation processes are not indepen-
dent of each other, as the numbers of edges Min and Mout

are strictly constrained, and multiedges are not allowed.
However, note also that the ORGM is a compound model
that consists of an Erdős-Rényi graph in each of �in and
�out, and recall that the test-statistic distribution for the
Erdős-Rényi model is approximately normal in many cases.
Therefore, unless the graph size is very small and/or dense,
we can expect that Prob[H1 = E ; N, M, r, ε] is approximately
normal, i.e.,

Prob[H1 = E ; N, M, r, ε]

≈ N (EA[H1(A,π)],
√

VarA[H1(A,π)]). (F5)

APPENDIX G: MAXIMUM LIKELIHOOD ESTIMATE
OF THE ORDERED RANDOM GRAPH MODEL

We derive the MLEs of the ORGM parameters. We first
consider the bandwidth r, which determines �in and �out.
Given an adjacency matrix with a specified vertex sequence,
the bandwidth automatically determines Min and Mout. For
the simple-graph variant of the ORGM, the maximizer r∗
of the log-likelihood function corresponding to Eq. (10)
is

r∗ = argmin
r

{
ln

(|�in|
Min

)
+ ln

(|�out|
Mout

)}
. (G1)

In the actual implementation, we evaluate the microcanonical
entropies in Eq. (G1) using Stirling’s approximation, as we
sweep r. Given the MLE of the bandwidth r∗, the density ratio
ε∗ with nonzero likelihood is uniquely determined as

ε∗ = M∗
out/|�∗

out|
M∗

in/|�∗
in|

, (G2)

where |�∗
in|, M∗

in, |�∗
out|, and M∗

out are the MLEs corresponding
to r∗.

APPENDIX H: ORDERED RANDOM GRAPH MODEL
ALLOWING MULTIEDGES

We show that the results in Appendix F are altered when
graphs are allowed to have multiedges in the ORGM. The first
moment of adjacency matrix elements with respect to Eq. (10)
is

EA[Ai j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(( |�in|+1
Min−1

))
(( |�in|

Min

)) = Min
|�in| for (i, j) ∈ �in

((
|�out |+1
Mout−1

))
((

|�out |
Mout

)) = Mout
|�out | for (i, j) ∈ �out.

(H1)

Hence the first moment is identical to the case with the simple-
graph constraint. Here, we obtained the numerator as follows.

For any (k, ) ∈ �in,

∑
{Ai j |(i, j)∈�in}

δ

⎛
⎝Min,

∑
(i, j)∈�in

Ai j

⎞
⎠Ak

=
∑

{Ai j |(i, j)∈�in}

∮
dz

2π i
z
∑

(i, j)∈�in
Ai j−Min−1Ak

=
∮

dz

2π i

1

z1+Min

⎛
⎝ ∞∑

Ak=0

Ak zAk

⎞
⎠ ∏

(i, j)∈�in
(i, j)=(k,)

⎛
⎝ ∞∑

Ai j=0

zAi j

⎞
⎠

=
∮

dz

2π i

1

zMin (1 − z)1+|�in|

= 1

(Min − 1)!

dMin−1

dzMin−1

1

(1 − z)1+|�in|

∣∣∣∣
z=0

=
(( |�in| + 1

Min − 1

))
, (H2)

where
∮

dz is a complex integral along a closed path around
z = 0, which does not contain z = 1 inside. Here, we used an
integral representation of the Kronecker delta (z-transform)
and the residue theorem. To interpret this quantity, it should
be noted that (( |�in|+1

Min−1 )) = (( |�in|
Min

)) × (|�in|/Min ); among the

(( |�in|
Min

)) allowed matrices, the average value of any matrix
element is given by |�in|/Min.

The quantities in Eqs. (F3), (F4), and (H1) can be obtained
through the classical approach in combinatorics, that is, by
directly counting the number of possible outcomes. However,
for more complicated and less intuitive quantities, such as the
second moments of adjacency matrix elements in multigraphs,
the classical approach becomes increasingly difficult. In such
cases, the trick which offers a systematic prescription, as
shown in Eq. (H2), becomes more valuable: for example, the
numerator of EA[A2

k], where (k, ) ∈ �in is calculated as

∑
{Ai j |(i, j)∈�in}

δ

⎛
⎝Min,

∑
(i, j)∈�in

Ai j

⎞
⎠A2

k

=
∑

{Ai j |(i, j)∈�in}

∮
dz

2π i
z
∑

(i, j)∈�in
Ai j−Min−1A2

k

=
∮

dz

2π i

1

z1+Min

⎛
⎝ ∞∑

Ak=0

A2
k zAk

⎞
⎠ ∏

(i, j)∈�in
(i, j)=(k,)

⎛
⎝ ∞∑

Ai j=0

zAi j

⎞
⎠

=
∮

dz

2π i

1 + z

zMin (1 − z)2+|�in|

= 1

(Min − 1)!

dMin−1

dzMin−1

1 + z

(1 − z)2+|�in|

∣∣∣∣
z=0

=
(( |�in| + 2

Min − 1

))
+
(( |�in| + 2

Min − 2

))
. (H3)

Here, we assumed that Min > 1. The second moments in other
cases can also be calculated analogously.
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In summary, the second moments are

EA
[
Ai jAk

] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(( |�in|+2
Min−1

))
+
(( |�in|+2

Min−2

))
(( |�in|

Min

)) = Min
|�in|

|�in|+2Min−1
|�in|+1 for (i, j) = (k, ) ∈ �in((

|�out |+2
Mout−1

))
+
((

|�out |+2
Mout−2

))
((

|�out |
Mout

)) = Mout
|�out |

|�out |+2Mout−1
|�out |+1 for (i, j) = (k, ) ∈ �out(( |�in|+2

Min−2

))
(( |�in|

Min

)) = Min (Min−1)
|�in|(|�in|+1) for (i, j) = (k, ) ∈ �in((

|�out |+2
Mout−2

))
((

|�out |
Mout

)) = Mout (Mout−1)
|�out |(|�out |+1) for (i, j) = (k, ) ∈ �out

(( |�in|+1
Min−1

))
(( |�in|

Min

))
((

|�out |+1
Mout−1

))
((

|�out |
Mout

)) = Min
|�in|

Mout
|�out | for

{
(i, j) ∈ �in, (k, ) ∈ �out

(i, j) ∈ �out, (k, ) ∈ �in.

(H4)

We can obtain EA[H1(π∗; A)] and EA[H2
1 (π∗; A)] by replac-

ing the factors corresponding to EA[Ai j] and EA[Ai jAk] in
Eqs. (F3) and (F4) with the values in Eqs. (H1) and (H4).

These results indicate that the effect of the simple-graph
constraint in the ORGM on our statistical test is not prominent
when |�in| and |�out| are sufficiently large compared with
Min and Mout, respectively. It should also be noted that the
ORGM becomes equivalent to the Erdős-Rényi model when
|�in| or |�out| coincides with all of the upper-right elements
in an adjacency matrix, that is, the cases where r = N − 1 or
r = 0. Therefore the results here also describe the distinction
between the Erdős-Rényi models with and without the simple-
graph constraint in the H1 test statistics.

Analogous to Eq. (G1), the MLE r∗ of the bandwidth is
obtained as

r∗ = argmin
r

{
ln

(( |�in|
Min

))
+ ln

(( |�out|
Mout

))}
. (H5)

In general, if n � m, then ln(n
m) ≈ m ln n − m2/n and

ln(( n
m )) ≈ m ln n + m2/n − 2m/n; these are both dominated

by m ln n. Hence the MLE r∗ given by Eq. (H5) is expected
to be close to or coincide with that given by Eq. (G1) when
graphs are sparse.

APPENDIX I: TEST STATISTICS UNDER THE RANDOM
SEQUENCES

In this Appendix, we present the detailed derivation of
Eqs. (18) and (19). In the following, we assume that N > 3.

1. Mean of the z1 statistic

First, we calculate the ensemble average of H1 and HG

statistics with respect to the sequences.

Eπ[H1(A,π)] = 1

β1

∑
i< j

Ai jEπ[|πi − π j |]

= 1

β1

N + 1

3

∑
i< j

Ai j = 1. (I1)

Note that the average Eπ[|πi − π j |] is equal to the average
with respect to X. The mean value of the z1 statistic then
reads

Eπ[z1(A,π)] =
√

2M(N + 1)

N − 2
(Eπ[H1(A,π)] − 1) = 0.

(I2)

2. Variance of the z1 statistic

We start with the second moment of the H1 statistic,

Eπ

[
H2

1 (A,π)
]

= 1

β2
1

∑
i< j

Ai j

∑
i′< j′

Ai′ j′Eπ[|πi − π j ||πi′ − π j′ |]. (I3)

This is decomposed as follows:

Eπ

[
H2

1 (A,π)
] = 1

β2
1

∑
i< j

Ai j

∑
i′< j′

Ai′ j′Eπ[|πi − π j ||πi′ − π j′ |],

= 1

β2
1

(∑
i< j

A2
i jEπ[|πi − π j |2] +

∑
i, j,k

(i< j<k)

Ai jA jkEπ[|πi − π j ||π j − πk|] +
∑
i, j,k

(k<i< j)

Ai jAkiEπ[|πi − π j ||πi − πk|]

+
∑
i, j,k

(i< j, i<k, j =k)

Ai jAikEπ[|πi − π j ||πi − πk|] +
∑
i, j,k

(i< j, k< j,i =k)

Ai jAk jEπ[|πi − π j ||π j − πk|]
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+
∑

i, j,k,
(i< j<k<)

Ai jAkEπ[|πi − π j ||πk − π|] +
∑

i, j,k,
(i<k< j<)

Ai jAkEπ[|πi − π j ||πk − π|]

+
∑

i, j,k,
(k<i< j<)

Ai jAkEπ[|πi − π j ||πk − π|] +
∑

i, j,k,
(i<k<< j)

Ai jAkEπ[|πi − π j ||πk − π|]

+
∑

i, j,k,
(k<i<< j)

Ai jAkEπ[|πi − π j ||πk − π|] +
∑

i, j,k,
(k<<i< j)

Ai jAkEπ[|πi − π j ||πk − π|]
)

. (I4)

Note that i, j, k, and  are the raw indices of the vertices that are used to identify the vertices themselves. The first term represents
the case in which the vertex pairs (i, j) and (i′, j′) are identical. The second to fifth terms represent the cases where one of the
vertices in (i, j) is identical to one of (i′, j′): j = i′ (third term), i = j′ (fourth term), i = i′ (fifth term), and j = j′ (sixth term).
Finally, the 6th to 11th terms represent the cases where the vertices for i, j, k, and  do not coincide at all.

The first term is ∑
i< j

A2
i jEπ[|πi − π j |2] = 1(N

2

) ∑
a<b

(a − b)2
∑
i< j

A2
i j = MN (N + 1)

6
. (I5)

To calculate the sum of the second to fifth terms in Eq. (I4), we first calculate the expectation with respect to π:

Eπ[|πi − π j ||π j − πk|] = 1

3!
(N

3

)
(

2
N−2∑
πi=1

N−1∑
π j=πi+1

N∑
πk=π j+1

|πi − π j ||π j − πk| + 2
N−2∑
πi=1

N−1∑
πk=πi+1

N∑
π j=πk+1

|πi − π j ||π j − πk|

+ 2
N−2∑
π j=1

N−1∑
πi=π j+1

N∑
πk=πi+1

|πi − π j ||π j − πk|
)

= (N + 1)(7N + 4)

60
. (I6)

Note that the third term in Eq. (I4) becomes identical to the second term by relabeling the vertex indices as k → i, i → j, and
j → k. Similarly, we can show that the fourth and fifth terms are identical, using the fact that we can replace Ai j with Aji and Aik

with Aki in undirected graphs and relabel the vertex indices as i → j and j → i. Therefore the sum of the second to fifth terms
in Eq. (I4) reads

2
∑
i, j,k

(i< j<k)

Ai jA jkEπ[|πi − π j ||π j − πk|] + 2
∑
i, j,k

(i< j, k< j,i =k)

Ai jAk jEπ[|πi − π j ||π j − πk|] = M3(N + 1)(7N + 4)

30
, (I7)

where M3 is the total number of connected edge pairs, or wedges:

M3 ≡
∑
i, j,k

(i< j<k)

Ai jA jk +
∑
i, j,k

(i< j, k< j,i =k)

Ai jAk j . (I8)

We can analogously calculate the 6th to 11th terms in Eq. (I4). The expectation with respect to π in each case is

Eπ[|πi − π j ||πk − π|] = 1

4!
(N

4

)
(

4
N−3∑
πi=1

N−2∑
π j=πi+1

N−1∑
πk=π j+1

N∑
π=πk+1

|πi − π j ||π j − πk|

+ 4
N−3∑
πi=1

N−2∑
πk=πi+1

N−1∑
π j=πk+1

N∑
π=π j+1

|πi − π j ||π j − πk| + 4
N−3∑
πk=1

N−2∑
πi=πk+1

N−1∑
π j=πi+1

N∑
π=π j+1

|πi − π j ||π j − πk|

+ 4
N−3∑
πi=1

N−2∑
πk=πi+1

N−1∑
π=πk+1

N∑
π j=π+1

|πi − π j ||π j − πk| + 4
N−3∑
πk=1

N−2∑
πi=πk+1

N−1∑
π=πi+1

N∑
π j=π+1

|πi − π j ||π j − πk|

+ 4
N−3∑
πk=1

N−2∑
π=πk+1

N−1∑
πi=π+1

N∑
π j=πi+1

|πi − π j ||π j − πk|
)

= (N + 1)(5N + 4)

45
. (I9)
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Therefore the sum of the 6th to 11th terms is 2M4(N + 1)(5N + 4)/45, where M4 is the total number of disconnected edge
pairs:

2M4 =
∑

i, j,k,
(i< j<k<)

Ai jAk +
∑

i, j,k,
(i<k< j<)

Ai jAk +
∑

i, j,k,
(k<i< j<)

Ai jAk +
∑

i, j,k,
(i<k<< j)

Ai jAk +
∑

i, j,k,
(k<i<< j)

Ai jAk +
∑

i, j,k,
(k<<i< j)

Ai jAk. (I10)

In summary, we have

Eπ

[
H2

1 (A,π)
] =

(
3

M(N + 1)

)2(MN (N + 1)

6
+ M3(N + 1)(7N + 4)

30
+ 2M4(N + 1)(5N + 4)

45

)

=
(

3

M(N + 1)

)2
(

MN (N + 1)

6
+ M3(N + 1)(7N + 4)

30
+ (M2 − M − 2M3)(N + 1)(5N + 4)

45

)

= 1 + 1

2M

(
5N − 8

5(N + 1)
+ M3(N − 4)

5M(N + 1)
− 2M

5(N + 1)

)
(I11)

as the exact solution of the second moment. Here, we used the fact that M4 = (M
2 ) − M3 by definition. Therefore the variance of

the standardized statistic is

Varπ[z1(A,π)] = 2M(N + 1)

N − 2
Varπ[H1(A,π)] = N + 1

N − 2

(
5N − 8

5(N + 1)
+ M3(N − 4)

5M(N + 1)
− 2M

5(N + 1)

)
. (I12)

APPENDIX J: SEQUENTIAL LOCALITY WITH OTHER
AFFINITY METRICS

We focused on the H1 test statistic, which uses the sequen-
tial distance as an affinity metric, although we could employ
other affinity metrics. Let us consider sequential locality with
a logarithmic semimetric as an example. We denote the test
statistic as HG:

HG(A,π) = − 1

βG

∑
i< j

Ai j ln

(
1 − |πi − π j |

N

)
, (J1)

where βG is a normalization constant.
Analogous to the case of H1, we consider the following

random variable for HG(A,π):

HG = − 1

βG

M∑
m=1

ln

(
1 − Xm

N

)
. (J2)

Xm ∈ N is again a random positive integer that independently
obeys the discrete triangular distribution. By applying the
central limit theorem, HG asymptotically obeys the following
distribution when M is sufficiently large:

Prob

[√
M

σN

(
βGHG

M
− μN

)
� a

]
=
∫ a

−∞

dx√
2π

e− 1
2 x2

, (J3)

where μN and σ 2
N are the mean and variance of the random

variable − ln(1 − X/N ),

μN = EX

[
− ln

(
1 − X

N

)]

= −
N−1∑
k=1

ln

(
1 − k

N

)
2(N − k)

N (N − 1)

= ln N − 2

N (N − 1)

N−1∑
k=1

k ln k, (J4)

σ 2
N = EX

[(
ln

(
1 − X

N

))2
]

− μ2
N

= 2

N (N − 1)

(
N−1∑
k=1

k(ln k)2 − 2 ln N
N−1∑
k=1

k ln k

)

+ (ln N )2 −
(

ln N − 2

N (N − 1)

N−1∑
k=1

k ln k

)2

= 2

N (N − 1)

N−1∑
k=1

k(ln k)2

−
(

2

N (N − 1)

N−1∑
k=1

k ln k

)2

, (J5)

(a) (b)

FIG. 11. Power of the test for unoptimized sequences using the
HG statistic. While the null hypothesis is the Erdős-Rényi model,
the graphs are generated by the ORGM. The density plots represent
the empirical power, the true-positive rate out of 100 samples, in
(a) the (r/N, ε) plane (N = 50, M = 200) and (b) the (N, 2M/N )
plane (r/N = 0.75, ε = 0).
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respectively. By setting βG = μN M, we have

Prob

[
μN

σN

√
M(HG − 1) � a

]
=
∫ a

−∞

dx√
2π

e− 1
2 x2

. (J6)

Hence

zG(A,π) = μN

σN

√
M(HG(A,π) − 1) (J7)

is the z-statistic for HG(A,π).
In Fig. 11, we show the power of the HG statistic when the

graphs are generated by the ORGM. This is the same analysis
as that for the H1 statistic in the main text, except that we
compute the empirical power based on 100 ORGM samples at
each parameter set, instead of the analytical estimate using the
normal approximation. In both the (r/N, ε) and (N, 2M/N )

planes, the power of the HG statistic is higher than that ob-
tained for the H1 statistic (the red regions in Fig. 11 are wider).

We can continue by carrying out the same argument for the
H1 statistic in other parts of this paper. We can calculate the
first and second moments of zG under the random sequences
and show that the variance Varπ[zG(A,π)] is again a function
that depends only on N , M, and M3. We can also calculate
moments under the ORGM. However, these results are not
written in a compact form because the summations of log-
arithms cannot be simplified. Computing these moments is
also inefficient because they require many for-loops to execute
the summations. Therefore, even though the HG statistic has
higher power in terms of graph size, we conclude that there is
no clear benefit of employing HG as the test statistic for the
present statistical test.
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