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Abstract

Cosmic observations revealed that our universe experiences accelerated expansion at the present

epoch and in the inflationary era. For string theory to describe our real world, accelerated expansion

of the universe should be accommodated in its framework. However realizing a positive vacuum

energy expanding our universe has been a challenging issue since the discovery of the cosmological

constant. In this thesis, we examine this difficulty in a worldsheet perspective of string theory. More

specifically, we study a consistency of a worldsheet theory on de Sitter space (a vacuum solution of

Einstein equation with a positive vacuum energy).

Our main focus is on string Regge trajectories. A Regge trajectory is a higher spin tower which

dominates in a certain high energy scattering process. In particular, the higher spin tower which has

a leading contribution is characterized by a relation, M2 = 2 (S − 2) /α′ , in flat space. Here M and

S are mass and spin of higher spin fields, and α′ is the inverse of the string tension. Their exchange

makes high-energy behavior of scattering amplitudes mild, which is crucial to UV complete gravity

in string theory.

These Regge trajectories have a possibility of violating an unitarity bound in de Sitter space.

Unitarity indicates that higher spin fields within a mass range, 0 < M2 < H2S(S−1), are forbidden

in de Sitter space. H is an energy scale of de Sitter space. A naive extrapolation of the flat space

Regge trajectory implies that an unitarity violation may occur at a certain energy.

To discuss this potential inconsistency rigorously, we study string Regge trajectories on de Sitter

space. We begin with reviewing string Regge trajectories in flat space and their importance on UV

completion of gravity. We also review higher spin fields on de Sitter space involving the unitarity

bound. In the main part, we derive string Regge trajectories on de Sitter space in semiclassical

approximation. We also discuss UV completion by resulting Regge trajectories.
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Chapter 1

Introduction

String theory provides a consistent and tractable formulation of quantum gravity. A study of string

theory as quantum gravity started with the finding that the graviton is naturally accommodated

in the string spectrum [1, 2]. The graviton is represented as a ground state of superstring theory

or a first excited state of bosonic string theory. Later, it was found that a UV divergence of loop

amplitudes in Einstein gravity is regularized because a worldsheet symmetry introduces a minimum

length of the loops [3, 4]. This UV finiteness of scattering amplitudes allows us to control gravity

with a few parameters. It is also worth noting that microstates of Black hole can be counted

precisely in a specific setup [5]. String theory is a unique framework with these favorable properties

in our current understanding. This motivates us to have a hope that string theory describes not only

a quantum nature of gravity, but also everything of our real world. To investigate this possibilty,

realizing observed facts of our universe has been studied extensively.

Cosmic observations revealed that our universe experiences an accelerated expansion at the

present epoch and in the inflationary era [6–8]. Hence a positive vacuum energy expanding our

universe has been studied in a framework of string theory since the discovery of the cosmological

constant. However it remains to be a challenging issue. The difficulty of a positive vacuum energy is

summarized in a no-go theorem [9]. This no-go theorem stands on some regular assumptions while

a way to evade these assumptions has been developed [10,11]. These developments were combined

into a single framework known as KKLT scenario [11], which is a first explicit construction of a

positive vacuum energy. Later, another construction known as Large Volume Scenario [12] were

also proposed.

Pieces in the scenarios are independently justified although backreactions on each other may

break down their validity. This possibility has been discussed in some approximations [13–26].

These analyses indicates that generating a positive vacuum energy consistently is a difficult task

(See also a nice review [27]). Also, there are some attempts [28–30] in the swampland program

which try to interpret this nontriviality as an obstruction to de Sitter space in string theory.

The recent discussions are based on the supergravity approximation and approximate treat-

ments of internal geometry. To reach a deeper understanding, we have to involve higher quantum

corrections or treat six dimensional internal space explicitly, which must be a daunting task. Hence

it may be reasonable to develop a complementary approach. In this thesis, we examine a realization

of a positive vacuum energy in aspects of a worldsheet theory in de Sitter space.
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8 CHAPTER 1. INTRODUCTION

It is well known that scattering amplitudes of Einstein gravity exhibit an unfavorable UV diver-

gence, which leads to an unitarity violation of S matrix and a non-renormalizability. On the other

hand, string theory improves this situation by introducing higher spin states. As a result, scattering

amplitudes have a mild UV behavior above the scale where higher spin states appear. This is one

realization of a weakly coupled UV completion of gravity. The mildness of a specific high energy

scattering is achieved by a higher spin tower characterized by a relation,

M2 =
1

α′ (S − 2) . (1.1)

This higher spin tower is called a Regge trajectory. This Regge trajectory is crucial to UV complete

gravity, while having a possibility to introduce an inconsistency against unitarity in de Sitter space.

Unitarity indicates that higher spin states within a mass range,

0 < M2 < H2S(S − 1) , (1.2)

are forbidden in de Sitter space. This restriction is known as the Higuchi bound [31]. In the Regge

trajectory, the mass squared grows linearly as the spin increases. On the other hand, the upper

bound of the Higuchi bound grows quadratically. Therefore, if we extrapolate the flat space Regge

trajectory to a higher spin region, a contradiction with the Higuchi bound may occur above a certain

spin.

To discuss this potential inconsistency in a rigorous way, we study semiclassical spectra of a

would-be worldsheet theory in de Sitter space. Our approach is a generalization of developments on

integrability in the AdS/CFT correspondence. Semiclassical spectra of worldsheet theory in various

curved spacetimes have been studied since seminal works by de Vega and Sanchez in 80’s [32, 33]

and the followups [34–36]. Researches in this direction have been further boosted with the advent

of the AdS/CFT correspondence [37], especially since the Gubser-Klebanov-Polyakov analysis [38]

of folded strings [36]. As nicely reviewed in Ref. [39], various semiclassical solutions in AdS were

then constructed and studied by using the integrability technique [40–79]. We also discuss high

energy scattering in de Sitter space implied by semiclassical spectra.

Organization of this thesis In this thesis, we study a consistency between string Regge tra-

jectories and the Higuchi bound, and discuss an implication for high energy scattering in de Sitter

space, based on our paper [80,81]. The organization of this thesis is as follows:

� In Chap. 2 , we review how an UV completion of gravity is achieved in string theory. First

we summarize basics of the worldsheet theory of bosonic string in Sec. 2.1. And then, we

study the string spectrum in Sec. 2.2. We show that the graviton is included in the massless

spectrum. Also, infinitely many higher spin states appear above the string scale. for In

Sec. 2.3 , we examine a four point scattering amplitude of string theory at tree level. We show

that this amplitude is milder than gravitational amplitudes in UV due to the infinitely many

higher spin states. Finally, we reexamine string scattering amplitudes from the viewpoint of

the Regge trajectory in Sec. 2.3. This analysis shows that the Regge trajectory plays a crucial

role to make the mild UV behavior in the Regge limit.
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� In Chap. 3 , we review higher spin field theory in de Sitter space, mainly focusing on the

Higuchi bound. First we introduce de Sitter space and its isometry group. And then we

construct an irreducible representation of the de Sitter isometry in Sec. 3.2. In Sec. 3.3, we

introduce higher spin fields and give a formula to calculate a norm of quantum states. We

show that there is a mass range within which a negative norm state appears. This mass range

is the Higuchi bound.

� In Chap. 4 , we study classical strings in three dimensional de Sitter space (dS3), which can

be regarded as a subspace of dS4. In Sec. 4.1, we summarize a setup of our analysis including

a background metric and an ansatz on the worldsheet configuration. In Sec. 4.2 , we construct

folded string solutions by solving an equation of motion. And we derive a Regge trajectory by

examining an energy-spin relation. This subsection is based on one of our papers [80]. Then,

we generalize this solution to spiky string solutions in Sec. 4.3. This subsection is based on

the other paper [81].

� In Chap. 5 , we generalize the solutions in dS3 to the solutions in dS3 × S1, where S1 can

be regarded as a subspace of a internal space. A setup of this chapter is also summarized in

Sec. 4.1. In Sec. 5.1 , we study folded string solutions and derive the corresponding Regge

trajectory. In Sec. 5.2 , we study spiky string solutions similarly. Several technical details are

written in Appendix. D. This chapter is also based on our paper [81].

� In Chap. 6 , we close this thesis with concluding remarks. In particular, we discuss an impli-

cation for high energy scattering and inflation.



Chapter 2

UV completion in string theory

One obstacle to formulating quantum gravity is that Einstein gravity does not preserve unitarity in

a perturbative manner. This means that we have to involve quantum corrections of all orders and

non-perturbative effects if we try to quantize Einstein gravity straightforwardly. To examine this,

let us consider Einstein gravity with a minimally coupled scalar field. A 2 → 2 scattering amplitude

of identical massless scalars at tree level is given by

M(s, t) =
1

Md−2
pl

(
st

u
+
su

t
+
tu

s

)
, (2.1)

where Mpl is the Planck mass, and s, t, u are the Mandelstam variables. 1 See Appendix. B.3 for

the derivation. Also, d is a spacetime dimension. The amplitude exhibits a quadric divergence at

the hard scattering limit,

s→ ∞ , s/t : fixed (2.3)

This behavior indicates that an unitarity bound is violated at a certain scale, which is given by,

M(s, t) ≤ C · s
4−d
2 , (2.4)

where C is a constant. We note that the bound (2.4) does not tell us an energy scale where Einstein

gravity violates the unitarity. However, by analyzing an unitarity constraint more carefully, one can

see that the unitarity is violated around the Planck scale, which we will show in Appendix. B.1.

String theory improves the high energy behavior of gravity by introducing higher spin states.

In the closed string theory, higher spin states appear at the string scale Ms = 2/
√
α′, where α′

represents the inverse of the string tension. Above the string scale, these higher spin states make

scattering amplitudes mild. For example, a hard scattering limit of a four point amplitude is

M(s, t) ≃ (α′s)−3e−
α′
2
s(− sin2 θ

2
ln sin2 θ

2
−cos2 θ

2
ln cos2 θ

2) . (2.5)

1We use the mostly + convention for the metric. And, the Mandelstam variables are defined as

s = −(p1 + p2)
2 , t = −(p1 − p3)

2 , u = −(p1 − p4)
2 , (2.2)

where p1 and p2 are momentums in an initial state, and p3 and p4 are momentums in a final state.

10



2.1. BASICS OF WORLDSHEET THEORY 11

The amplitude is damped exponentially above the string scale, so that an unitarity violation does

not occur. Another interesting high energy limit is the Regge limit, which is defined as

s→ ∞ , t : fixed . (2.6)

In this limit, the amplitude behaves as

M(s, t) ≃ (α′s)2+α′t . (2.7)

Notice that t is negative or equals to zero under a physical scattering process. In particular, for

negative t, the amplitude also becomes mild above the string scale. We note that this Regge behavior

respects a locality bound M(s, t) < s2, which is known as the Froissart-Martin bound [82–84]. The

Froissart-Martin bound is only applicable to gapped theories while respecting this bound may be

also crucial for a consistency of gapless theories. As seen above, string theory achieves a mildness

of scattering amplitudes by higher spin states, and makes gravitational theory consistent with

fundamental requirements of quantum field theory. This is one realization of a UV completion

of gravity. We comment that there is another scenario of UV completion that this mildness is

achieved by quantum corrections of higher orders, which is investigated by an asymptotic safety

scenario(originally proposed in [85]).

In this chapter we review the referred properties of string theory. First we summarize basics of

the worldsheet theory in Sec. 2.1. For simplicity, we consider only bosonic closed string theory. In

Sec. 2.2, we quantize a worldsheet theory and show its spectra. Next we study a tachyon four point

amplitude in Sec. 2.3. We also study its high energy behavior in the hard scattring limit and the

Regge limit. In Sec. 2.3, we reexamine the Regge limit from the viewpoint of the Regge theory. The

Regge theory is an effecient tool to sum up t-channel exchanges of higher spin states. This analysis

tells us that a certain higher spin tower, which is called a Regge trajectory, controls the behavior

in the Regge limit.

2.1 Basics of worldsheet theory

First, we summarize basics of string worldsheet theory. A worldsheet is defined by a two dimensional

surface embedded in a higher dimensional spacetime, which is called a target space. A worldsheet

action of string theory is the Nambu-Goto action,

SNG = − 1

2πα′

∫
dτdσ

√
−Ẋ2X ′2 + (Ẋ ·X ′)2 , (2.8)

where X represents are coordinates of a target space. τ and σ are worldsheet coordinates. The dot

and the prime represents τ derivative and σ derivative respectively. And also, we defined the inner

products as

Ẋ2 = GµνẊ
µẊν , X ′2 = GµνX

′µX ′ν , Ẋ ·X ′ = GµνẊ
µX ′ν , (2.9)

where Gµν is the target space metric. The Nambu-Goto action calculates an area of a worldsheet.

This is a natural extension of a particle whose action is given as a lengh of its world line. While the
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physical meaning of the Nambu-Goto action is manifest, the action is non-linear even in flat space.

Thus, it is convenient to use a classically equivalent action, the Polyakov action,

SP =

∫
dτdσ

√
|h|hab ∂aX · ∂bX , (2.10)

where hab is the worldsheet metric. We can reproduce Eq. (2.8) from the Polyakov action by using

an equation of motion for the worldsheet metric. Using this action, we can calculate a transition

amplitude by the path integral formulation as,∑
topology

∫
D[X,hab] Ψin[X,hab]Ψout[X,hab] exp [iSp] . (2.11)

Ψin and Ψout represent in and out states. The intermediate string worldsheet can have various

topologies.
∑

topology stands for the summation of each contribution. In the real calculation, people

often use a trick of replacing the worldsheet metric with an Euclidean metric. This can be regarded

as an analytic continuation to an imaginary time. In the Euclidean formulation, the transition

amplitude is represented as∑
topology

∫
D[X,hab] Ψin[X,hab]Ψout[X,hab] exp [−Sp] . (2.12)

The factor in front of the action is changed due to the Wick rotation of the time. The advantage

of the Euclidean theory is that we can define the metric better. For a generic topology, the metic

becomes singular somewhere in the Lorentzian theory because a timelike coordinate cannot defined

globally. In the Euclidean theory, we do not encounter this problem. Below, we use this Euclidean

formulation.

2.2 String spectrum

To study a closed string spectrum, let us consider a cylindrical worldsheet. We parametrize the

time direction by τ and the space direction by σ (see Fig. 2.1), which are

−∞ < τ <∞ , 0 ≤ σ ≤ 2π . (2.13)

This can be regarded as a local coordinate system around an external leg. A physical spectrum

should respect worldsheet symmetries. Now there are two gauge symmetries corresponding to a

general coordinate transformation and a Weyl transformation. A general coordinate transformation

is defined by,

δxa = ξa , δhab = Daξb +Dbξa . (2.14)

And, a Weyl transformation is defined by,

δxa = 0 , δhab = ω(x)hab . (2.15)
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To deal with these gauge symmetries, we carry out BRST quantization. First we fix a gauge by

choosing a worldsheet metric. A natural choice is a flat metric since a cylinder admits it globally.

By introducing complex coordinates,

z = τ + iσ , z̄ = τ − iσ , (2.16)

the line element and the action become

ds2 = dzdz̄ , SX =
1

πα′

∫
d2z∂X∂̄X . (2.17)

To fix gauge symmetries in quantum field theory, we have to include a contribution from the path

integral measure. This contribution is represented by Grassmann scalar fields as∫
D[b, c] e−SGF , SGF =

1

π

∫
d2z b∂̄c+ b̄∂c̄ , (2.18)

where c is a Faddeev-Popov ghost field and b is an anti-ghost field. So far, the path integral is

formally represented as ∫
D[X, b, c] e−S , S = SX + SGF . (2.19)

The resulting system has a global symmetry under the following BRST transformations instead of

the fixed gauge symmetries,

QBX
µ =

(
c∂ + c̃∂̄

)
Xµ , QBc = c∂c , QBb = T(m) + T(g) . (2.20)

This can be regarded as a transformation of the gauge fixing condition.

Conformal symmetry We fixed the gauge symmetries by choosing the flat metric. However,

there is a residual symmetry, a conformal symmetry, which keeps the metric invariant. The confor-

mal symmetry is defined by the holomorphic transformation,

z → f(z) , (2.21)

where f(z) is an arbitrary holomorphic function. Under the transformation, the metric becomes

hzz̄ → |(∂f)|−2 hzz̄. (2.22)

Then, we can carry out the weyl transformation to compensate the change of the metric. Finally,

the metric becomes invariant. Notice that if we transform the coordinate by a non-holomorphic

function, hzz and hz̄z̄ become nonzero. In this case, we cannot absorb the change of the metric by

the Weyl transformation.

We note that this conformal symmetry is exact classically, but generically one may have an

anomaly in quantum field theory. Indeed, both of the matter sector and the ghost sector have a

conformal anomaly. However, if we choose the target space dimension in an appropriate way, the

anomalies are cancelled each other.
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Figure 2.1: The left figure shows a freely propagating string, whose topology is a cylinder. After

the conformal transformation (2.25), a cylinder is mapped to a complex plane (the right figure).

The time direction corresponds to the radial direction, and the space direction corresponds to the

angular direction.

2.2.1 Radial quantization

To quantize a string, it is convenient to introduce a complex plane by using a conformal transfor-

mation,

z = τ + iσ → eiz . (2.23)

The space direction and the time direction of the worldsheet are mapped to the angular direction

and the radial direction as illustrated in Fig. 2.1. We quantize the fields by regarding a time

coordinate as a radial direction, which is called a radial quantization. A distinctive feature of the

radial quantization is that the infinite past is mapped to the origin. A state of the infinite past

can be related to a local operator inserted at the origin in the vacuum state. This relation is useful

to study a scattering. An interaction of strings is described by inserting a local operator into a

worldsheet. For example, let us consider a four point scattering at tree level illustrated in Fig. 2.3.

If we carry out the conformal transformation around the legs, the legs shrinks to points, and then

this scattering amplitude is described by a sphere with four local operators.

In the rest of this subsection, we summarize quantization conditions of the fields, construct

conserved charges of the worldsheet symmetries and define a vacuum state.

Quantization conditions In this paragraph, we summarize quantization conditions. First let

us consider the matter sector. The equation motion ∂∂̄X(z, z̄) = 0 indicates that ∂X(z, z̄) is a

holomorphic function and ∂̄X(z, z̄) is an anti-holomorphic function. Therefore, we can expand the
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fields as

∂Xµ(z, z̄) = −i
√
α′

2

∑
n

αn

zn+1
, ∂̄Xµ(z, z̄) = −i

√
α′

2

∑
n

α̃n

z̄n+1
, (2.24)

After integration, we obtain

Xµ(z, z̄) = xµ − i

√
α′

2
αµ
0 ln zz̄ + i

√
α′

2

∑
n ̸=0

1

n

(
αn

zn
+
α̃n

z̄n

)
, (2.25)

where xµ is a constant. Here we imposed αµ
0 = α̃µ

0 so that (αµ
0 − α̃µ

0 ) ln(z/z̄) term vanishes. This is

because this term yields an unphysical branch cut. After quantization, the coefficients are replaced

by operators with the commutation relations,

[αµ
m, α

ν
n] = [α̃µ

m, α̃
ν
n] = mδm+n,0 , [xµ, pν ] = iηµν , (2.26)

where we introduced a momentum as,

pµ =

√
2

α′α
µ
0 . (2.27)

Next, let us consider the ghost sector. The equation of motion becomes

∂̄b = ∂̄c = ∂b̃ = ∂c̃ = 0 , (2.28)

which means that b and c are holomorphic, and also b̃ and c̃ are anti-holomorphic. Therefore, we

can expand the operators as

b(z) =
∑
n

bn
zn+2

, c(z) =
∑
n

cn
zn−1

, b̃(z) =
∑
n

b̃n
zn+2

, c̃(z) =
∑
n

c̃n
zn−1

(2.29)

Similarly to the matter sector, the commutation relations become

{bm, cn} = δm+n,0 , {b̃m, c̃n} = δm+n,0 (2.30)

Conformal generators Let us construct conformal generators explicitly. The conformal transfor-

mation is generated by an arbitrary holomorphic function. It is convenient to consider the following

conformal transformation and a corresponding generator,

z → z + ϵzn+1 , Gn = zn+1∂ + z̄n+1∂̄ . (2.31)

These generators produce an algebra,

[Gm, Gn] = (m− n)Gm+n . (2.32)

Note that the holomorphic part and the anti-holomorphic part are not mixed. Hence it is often

convenient to deal with these separately as,

Ln = zn+1∂ , L̄n = z̄n+1∂̄ . (2.33)
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These generators are commute each other and satisfy the same algebra as (2.32),

[Lm, Ln] = (m− n)Lm+n , [L̄m, L̄n] = (m− n)L̄m+n . (2.34)

Next we construct a representation for operators. Let us begin with the translation (n = −1).

The standard Noether’s method says that its corresponding conserved current is defined through a

gauged translation,

z → z + ϵ(z, z̄) . (2.35)

A variation of the action under this transformation is given by

δS = −
∫
d2z

π
∂̄ϵ(z, z̄) · Tzz + ∂ϵ(z, z̄) · Tzz̄ + ∂ϵ̄(z, z̄) · Tz̄z̄ + ∂̄ϵ̄(z, z̄) · Tzz̄ , (2.36)

where Tµν is the energy momentum tensor. If the parameter ϵ is a constant, the transformation

reduces to just a translation and the variation vanishes. Also, the variation of the action should

vanish when we use the equation of motion. This requires a conservation law,

∂̄Tzz + ∂Tzz̄ = ∂Tz̃z̃ + ∂̄Tzz̄ = 0 . (2.37)

To derive the conservation law, we integrated by parts. The above argument holds for any trans-

lation invariant theories but becomes simplified for a conformally invariant theory. Let us take

ϵ(z, z̄) = ϵ(z), which is nothing but a conformal transformation. Hence the action should vanish

under this transformation. This requires

Tzz̄ = 0 . (2.38)

And consequently, the conservation law becomes

∂̄Tzz = ∂Tz̄z̄ = 0 . (2.39)

Thus only Tzz and Tz̄z̄ are non-zero, and these are a holomorphic function and an anti-holomorphic

function respectively. Below we use the following shorthand notation,

T (z) = Tzz T̄ (z̄) = Tz̄z̄ . (2.40)

Next let us consider a general conformal transformation,

z → z + ϵ(z, z̄)zn . (2.41)

A variation of the action is calculated by using Eq. (2.36) as

δS = −
∫
d2z

π
∂̄ϵ(z, z̄) · zn−1T (z) + ∂ϵ̄(z, z̄) · z̄n−1T̄ (z̄) . (2.42)

Therefore, conserved currents are given by the energy momentum tensor. The conformal generators

are defined as

Ln =

∮
dzzn−1T (z) , L̄n =

∮
dz̄z̄n−1T̄ (z̄) . (2.43)
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We can calculate the currents and the charges by using the definition above. First, we summarize

them for the matter sector.

T (m) = − 1

α′ ηµν∂X
µ∂Xν , (2.44)

L(m)
n =

1

2

∑
m

ηµν : αµ
mα

ν
n−m : , (2.45)

Here we introduced the normal ordering : : that creation operator are to the left of annihilation

operators. Using Eq. (2.45), we can calculate the commutation relations as,

[L(m)
m , L(m)

n ] = (m− n)L
(m)
m+n +

D − 2

12
(m3 −m)δm+n,0 . (2.46)

Comparing the algebra, we can find the extra term which is an effect of a conformal anomaly.

For the ghost sectors,

T (g) = −2b∂c− ∂b · c , (2.47)

L(g)
m =

∑
n

(2m− n) : bncm−n : +a(g)δm,0 , (2.48)

where a(g) is a constant coming from the normal ordering, which is fixed as a(g) = −1 later. The

commutation relations become

[L(g)
m , L(g)

n ] = (m− n)L
(g)
m+n − 1

6
(m3 −m)δm+n,0 . (2.49)

The ghost theory also has a conformal anomaly. However, interestingly, the anomalies are cancelled

between the matter sector and the ghost sector if we choose D = 26. Bosonic string theory is

defined consistently only in 26 dimensional spacetime.

Finally, we define a conformally invariant vacuum |0⟩ as,

L
(m)
±1 |0⟩ = L

(m)
0 |0⟩ = L

(g)
±1|0⟩ = L

(g)
0 |0⟩ = 0 . (2.50)

We can introduce this vacuum since both of the matter sector and the ghost sector do not have

an anomaly under these transformation. The final equality fixes a(g) as a(g) = −1. Also, operators

should be regular at the origin, which requires

pµ|0⟩ = αµ
n≥1|0⟩ = bn≥−1|0⟩ = cn≥2|0⟩ = 0 . (2.51)

We note that this vacuum is not a ground state of L0 because c1 lowers an eigenvalue. The ground

state is given by

|gr⟩ = c1|0⟩ . (2.52)

BRST charge To close this subsection, we construct the BRST charge. Noether’s current is

calculated by using the transformation rule (2.20) as

JB = cT (m) + bc∂c . (2.53)

We can calculate the BRST charge using the standard Noether method as,

QB =
∑
n

cnL
(m)
−n +

∑
m,n

m− n

2
: b−m−ncmcn : −c0 . (2.54)
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2.2.2 Physical state

At last, we study physical states of the closed string. Physical state should be invariant under the

conformal transformation. This requires

L0|ph⟩ = L̄0|ph⟩ = 0 . (2.55)

Notice that L0+ L̄0 and L0− L̄0 are corresponding to time translation and space translation in the

cylindrical coordinate system respectively. Let us assume that physical states can be represented

by acting raising operators on the L0 ground state,

(a product of α−n , b−n , c−n) (a product of α̃−n , b̃−n , c̃−n)|kµ⟩ ⊗ |gr⟩ , (2.56)

where |kµ⟩ is an eigenstate of pµ defined as

|kµ⟩ = : eikX : |0⟩ , pµ|kµ⟩ = kµ . (2.57)

Then, Eq. (2.55) are translated as,

α′

4
k2 +Nosc − 1 =

α′

4
k2 + Ñosc − 1 = 0 , (2.58)

where Nosc and N̄osc are called a level which represents a increment of the L0 and L̄0 eigenvalues

by the creation operators. Note that −1 in Eq. (2.58) comes from the L0 eigenvalue of the ghost

ground state. We find that the mass square is quantized by 4/α′. Also, the level of the holomorphic

part should be equal to the level of the anti holomorphic part, which is called a level matching

condition.

The physical state should be also BRST invariant. It is important that BRST invariant states

include a null state which has a form, QB|Φ⟩. Such a state is called a BRST exact state. A BRST

exact state has a zero norm, and we cannot distinguish states which is different by a BRST exact

state. Therefore, we do the following identification

|Ψ⟩ ∼ |Ψ⟩+QB|Φ⟩ . (2.59)

Along the above methodology, we study physical states of level 0, level 1 in order below. Finally,

we discuss states of a higher level and show a spectrum for symmetric tensorial states.

Level 0 state First, let us consider the Level 0 state,

|Lv.0⟩ = |kµ⟩ ⊗ |gr⟩ . (2.60)

The level 0 state is a tachyon,

α′

4
k2 = 1 . (2.61)

The condition (2.58) is automatically satisfied for the mass (2.61).
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Level 1 state Level 1 states can be represented as

|Lv. 1⟩ =
(
eµνα

µ
−1α

ν
−1 + βµα

µ
−1b̃−1 + γµα

µ
−1c̃−1 + β̄µb−1α̃

µ
−1 + γ̄µc−1α̃

µ
−1

+ δb−1b̃−1 + λb−1c̃−1 + λ̃c−1b̃−1 + κc−1c̃−1

)
|kµ⟩ ⊗ |gr⟩ . (2.62)

These states are massless,

α′

4
k2 = 0 . (2.63)

The BRST transformation for the state (2.62) is given by

QB|Lv. 1⟩

=

√
α′

2

[ (
βµkν + kµβ̄ν

)
αµ
−1α̃

ν
−1 + eµνk

µc−1α̃
ν
−1 + eµνk

µαν
−1c̃−1 + δkµα

µ
−1b̃−1 − δkµb−1α̃

µ
−1

+ λkµα
µ
−1c̃−1 − λ̄kµc−1α̃

µ
−1 + βµk

µc−1b̃−1 − β̄µk
µb−1c̃−1 + kµ(γ

µ − γ̄µ)c−1c̃−1

]
|kµ⟩ ⊗ |gr⟩ . (2.64)

The states are BRST closed if

eµνk
µ = βµ = β̄µ = δ = λ = λ̄ = kµ(γ

µ − γ̄µ) = 0 . (2.65)

Also, we identify states which are different by the BRST exact states (2.64). Then, the following

conditions are derived,

eµν ∼ eµν + βµkν + kµβ̄ν , κ ∼ 0 . (2.66)

At the second identification, we chose γµ and γ̄µ appropriately. As summarized, physical level 1

states are given by

|Lv. 1⟩ = eµνα
µ
−1α̃

ν
−1|kµ⟩ ⊗ |gr⟩ , (2.67)

eµν ∼ eµν + βµkν + kµβ̄ν , eµνk
ν = 0 . (2.68)

There are two spin-2 states in level 1. One is the graviton, which is the symmetric traceless part

of eµν . Another is the antisymmetric tensorial state. The first condition of (2.68) is a gauge

transformation for these states. Also, there is one scalar state, which is the traceless part of eµν .

This state is called a dilaton.

Level N state Let us generalize the above analysis to level N states. The following state is a

level N state,

|Lv. N⟩ = eµ1···µN µ̄1···µ̄Nα
µ1
−1 · · ·α

µN
−1 α̃

µ̄1
−1 · · · α̃

µ̄N
−1 |kµ⟩ ⊗ |gr⟩ . (2.69)

The mass square is

k2 = − 4

α′ (N − 1) . (2.70)
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This state is sufficient to know the string spectrum roughly while there are many other combinations

of raising operators. The BRST transformation of this state becomes

QB|Lv. N⟩ =
√
α′

2
c−1eµ1···µN µ̄1···µ̄Nk

µ1αµ2 · · ·αµN α̃µ̄1 · · · α̃µ̄N |kµ⟩ ⊗ |gr⟩

+
α′

2
c−2eµ1···µN µ̄1···µ̄N η

µ1µ2αµ3 · · ·αµN α̃µ̄1 · · · α̃µ̄N |kµ⟩ ⊗ |gr⟩+ perm + h.c. , (2.71)

where perm means permutation terms of holomorphic and anti-holomorphic indices, and h.c. means

the Hermitian conjugation. To be BRST invariant, physical states should be transverse and trace-

less,

eµ1···µN µ̄1···µ̄N η
µ1µ2 = eµ1···µN µ̄1···µ̄N η

µ̄1µ̄2 = eµ1···µN µ̄1···µ̄Nk
µ1 = eµ1···µN µ̄1···µ̄Nk

µ̄1 = 0 . (2.72)

Their permutations also vanish. We find that this state includes higher spin states with even

spin lower than 2N . The spin 2N state is a traceless part for one holomorphic index and one

antiholomorphic index, which satisfy

ηµ1µ̄1eµ1···µN µ̄1···µ̄N = perm = 0 . (2.73)

The spin 2N−2 state is a double traceless part for two holomorphic index and two antiholomorphic

index, which satisfy

ηµ1µ̄1ηµ2µ̄2eµ1···µN µ̄1···µ̄N = perm = 0 , ηµ1µ̄1eµ1···µN µ̄1···µ̄N = perm ̸= 0 (2.74)

We can identify lower spin states similarly.

Their spectrum are shown in Fig. 2.2. Massive higher spin states first appear at the scale 4
α′ ,

which is of level 2. As the level increases, infinitely many higher spin states appear. In particular,

the maximum spin of level N states is 2N . These states form a tower called a Regge trajectory,

which is characterized by

M2 = −k2 = 2

α′
(S − 2) . (2.75)

This Regge trajectory controls the high energy Regge scattering and makes an amplitude mild,

which we will show in Sec. 2.3.

2.3 Veneziano amplitude

String theory exhibits a mild high energy behavior due to infinitely higher spin states. This is

crucial to UV complete gravity. In this section, we show how higher spin states contribute scattering

amplitudes by studying a 2 → 2 tachyon scattering. This scattering process is described by a sphere

with four legs as depicted in Fig. 2.3. If we carry out the conformal transformation of (2.25), the

leg shrinks to a point, where a local operator representing the tachyon state is inserted. We can

read these local operators from Eq. (2.60) as

eikX(z,z̄), (2.76)
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Figure 2.2: Spectrum of bosonic string theory. The vertical axis represents a mass, and the hori-

zontal axis represents a spin. A mass is normalized by 4/α′. We illustrate only symmetric tensorial

states in this figure, which have even spin. Antisymmetric tensorial states can have an odd spin.

The red line represents the leading Regge trajectory.

where we used a coordinate system of the Riemann sphere. The Riemann sphere is constructed by

adding a point ∞ to a complex plane (See Fig. 2.4). A tachyon four point amplitude is calculated

by integrating the positions of the tachyon operators in the Riemann sphere,

∫ 4∏
i=1

dzidz̄i ⟨Vk1(z1, z̄1)Vk1(z2, z̄2)Vk3(z3, z̄3)Vk4(z4, z̄4)⟩ . (2.77)

It is worth noting that there is three conformal transformations defined globally in the Riemann

sphere,

z → z + ϵ , z → z + ϵz , z → z + ϵz2 , (2.78)

where ϵ is an infinitesimal parameter. We can fix the positions of three vertex operators as zi =

ẑi (i = 1, 2, 3) by using this conformal transformation (2.78). This gauge fixing can be done by

adding the following gauge fixing term to the action,

bic(ẑi) + b̃ic̃(ˆ̄zi) , (2.79)

Integrating bi, one obtain the position fixed four point function,

∫
dz4dz̄4

〈(
3∏

i=1

c(ẑi)c̃(ˆ̄zi)Vki
(ẑi, ˆ̄zi)

)
Vk4(z4, z̄4)

〉
. (2.80)

First, let us calculate the correlation function of the matter sector. Taking the normal ordering,
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Figure 2.3: The left figure is a worldsheet representing a four body scattering at tree level. The

legs represent external lines of strings. By carrying out a conformal transformation, this worldsheet

transforms to a sphere (the right figure). Instead, local operators are inserted at the locations of

the legs.

one obtain the following function,

⟨Vk1(z1, z̄1)Vk1(z2, z̄2)Vk3(z3, z̄3)Vk4(z4, z̄4)⟩ =
∏
i<j

|zi − zj |α
′ki·kj ⟨0| : ei(k1+k2+k3+k4)X : |0⟩

=
∏
i<j

|zi − zj |α
′ki·kj ⟨0|ei(k1+k2+k3+k4)x|0⟩

. (2.81)

The final term produces a delta function as follows,

⟨0|ei(k1+k2+k3+k4)x|0⟩ =
∫
dx ei(k1+k2+k3+k4)x = const · δd(k1 + k2 + k3 + k4) , (2.82)

where the constant term comes from a path integral normalization, which we do not fix here.

The correlation function of the ghost sector is calculated by utilizing analytic properties as

follows. First, the correlation function should have zeros of rank one at z1 = z2 , z1 = z3 , z2 = z3
since c is a fermionic operator. Next, let us consider the conformal transformation, z → z′ = 1

z .

The correlation function transforms as

⟨c(1/z1)c(1/z2)c(1/z3)⟩ =
1

z21z
2
2z

2
3

⟨c(z1)c(z2)c(z3)⟩ . (2.83)

Then, a regularity at the origin means that this function can not grow faster than z2i in the limit

zi → ∞. Finally, one can fix a functional form from the above properties as follows,

⟨c(z1)c(z2)c(z3)⟩ = const · (z1 − z2)(z2 − z3)(z3 − z1) . (2.84)

So far, the four point amplitude has the following form:

I =

∫
d2z4

3∏
i<j

|zi − zj |2+α′ki·kj
3∏

i=1

|z4 − zi|α
′ki·k4 . (2.85)
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Figure 2.4: A construction of the Riemann surface. This figure represents a cross-section of a sphere

embedded in three dimensional space. The horizontal line is regarded as a line of a complex plane.

A point in the complex plane is mapped to a point in the sphere as follows. First we draw a line

from a point in the complex plane to the north pole of the sphere. An intersection point of the

line with the sphere is identified with the start point of the line. In particular, the north pole is

identified with the infinity ∞.

Carrying out the integration, we reach the following expression,

I =
Γ(−α′s

4 − 1)Γ(−α′t
4 − 1)Γ(−α′u

4 − 1)

Γ(α
′s
4 + 2)Γ(α

′t
4 + 2)Γ(α

′u
4 + 2)

. (2.86)

We find that s channel poles of the scattering amplitude are located at

s =
4

α′ (N − 1) , (2.87)

where N is a non-negative integer. This equals the mass square of physical string states. A

summation of intermediate string states reduces to the Gamma function. t and u channel poles are

similar.

High energy scattering Let us examine high energy limit of the Veneziano amplitude. In this

section, we study the following two high energy limits. First let us consider the hard scattering

limit,

Hard scattering limit: s→ ∞ , cos θ : fixed , (2.88)

Here θ is the scattering angle, which is

cos θ = 1 +
t

s+ 16
α′
. (2.89)
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Here the following Stirling’s formula of the Gamma function is useful,

Γ(x+ 1) ≃ 1√
2πx

ex lnx−x . (2.90)

The following relations of the Mandelstam variables are also useful,

s+ t+ u = −16

α′ , cos θ = 1 +
2t

s+ 16
α′
. (2.91)

First let us consider the hard scattering limit. The Mandelstam variables are parametrized as

follows:

t = −
(
16

α′ + s

)
sin2

θ

2
, u = −

(
16

α′ + s

)
cos2

θ

2
. (2.92)

First, we organize Eq. (2.86) by using the reflection formula of the Gamma function as,

I =
sinπ(α

′t
4 + 2) sinπ(α

′u
4 + 2)

π sinπ(α
′s
4 + 2)

(
Γ(−α′t

4 − 1)Γ(−α′u
4 − 1)

Γ(α
′s
4 + 2)

)2

. (2.93)

Further, using the Stirling’s formula, we obtain

I ≃
sinπ(α

′t
4 + 2) sinπ(α

′u
4 + 2)

2π2 sinπ(α
′s
4 + 2)

1(
α′s
4

)3
sin10 θ

2 cos
10 θ

2

e−
α′
2 (s+

16
α′ )(− sin2 θ

2
ln sin2 θ

2
−cos2 θ

2
ln cos2 θ

2)−8

(2.94)

The scattering amplitude falls off exponentially above the string scale. In particular, this behavior

respect the upper bound from unitarity.

Next let us consider the Regge limit,

Regge limit: s→ ∞ , t : fixed . (2.95)

The Mandelstam variable u is parametrized as,

u = −s− t− 16

α′ (2.96)

Applying the Stirling’s formula to Eq. (2.93), we obtain

I ≃
sinπ(α

′t
4 + 2) sinπ(α

′u
4 + 2)

π sinπ(α
′s
4 + 2)

e−
α′
4
tΓ(−α

′t

4
− 1)2

(
α′

4
s

)2+α′
2
t

, (2.97)

The Mandelstam variable t is negative for a physical scattering process. Therefore, the scattering

amplitude also exhibits a mild high energy behavior.
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Figure 2.5: The left figure shows the integration contour of Eq. (2.101), and the right figure shows

the integration contour of Eq. (2.103). The left contour is equivalent to the right contour if an

integration of the infinity is negligible.

2.4 Regge theory

Infinitely many higher spin states are crucial to make the mild high energy behavior. Scattering

amplitudes intermediated by higher spin states have different powers of the Mandelstam variables. If

there exist only finite higher spin states, the mildness is not achieved because the power is truncated

at a certain level. On the other hand, if the power continues infinitely, amplitudes may be summed

up to another function beyond a convergent radius of the power expansion. From the worldsheet

calculation, we find that a scattering amplitude becomes a product of the Gamma functions. In

this section, we reexamine this summation by applying the Regge theory. This analysis tells us how

the string spectrum controls scattering amplitudes in the Regge limit.

The Regge theory begin with expanding a scattering amplitude by a partial wave in the physical

region of t channel (t > 0 and s < 0),

M(s, t) =
Γ(d2 − 3

2)

4π
d−1
2

∞∑
L=0

(2L+ d− 3)fL(t)C
d
2
− 3

2
L (cos θ) , (2.98)

where Cα
L(x) is the Gegenbauer polynomial, a d-dimensional extension of the Legendre polynomials

(See Eq. (A.4)). And, d is a spacetime dimension(d = 26 for bosonic string theory). Also, we

defined a scattering angle as

cos θ = 1 +
2s

t− 4m2
, (2.99)

where m is a mass for in and out fields. The partial wave expansion is an expansion of scattering

amplitudes by angular momentum eigenstates(See Appendix .B.2.1). The partial wave amplitude
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fL(t) is calculated by using an orthogonality of the Gegenbauer polynomial,

fL(t) =
(4π)

d−3
2 Γ(L+ 1)Γ(d−3

2 )

Γ(L+ d− 3)

∫ 1

1
dz(1− z)

d−3
2 M(s, z)C

d
2
− 3

2
L (z) . (2.100)

The partial wave expansion is convenient to understand t-channel physics. If there is a spin-l

exchange in the t-channel, fl(t) has a pole at its mass. However, this expression cannot be applicable

to the Regge limit (t < 0, s → ∞), which is our interest, because this limit is out of a convergent

radius. This can be understood by an observation that Eq. (2.98) diverges at some positive s due

to s-channel poles. To apply the t-channel partial wave expansion to the Regge limit, we carry

out an analytic continuation. First we introduce a complex angular momentum and organized the

scattering amplitude as

M(s, t) =
Γ(d2 − 3

2)

4π
d−1
2

i

2

∫
C1

dL

sinπL
(2L+ d− 3)fL(t)C

d
2
− 3

2
L (−z) , (2.101)

where C1 is the contour depicted in Fig. 2.5. These exist poles at integer values of L due to 1
sinπL .

This expression is not yet to be suitable because the Gegenbauer polynomial grows exponentially

with l for z < −1 and z > 1,

Cα
L(coshχ) = eLχ , Cα

L(− coshχ) = eiπLeLχ (χ > 0) , (2.102)

which makes the convergence of the integral worse. Next, we deform to the integral contour C1 to

C2 . At large ImL, the Gegenbauer polynomials oscillate. Hence, the convergence are improved.

This deformation is possible if the integral at the infinity is negligible. This is satisfied if fL(t)

does not grow exponentially at large |L|. It is important to find such an expression of fL(t) for a

complex L. The expression is constructed by the Gribov-Froissart projection, which we will show

in Appendix. B.2.3. Here, we continue a discussion with assuming that we can find such a nice

function for ReL ≥ L0. Then, the integral can be written as an integral between L0 − i∞ and

L0 + i∞ plus the residues at poles where ReL > L0.

M(s, t) =

∫ L0+i∞

L0−i∞
dL

π

sinπL

(
L+

d− 3

2

)
fL(t) C

d−3
2

L (cos θ) + (residues of poles) , (2.103)

In particular, the scattering amplitudes are dominated by the residue at the most right pole in the

Regge limit. This is because the Gegenbaur polynomials behave as

Cα
L(z) ∼ zL for z ≫ 1 . (2.104)

If there is a pole at

L = f(t) , (2.105)

this pole yields the following behavior in the Regge limit,

M(s, t) ≃ g(s, t) · sf(t) , (2.106)



2.4. REGGE THEORY 27

where g(s, t) is a function which are not diverge in the Regge limit. To derive this, we used a

formula of the Gengenbauer polynomial,

C
d−3
2

L (z) ≃
2LΓ

(
d−3
2 + L

)
Γ
(
d−3
2

)
Γ(L+ 1)

zL (z ≫ 1). (2.107)

In string theory, the Regge trajectory of Eq. (2.75) yields a pole at

L = f(t) = 2 +
α′(t− iϵ)

2
. (2.108)

Substituting this into Eq. (2.106), we reproduce the Regge behavior (2.97),

M(s, t) ∼ s2+
α′t
2 . (2.109)

The above analysis showed that the Regge trajectory controls scattering amplitudes in the Regge

limit and plays an important role to make the mild UV behavior. Notice that there are other Regge

trajectories yielding a pole. The most leading one is Eq. (2.75).

Let us conclude this section with a summary. We constructed physical string states by adding

excitations to the ground state. The first excited state includes the graviton. At the level 2 state

or more, there appear infinitely many higher spin states. Their masses are quantized by the string

tension. Scattering amplitudes intermediated by these higher spin states have different powers. As

a result of summing up these contribution infinitely, string scattering amplitudes exhibit a mild UV

behavior as seen in the tachyon four point amplitude. In particular, in the Regge limit, higher spin

states on the leading Regge trajectory are important. The shape of the leading Regge trajectory

controls the Regge behavior. In flat space, the leading Regge trajectory is linear so that the power

of the Mandelstam variable s is modified by a linear function of the Mandelstam variable t.



Chapter 3

Higher spin fields in de Sitter space

We discussed that higher spin states are crucial to UV complete gravity in string theory. However,

our main interest is the accelerating universe. Thus, it is instructive to study higher spin fields in

de Sitter space. Higher spin fields have rich properties in de Sitter space which are absent in flat

space or AdS space. One example is the Higuchi bound. The Higuchi bound states that higher spin

fields within the following mass range produce a negative norm state,

0 < m2 < H2S(S + d− 3) , (3.1)

where S is the spin and H is the Hubble constant. Thus, such higher spin fields are forbidden in

de Sitter space. Interestingly, this bound implies that the string spectrum should be modified in de

Sitter space. On the leading Regge trajectory in flat space, the mass square grows linearly as the

spin increases

m2 ∼ S

α′ (3.2)

while the upper bound of the Higuchi bound grows quadratically. Therefore, the states in the leading

Regge trajectory violates the Higuchi bound when S ∼ 1
α′H2 unless the spectrum is modified.

In this chapter, we review higher spin fields in de Sitter space, mainly focusing on the Higuchi

bound. The construction of this chapter is as follows. In Sec. 3.1, we introduce de Sitter space and

explain its isometry group. Utilizing the isometry group, we construct an irreducible representation

in Sec. 3.2. In Sec. 3.3, we introduce higher spin fields and calculate their two point function of

spinning fields by solving Ward-Takahashi identities of the de Sitter isometry. We can fix two point

functions in the late time except an overall constant. Then, we show that a helicity zero mode

creates a negative norm state if the mass is within the range (3.1). Finally, in Sec. 3.4, we discuss

the implication of the Higuchi bound to higher spin states in string theory.

3.1 De Sitter space

d dimensional de Sitter space (dSd) is defined by a hypersurface,

−Y 2
0 + Y 2

1 + · · ·+ Y 2
d = R2 =

1

H2
, (3.3)

28
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embedded into a (d+ 1) dimensional space with the line element,

ds2 = −dY 2
0 + dY 2

1 + · · ·+ dY 2
d . (3.4)

Because the Ricci curvature is Rµν = 1
H2 gµν , dSd is a vacuum solution of the Einstein equation with

a positive cosmoligical constant,

Rµν −
1

2
gµνR− Λgµν = 0 , Λ =

(d− 2)(d− 1)

2H2
. (3.5)

Global coordinate

Let us examine a global structure of de Sitter space. It is convenient to introduce global coordinates

which cover an entire spacetime:

Y0 =
1

H
sinh η , Yi =

1

H
Ωi cosh η , (3.6)

where Ωi are coordinates of d− 1 dimensinal sphere. In this coordinate, the line element becomes

ds2 =
−dη2 + cosh2 η dΩ2

d−1

H2
. (3.7)

Eq. (3.7) indicates that dSd is a d− 1 dimensional unit sphere which shrinks from the past infinity

to η = 0, and then expands from η = 0 to the future infinity. Next, let us introduce a conformally

flat metric to understand a causal structure by defining a new time coordinate as

cosT =
1

cosh η
. (3.8)

The corresponding line element is

ds2 =
1

H2
cos2 T

(
−dT 2 + d2Ωd−1

)
=

1

H2
cos2 T

(
−dT 2 + d2θ + d2Ωd−2

)
, (3.9)

where, we decomposed the coordinate of Sd−1 into an interval and Sd−2 . These coordinates are

defined within

−π
2
≤ T ≤ π

2
, 0 ≤ θ ≤ π . (3.10)

θ = 0 and θ = π are the north pole and the south pole of Sd−1 respectively. Using this coordinate

system, we draw a Penrose diagram (Fig. 3.1). First, one can find that T = −π
2 is a past null

infinity, and T = −π
2 is a future null infinity. All null lines start at the past null infinity and end

at the future null infinity. Second, there exists two cosmological horizons for an observer sitting on

the north pole. One is a past cosmological horizon, which is represented by the line θ = T + π
2 . The

observer cannot send a signal to a point beyond this horizon. The other one is a future cosmological

horizon, which is represented by the line θ = −T + π
2 . The observer cannot receive a signal from a

point beyond this horizon.
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Figure 3.1: Penrose diagram of dSd: Each point represents an Sd−2 subspace, and the edges corre-

spond to the north and south poles of Sd−1. I+ and I− represent a future null infinity and a past

null infinity respectively.

Planar coordinate

De Sitter acceleration is manifest in the planar coordinte:

Y0 =
1

H
sinh(Ht) +

H

2
(xi)2eHt , (3.11)

Yi = xie−t , (3.12)

Yd =
1

H
cosh(Ht)− H

2
(xi)2eHt , (3.13)

where the line element is

ds2 = −dt2 + e2Ht
(
(dx1)2 + · · ·+ (dxd−1)2

)
. (3.14)

The d−1 dimensional space expands exponentially in time. It is convenient to introduce conformally

flat metric by defining a conformal time τ = − 1
H e

−Ht,

ds2 =
−dτ2 + (dx1)2 + · · ·+ (dxd−1)2

H2τ2
. (3.15)

The planar coordinates cover only half of dSd since Y0+Yd > 0 ,which is inside the past cosmological

horizon as depicted in Fig. 3.2.

Static coordinate

Finally, let us introduce static coordinates,

Yd + Y0 =

√
1− r2 et

H
, Yd − Y0 =

√
1− r2 e−t

H
, Yi =

rΩi
d−2

H
, (3.16)
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where −∞ < t <∞, 0 ≤ r ≤ 1, and Ωi
d−2 is a coordinate of an unit d− 2 dimensional sphere. The

corresponding metric is

ds2 = R2

[
− (1− r2)dt2 +

dr2

1− r2
+ r2dΩ2

d−2

]
. (3.17)

This metric is static in time. This coordinate system covers a quarter of the full de Sitter space

since Yd + Y0 > 0 and Yd − Y0 > 0 (see Fig. 3.2). An observer sitting at the origin r = 0 has a

cosmological horizon at r = 1, hence this coordinate system can be used to describe the inside of

the horizon.

Isometry of de Sitter space

An isometry group of de Sitter space is SO(d, 1) since the hypersurface (3.3) does not change under

the (d+ 1)-dimensional rotation. In the planar coordinate, the generators are represented as 1

D = τ
∂

∂τ
+ xi

∂

∂xi
, Pi =

∂

∂xi
,

Mij = xi
∂

∂xj
− xj

∂

∂xi
,

Ki = 2xiτ
∂

∂τ
+ (τ2 − x2)

∂

∂xi
+ 2xix

j ∂

∂xj
. (3.18)

If we define the following combination,

J0,d+1 = D , Jij =Mij ,

J0,i =
1

2
(Pi −Ki) , Jd+1,i =

1

2
(Pi +Ki) . (3.19)

the generators satisfy the Lie algebra of SO(d, 1),

[JAB, JCD] = −ηACJBD − ηBCJAC + ηBCJAD + ηADJBC . (3.20)

3.2 Representation of de Sitter isometry group

Let us construct an irreducible representation of SO(d, 1) group. It is convenient to use D,Mij , Pi

and Ki as a basis of the generators. Their algebra is given by

[D,Pi] = Pi , [D,Ki] = −Ki , [Pi,Kj ] = −2δijD − 2Mij ,

[Mij ,Mkl] = −δjkMil + δikMjl − δilMjk + δjlMik ,

[D,Mij ] = 0 ,

[Mij , Pk] = δjkPi − δikPj , [Mij ,Kk] = δjkKi − δikKj . (3.21)

1To check that the metric (3.15) is invariant under Ki, it is convenient to introduce the inverse transformation,

I : τ → τ

τ2 − x2
, xi → xi

τ2 − x2
.

Ki can be decomposed as I · Pi · I. Therefore, we just check the invariance under I.
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Figure 3.2: The planar coordinates cover the shaded area of the left figure. The dashed lines

represent constant time slice. The black lines represent constant x2 slices. The static coordinate

covers the shaded area of the right figure. The dashed lines represent constant time slices. The

black line represent constant r slices.

First, we observe that Pi is a raising operator of −D , and also Ki is a lowering operator. Thus, it is

convenient to label a state by an eigenvalue of −D. Let us introduce the highest weight state as the

smallest eigenvalue of −D. States with a lower eigenvalue are created by acting Pi. We note that

the eigenvalue are not lower-bounded, and thus the representation space is of infinite dimension.

Further, we can classify the highest weight state by utilizing SO(d − 1) subalgebra since Mij

commutes with D. An irreducible representation of SO(d − 1) is characterized by one integer S,

for which a casimir operator MijM
ij has an eigenvalue S(S + d− 3) .

As a summary, we construct a highest weight representation of (∆, S) as follows. First, we define

the highest weight state as,

Highest weight state : D|∆, S⟩ = −∆|∆, S⟩ , Ki|∆, S⟩ = 0 ,

MijM
ij |∆, S⟩ = S(S + d− 3)|∆, S⟩ . (3.22)

Here S is a largest eigenvalue ofM12. And then, we construct descendant states by acting Pi, which

have a larger eigenvalue of D. Notice that SO(d − 1) has ⌊d−1
2 ⌋ Carten operators, although we

eliminate labels for an eigenvalue of these generators for simplicity.

Finally, let us comment on a quadratic Casimir operator, which commutes with all generators.

It is given by

C2 =
1

2
MABM

BA =
1

2
MijM

ji +D(D + d− 1)− P iKi . (3.23)

Its eigenvalue for the representation (∆, S) becomes 2

C2 = S(S + d− 3) + ∆(∆ + 1− d) . (3.24)
2The eigenvalus are easily calculated for the highest weight state.
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3.3 Higher spin field

Let us introdue a higher spin field of spin S as a representation of (∆, S) . The generators for a spin

S field Φµ1···µS are given by

DΦi1 ··· iN 0 ··· 0 =

(
τ
∂

∂τ
+ xi

∂

∂xi
+ S

)
Φi1 ··· iN 0 ··· 0 , (3.25)

PaΦi1 ··· iN 0 ··· 0 =
∂

∂xa
Φi1 ··· iN 0 ··· 0 ,

MabΦi1 ··· iN 0 ··· 0 =

(
xa

∂

∂xb
− xb

∂

∂xa

)
Φi1 ··· iN 0 ··· 0 ,

+N δa (i1 Φi2 ··· iN ) b 0 ··· 0 −N δb (i1 Φi2 ··· iN ) a 0 ··· 0

KaΦi1 ··· iN 0 ··· 0 =

(
2sxa + 2xaτ

∂

∂τ
+ 2xax

j ∂

∂xj
+ (τ2 − x2)

∂

∂xa

)
Φi1 ··· iN 0 ··· 0 (3.26)

+ 2Nxj δa (i1 Φi2 ··· iN ) j 0 ··· 0 − 2Nx(i1Φi2 ··· iN ) a 0 ··· 0 (3.27)

+ 2Nτδa (i1 Φi2 ··· iN ) 0 ···0 + 2(S −N)τΦi1 ··· iN a 0 ···0 (3.28)

where the Latin indices represent spatial coordinates, and 0 represents the time τ . To consider an

irrducible representation, we impose the Fierz-Pauli condition,

DµΦµµ2 ···µS = 0 , gµνΦµν µ3 ···µS = 0 . (3.29)

The quadratic Casimir operator gives a field equation,[
DµDµ +H2

(
∆(∆+ 1− d)− S

)]
Φµ1 ···µS = 0 , (3.30)

where we used an identity, 3

C2 = − 1

H2
DµD

µ + S(S + d− 2) . (3.31)

Let us remark on a relation between the dimension ∆ and a mass M . A mass term is defined

through a massless limit. In the massless limit, a gauge symmetry should emerge to gauge away

states of small helicity. To construct a field equation of massive fields, we first construct a field

equation with a gauge symmetry, and then add a mass term, which we review in Appnedix. C. A

field equation of a massive field becomes[
DµD

µ +H2
(
S2 + (d− 6)S − 2d+ 6

)
−m2

]
Φµ1···µS = 0 . (3.32)

Comparing Eq. (3.30) and Eq. (3.32), we obtain a relation,

∆ =
d− 1

2
±

√(
S +

d

2
− 5

2

)2

− m2

H2
. (3.33)

3This identity holds under the Fierz-Pauli condition (3.29).
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Note that the dimension becomes imaginary when m2 > (S+ d
2 −

5
2)

2. Thus fields in de Sitter space

are classified into two classes as follows.

Principal series: Im∆ ̸= 0 , m2 >

(
S +

d

2
− 5

2

)2

Complementary series: Im∆ = 0 , m2 ≤
(
S +

d

2
− 5

2

)2

(3.34)

3.3.1 Quantum spinning fields

Next, let us consider quantum field theory of spinning fields. The Higuchi bound states that there

exist negative norms states in the Hilbert space within the mass range (3.1). In this subsection, we

give a formula to calculate inner products by using the de Sitter isometry.

In quantum field theory, a state is created by acting field operators into a vacuum state as

follows,

Φ̂µ1 ···µS (τ, x)|Ω⟩ , (3.35)

where |Ω⟩ is a vacuum state invariant under the de Sitter isometry. Also, Φ̂µ1 ···µS is a field operator

obtained by quantizing the free field Φ. For simplicity, let us focus on the late time limit,

τ → 0 . (3.36)

One benefit of this limit is that only a field with S spatial indices, Φi1 ··· iS , remains at the late time.

This is because a field with a time index is damped with a higher power of τ , as indicated by the

transverse condition of Eq. (3.29). Consequently, the traceless condition of Eq. (3.29) reduces to

δi1 i2 Φi1 i2 ··· iS = 0 . (3.37)

To avoid the complexity of the tensorial indices, we introduce a null vector and contract with the

field as,

ϵs.Φ = ϵi1 · · · ϵiSΦi1 ··· iS . (3.38)

This vector is called a polarization vector, which satisfies

ϵi ϵ
i = 0 . (3.39)

Let us expand the field as

Φ̂i1 ··· iS (τ, x) = τ∆−S
(
ϕ̂i1 ··· iS (x) + ε(τ)

)
+ τ ∆̄−S

(
ˆ̄ϕi1 ··· iS (x) + ε(τ)

)
, (3.40)

where

∆̄ = d− 1−∆ . (3.41)
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The powers of τ are fixed by the field equation. The isometry generators act on the boundary fields

as

D ϵS .ϕ̂ =

(
∆+ xi

∂

∂xi

)
ϵS .ϕ̂

Pa ϵ
S .ϕ̂ =

∂

∂xa
ϵS .ϕ̂ ,

Mab ϵ
S .ϕ̂ =

(
xa

∂

∂xb
− xb

∂

∂xa
+ ϵa

∂

∂ϵb
ϵS .ϕ̂− ϵb

∂

∂ϵa

)
ϵS .ϕ̂ ,

Ka ϵ
S .ϕ̂ =

(
2∆xa + 2xax

j ∂

∂xj
− x2

∂

∂xa
+ 2ϵax · ∂

∂ϵ
− 2ϵ · x ∂

ϵa

)
ϵS .ϕ̂ (3.42)

Interestingly, this representation is the same as conformal generators of a primary field with a

scaling dimension ∆ and a spin S. Hence, we can use a techique of conformal field theory, which is

a second benefit of the late time limit.

Let us calculate inner procucts in the Fourier space,

⟨Ω| ϵS1 .Φ̂(τ, k) ϵS2 .Φ̂(τ, k′) |Ω⟩ , (3.43)

where the operators are defined by the Fourier transformation, e.g.,

ϵS2 .Φ̂(τ, k
′)|Ω⟩ =

∫
dd−1x

(2π)d−1
eik

′·x ϵS2 .Φ̂(τ, x)|Ω⟩ . (3.44)

Below we use the following notation,

⟨ϵS1 .Φ̂(τ, k) ϵS2 .Φ̂(τ, k′)⟩ = ⟨Ω| ϵS1 .Φ̂(τ, k) ϵS2 .Φ̂(τ, k′) |Ω⟩ . (3.45)

First, we consider a field of the principal series and ∆ < d−∆ for simplicity. In this case, the inner

product is dominated by one boundary operator as

⟨ϵS1 .Φ(τ, k) ϵS2 .Φ(τ, k′)⟩ = (2π)d−1δd−1(k + k′) τ2∆ ⟨ϵS1 .ϕ(k) ϵS2 .ϕ(−k)⟩′ , (3.46)

where the delta function comes from the momentum conservation. And also, we used the primed

inner products to represent a subtraction of a delta function, which is defined as,

⟨ϵS1 .ϕ(τ, k) ϵS2 .ϕ(τ,−k)⟩ = (2π)d−1δd−1(k + k′) ⟨ϵS1 .ϕ(τ, k) ϵS2 .ϕ(τ,−k)⟩′ . (3.47)

One can fix a functional form of this inner product by soloving Ward-Takahashi identities corre-

sponding to the de Sitter isometry, which are given by

⟨Ω| [D, ϵS1 .Φ(τ, k) ϵS2 .Φ(τ, k′) ] |Ω⟩ = 0 . (3.48)

⟨Ω| [b ·K, ϵS1 .Φ(τ, k) ϵS2 .Φ(τ, k′) ] |Ω⟩ = 0 . (3.49)

We introduced ba as a parameter of a transformation Ka. The action of the generators is obtained

by fourier transforming Eq. (3.42). First, Eq. (3.48) becomes[
k · ∂

∂k
+ d− 2∆− 1

]
⟨ϵS1 .ϕ(k) ϵS2 .ϕ(−k)⟩′ = 0 . (3.50)
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This identity indicates that the inner product is a homogeneous function of degee 2∆−d. Therefore,
we can carry out the following expansion.

⟨ϵS1 .ϕ(k)ϵS2 .ϕ(−k)⟩′ =
S∑

h=0

(ϵ1.ϵ2)
h (ϵ1.k)

s−h (ϵ2.k)
s−h Ah

kd−2∆+2S−2h−1
, (3.51)

where

k =
√
k2 . (3.52)

Notice that neither (ϵ1 · ϵ1) nor (ϵ2 · ϵ2) appear in the expansion since the polarization vectors are

null. The coefficient are fixed by Eq. (3.49), which becomes[
b · ∂

∂k

{
− 2(∆− d+ 2) + 2k · ∂

∂k

}
− (b · k) ∂

2

∂k2

+ 2ϵ · ∂
∂k

(
b · ∂

∂ϵ1

)
− 2b · ϵ1

(
∂

∂k
· ∂

∂ϵ1

)]
⟨ϵS1 .ϕ(k) ϵS2 .ϕ(−k)⟩′ = 0 . (3.53)

Eq. (3.53) gives three identities depending on a coupling with ba. Among them, terms proportional

to b · ϵ1 and b · ϵ2 reduce to a recursion relation,

Ah−1 =
2h(S − h−∆)

(S − h+ 1)(∆ + h− 2)
Ah . (3.54)

A term proportial to b · k becomes trivial. Finally, the inner product is given by

⟨ϵS1 .ϕ(k)ϵS2 .ϕ(−k)⟩′

= AS

S∑
h=0

2S−h
SCh

Γ(S − h−∆+ d
2 − 1

2)Γ(∆ + h− 1)

Γ(−∆+ d
2 − 1

2)Γ(∆ + S − 1)
· (ϵ1.ϵ2)

h (ϵ1.k)
s−h (ϵ2.k)

s−h

kd−2∆+2S−2h−1
(3.55)

Futher this can be summarized to the Jacobi polynomial as

⟨ϵS1 .ϕ(k)ϵS2 .ϕ(−k)⟩′

=
AS

kd−2∆−1

S!Γ(∆− 1)

Γ(∆ + S − 1)

(
−2

(ϵ1 · k)(ϵ2 · k)
k2

)S

P
(∆−S− d

2
− 1

2
, d
2
− 5

2
)

S

(
1− k2ϵ1.ϵ2

(ϵ1.k)(ϵ2.k)

)
,

(3.56)

where the Jacobi polynomial is defined as

P (α,β)
n (t) =

Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)
2F1

[
−n , α+ β + n

α+ 1
;
1− z

2

]
, (3.57)

where 2F1

[
α , β

γ
;x

]
is the hypergeometric function,

2F1

[
α , β

γ
;x

]
=

∞∑
n=0

1

n!

(α)n(β)n
(γ)n

xn . (3.58)
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To derive Eq. (3.56), we used the following identity,

Γ
(
s− h−∆+ d

2

)
Γ
(
−∆+ d

2

) = (−1)s−h Γ
(
∆− d

2 + 1
)

Γ
(
∆− d

2 − s+ h+ 1
) , (3.59)

which is derived from the reflection formula of the Gamma function. In the above calculation, we

consider only the field of the principal series and ∆ < d−∆−1. We can easily calculate other cases

by applying the above result. If d−∆− 1 < ∆, we just substitute d−∆− 1 into ∆. For a field of

the complementary series, we extract a real part as

⟨ ϵS1 .Φ̂(τ, k) ϵS2 .Φ̂(τ, k′) ⟩ = (2π)d−1δd−1(k + k′)Re
[
τ2∆ ⟨ϵS1 .ϕ(τ, k) ϵS2 .ϕ(τ,−k) ⟩′

]
. (3.60)

3.3.2 Higuchi bound

To derive the Higuchi bound, let us decompose states in the helicity basis. In this section, we utilze

properties of the spherical harmonics and the Gegenbauer polynomials. We recommend that those

who are not familiar with these topics read Appendix. A. To begin with, it is convenient to choose

the polarization vectors and the momentum as follows:

k = (0, · · · 0, k) , ϵ1 = (x̂, i) , ϵ2 = (ŷ,−i) , (3.61)

where x̂ and ŷ are unit vectors of d − 2 dimensions. In this configuration, the following identities

hold,

(ϵ1 · k)(ϵ2 · k) = k2 , ϵ1 · ϵ2 = x̂ · ŷ + 1 . (3.62)

and

⟨ϵS1 .ϕ(k)ϵS2 .ϕ(−k)⟩′ = (−2)S
AS

kd−1−2∆

S!Γ(∆− 1)

Γ(∆ + S − 1)
P

(∆−S− d
2
− 1

2
, d
2
− 5

2
)

S (−x̂ · ŷ) . (3.63)

The momentum is invariant under SO(d−2) rotation. Hence we factorize the states into irreducible

elements under SO(d− 2). This can be done by defining operators in the helicity basis as,

ϕlm(k) =

∫
dΩd−3Ylm(x̂)ϵS .ϕ(k) , (3.64)

where Ylm are spherical harmonics. Here, l represents an spin under SO(d − 2) rotation. And, m

denotes linearly independend elements, the number of which is N(d− 2, l),

N(d− 2, l) =
2l + d− 2

l

(
l + d− 3

l − 1

)
. (3.65)

Here, we use the combinatorial factorial,(
α

β

)
=

α!

(α− β)!β!
. (3.66)
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Also, the integral is over a unit shpere. The spherical harmonics are normalized as∫
dΩd−3Ylm(x̂)Ylm(x̂) = δll′δmm′ . (3.67)

See Appendix. A.2 for details of the spherical harmonics. To derive two point functions in the

helicity basis, let us reorganize Eq. (3.63). First, combining Eq. (A.13) and Eq. (A.14), we expand

the Jacobi polynomial by the Gegenbauer polynomials as

P
(∆−s− d

2
− 1

2
, d
2
− 5

2
)

S (−x̂ · ŷ) = (−1)S
S∑
l=0

d+ 2l − 4

(d+ S + l − 4)!(S − l)!

Γ(d2 + S − 3
2)Γ(d− 4)

Γ(d2 − 3
2)

×Γ(d+ S −∆− 2)

Γ(∆− 1)

Γ(∆ + l − 1)

Γ(d+ l −∆− 2)
C

d
2
−2

l (x̂ · ŷ) , (3.68)

where the Gegenbauer polynomials are defiend as

Cα
n (x) =

Γ(n+ 2α)

Γ(2α)Γ(n+ 1)
2F1

[
−n , n+ 2α

α+ 1
2

;
1− x

2

]
. (3.69)

We also used a symmetric property of the Gegenbauer polynomial,

C
d
2
−2

l (−x̂ · ŷ) = (−1)lC
d
2
−2

l (x̂ · ŷ) (3.70)

See also Appendix. A.1 for details of the the Gegenbauer polynomial. Further we apply the addition

theorem of the spherical harmonics (See Appendix. A.2.1),

C
d
2
−2

l (x̂ · ŷ) = 4π
d−2
2

2l + d− 4

1

Γ(d2 − 2)

N(d−2,l)∑
m=1

Ylm(x̂)Ylm(ŷ) . (3.71)

Then, Eq. (3.63) reads

⟨ϵS1 .ϕ(k)ϵS2 .ϕ(−k)⟩′

= 4π
d−2
2 2SS!

AS

kd−1−2∆

Γ(d+ S −∆− 2)Γ(d2 + S − 3
2)Γ(d− 4)

Γ(∆ + S − 1)Γ(d2 − 2)Γ(d2 − 3
2)

N(d−2,l)∑
m=0

1

(d+ S + l − 4)!(S − l)!

Γ(∆ + l − 1)

Γ(d+ l −∆− 2)
Ylm(x̂)Ylm(ŷ) (3.72)

From the orthogonality of the spherical harmonics (3.67), we can derive the two point function in

the helicity basis as,

⟨ϕlm(k)ϕl′m′(−k)⟩′

= 4π
d−2
2 2SS!

AS

kd−1−2∆

Γ(d+ S −∆− 2)Γ(d2 + S − 3
2)Γ(d− 4)

Γ(∆ + S − 1)Γ(d2 − 2)Γ(d2 − 3
2)

1

(d+ S + l − 4)!(S − l)!

Γ(∆ + l − 1)

Γ(d+ l −∆− 2)
δll′δmm′ . (3.73)
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Let us examine the sign. First, we renormalize the coefficients as

⟨ϕlm(k)ϕlm(−k) ⟩′ = Bl

kd−2∆−1
, (3.74)

where the coefficient of the maximum helicity is given by

BS = AS
Γ(d2 + S − 3

2)Γ(d− 4)

Γ(d2 − 2)Γ(d2 − 3
2)

4π
d−2
2 2SS!

(d+ 2S − 4)!
. (3.75)

The coefficients of lower helicity states are derived from the maximum helicity states as,

Bl = BS
(d+ S −∆− 2)× · · · × (d+ l −∆− 2)

(∆ + S − 2)× · · · × (∆ + l − 1)

Γ(d+ 2S − 3)Γ(S + 1)

Γ(d+ S + l − 3)Γ(S − l + 1)
(3.76)

Interestringly, if ∆ < 1, 4 the sign of B0 becomes negative even when BS is positive, which means

that the lowest helicity state has a negative norm. Translating this into the condition of the mass

by using the relation (3.33), we obtain the forbidden mass range,

0 < M2 < H2S(S − d+ 3) . (3.77)

This is the Higuchi bound. We remark that ∆ = 1 − α (α = 0 · · ·S − 1) are exceptional. In these

cases, the coefficient Bm diverges at m = α. This means that BS and consequently all coefficients

vanish. Instead, the shadow operator of the dimension ∆̄ = d−1
2 − ∆ becomes dominant. The

contribution of the shadow operator is obtained by substituting d − ∆ − 1 into ∆ in Eq. (3.76).

Then, we find that norms of lower helicity than α + 1 become zero. This implies that a gauge

symmtery is emerged, and such states are gauged away. In particular, the field of α = S − 1 is a

massless field. A field of 0 ≤ α ≤ S − 2 are called partially massless fields due to a small gauge

symmetry than a massless field. As a result, there appear no negative norm states for the massless

and partially massless fields, and therefore they are not forbidden.

3.4 Implication for higher spin states in string theory

We conclude this section with discussing an implication of the Higuchi bound to the string spectrum.

In general dimensional de Sitter space, a forbidden mass range of the Higuchi bound is

0 < M2 < H2S(S − d+ 3) . (3.78)

This upper bound on the mass square grows quadrically as the spin increases. Recall the leading

Regge trajectory in flat space, which is given by

M2 =
2

α′ (S − 2) . (3.79)

This Regge trajectory grows linearly as the spin increases. Therefore, there is a possibility that the

string Regge trajectory is inconsistent with the Higuchi bound in de Sitter space (See Fig. 3.3). To

4B0 is also negative when ∆ > d − 2. This case can be neglected since we assume that ∆ < d − ∆ − 1, that is,

∆ < d−1
2

.
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Figure 3.3: The Higuchi bound and the leading Regge trajectory(Red line): The blue region is

prohibited by the Higuchi bound. The spin S and the energy E are plotted in the units of 1/(H2α′)

and R/α′, respectively

discuss more rigorously, let us consider what type of string states may violate the Higuchi bound.

When they conflict, the spin and the mass become

S =
2

α′H2
, M2 =

4

α′2H2
. (3.80)

Hence a string length l becomes a comparable to the curvature scale of de Sitter space, which can

be estimated as

l ≃M × α′ =
2

H
. (3.81)

We note that α′ is an inverse of the string tension. Such a long string should feel the curvature

effect so that its spectrum may be modified. Otherwise we conclude that a worldsheet theory is

inconsistent in de Sitter space. In the rest of this thesis, we study classical string spectra on de

Sitter background and examine this potential inconsistency. A validity of a classical approximation

is discussed at the beginning of the next chapter. First we study classical strings on dS3 in Chap. 4

and generalize them to string on dS3 × S1 in Chap. 5. We will see that string Regge trajectories

are modified by curvature effects in a nontrivial way. One may wonder that the mild behavior of

the Regge limit can be kept on under modified Regge trajectories. We will discuss this point as a

concluding remark in Chap. 6.



Chapter 4

Classical strings on de Sitter space

The potential inconsistency between the flat space Regge trajectory and the Higuchi bound moti-

vates us to study the string specturm in de Sitter space. For a rigorous discussion, first we have to

quantize a worldsheet theory and then identify physical states which respect a worldsheet symme-

try, as developed in Sec. 2.2. However, it is difficult to carry out the quantization straightforwardly

because the worldsheet action is nonlinear on de Sitter background. To avoid this difficulty, we

study a classical string spectrum. The violation of the Higuchi bound might occur when a string

length approaches the cosmological horizon. A classical approximation must be good for such a

long string regime because strings should be larger than its Compton length.

In this section, we study two classes of classical strings, a folded string and a spiky string.

Results in flat space and in AdS space [38, 50] indicate that spectra of these strings approximate

the leading Regge trajectory and the sub-leading Regge trajectory respectively. The organization

of this chapter is as follows. First we summarize a setup of our study in Sec. 4.1. Then, we study

a fold string solution and a spiky string solution in order.

4.1 Setup

In this section we summarize basics of the worldsheet theory in de Sitter space necessary for our

semiclassical analysis. See also Ref. [39] for a nice review on semiclassical strings in AdS. Our

argument is analogous to the one there except for the fact that de Sitter space has an acceleration

and a cosmological horizon accordingly, which turns out to bring about qualitative differences from

the flat space and AdS cases.

4.1.1 Target space

In this chapter we study string Regge trajectories on dS3 (which may also be identified with an

appropriate subspace of a larger target space). We generalize to strings on dS3 × S1 in the next

chapter. For our purpose, it is convenient to analyse in the static coordinates of dS3. This coordinate

system is obtained by setting d = 3 in Eq. (3.16):

Y3 + Y0 = R
√

1− r2 et , Y3 − Y0 = R
√
1− r2 e−t , Y1 = R r cosϕ , Y2 = R r cosϕ , (4.1)

41
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Figure 4.1: Penrose diagram of dS3: Each point represents an S1 subspace and the edges correspond

to the north and south poles of S2. For example, the planar coordinates cover a half of the whole

space (the shaded region) and the cosmological horizon for an observer sitting at the north pole is the

blue line. The static coordinates cover a half of the planar coordinates Y3 ± Y0 ≥ 0, that is inside

the cosmological horizon. The dotted and rigid curves are sections of constant t and r(= sin ρ),

respectively. We study strings rotating around the center r = 0 (ρ = 0) of the static coordinate.

where −∞ < t < ∞, 0 ≤ r ≤ 1, and ϕ has a periodicity 2π. Also, we used a de Sitter radius R

instead of the Hubble scale H as

R =
1

H
. (4.2)

The corresponding metric is

ds2 = R2

[
− (1− r2)dt2 +

dr2

1− r2
+ r2dϕ2

]
. (4.3)

To utilize results in AdS, it is convenient to introduce a coordinate ρ defined by sin ρ = r

(0 ≤ ρ ≤ π/2), in terms of which the metric reads

ds2 = R2
(
− cos2ρ dt2 + dρ2 + sin2 ρ dϕ2

)
. (4.4)

Note that in these coordinates, the observer sitting at the origin and the cosmological horizon are

located at ρ = 0 and ρ = π/2, respectively. Since global coordinates of AdS are obtained by a Wick

rotation,

ρ→ −iρ , t→ it , R2 → −R2 , (4.5)

we may generalize semiclassical solutions in AdS to de Sitter space in a straightforward manner.

Together with an internal S1 parameterized by the coordinate φ, our target space metric is given
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by

ds2 = R2
(
− cos2ρ dt2 + dρ2 + sin2 ρ dϕ2 + dφ2

)
, (4.6)

where for generality we leave the periodicity of φ a free parameter. In other words, we absorb the

radius of the circle S1 into the definition of φ.

4.1.2 Worldsheet theory

Let us consider the Nambu-Goto string on the target space (4.6):

SNG = − 1

2πα′

∫
dτdσ

√
−Ẋ2X ′2 + (Ẋ ·X ′)2 , (4.7)

where (2πα′)−1 is the string tension and we defined

Ẋ2 = GABẊ
AẊB , X ′2 = GABX

′AX ′B , Ẋ ·X ′ = GABẊ
AX ′B , (4.8)

with XA = (t, ρ, ϕ, φ) and a target space metric,

GAB = R2 · diag
(
− cos2 ρ, 1, sin2 ρ, 1

)
. (4.9)

Also the dot and prime stand for derivatives in the worldsheet time coordinate τ and the worldsheet

spatial coordinate σ, respectively. The equation of motion for XA reads

0 = ∂τ

GAB

(
ẊBX ′2 −X ′B

(
Ẋ ·X ′

))
√
−Ẋ2X ′2 +

(
Ẋ ·X ′

)2
+ ∂σ

GAB

(
X ′BẊ2 − ẊB

(
Ẋ ·X ′

))
√
−Ẋ2X ′2 +

(
Ẋ ·X ′

)2


−
∂AGBC

[
ẊBẊCX ′2 +X ′BX ′CẊ2 − 2ẊBX ′C

(
Ẋ ·X ′

)]
2

√
−Ẋ2X ′2 +

(
Ẋ ·X ′

)2 . (4.10)

Rigid string ansatz. Classical string solutions discussed in this thesis are captured by the fol-

lowing ansatz for closed string configurations:

t = τ , ρ = ρ(σ) , ϕ = ωτ +Nσ , φ = ντ + ψ(σ) , (4.11)

where σ has a periodicity 2π and we require ρ(σ+2π) = ρ(σ) and ψ(σ+2π) = ψ(σ), assuming that

the string has no winding along the circle S1. Also, ω and ν are constant angular velocities, and N

is an integer characterizing the “winding” number along the angle ϕ. Note that the case without

internal space is covered simply by setting ν = ψ = 0. As depicted, e.g., in Fig. 5.1, the string at

a fixed time t = τ is spreading on the two-dimensional (ρ, ϕ) plane. It then rotates along ϕ and φ

with angular velocities ω and ν.



44 CHAPTER 4. CLASSICAL STRINGS ON DE SITTER SPACE

With the ansatz (4.11), the equations of motion (4.10) reduce to the following (generally) inde-

pendent three equations:

0 = −∂σ
[
ρ′(cos2 ρ− ω2 sin2 ρ− ν2)√

D

]
+

1

2

sin 2ρ[−(1 + ω2)(ρ′2 + ψ′2) + 2Nνωψ′ +N2 cos 2ρ−N2ν2]√
D

, (4.12)

0 = ∂σ

[
cos2 ρ(Nω sin2 ρ+ νψ′)√

D

]
, (4.13)

0 = ∂σ

[
νω sin2 ρψ′ +N(cos2 ρ− ν2) sin2 ρ√

D

]
, (4.14)

where we introduced

D =
−Ẋ2X ′2 + (Ẋ ·X ′)2

R4

= (cos2 ρ− ω2 sin2 ρ− ν2)ρ′2 + (cos2 ρ− ω2 sin2 ρ)ψ′2

+ 2Nνω sin2 ρψ′ +N2(cos2 ρ− ν2) sin2 ρ . (4.15)

Note that reality conditions require D ≥ 0, otherwise the corresponding Nambu-Goto action be-

comes imaginary. Also one may show that when both D ≠ 0 and ρ′ ̸= 0 are satisfied, Eq. (4.12)

follows from Eqs. (4.13) and (4.14).

Energy, spin and internal U(1) charge. To close the section, let us write down the energy E,

spin S, and internal U(1) charge J , which are of interest in the discussion of the Regge trajectory.

Defining them as conjugates of R t, −ϕ, and −φ, respectively, we have

E =
R

2πα′

∫ 2π

0
dσ

cos2 ρ(ρ′2 +N2 sin2 ρ+ ψ′2)√
D

, (4.16)

S =
R2

2πα′

∫ 2π

0
dσ

sin2 ρ(ωρ′2 + ωψ′2 −Nνψ′)√
D

, (4.17)

J =
R2

2πα′

∫ 2π

0
dσ
νρ′2 +N2ν sin2 ρ−Nω sin2 ρψ′

√
D

, (4.18)

which satisfies the following relation:

R2

2πα′

∫ 2π

0
dσ

√
D = RE − ωS − νJ . (4.19)

4.2 Folded strings

Let us begin with studying folded strings (See Ref. [38] for folded strings in AdS). The folded string

configuration is captured by the ansatz (4.11) with ν = N = ψ = 0, under which Eqs. (4.13)-(4.14)

become trivial, whereas Eq. (4.12) gives

∂σ

(
ρ′

|ρ′|

)√
cos2 ρ− ω2 sin2 ρ = 0 ↔ δ(σ − σf )

√
cos2 ρ− ω2 sin2 ρ = 0 . (4.20)
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� = !t

Figure 4.2: A folded closed string rotating around the origin ρ = 0 along an equator of S2 with

angular velocity ω.

Notice that the equation of motion is localized at the folding point σ = σf where ρ′ flips the sign,

simply because changes in the bulk profile ρ(σ) (σ ̸= σf ) are gauge degrees of freedom associated

to string reparameterization. Also the folding point satisfies

cos2 ρ− ω2 sin2 ρ = 0 , (4.21)

and so it propagates with the speed of light, which is essentially the same as the familiar statement

that open string end points propagate with the speed of light. Then, for given ω, the radius ρf of

the folding point is determined by

cot2 ρf = ω2 , (4.22)

which is the maximum distance dictated by causality prohibiting superluminal propagation of the

string. In general, closed strings may have multiple foldings, so that the solutions are parameterized

by the angular velocity ω, and the folding number Nf .

Conserved charges. For these folded strings, the conserved charges (4.16)-(4.17) read

E =
4NfR

2πα′

∫ ρf

0
dρ

cos2 ρ√
1− (sin2 ρ/ sin2 ρf )

, (4.23)

S = ω ×
4NfR

2

2πα′

∫ ρf

0
dρ

sin2 ρ√
1− (sin2 ρ/ sin2 ρf )

(4.24)

One may also rewrite them in terms of incomplete elliptic integrals,

E
(
ζ|k2

)
=

∫ ζ

0
dθ
√

1− k2 sin2 θ , F
(
ζ|k2

)
=

∫ ζ

0
dθ

1√
1− k2 sin2 θ

, (4.25)

as follows:

E =
4NfR

2πα′
[
sin2 ρf E

(
ρf | csc2 ρf

)
+ cos2 ρf F

(
ρf | csc2 ρf

)]
, (4.26)

S = ω ×
4NfR

2

2πα′ sin2 ρf
[
−E
(
ρf | csc2 ρf

)
+ F

(
ρf | csc2 ρf

)]
(4.27)
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Figure 4.3: Leading Regge trajectory vs. Higuchi bound: The leading Regge trajectory (the spiky

curve) turns back to lower spins at a maximum spin before hitting the shaded region prohibited

by the Higuchi bound. The spin S and the energy E are plotted in the units of R2/α′ and R/α′,

respectively. The same units are used in Fig. 4.4.

These expressions can be used to derive energy-spin relations and draw Regge trajectories.

This provides the energy-spin relation through the parameter ρf characterizing the length of the

string. In Fig. 4.3 we plot the energy squared E2 as a function of the spin S. See also Fig. 4.4 for S

and E2 as functions of ρ0. As we explain below, there exists a maximum spin at the intermediate

scale [36]1. The leading Regge trajectory then turns out to be consistent with the Higuchi bound.

4.2.1 Short strings

Let us first look at the spectrum of short strings. When the angular velocity ω is large, strings

cannot be so long because of causality. In this regime, we have ρf ≃ ω−1 and the string does not

feel the spacetime curvature. The energy and spin are then the same as the flat space ones,

E ≃ R

α′ ρf , S ≃ R2

2α′ ρ
2
f , (4.28)

which enjoy the linear Regge trajectory:

E2 ≃ 2

α′S . (4.29)

4.2.2 Long strings

Another extremal case is the small ω limit, under which we have ρf ≃ π/2− ω. In this regime, the

string end points approach to the cosmological horizon ρ = π/2, so that the spacetime curvature is

not negligible. It is easy to evaluate the energy and spin as

E ≃ 2R

πα′ , S ≃ −2R2

πα′ ω lnω . (4.30)

1Existence of a similar maximum spin was also observed in the context of the AdS/dS correspondence [86].
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Figure 4.4: The spin S and energy squared E2 as functions of ρf : We find that both have a peak

at ρf ≃ 1.14. Recall that there are two sources of the energy: one proportional to the string length

and the other from the string rotation. Then, the maximum energy appears when the spin takes

the maximum value. As a result, Fig. 4.3 has a spiky shape.

Interestingly, the spin vanishes in this limit, whereas the mass approaches to a fixed value. This is

in a sharp contrast to the AdS case [36,38].

It will be instructive to elaborate on the qualitative difference of Regge trajectories on flat space,

AdS, and dS. As we mentioned, the length of rotating strings characterized by ρf is determined by

causality of the Nambu-Goto string. On flat space, the velocity of the string end points is given

by ρfω, so that causality tells us that ρf = ω−1. In particular, ω and ρf can take an arbitrary

positive value. On the other hand, on AdS, there is a lower-bound ω > 1 on ω, which is saturated

by rotating strings touching the AdS boundary, essentially because AdS is compact. In both cases,

the spin increases as we decrease the angular velocity ω (or equivalently as the string length ρ0
increases).

Finally, let us consider the de Sitter case, where the accelerated expansion of the universe plays

a crucial role. First, the Hubble law implies that velocity exceeds the speed of light beyond the

Hubble horizon. Therefore, the end points of a folded closed string cannot stretch beyond the

horizon. Note that when the end points touch the cosmological horizon, their velocity coincides

with the speed of light for ω = 0, so that any nonzero ω leads to a causality violation. Therefore,

there exists a maximum value of the string length ρf , for which the angular velocity ω and then the

spin S have to vanish.

In this way, the spectrum of long strings on de Sitter is qualitatively different from the flat space

and AdS ones. In particular, the longest string has a vanishing spin and a finite mass due to the

accelerated expansion.

4.2.3 Maximum spin

We have argued that both the shortest string ρf = 0 and the longest one ρf = π/2 have a vanishing

spin S = 0. It suggests that there exists a maximum spin S∗ on the Regge trajectory. From the
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expression (4.27), we find that the maximum spin appears at ρf ≃ 1.14, for which the mass E∗ and

the spin S∗ are

E∗ ≃ 0.67×R/α′ , S∗ ≃ 0.31×R2/α′ , (4.31)

which is above the Higuchi bound. The full trajectory for 0 ≤ ρf ≤ π/2 is give in Fig. 4.3, which

shows that the semiclassical rotating strings have a spectrum consistent with the Higuchi bound.

Even though our analysis focused on a rotating folded closed string, any more internal structures will

increase the mass, hence the spectrum shown in Fig. 4.3 will provide the leading Regge trajectory.

We therefore conclude that the semiclassical string spectrum on de Sitter space is consistent with

the Higuchi bound. Note that our conclusion is independent of the ratio Ms/H as long as Ms ≫ H

(i.e., within the validity of the semiclassical approximation).

4.3 Spiky strings

Next, we study spiky strings (see Ref. [50] for spiky strings in AdS). In this section we focus on the

case without internal motion, so that our ansatz here is Eq. (4.11) with ν = ψ = 0, under which

the equations of motion (4.12)-(4.14) reduce to

0 = −∂σ

[
ρ′(cos2 ρ− ω2 sin2 ρ)√

(cos2 ρ− ω2 sin2 ρ)ρ′2 +N2 cos2 ρ sin2 ρ

]

+
1

2

sin 2ρ[−(1 + ω2)ρ′2 +N2 cos 2ρ]√
(cos2 ρ− ω2 sin2 ρ)ρ′2 +N2 cos2 ρ sin2 ρ

, (4.32)

0 = ∂σ

[
cos2 ρ sin2 ρ√

(cos2 ρ− ω2 sin2 ρ)ρ′2 +N2 cos2 ρ sin2 ρ

]
. (4.33)

To follow the string dynamics, it is convenient to integrate Eq. (4.33) as

∣∣ρ′∣∣ = N

2

sin 2ρ

sin 2ρ0

√
sin2 2ρ− sin2 2ρ0

cos2 ρ− ω2 sin2 ρ
, (4.34)

where the integration constant ρ0 is chosen such that ρ′ = 0 for ρ = ρ0. For later use, we also define

ρ1 such that cot2 ρ1 = ω2 and 0 < ρ1 <
π
2 . In this language, we have

|ρ′| = N sin ρ1 sin 2ρ√
2 sin 2ρ0

√
cos2 2ρ0 − cos2 2ρ

cos 2ρ− cos 2ρ1
. (4.35)

Three shapes. Notice that ρ′ has to flip a sign somewhere in order for a closed string to form a

loop, otherwise the string stretches forever. Such a sign flip may appear when ρ′ = 0 or ρ′ = ∞.

Eq. (4.35) shows that ρ′ = 0 is satisfied at ρ = ρ0,
π
2 −ρ0. At these points, the string smoothly turns

back from inside to outside or vice versa. Without loss of generality, we assume 0 < ρ0 <
π
4 in the

following. On the other hand, ρ′ = ∞ is satisfied at ρ = ρ1, where the string turns back forming a

spike. Based on the value of ρ1 relative to ρ0 and π
2 − ρ0, we may classify shapes of the string into

the following three classes:
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1. Outward spikes (ρ0 < ρ1 <
π
2 − ρ0)

Recall that the inside of the square root in Eq. (4.35) has to be positive for ρ to be real.

Therefore, the reality condition implies that for this parameter set, the string may stretch

only inside the region ρ0 ≤ ρ ≤ ρ1. This means that the outer turning points are spiky, and

the inner ones are smooth. We call such strings outward spike solutions. See Fig. 4.6.

2. Rounded spikes (ρ0 <
π
2 − ρ0 < ρ1)

Similarly, for π
2 − ρ0 < ρ1 <

π
2 , the reality condition implies that the string may stretch only

inside the region ρ0 ≤ ρ ≤ π
2 − ρ0. In contrast to the case of outward spikes, strings in this

class have no spikes and all the turning points are smooth. We call such strings rounded spike

solutions. See Fig. 4.10. Note that these strings are specific to de Sitter space and there are

no counterpart in flat space and AdS.

3. Inward spikes (ρ1 < ρ0 <
π
2 − ρ0)

Finally, for ρ1 < ρ0, the string may stretch only inside the region ρ1 ≤ ρ ≤ ρ0. This means

that the outer turning points are smooth, and the inner ones are spiky. We call such strings

inward spike solutions. See Fig. 4.11.

Periodicity conditions. The above argument is useful enough to classify local shapes of the

string. On the other hand, the full string is made of multiple segments between the spikes. In order

for a closed string to form a loop, the angle ∆ϕ of each segment has to be quantized appropriately.

For our ansatz, an explicit form of ∆ϕ is given by

∆ϕ = 2N

∫ ρmax

ρmin

dρ

ρ′

= 2

∫ ρmax

ρmin

dρ

√
2 sin 2ρ0

sin ρ1 sin 2ρ

√
cos 2ρ− cos 2ρ1
cos2 2ρ0 − cos2 2ρ

, (4.36)

where ρmin and ρmax are the minimum and the maximum values of ρ. More explicitly, (ρmin, ρmax) =

(ρ0, ρ1), (ρ0,
π
2 − ρ0), (ρ1, ρ0) for outward spikes, rounded spikes, and inward spikes, respectively.

Then, the global consistency requires that

∆ϕ =
2πN

n
, (4.37)

where n is a positive integer characterizing the number of spikes. This determines the value of ρ1
for given ρ0, n, and N . See also Fig. 4.5 for a plot of 2π/∆ϕ as a function of ρ0 and ρ1, which shows

a smooth transition from outward spikes to rounded spikes for fixed n and N .

Energy and spin. For later convenience, we provide the energy and the spin (4.16)-(4.17) for

the present class of solutions by using Eq. (4.35) as

E =
ωS

R
+

R

2πα′ (2n)

∫ ρmax

ρmin

dρ sin 2ρ

√
cos2 ρ− ω2 sin2 ρ√
sin2 2ρ− sin2 2ρ0

, (4.38)

S =
R2

2πα′ ×
1

2
(2n)

∫ ρmax

ρmin

dρ
ω sin ρ

cos ρ

√
sin2 2ρ− sin2 2ρ0√
cos2 ρ− ω2 sin2 ρ

, (4.39)
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Figure 4.5: Contour plot of 2π/∆ϕ as a function of ρ0 and ρ1: An integer on each contour represents

the value of 2π/∆ϕ for given ρ0 and ρ1, which has to be n/N for n-spike strings with the winding

number N . The two red lines, ρ1 = ρ0 and ρ1 =
π
2 −ρ0, separate the ρ0 – ρ1 plane into three regions

which accommodate outward spikes, rounded spikes, and inward spikes, respectively. We find in

particular that the string shape has a smooth transition from outward spikes to rounded spikes, as

ρ0 increases from 0 to π/4 for fixed n and N . Another important observation is that for inward

spikes, ρ1 <
π
4 at ρ0 =

π
4 for a finite 2π/∆ϕ (see the right zoom-in figure around (ρ0, ρ1) = (π4 ,

π
4 )).

where we used Eq. (4.19) to derive Eq. (4.38). In the rest of the section, we study the three types

of string solutions in more details.

4.3.1 Outward spike solutions

We begin with outward spike solutions (ρ0 < ρ1 < π
2 − ρ0), whose typical shapes are given in

Fig. 4.6. See also the left panel of Fig. 4.9 for strings with more windings. To identify the shapes,

first we derive a relation between ρ0 and ρ1. If the number of spikes n and the winding number N

are specified, we may derive the relation from the periodicity condition (4.36)-(4.37) as

2πN

n
= 2

∫ ρ1

ρ0

dρ

√
2 sin 2ρ0

sin ρ1 sin 2ρ

√
cos 2ρ− cos 2ρ1
cos2 2ρ0 − cos2 2ρ

. (4.40)

Now, we are left with one parameter ρ0, which characterizes the size of the string. If we further

specify ρ0, we may identify the shape of the string simply by integrating

dϕ

dρ
= ±

√
2 sin 2ρ0

sin ρ1 sin 2ρ

√
cos 2ρ− cos 2ρ1
cos2 2ρ0 − cos2 2ρ

. (4.41)

For example, the plots in Fig. 4.6 are obtained in this way. It is also instructive to compare the

shapes there with those in flat space and AdS. See Fig. 4.7. We find that in de Sitter space, the



4.3. SPIKY STRINGS 51

ρ1

ρ0

-1.0 -0.5 0.0 0.5 1.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 4.6: Typical shapes of outward spike solutions. The left panel shows the solution with three

outward spikes and one winding for ρ0 ≃ 0.41 and ρ1 =
π
4 . The right panel shows the solution with

two outward spikes and one winding for ρ0 ≃ 0.54 and ρ1 ≃ 1.03. The latter type of solutions are

specific to de Sitter space.

inner turning points shift outward compared to the flat space case due to de Sitter acceleration

whereas in AdS, the inner turning points shift inward due to AdS deceleration. In particular, the

n = 2N case reflects this effect most clearly: As depicted in the right figure of Fig. 4.6, de Sitter

space accommodates spiky strings which can be thought of as a fatter version of the folded strings.

Both in flat space and AdS, such a spiky string is not stable because the string tension always

overcomes the centrifugal force, so that it collapses to the folded string. In sharp contrast, de Sitter

acceleration helps the spiky string to maintain the shape without collapsing into a folded string.

Regge trajectories. Using the ρ0 – ρ1 relation (4.40), we can calculate the energy E and the spin

S as a function of ρ0, which defines Regge trajectories. See Fig. 4.8 for those of winding number

N = 1 solutions. First, we find that each trajectory has an approximately linear form up to the

maximum spin point and then it turns back, similarly to the folded string case. In particular, the

spin at the turning point is smaller than that of the folded string. As a result, the spectrum satisfies

the Higuchi bound. We also find that the tilt in the linear region is steeper for strings with a larger

number of spikes. Second, the upper endpoint of the Regge trajectory does not touch the vertical

axis S = 0 in contrast to the folded string case. In the next subsection, we show that the trajectory

is smoothly connected to that of rounded spike solutions, which touches the vertical axis S = 0.

Third, spiky strings with a fixed winding number N scan a finite region of the energy-spin plane.

Therefore, to obtain solutions with a larger spin, we need to increase the winding number N . See

Fig. 4.9.

Besides, another remark is needed on the Regge trajectory of n = 2N solutions. See the red

curve in the upper panel of Fig. 4.8 for n = 2 and N = 1. As we mentioned, the n = 2N solutions

can be thought of as a fatter version of folded strings, which are supported by de Sitter acceleration.

Then, one may expect that such solutions collapse into folded strings when the string is small and
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Figure 4.7: Typical shapes of spiky strings with three outward spikes in flat space (the left panel)

and AdS (the right panel).

so the support of de Sitter acceleration is not enough. Indeed, we find that the Regge trajectory of

n = 2N outward spikes branches from the turning point of the folded string trajectory.

Short strings. To provide more quantitative discussion, let us study the short string regime of

outward spike solutions:

ρ0 , ρ1 ≪
π

2
. (4.42)

For such short strings, the ρ0 – ρ1 relation (4.40) is approximated as

2πN

n
≃ 2

ρ0
ρ1

∫ ρ1

ρ0

dρ

ρ

√
ρ21 − ρ2√
ρ2 − ρ20

=
ρ1 − ρ0
ρ1

π ↔
(
1− 2N

n

)
ρ1 ≃ ρ0 . (4.43)

This shows that ρ0 = 0 for n = 2N at least under the short string approximation, which is consistent

with the fact that the n = 2N solutions are extrapolated to folded strings as they become smaller.

Also, the energy and spin are approximated as

E ≃ R

2πα′ × 2n

∫ ρ1

ρ0

dρ
ρ(ρ21 − ρ20)

ρ1
√
ρ2 − ρ20

√
ρ21 − ρ2

=
nR

2α′
ρ21 − ρ20
ρ1

= 2N

(
1− N

n

)
R

α′ ρ1 , (4.44)

S ≃ R2

2πα′ × 2n

∫ ρ1

ρ0

dρ ρ

√
ρ2 − ρ20√
ρ21 − ρ2

=
nR2

4α′ (ρ
2
1 − ρ20) = N

(
1− N

n

)
R2

α′ ρ
2
1 , (4.45)

from which the energy-spin relation reads

E2 ≃ 4

α′N

(
1− N

n

)
S . (4.46)

This correctly reproduces the linear Regge trajectory in flat space. We find that the tilt of the

Regge trajectory is steeper for a larger number of spikes. In particular, in the limit of infinitely

many spikes (for N fixed), the tilt approaches to 4
α′N . We will find in Sec. 4.3.3 that steeper Regge

trajectories are realized by inward spike solutions.
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Figure 4.8: Regge trajectories of outward spike solutions (the upper panel) and rounded spike

solutions (the lower panel) for the winding number N = 1. The spin S and the energy E are

plotted in units of R2/α′ and R/α′, respectively, as before. For comparison, we also illustrate

the Regge trajectory of one-folded strings. The dotted curves in the lower panel are the Regge

trajectories for outward spikes, which are smoothly connected with those for rounded spikes.

Long strings. Finally, let us take a closer look at the long string regime. First, the condition

ρ0 < ρ1 < π
2 − ρ0 of outward spikes implies that ρ0 cannot be larger than π/4. Also, as ρ0

approaches to π/4, ρ1 approaches to π/4 and so the spin decreases essentially because the closed

string becomes nearly circular and the change of the worldsheet profile by rotation becomes smaller.

To interpolate the short string regime, where the spin increases, and the long string regime, where

the spin decreases, the Regge trajectory needs to have the maximum spin.

More quantitatively, the maximum value of ρ0 depends on the number of spikes n and the

winding number N . As we mentioned earlier, we obtain the ρ0 – ρ1 relation (4.40) depicted in

Fig. 4.5, once n and N are specified. As we increase ρ0 for given n and N , each curve on the ρ0 – ρ1
plane enters the rounded spike regime at some critical value and so there exists a smooth transition

from outward spikes to rounded spikes. For example, the critical value for n = 4 and N = 1 reads

ρ0 ≃ 0.75, which corresponds to the upper endpoint of the Regge trajectory (see Fig. 4.8). Beyond

the critical value, the Regge trajectory describes rounded spike solutions, which we study in the

next subsection.

4.3.2 Rounded spike solutions

Next, we discuss rounded spike solutions (ρ0 <
π
2 − ρ0 < ρ1). See Fig. 4.10 for a typical shape

of the string, which is regular everywhere. As we have just mentioned, this class of solutions are

smooth continuation of outward spike solutions. Then, we may interpret that outward spikes for

ρ1 <
π
2 − ρ0 are rounded when ρ0 crosses the critical value defined by ρ1 =

π
2 − ρ0 (for given n and
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Figure 4.9: The left panel shows the shape of spiky string with 8 outward spikes and 3 windings for

ρ0 ≃ 0.025 and ρ1 = 0.1. The right panel shows the Regge trajectories of different windings. The

spin S and the energy E are plotted in the units of R2/α′ and R/α′, respectively.

N). Based on this interpretation, we call solutions with ρ1 >
π
2 − ρ0 rounded spike solutions.

The procedure to identify the shape is parallel to the case of outward spikes. First, we specify

the number of spikes n and the winding number N , and derive a relation between ρ0 and ρ1 from

the periodicity condition,

2πN

n
= 2

∫ π/2−ρ0

ρ0

dρ

√
2 sin 2ρ0

sin ρ1 sin 2ρ

√
cos 2ρ− cos 2ρ1
cos2 2ρ0 − cos2 2ρ

. (4.47)

Then, integrating Eq. (4.41), we may identify the shape of the string for each ρ0. Notice that this

type of solutions do not exist for small ρ0. See Fig. 4.5. For example, the allowed parameter range

of ρ0 for n = 4 and N = 1 reads 0.75 ≲ ρ0 <
π
4 .

Regge trajectories. Varying the value of ρ0, we may draw the Regge trajectories as depicted

in the right panel of Fig. 4.8. There, for comparison, we also illustrate the Regge trajectories of

outward spike solutions by the dotted lines. Since rounded spikes exhibit a smooth transition to

outward spikes, the Regge trajectories are connected with those of outward spikes. We also find

that each Regge trajectory touches the vertical axis S = 0, similarly to the folded string. However,

as we discuss in the next paragraph, the mechanism how the spin vanishes is different from the

folded string.

Circular string limit. To see how the spin vanishes, let us consider the limit ρ0 → π
4 . Recalling

that ρ0 ≤ ρ(σ) ≤ π
2 − ρ0, we find that in this limit, the solution is reduced to

ρ(σ) = ρ0 =
π

4
(constant) , (4.48)

which is nothing but the static circular string studied in Ref. [87]. As discussed there, such a

static circular string solution exists in de Sitter space because the string tension and the de Sitter

acceleration balance and cancel each other out. Note that the equations of motion (4.32)-(4.33) are
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Figure 4.10: Rounded spike solution for ρ0 = 0.72 and ρ1 ≃ 0.86. We call the turning points defined

by ρ = π/2− ρ0 rounded spikes.

satisfied for an arbitrary value of ω, since rotations do not change the worldsheet profile and so they

are gauge degrees of freedom. The conserved charges (4.16)-(4.17) for these circular strings read

E =
NR

2α′ , S = 0 . (4.49)

In particular, the string has no spin for an arbitrary ω because the circular string has no structures

generating nonzero angular momenta.

4.3.3 Inward spike solutions

Finally, we discuss inward spike solutions (ρ1 < ρ0 <
π
2 − ρ0), whose typical shape is illustrated in

Fig. 4.11. The procedure to identify the shape is parallel to the case of outward and rounded spikes.

First, we specify the number of spikes n and the winding number N and derive a relation between

ρ0 and ρ1 from the periodicity condition,

2πN

n
= 2

∫ ρ0

ρ1

dρ

√
2 sin 2ρ0

sin ρ1 sin 2ρ

√
cos 2ρ− cos 2ρ1
cos2 2ρ0 − cos2 2ρ

. (4.50)

Then, by integrating Eq. (4.41) for a specific value of ρ0, we may identify the shape.

Regge trajectories. The Regge trajectories are illustrated in Fig. 4.12. Similarly to the previous

cases, each Regge trajectory has the maximum energy and spin, which is helpful for the spectrum to

satisfy the Higuchi bound. In contrast to outward spikes, the tilt in the short string regime decreases

as the number of spikes increases. However, the tilt is always steeper than those of outward spike

solutions and folded strings, as we discuss in the next paragraph in more details. Note that the

Regge trajectory does not touch the vertical axis S = 0. As far as we know, there are no solutions

at least within our ansatz that extrapolate the trajectory to S = 0, in contrast to the outward spike

case.
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Figure 4.11: Solution with three inward spikes and one winding for ρ0 = π/5 and ρ1 ≃ 0.46.
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Figure 4.12: Regge trajectories of inward spike solutions for N = 1. The spin S and the energy E

are plotted in the units of R2/α′ and R/α′, respectively. For comparison, we illustrate the Regge

trajectory of the one-folded string by the dotted blue curve.

Short strings. Then, let us take a closer look at the short string regime:

ρ0 , ρ1 ≪
π

2
. (4.51)

For such strings, the ρ0 – ρ1 relation (4.50) is approximated as

2πN

n
≃ 2

ρ0
ρ1

∫ ρ0

ρ1

dρ

ρ

√
ρ21 − ρ2√
ρ2 − ρ20

=
ρ0 − ρ1
ρ1

π ↔
(
1 +

2N

n

)
ρ1 ≃ ρ0 , (4.52)

which implies that spiky strings can have an arbitrary number of inward spikes n and an arbitrary

winding number N (recall that inward spike solutions in the short string regime have a condition

n > 2N). Also, the energy and the spin are approximated as

E ≃ R

2πα′ × 2n

∫ ρ0

ρ1

dρ
ρ(ρ21 − ρ20)

ρ1
√
ρ2 − ρ20

√
ρ21 − ρ2

=
nR

2α′
ρ20 − ρ21
ρ1

= 2N

(
1 +

N

n

)
R

α′ ρ1 , (4.53)

S ≃ R2

2πα′ × 2n

∫ ρ0

ρ1

dρ ρ

√
ρ2 − ρ20√
ρ21 − ρ2

=
nR2

4α′ (ρ
2
0 − ρ21) = N

(
1 +

N

n

)
R2

α′ ρ
2
1 , (4.54)
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which reproduce the linear Regge trajectories in flat space,

E2 ≃ 4

α′N

(
1 +

N

n

)
S . (4.55)

We find that the tilt of the Regge trajectory decreases as the number of inward spikes increase. In

particular, in the limit of infinitely many spikes, the tilt approaches to 4
α′N .

Long strings. Finally, let us consider the long string regime. As depicted in Fig. 4.5, we always

have ρ1 < ρ0 even in the limit ρ0 → π
4 for a finite n. For example, for inward spike solutions with

n = 2 and N = 1, ρ1 is bounded as ρ1 ≲ 0.784(< π
4 ), which is saturated when ρ0 = π

4 . Therefore,

the string shape does not approach to a circular form as long as we consider a finite n. This is why

the upper endpoint of the Regge trajectory does not touch the vertical axis S = 0. This is analogous

to the outward spike case, but there are no analogue of rounded spike solutions that extrapolate

the Regge trajectory of inward spike solutions to S = 0, at least within our ansatz.

We conclude this section by summarizing implications of our results. First, in the short string

regime, Regge trajectories of spiky strings have a steeper tilt than that of folded strings. This means

that Regge trajectories of spiky strings are subleading Regge trajectories (whose contributions to

the Regge limit amplitudes are subleading). Second, similarly to the folded string case, each Regge

trajectory has the maximum spin and energy. In particular, this property is helpful for the spectra

to be consistent with the Higuchi bound. This also implies that a single Regge trajectory has a finite

number of higher-spin states, in contrast to flat space and AdS. Third, we found that spiky string

solutions for a fixed winding number N scan a finite region on the energy-spin plane. Therefore,

in order to have an infinite number of higher-spin states, we need to take into account an infinite

number of Regge trajectories with an increasing winding number N . It would be important to

further study implications of this result for high-energy scattering in de Sitter space.



Chapter 5

Classical strings with internal motion

Superstring theory is defined in ten dimensional spacetime. Hence we have to involve a compactified

internal space. In this chapter, we study classical string solutions in dS3 × S1. The internal S1 can

be regarded as a subspace of six dimensional internal space. If there exists a translation symmetry

in internal space, a conserved charge are introduced in a four dimensional theory corresponding to

a momentum in internal space. We examine how Regge trajectories are changed when having the

internal charge.

5.1 Folded strings with internal motion

We begin by generalizing folded string solutions in the previous chapter to include motion along the

internal circle S1. The folded string configuration is captured by the ansatz (4.11) with N = ψ = 0,

under which Eqs. (4.13)-(4.14) become trivial, whereas Eq. (4.12) gives

∂σ

(
ρ′

|ρ′|

)√
cos2 ρ− ω2 sin2 ρ− ν2 = 0 ↔ δ(σ − σf )

√
cos2 ρ− ω2 sin2 ρ− ν2 = 0 . (5.1)

Similarly to the case of no internal motion, the equation of motion is localized at the folding point

σ = σf , where the following equation should be satisfied,

cos2 ρ− ω2 sin2 ρ− ν2 = 0 . (5.2)

Therefore, similarly to the solution of no internal motion, the folding point propagates with the

speed of light. Then, for given ω and ν, the radius ρf of the folding point is determined by

cot2 ρf =
ω2 + ν2

1− ν2
, (5.3)

which is the maximum distance dictated by causality prohibiting superluminal propagation of the

string. In general, closed strings may have multiple foldings, so that the solutions are parameterized

by the angular velocities ω and ν, and the folding number Nf . See Fig. 5.1.

58
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Figure 5.1: Illustration of ω, ν and Nf : ω is the angular velocity in the ϕ direction. ν is the angular

velocity in the φ direction. Nf is the folding number.

Conserved charges. For these folded strings, the conserved charges (4.16)-(4.18) read

E =
1√

1− ν2
×

4NfR

2πα′

∫ ρf

0
dρ

cos2 ρ√
1− (sin2 ρ/ sin2 ρf )

, (5.4)

S =
ω√

1− ν2
×

4NfR
2

2πα′

∫ ρf

0
dρ

sin2 ρ√
1− (sin2 ρ/ sin2 ρf )

, (5.5)

J =
ν√

1− ν2
×

4NfR
2

2πα′

∫ ρf

0
dρ

1√
1− (sin2 ρ/ sin2 ρf )

. (5.6)

One may also rewrite them in terms of incomplete elliptic integrals,

E
(
ζ|k2

)
=

∫ ζ

0
dθ
√
1− k2 sin2 θ , F

(
ζ|k2

)
=

∫ ζ

0
dθ

1√
1− k2 sin2 θ

, (5.7)

as follows:

E =
1√

1− ν2
×

4NfR

2πα′
[
sin2 ρf E

(
ρf | csc2 ρf

)
+ cos2 ρf F

(
ρf | csc2 ρf

)]
, (5.8)

S =
ω√

1− ν2
×

4NfR
2

2πα′ sin2 ρf
[
−E
(
ρf | csc2 ρf

)
+ F

(
ρf | csc2 ρf

)]
, (5.9)

J =
ν√

1− ν2
×

4NfR
2

2πα′ F
(
ρf | csc2 ρf

)
. (5.10)

These expressions can be used to derive energy-spin relations and draw Regge trajectories.

Regge trajectories. The left panel of Fig. 5.2 shows Regge trajectories of one-folded strings

(Nf = 1) with a fixed internal charge J . First, the trajectory for J = 0 matches with the trajectory

of no internal motion (Fig. 4.3). Next, if one increases the internal charge J , the trajectory shifts

upwards simply because the internal motion increases the energy. Also the maximum spin decreases,

so that the maximum spin of one-folded strings is the one for the J = 0 string. Then, one-folded
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Figure 5.2: The left panel shows Regge trajectories for Nf = 1 with different internal charge J .

The right panel shows Regge trajectories for different Nf with J = 0.6R2/α′. The energy E, spin

S and internal charge J are in the units of R/α′, R2/α′ and R2/α′, respectively. We find that the

Regge trajectories always satisfy the Higuchi bound (E2 ≥ S(S−1)
R2 ), which prohibits the red region.

strings scan a finite region in the energy-spin plane represented by the blue shaded region. In

particular, one needs to consider multiple folded strings (Nf = 2, 3, . . .) to have infinitely many

higher spins (see the right panel of Fig. 5.2). Note that the Higuchi bound is satisfied in the entire

region. In the rest of the section, we study several limits and provide more quantitative arguments.

5.1.1 Bound on internal charge J

Fig. 5.2 implies that for a fixed folding number Nf , there exists a maximum value of the internal

charge J . To see this more quantitatively, let us recall

ν√
1− ν2

≤
√
ν2 + ω2

1− ν2
= cot ρf , (5.11)

where the inequality is saturated for ω = 0 (for which we have ν = cos ρf ). Then, we find

J ≤
NfR

2

α′
2

π

∫ ρf

0
dρ

cos ρf√
sin2 ρf − sin2 ρ

. (5.12)

This simply says that the folding point has the speed of light and so for a fixed string length ρf , the

internal motion is maximized when the string does not rotate inside dS3. As depicted in Fig. 5.3,

the right hand side is maximized in the short string limit ρf → 0:

J ≤
NfR

2

α′
2

π

∫ ρf

0
dρ

cos ρf√
sin2 ρf − sin2 ρ

≤
NfR

2

α′ . (5.13)

Therefore, the Nf -folded string has the maximum internal charge J = NfR
2/α′ when ω = 0 and

ν = cos ρf → 1. Note that the energy E and the spin S in this limit are

E =
NfR

α′ , S = 0 , (5.14)

which correspond to the upper boundary point of the shaded region in Fig. 5.2.
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Figure 5.3: The energy E and the internal U(1) charge J as a function of ρf . They are plotted in

the units of NfR/α
′ and NfR

2/α′, respectively.

5.1.2 Regge trajectories for fixed J

Short strings. Next, let us take a closer look at the Regge trajectory profile for a fixed J . For

this, we first consider the short string limit ρf ≪ 1. In this regime, we have

ρf ≃
√

1− ν2

ω2 + ν2
≪ 1 , (5.15)

so that the short string limit is realized for ω ≫ 1, ν ≃ 1, or both (recall that causality requires

0 ≤ ν2 ≤ 1). At the leading order in ρf , the charges (5.8)-(5.10) are approximated as

E ≃ 1√
1− ν2

×
4NfR

2πα′

∫ ρf

0
dρ

1√
1− (ρ/ρf )2

=
1√

1− ν2
×
NfR

α′ ρf , (5.16)

S ≃ ω√
1− ν2

×
4NfR

2

2πα′

∫ ρf

0
dρ

ρ2√
1− (ρ/ρf )2

=
1

2

√
ω2

ω2 + ν2
×
NfR

2

α′ ρ2f , (5.17)

J ≃ ν√
1− ν2

×
4NfR

2

2πα′

∫ ρf

0
dρ

1√
1− (ρ/ρf )2

=
ν√

1− ν2
×
NfR

2

α′ ρf . (5.18)

Then, in the regime ω ≫ 1, which implies J ≪ 1 in particular, we find the relation,

E2 ≃ J2

R2
+

2Nf

α′ S . (5.19)

Recall that the short string limit is also achieved when ω = O(1) and ν ≃ 1. In this regime,

the internal charge (5.18) is not necessarily small because the prefactor ν√
1−ν2

cancels out the

suppression by the small ρf . Taking into account the next-to-leading order terms in Eqs. (5.16),

(5.18) carefully, we find a more general energy-spin relation,

E2 ≃ J2

R2
+

√
1−

(
α′

NfR2
J

)2 2Nf

α′ S , (5.20)
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Figure 5.4: The angular velocity ω as a function of ρf (J is in the unit of NfR
2/α′).

which is applicable for an arbitrary value of J as long as the string is short ρf ≪ 1. Note that

the first term is the Kaluza-Klein mass associated to the internal motion, which explains how the

Regge trajectory shifts upwards as J increases.

Long strings. To discuss longer strings, it is convenient to rewrite Eq. (5.10) as

ω2 =
cot2 ρf ·

[
4NfR

2

2πα′ F
(
ρf | csc2 ρf

)]2
− J2[

4NfR2

2πα′ F (ρf | csc2 ρf )
]2

+ J2

, (5.21)

where the right hand side monotonically decreases as ρf increases (see Fig. 5.4). It implies that for

a fixed J , there exists an upper bound on the angular velocity ω:

0 ≤ ω2 ≤
N2

fR
4

α′2 − J2

J2
, (5.22)

where the upper bound is saturated in the short string limit ρf → 0. Also, for a fixed J , the string

has a maximum length when ω = 0, for which the conserved charges read

E =
1

sin ρf
×

4NfR

2πα′
[
sin2 ρf E

(
ρf | csc2 ρf

)
+ cos2 ρf F

(
ρf | csc2 ρf

)]
, (5.23)

S = 0 , (5.24)

J = cot ρf ×
4NfR

2

2πα′ F
(
ρf | csc2 ρf

)
. (5.25)

For a given J , the maximum length is determined by solving Eq. (5.25). Then, substituting it into

Eq. (5.23) gives the energy of the longest string. See also Fig. 5.3. This gives the upper endpoint

of each Regge trajectory with a fixed J depicted in Fig. 5.2.
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5.2 Spiky strings with internal motion

Finally, we study spiky strings with internal motion (see Ref. [75] for the corresponding solutions in

AdS3×S1). We employ the full ansatz (4.11), under which the equations of motion are Eqs. (4.12)-

(4.14). For later convenience, we introduce a new variable r by

r = sin2 ρ , (5.26)

which will be used mainly in the rest of the section instead of ρ. To follow the string dynamics, we

first integrate the equations of motion (4.13)-(4.14) as

C =
ωNr + νψ′

√
D

(1− r) , (5.27)

λ =
ωNr + νψ′

νω ψ′ +N(1− ν2 − r)

1− r

r
, (5.28)

where C and λ are real integration constants. Notice here that nontrivial solutions with ν ̸= 0

exist only when ψ′ is σ-dependent, otherwise r has to be a constant. Also note that we have four

parameters (ω, ν, C, λ) characterizing the solutions.

Then, we reformulate Eqs. (5.27)-(5.28) such that ψ′ and ρ′ are expressed in terms of variables

without derivatives. First, Eq. (5.28) implies

ψ′ = Nr
λ
(
1− r − ν2

)
− ω(1− r)

ν(1− r − λωr)
. (5.29)

Second, as discussed in Appendix D.1, we can reorganize Eq. (5.27) together with Eq. (5.29) into

the form,

r′2 = 4r(1− r)ρ′2 = Tr2(1− r)2
(r − rA) (r − rB) (r − rC)

(r − rS)
2 . (5.30)

This shows that for generic values of (ω, ν, C, λ), r′2 has a double pole and three zeros, in addition

to the two double zeros located at r = 0, 1. The location of the double pole is determined by ω and

λ alone as

rS =
1

1 + λω
. (5.31)

On the other hand, the locations of the three zeros depend on the four parameters (ω, ν, C, λ) in a

more complicated manner, which we denote by rA, rB, and rC (see Appendix D.1 for details). Note

that rA,B,C are complex in general. Besides, the overall constant T reads

T =
4N2λ2(1 + ω2)

C2(1 + λω)2
, (5.32)

which is non-negative since N is a positive integer and ω, λ, and C are real numbers. Integrating

Eqs. (5.29)-(5.30) gives string solutions for given (ω, ν, C, λ).
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5.2.1 Outward and inward spike solutions

Now we are ready to study shapes and Regge trajectories of the solutions described by our ansatz (4.11).

Our task is basically parallel to the one in Sec. 4.3, but it is more complicated simply because there

are more parameters of the solution. In the present thesis, for illustration, we focus on two classes

of solutions that reduce to those of the previous section in the limit J → 0, which simplifies the

analysis considerably. We call them outward spike solutions and inward spike solutions by analogy

with the solutions in Sec. 4.3. In the following, we present properties of these solutions.

Ansatz on rA, rB, rC , and rS. In Sec. 4.3, we demonstrated that shapes of the string depend

on the location of zeros and poles of ρ′2. Similarly, the outward and inward spike solutions can be

classified based on the values of rA, rB, rC , and rS . First, for both classes of solutions, rA, rB, and

rC are all real and positive. Without loss of generality, we assume that rA < rB < rC . These values

relative to rS are also relevant for us, based on which we perform the following classification:

Outward spike solutions: rA < rB < rS < rC , (5.33)

Inward spike solutions: rS < rA < rB < rC . (5.34)

In Appendix D.2, we show that in the limit J → 0, these solutions indeed reduce to their counter-

parts in Sec. 4.3.

Reality conditions. Next let us take care of reality conditions. First, Eq. (5.30) shows that

reality of r(σ) requires rA ≤ r(σ) ≤ rB or r(σ) ≥ rC (recall that the overall coefficient T is

positive). Also, in order for the closed string to form a loop, r′ has to flip the sign somewhere

on the worldsheet, otherwise the string stretches forever. Then, for the outward and inward spike

solutions, the string has to be inside the regime rA ≤ r(σ) ≤ rB.

Periodicity conditions. Finally, we take into account global structures of the string. As before,

the angle ∆ϕ (on the r-ϕ plane) between the two spikes1 has to be quantized appropriately. More

explicitly, for n-spike solutions, we require

∆ϕ =
2πN

n
. (5.35)

Within the ansatz (5.33)-(5.34), an explicit form of ∆ϕ reads

∆ϕ = 2N

∫ rB

rA

dr

r′
=

2N√
T

∫ rB

rA

dr

r(1− r)

|r − rS |√
(r − rA) (r − rB) (r − rC)

. (5.36)

In the present setup, we also need to take care of periodicity along the internal S1. For simplicity,

we assume that the string has no winding along the S1, which implies

0 =

∫ 2π

0
dσψ′ = 2n

∫ rB

rA

dr

r′
ψ′ = ±2nNrS

ν
√
T

∫ rB

rA

dr

1− r

λ
(
1− ν2 − r

)
− ω(1− r)√

(r − rA) (r − rB) (r − rC)
. (5.37)

1As we see shortly, the string is smooth everywhere for ν ̸= 0, but we can interpret that spikes are rounded,

similarly to the rounded spikes in Sec. 4.3. Therefore, we use the terminology “spikes” as before.
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Figure 5.5: Shapes of outward spike solutions and inward spike solutions: ρA and ρB are defined

by rA = sin2 ρA (0 ≤ ρA ≤ π
2 ) and similarly for ρB. For outward spike solutions, we chose

(ω, ν, C, λ) ≃ (0.89, 0.47, 0.41, 1.31), which corresponds to (ρA, ρB) ≃ (0.41, 0.71). For inward spike

solutions, we chose (ω, ν, C, λ) ≃ (1.65, 0.51, 0.94, 2.57), which corresponds to (ρA, ρB) ≃ (0.47, 0.60).

Here the plus and minus signs are for outward and inward spike solutions, respectively. As we

mentioned, there are four parameters of the solutions. If we specify the number of spikes n and the

winding number N , there are two constraints originating from the periodicity conditions. Then, we

are left with two degrees of freedom characterizing the size of the string and the internal motion.

Shapes. In Fig. 5.5, we illustrate outward and inward spike solutions for n = 3 and N = 1. The

four parameters (ω, ν, C, λ) are chosen such that the two periodicity conditions are satisfied. In

contrast to the case without internal motion, the spikes are indeed rounded.

Regge trajectories. Finally, we study Regge trajectories. First, substituting Eqs. (5.27)-(5.28)

into Eqs. (4.16)-(4.18), we find a simplified expression for conserved charges2:

E =
NR

2πα′
λ

C

∫ 2π

0
dσ r

(1− r)2 − C2

1− r − λωr
(5.38)

= ± NR

2πα′
2nλrS

C
√
T

∫ rB

rA

dr

1− r

(1− r)2 − C2√
(r − rA) (r − rB) (r − rC)

, (5.39)

S =
NR2

2πα′
1

C

∫ 2π

0
dσ r

(1− r)rλω − C2

1− r − λωr
, (5.40)

= ±NR
2

2πα′
2nrS

C
√
T

∫ rB

rA

dr

1− r

(1− r)rλω − C2√
(r − rA) (r − rB) (r − rC)

, (5.41)

2To derive them, it is convenient to use Eq. (D.1) and Eq. (D.3) provided in Appendix.
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Figure 5.6: Regge trajectories of spiky strings with internal charges. The left and right figures are

for outward and inward spike solutions, respectively. For comparison, we also illustrate the Regge

trajectory of the folded string in the dotted lines. The energy, spin and internal charge are in the

units of R/α′, R2/α′ and R2/α′, respectively.

J =
NR2

2πα′
1

νC

∫ 2π

0
dσ r

(1− r)λν2 − C2(λ− ω)

1− r − λωr
(5.42)

= ±NR
2

2πα′
2nrS

νC
√
T

∫ rB

rA

dr

1− r

(1− r)λν2 − C2(λ− ω)√
(r − rA) (r − rB) (r − rC)

, (5.43)

where the plus and minus signs are again for outward and inward spikes, respectively.

As we mentioned, once we specify the number of spikes n and the winding number N , we are

left with two degrees of freedom associated with the size of the string and the internal motion. If

we further specify the internal charge through Eq. (5.43), we are left with one degree of freedom

characterizing the size of the string. Then, by varying the size of the string, we can draw Regge

trajectories for fixed n, N and J . See Fig. 5.6 for Regge trajectories of outward and inward spike

solutions with n = 3, N = 1, and different values of J . We find that as the internal charge increases,

the Regge trajectory shifts upwards. Also, the maximum spin decreases and the maximum energy

increases. In particular, Regge trajectories for fixed n and N scan a finite region of the energy-spin

plane. These properties are qualitatively the same as folded strings with internal charges and spiky

strings without internal charges, respectively. Besides, we find that Regge trajectories for outward

spikes touch the vertical axis S = 0 twice. This explains that in the limit J → 0, outward spike

solutions reduce to both the outward and rounded spike solutions presented in the previous section.

See Appendix D.2 for more details.
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Conclusion

In this thesis, we studied Regge trajectories of folded strings and spiky strings in de Sitter space

and examined their consistency with the Higuchi bound. Regge trajectories of folded strings have

a maximum spin and energy in contrast to flat space and AdS space. For each spin below the

maximum value, the energy is larger than the Higuchi bound. Simililarly, Regge trajectories of

spiky strings have a maximum spin and energy. Spiky strings have a larger energy than folded

strings for each spin. Intuitively, this is because an extra energy is needed to spread strings. Hence

the Higuchi bound is not violated also for spiky strings. Besides, as we increase internal charge,

strings get an energy and a maximum value of spin becomes smaller. Therefore internal motion

may not cause a confliction with the Higuchi bound. Thus string thoery seems to be consistent in

de Sitter space from the view point of string spectra.

While the boundedness of spin is helpful to string spectra to be consistent with the Higuchi

bound, this implies that a single Regge trajectory has only a finite number of higher spin states.

Even if including internal charges, Regge trajectories scan a finite region of the energy-spin plane,

and therefore higher spin states remain finite. To have an infinite number of higher spin states, we

need infinitely many Regge trajectories with an increasing winding numbers.

More intuitively, the above mentioned properties are natural consequences of de Sitter acceler-

ation. First, the string can have a large spin if it is long and rotates with a large angular velocity.

On the other hand, causality requires that the string worldsheet cannot propagate faster than the

speed of light, which gives an upper bound on the string length in terms of the angular velocity. In

flat space and AdS, the string stretches with an infinite length if the angular velocity approaches to

zero. In particular, the large string length competes against the smallness of the angular velocity,

so that strings have larger spins as they stretch more. In sharp contrast, de Sitter space has an

acceleration, so that there exists a natural cutoff dictated by causality: the string cannot rotate

anymore when touching the horizon. Therefore, the only way for a string to have a large spin is to

shrink inside the horizon, fold as much as possible, and rotate quickly. This is why string Regge

trajectories in de Sitter space are qualitatively different from the flat space and AdS ones. Besides,

de Sitter acceleration makes spiky strings fatter, leading to several new classes of solutions which

do not exist in flat space and AdS.

We conclude this thesis with discussions on several future directions. The first direction is

to investigate high energy scattering in de Sitter space. UV behavior of string theory would be

67
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affected by higher spin spectra as indicated by the Regge behavior. The results of this thesis imply

that UV behavior in de Sitter space may be qualitatively different from flat space above the scale

M⋆ ≃ 0.6M2
S/H (a maximum energy of one-folded Regge trajectories). MS is the string scale and H

is the Hubble scale. Our question is whether string theory can have a mild UV behavior in de Sitter

space or not. Scattering amplitudes should be mild below the scale M⋆ since the string spectrum is

almost the same as flat space. On the other hand, the mild behavior may not be maintained above

M⋆. In this case, string theory would experience a phase transition to a strong coupling regime

in order to UV complete gravity; that is, we lose the perturbative control of string theory. Notice

that this is not a problem if M⋆ is higher than the Planck scale Mpl. In other words, the Hubble

scale H is bounded from above by 0.6M2
S/Mpl. Interestringly, when we apply the typical string

scale (MS ≃ 1016 GeV) and the 4d Planck scale (Mpl ≃ 1018 GeV), the bound saturates the target

sensitivity of the near future observations of CMB B-modes such as the LiteBIRD experiment [88].

If the primordial gravitational waves were not detected in the near future, such a theoretical bound

could reduce the possibility of high-scale inflation. Otherwise, can string theory UV complete

gravity beyond M⋆ with a weak coupling?

It would be important to study this issue further by generalizing developments in holographic

correlation functions in AdS [89–95], which would provide cosmological Veneziano amplitudes. A

related important question is to formulate a framework to study consistency of high-energy scatter-

ing in de Sitter space. For example, in the case of AdS, we know what are the AdS analogues of the

Regge limit amplitudes and the hard scattering amplitudes (see, e.g., [96–105]). For de Sitter space,

there is a known flat space limit of late-time correlators corresponding to the hard scattering limit

(see, e.g., [99, 106,107]). However, to our knowledge, its understanding is still limited compared to

the AdS case, even at the quantum field theory level before taking into account stringy effects. It

would be important to clarify which kinematics of which quantities is useful to define consistency

of high-energy scattering in de Sitter space. We hope that this direction would open up a new road

toward understanding of de Sitter space in string theory.



Appendix A

Special functions

In this appendix, we summarize several properties of special functions used in this thesis. First

we introduce the Gegenbauer polynomials and summarize their useful properties in Sec. A.1. Also,

we introduce the Jacobi polynomials as an extension of the Gegenbauer polynomials. Second we

summarize spherical harmonics in general dimensions in Sec. A.2. In particular, we study their

relation with the Gegenbauer polynomials.

A.1 Orthogonal polynomials

We introduce Gegenbauer polynomials and Jacobi polynomials, and summarize their useful prop-

erties. These polynomials are kinds of orthogonal polynomials. Let us consider a set of orthogonal

polynomials ϕn of degree n, which satisfy∫ 1

−1
dxϕn(x)ϕm(x)w(x) = 0 for n ̸= m. (A.1)

ω(x) is called a weight function. Once specifying a weight function, we can have a set of orthogonal

polynomials by using the Rodrigues’ formula,

ϕn(x) =
C

w(x)

dn

dxn
w(x)(1− x2)n , (A.2)

where C is a constant. Gegenbauer polynomials are orthogonal polynomials for w(x) = (1−x2)α−
1
2 ,

Cα
n (x) =

(−1)n

2nn!

Γ(α+ 1
2)Γ(n+ 2α)

Γ(2α)Γ(α+ n+ 1
2)
(1− x2)

1
2
−α dn

dxn
w(x)(1− x2)n+α− 1

2 . (A.3)

The Gegenbauer polynomials can be also written as

Cα
n (x) =

Γ(n+ 2α)

Γ(2α)Γ(n+ 1)
2F1

[
−n , n+ 2α

α+ 1
2

;
1− x

2

]
, (A.4)

where 2F1

[
α , β

γ
;x

]
is the hypergeometric function,

2F1

[
α , β

γ
;x

]
=

∞∑
n=0

1

n!

(α)n(β)n
(γ)n

xn . (A.5)
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Here (a)n is a shifted factorial,

(a)n = a · (a+ 1) · · · · · (a+ n− 1) . (A.6)

The inner products are given by∫ 1

−1
dx Cα

m(x)Cα
n (x)(1− x2)α−

1
2 = δm,n

π21−2αΓ(n+ 2α)

n!(n+ α)Γ(α)2
. (A.7)

If α = 1
2 , the Gegenbauer polynomials reduce to the Legendre polynomials. Also, if α = d

2 −1, these

are d-dimensional extensions of the Legendre polynomials. Besides, let us introduce d-dimensional

extensions of the Legendre functions of the second kind. First we define

Dα
n(z) =

√
π
Γ(α+ 1

2)Γ(n+ 2α)

Γ(1 + n+ α)Γ(2α)
(2z)−n−1

2F1

[
n+1
2 , n+2

2

1 + n+ α
;
1

z2

]
. (A.8)

If α = 1
2 , these functions reduce to the Legendre functions of the second kind. Also, if α = d

2 − 1,

these are d-dimensional extensions of the Legendre functions of the second kind. Cα
n (z) and D

α
n(z)

satisfies the same differential equation,

(1− z2)
d2

dz2
f(z)− (2α+ 1)z

d

dz
f(z) + n(n+ 2α)f(z) = 0 . (A.9)

Cα
n (z) has a branch cut along (−∞,−1) unless n ∈ N. Also, Dα

n(z) has a branch cut along (−1, 1).

In particular, its discontinuity is given by

Dα
n(z + iϵ)−Dα

n(z − iϵ) = −iπ(1− z2)α−
1
2Cα

n (z) . (A.10)

Finally let us introduce Jacobi polynomials, which are for w(x) = (1− x)α(1 + x)β,

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn
(1− x)α(1 + x)β(1− x2)n . (A.11)

In terms of the hypergeometric functions, the Jacobi polynomials are written as

P (α,β)
n (x) =

Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)
2F1

[
−n , 1 + α+ β + n

α+ 1
;
1− x

2

]
. (A.12)

The Jacobi polynomials can be expanded by a set of the Jacobi polynomials as

P (a,b)
n (x)

=

n∑
k=0

(b+ 2k + δ + 1)(a− δ)n−k

(n− k)!

Γ(b+ n+ 1)Γ(a+ b+ k + n+ 1)Γ(b+ k + δ + 1)

Γ(b+ k + 1)Γ(a+ b+ n+ 1)Γ(b+ k + n+ δ + 2)
P

(δ,b)
k (x)

(A.13)

If the upper parameters have the same value, the Jacobi polynomials reduce to the Gegenbauer

polynomials,

Cα
n (x) =

Γ(α+ 1
2)Γ(n+ 2α)

Γ(2α)Γ(α+ n+ 1
2)
P

(α− 1
2
,α− 1

2
)

n (x) (A.14)
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A.2 Spherical Harmonics

In this section, we summarize several properties of spherical harmonics (See also a nice review [108]).

Spherical harmonics are introduced as homogeneous harmonic functions restricted on a unit sphere.

Homogeneous harmonic functions Hlm(x) of degree l are defined as follows:

∆dHlm(x) = 0 , Hlm(λx) = λlHlm(x) , (A.15)

where ∆d is the d-dimensional Laplacian,

∆d =
∂2

∂x21
+ · · ·+ ∂2

∂x2d
(A.16)

The second argument m denotes linearly independent elements, the number of which is N(d, l),

N(d, l) =
2l + d− 2

l

(
l + d− 3

l − 1

)
. (A.17)

which we will prove in the end of this section. Here we introduced a combinatorial factorial as,(
α

β

)
=

α!

(α− β)!β!
. (A.18)

Spherical harmonics are defined as a homogeneous harmonic function restricted on an unit sphere,

Ylm(x̂) = Hlm(x)|x2
1+···+x2

p=1 , (A.19)

where x̂ represents coordinates of an unit sphere. One can find from the former of Eqs. (A.15) that

the spherical harmonics satisfy the Casimir equation for a spin l representation of SO(d), 1

1

2
MijMjiYlm(x̂) = l(l + d− 2)Ynm(x̂) , (A.20)

where Mij are generators of d dimensional rotation,

Mij = xi
∂

∂xj
− xj

∂

∂xi
. (A.21)

Spherical harmonics of different degree l are orthonormal each other. In particular, we use the

following normalization, ∫
dΩd−1Ylm(x̂)Yl′m′(x̂) = δl,l′δm,m′ , (A.22)

where dΩd−1 is an element of the solid angle in d dimension. The integration is done for x̂. We will

prove this orthogonality in Sec. A.2.2.

1To derive Eq. (A.20), it is convenient to use

1

2r2
MijMji = (d− 1)r

∂

∂r
+

∂2

∂r2
−∆ .
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A.2.1 Addition theorem

A relation with the Gegenbauer polynomials is an important issue of the spherical harmonics. To

see this, let us consider the following function,

Fl(x̂, ŷ) =

m=N(d,l)∑
m=1

Ylm(x̂)Ylm(ŷ) . (A.23)

This function is invariant under rotation,

Fl(Rx̂,Rŷ) = Fl(x̂, ŷ) . (A.24)

See the end of this section for this proof. This means that this function depends only on an inner

product. The reason as follows: Without loss of generality, we set the vectors as

x̂ = (1, 0, · · · ) , ŷ = (t,
√
1− t2, · · · ) . (A.25)

When we rotate the vectors by π, these can be also written as,

x̂ = (1, 0, · · · ) , ŷ = (t,−
√

1− t2, · · · ) . (A.26)

For the function to be invariant under the rotation, the function should include only even powers

of
√
1− t2. Therefore,

Fl(x̂, ŷ) = Fl(t) = Fl(x̂ · ŷ) . (A.27)

Also, recalling that Ylm(ŷ) is made from a homogeneous function of degree l, one can find that Fl(t)

is a polynomial of order l. Another important property is an orthogonality∫
dΩd−1Fl(x̂ · ŷ)Fl′(x̂ · ŷ) = Ωd−2

∫ 1

−1
dt (1− t2)

d−3
2 Fl(t)Fl′(t) = Fl(1)δl,l′ , (A.28)

where

Fl(1) =
1

Ωd−1

∫
dΩd−1

m=N(d,l)∑
m=1

Ylm(x̂)Ylm(x̂) =
N(d, l)

Ωd−1
. (A.29)

And also, Ωd is the area of Sd, which is given by

Ωd =

∫
dΩd =

2π
d+1
2

Γ(d+1
2 )

. (A.30)

Hence Fl(t) consists of a set of orthonormal polynomials with a weight function (1− t2)
d−3
2 . From

the Rodrigues’ formula, Fl(t) is identified with the Gegenbauer polynomials. Eq. (A.28) determines

overall factors. Then, Fl(x̂ · ŷ) can be written as

Fl(x̂ · ŷ) =
N(d,l)∑
m=0

Ylm(x̂)Ylm(ŷ) =
2l + d− 2

4π
d
2

Γ(
d

2
− 1)C

d
2
−1

l (x̂ · ŷ) . (A.31)
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A.2.2 Detailed calculation

In this subsection, we carry out calculation postponed in Subsec. A.2.

Calculation of N(d, l) Here we show that the number of linearly independent elements of Ylm is

N(d, l). As a first step, let us count the number of linearly independent elements for homogenous

functions of degree l, Sl, which we denote K(d, l) below. These functions are defined as

Sl(λx1, · · · , λxd) = λlSl(x1, · · · , xd) . (A.32)

First we expand Sl as

Sl(λx1, · · · , λxd) =
l∑

n=0

(xd)
nSl−n(x1, · · · , xd−1) , (A.33)

where Sl−n are homogeneous functions of degree l − n. Hence K(d, l) is represented as

K(d, l) =
l∑

n=0

K(d− 1, l − n) . (A.34)

Second let us introduce a generating function,

G(d) =

∞∑
l=0

rlK(d, l) . (A.35)

When we apply the relation Eq. (A.34), the generating function is organized as,

G(d) =
∞∑
l=0

rl
l∑

n=0

K(d− 1, l − n)

=
∞∑
k=0

K(d− 1, k)rk

( ∞∑
n=0

rn

)
,

=
G(d− 1)

1− r
. (A.36)

Repeating this transformation and using G(0) = 1, we obtain

G(d) =
1

(1− r)d
. (A.37)

Finally, we use the following identity,

1

(1− r)d
=

∞∑
l=0

(
l + d− 1

l

)
rl . (A.38)

Substituting this into Eq. (A.37) and comparing with Eq. (A.35), we find

K(d, l) =
(p+ l − 1)!

l!(p− 1)!
. (A.39)
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As a second step, we calculate N(d, l). First, we expand a homogeneous function as

Hlm(x1, · · · , xd) =
l∑

n=0

(xd)
nSl−n(x1, · · · , xd−1) . (A.40)

The harmonic property of the homogenous function is rephrased as recursion relations,

∆d−1S0 = 0

∆d−1S1 = 0

∆d−1Sn = −(l − n+ 2)(l − n+ 1)Sn−2 for n ≥ 2 . (A.41)

First we observe that S0 and S1 satisfy the harmonic equation automatically. Second, if we specify

Sl and Sl−1, we can fix the remaining homogenous functions. Hence,

N(d, l) = K(d− 1, l) +K(d− 1, l − 1) =
2l + d− 2

l

(
l + d− 3

l − 1

)
(A.42)

Orthogonality of Ylm Here we show the orthogonality of spherical harmonics stated in (A.22).

It is convenient to consider the following integration,

I =

∫
Bd

ddx
∂

∂xi

[
Hlm(x)

∂

∂xi
Hl′m′(x)−Hl′m′(x)

∂

∂xi
Hlm(x)

]
, (A.43)

where the integration region is an unit ball in d dimensions. On one hand, this integration is always

vanish due to the harmonic property of Hlm,

I = 0 . (A.44)

On the other hand, this integral can be rephrased as

I =

∫
Sd−1

dΩd−1x̂
i

[
Hlm(x̂)

∂

∂xi
Hl′m′(x̂)−Hl′m′(x̂)

∂

∂xi
Hlm(x̂)

]
, (A.45)

where the integration region is an unit sphere. Note that we used the Stokes’ theorem. Further, we

use the homogenous property and replace Hlm with Ylm. Then, Eq. (A.46) reads

I =

∫
Sd−1

dΩd−1(l − l′) [Hlm(x̂)Hl′m′(x̂)] , (A.46)

Hence the following are derived,∫
Sd−1

dΩd−1Ylm(x̂)Yl′m′(x̂) = 0 unless l = l′ . (A.47)
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Rotation invariance of Fl(x̂, ŷ) Finally we show that Fl(x̂, ŷ) is invariant under rotation. First

we expand the rotated spherical harmonics as

Ylm(Rx̂) =

N(d,l)∑
m′=1

Cmm′Ylm′(x̂) , (A.48)

where the coefficients are determined by

Cmm′ =

∫
dΩd−1Ylm(Rx̂)Ylm′(x̂) . (A.49)

These coefficients should satisfy

N(d,l)∑
p=1

CmpCsp = δms , (A.50)

which is derived straightforwardly from the identity,∫
dΩd−1Ylm(x̂)Yls(x̂) =

∫
dΩd−1Ylm(Rx̂)Yls(Rx̂) = δms . (A.51)

Applying the above, one can find that

Fl(Rx̂,Rŷ) =

N(d,l)∑
m=1

N(d,l)∑
s=1

CmsYls(x̂)

N(d,l)∑
p=1

CmpYlp(x̂)


=

N(d,l)∑
s=1

N(d,l)∑
p=1

δpsYls(x̂)Ylp(x̂)

=

N(d,l)∑
s=1

Yls(x̂)Yls(x̂) . (A.52)



Appendix B

More on scattering amplitudes

In this appendix, we derive several properties of scattering amplitudes used in this thesis. In Sec. B.1

we derive an unitarity bound and apply this bound to scattering amplitudes in a plane wave basis.

In particular, we show that the Einstein gravity violates the unitarity bound around the Planck scale

in four dimensions. In Sec. B.2, we introduce angular momentum eigenstates. We show that partial

wave amplitudes are scattering amplitudes for angular momentum eigenstates. Also, we apply the

unitarity bound in this basis. One can find that the Einstein gravity violates the unitarity bound

around the Planck scale also in dimensions higher that or equal to six. In Sec. B.2.3, we discuss

complex angular momentum necessary to develop the Regge theory. In Sec. B.3, we calculate four

point amplitudes mediated by gravity for a minimally coupled scalar field.

B.1 Unitarity bounds

In this section, we derive bounds on scattering amplitudes as consequences of S-matrix unitarity.

Let us begin with summarizing notations for scattering amplitudes and their related concepts. A

transition amplitude from an initial state |A⟩ to a final state |B⟩ is described by the S matrix as,

⟨B|S|A⟩ , (B.1)

where the S-matrix is introduced as

S = lim
t→∞

e−iHt . (B.2)

Here H is the Hamiltonian. To study scattering processes, it is convenient to define T -matrix as

S = 1 + iT . (B.3)

The identity operator does not change the initial state. Hence information on interactions is encoded

in the T -matrix. As long as the Hamiltonian is Hermitian , the S matrix must be unitary,

SS† = 1 . (B.4)

In the language of the T -matrix, the S-matrix unitary reads

−i
(
T − T †

)
= TT † . (B.5)
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One can find that Eq. (B.5) gives bounds on the matrix elements. First let us sandwiches both

sides of Eq. (B.5) by a state |α⟩. Second, Insert a set of orthogonal states
∑

γ |γ⟩⟨γ| in the right

hand side. Then Eq. (B.5) reads

2ImTαα =
∑
γ

|Tαγ |2 , (B.6)

where Tαβ is a matrix element, Tαβ = ⟨α|T |β⟩. Notice that each element of the summation is

positive. Hence the following inequality is derived,

2ImTαα ≥ |Tαα|2 . (B.7)

Also, taking the absolute values on both sides, we obtain

2 ≥ |Tαα| (B.8)

Below we study consequences of the inequalities for scattering amplitudes.

Bounds in plave wave basis Scattering amplitudes are defined by subtracting a delta function

from T -matrix elements,

⟨B|T |A⟩ = (2π)dδd(pB − pA)M(A→ B) , (B.9)

where pA and pB are momentums of the initial state and the final state. Along the derivation of

Eq. (B.7), let us sandwiches Eq. (B.5) with states ⟨B| and |A⟩, and insert a complete set in the

plane wave basis,

∑
C

NC∏
i=1

∫
dd−1pi
(2π)d−1

1

2E(pi)
|p1, · · · , pNC

⟩⟨p1, · · · , pNC
| , (B.10)

where C runs all states in the complete set, and NC counts the number of particles. Each state in

the complete set is a product of one particle states, which are normalized as

⟨p|q⟩ = (2π)d−1δd−1(p− q)E(p) . (B.11)

Here E(p) is an energy,

E(p) =
√
m2 + p2 . (B.12)

Then, Eq. (B.5) reads

−i(2π)Dδd(pA − pB) (MAB −M⋆
BA)

=
∑
C

NC∏
i=1

∫
dd−1p

(2π)D−1

1

2Ei(pi)
(2π)dδd(pA − pB)(2π)

dδd(pA − pC)MCBM
⋆
CA . (B.13)
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To derive a bound, we assume that the in and out states are two particle states, and they experience

a forward scattering, |A⟩ = |B⟩ . With this assumption, Eq. (B.15) becomes

−i (MAA −M⋆
AA)

=
∑
C

NC∏
i=1

∫
dd−1pi

(2π)d−1

1

2Ei(pi)
(2π)dδ(

√
s− p0C)δ

d−1(pC) |MCA|2 , (B.14)

Here we set pA = (
√
s, 0, · · · , 0) without loss of generally. Since the right hand side of Eq. (B.15) is

positive for each intermediate state, one can find the following bound,

−i (MAA −M⋆
AA)

≥
NC′∏
i=1

∫
dd−1pi

(2π)d−1

1

2Ei(pi)
(2π)dδ(

√
s− p0C′)δd−1(pC′) |MC′A|2 , (B.15)

where C ′ is one instance picked up from the complete set. For example, let us consider that A and

C are two particle states with mass m. In this case, Eq. (B.15) reads

2ImM(s, cos θ = 1) ≥
∫

dd−1P

(2π)d−2

1

4E(P )2
δ(
√
s− 2

√
m2 + P 2) |MCA|2

= 2× 1

(2π)d−2

1√
s

(s
4
−m2

) d−3
2

∫
dΩd−2 |M(s, cos θ)|2 , (B.16)

where we introduced

P =
p1 − p2

2
, (B.17)

Also, we introduce a scattering angle θ, which can be written as 1

cos θ = 1 +
t

s− 4m2
. (B.18)

Further, taking an absolute value for the left hand side of the inequality (B.16), we obtain

|M(s, cos θ = 1)| ≥ 1

(2π)d−2

1√
s

(s
4
−m2

) d−3
2

∫
dΩd−2 |M(s, cos θ)|2 , (B.19)

By the power counting of both sides, one can find that

M(s, cos θ) ≤ C · s
4−d
2 for s→ ∞ , θ : fixed , (B.20)

where C is a constant. This bound is satisfied by known renormalizable theories, for e.g. λϕ4 theory.

On the other hand, the Einstein gravity, which is non-renormalizable, does not respect this bound.

1We use the following convention for the Mandelstam variable:

s = −(p1 + p2)
2 , t = −(p1 − p3)

2 , u = −(p1 − p4)
2 ,

where p1 and p2 are momentums of an in state, and p3 and p4 are momentums if a final state.
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Application to Einstein gravity Finally we examine the constant C of this bound more care-

fully for the Einstein gravity in four dimensions. As an illustrative example, we consider the Einstein

gravity with a minimally coupled scalar field. A four point amplitude of scalar fields at tree level is

given by

M(s, t) =
1

M2
pl

[(
tu

s
+
us

t
+
st

u

)
+ 6m2 − 2m4

(
1

s
+

1

t
+

1

u

)]
, (B.21)

where m is the mass of the scalar field. See Appendix. B.3 for the derivation of Eq. (B.21). We note

that the inequality (B.19) becomes ill-defined caused by IR divergences of the massless graviton. To

resolve this difficulty, let us introduce a tiny mass Λ for the graviton as an IR cutoff, which shifts

the massless poles by Λ2. In the hard scattering limit (s ≫ m2 , θ : fixed), the amplitude (B.21)

reads

M(s, t) ≃ (3 + z2)2

4

s3

(s(1− cos θ) + 2Λ2) (s(1 + cos θ) + 2Λ2)
. (B.22)

We substitute this into the inequality (B.19). In the small Λ limit, the integral of the right hand

side is localized at cos θ = ±1. Hence, the right hand side is approximated as,

1

π2

∫ 1

−1
dz

(
s4

s(1− z) + 2Λ2

)2

+

(
s4

s(1 + z) + 2Λ2

)2

≃ 1

M4
pl

1

4π2
s3

Λ2
(B.23)

Then, the inequality (B.19) reads

1

M2
pl

s2

Λ2
≥ 1

4π2M4
pl

s3

Λ2
. (B.24)

This means that the unitarity bound are respected only for

s ≤ 2πM2
pl . (B.25)

Notice that the above prescription does not make sense for dimensions other than four. This is

because the left and right hand side of the inequality (B.19) have a different power of Λ. For d ≥ 6,

an angular momentum basis is suitable to know a bound for the Einstein Gravity instead of the

plane wave basis. In the next appendix, we develop an angular momentum basis.

B.2 Partial wave expansion

In this section, we study scattering amplitudes in an angular momentum basis. First we define this

basis in Subsec. B.2.1. Also we show that scattering amplitudes in this basis is equivalent to the

partial wave expansion of scattering amplitudes. In Subsec. B.2.2, we illustrate unitarity bounds

in an angular momentum basis. We also apply this bound to gravitational theories in dimensions

higher than or equal to six. Finally, we discuss a complex angular momentum in Subsec. B.2.3. In

particular, we illustrate a nice analytic continuation of partial wave amplitudes necessary to develop

the Regge theory.
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B.2.1 Definition

First let us move on to the center-of-mass frame, where a momentum sum has a form (ECM, 0, · · · , 0).
This momentum is invariant under SO(d− 1) rotation. Hence, we can classify a state by two label

(l,m) in addition to a momentum sum. More explicitly, for two particle states, angular momentum

eigenstates are defined as,

|(Ecm, 0); l,m⟩ =
∫
dΩd−2Ylm(p̂)|p,−p⟩ , (B.26)

where p̂ is a unit vector defined as p̂ = p/|p|. The first argument denotes the sum of the four vectors.

And, l represents the angular momentum. Below, we consider two particle states with an identical

mass m. While we used the center-of-mass frame, we can also define such states for general frames

by acting the Lorentz transformation. From the orthogonality of the spherical harmonics, the plane

wave state is expanded as,

|p,−p⟩ =
∞∑
l=0

N(l,d−1)∑
m=0

Yl,m(p̂)|l,m⟩ . (B.27)

Also, recalling the normalization of the plane wave basis Eq. B.11, we can calculate the inner product

of the angular momentum eigenstates as

⟨P ; l,m|P ′; l,m⟩ = (2π)dδd(P − P ′)
(2π)d−2√s

2
(
s
4 −m2

) d−3
2

δll′δmm′ . (B.28)

Scattering amplitudes for the angular momentum basis can be written as,

M({P ; l,m} → {P ′; l′,m′}) = fl(s)δl,l′δm,m′ , (B.29)

where the Kronecker deltas come from the angular momentum conservation. fl(s) is called a partial

wave amplitude. Since this amplitude only depends on the center-of-mass momentum and the

angular momentum, the partial wave amplitude is a function of the Mandelstam s and the angular

momentum. Using the expansion rule B.27, one can find a relation between scattering amplitudes,

M(s, t) =
∞∑
l=0

N(l,d−1)∑
m=0

∞∑
l′=0

N(l′,d−1)∑
m′=0

Yl′,m′(q̂)Yl,m(p̂)⟨l′,m′|T |l,m⟩ .

=
Γ(d2 − 3

2)

4π
d−1
2

∞∑
l=0

(2l + d− 3)fl(s)C
d
2
− 3

2
l (1 +

2t

s− 4m2
) , (B.30)

where we used the addition theorem as

N(l′,d−1)∑
m′=0

Yl,m(q̂)Yl,m(p̂) =
Γ(d2 − 3

2)

4π
d−1
2

C
d
2
−1

l (p̂ · q̂) =
Γ(d2 − 3

2)

4π
d−1
2

C
d
2
− 3

2
l (1 +

2t

s− 4m2
) . (B.31)

Oppositely, the partial wave amplitude can be written as

fl(s) =
(4π)

d−3
2 Γ(l + 1)Γ(d−3

2 )

Γ(l + d− 3)

∫ 1

1
dz(1− z)

d−3
2 M(s, z)C

d
2
− 3

2
l (z) . (B.32)
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Figure B.1: The left figure shows the integration contour of Eq. (B.38). The left contour is equivalent

to the right contour if an integration of the infinity is negligible.

B.2.2 Partial wave unitarity

Let us examine the unitarity bounds for angular momentum eigenstate basis. We set |α⟩ = |P ; l,m⟩
in the bound. Notice that this state appears in a complete set as,

∫
ddP

(2π)d
2
(
s
4 −m2

) d−3
2

√
s

|P ; l,m⟩⟨P ; l,m| (B.33)

Then, this bound is rephrased as

Imfl(s) ≥
1

(2π)d−2

(
s
4 −m2

) d−3
2

√
s

fl(s)
2 . (B.34)

Taking the absolute values, we obtain

fl(s) ≤
(2π)d−2√s(
s
4 −m2

) d−3
2

. (B.35)

Let us examine this bound for the Einstein gravity. Notice that the partial wave expansion does not

converge in dimensions smaller than six due to the massless pole. For example, when d = 10, l = 0,

the partial wave amplitude in the hard scattering limit (s≫ m, θ : fixed) is calculated as

f0(s) ≃
1

M3
pl

832π4

635
s . (B.36)

Hence, comparing this with the inequality (B.35), one can find that the partial wave amplitude

violates the unitarity bound around the Planck scale.
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B.2.3 Gribov-Froissart projection

To develop the Regge theory in Sec. 2.4, it was necessary to find an analytic continuation of fL(t),

which does not grow exponentially for large |L|. In this appendix, we illustrate this method called

the Gribov-Froissart projection. First, to recall the notation, let us look back the Regge theory. To

study t-channel physics, we carried out a partial wave expansion as follows:

M(s, t) =
Γ(d2 − 3

2)

4π
d−1
2

∞∑
l=0

(2L+ d− 3)fL(t)C
d
2
−1

L (1 +
2s

t− 4m2
) . (B.37)

This series diverges in the region s ≫ 1, t < 0 which we are interested in. To make an analytic

continuation to this region, we introduced complex angular momentum and expressed Eq. (B.37)

as,

M(s, t) =
Γ(d2 − 3

2)

4π
d−1
2

i

2

∫
C1

dL

sinπL
(2L+ d− 3)fL(t)C

d
2
− 3

2
L (−z) , (B.38)

where

z = 1 +
2s

t− 4m2
. (B.39)

Further, we deform the integration contour to C2 of Fig. B.1. For large |L|, the Gegenbauer

polynomials behave as

C
d
2
− 3

2
L (− cos θ) ∼ ei(π−θ)L + e−i(π−θ)L for 0 < θ <

π

2
. (B.40)

Hence, if fL(t) should not grow exponentially for large |L|, we can carry out this deformation.

Below, we show that one can find such an expression. Let us begin with the following expression

for −1 < z < 1,

fL(t) =
π

d−3
2

22−dΓ(d2 − 3
2)

Γ(L+ 1)

Γ(L+ d− 3)

∫ 1

−1
dz(1− z2)

d
2
−2C

d
2
− 3

2
L (z)M(t, z) . (B.41)

First we rewrite Eq. (B.41) in terms of the Legendre function of the second kind or its extension as,

fL(t) =
π

d−3
2

22−dΓ(d2 − 3
2)

Γ(L+ 1)

Γ(L+ d− 3)

∫
C3

dzD
d
2
− 3

2
L (z)M(t, z) , (B.42)

where we used the following identity on the branch cut (−1 < z < 1),

D
d
2
− 3

2
L (z + iϵ)−D

d
2
− 3

2
L (z − iϵ) = −iπ(1− z2)

d
2
−2C

d
2
− 3

2
L (z) . (B.43)

See Appendix. A.1 for details of Dα
l (z). To go further, we need three observations. First, M(t, z)

has branch cuts, (−∞,−z1) and (z2,∞),

z1 = −1 + 2
t− 4m2 +M2

t− 4m2
> 1 , z2 = 1 + 2

M2

t− 4m2
> 1 , (B.44)
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Figure B.2: Contours for the integrals of Eq. (B.42) and Eq. (B.47)

where M is a mass of the lightest particle. z1 and z2 correspond to the u-channel pole and the

s-channel pole respectively. Second, the scattering amplitude is bounded as,

M(t, z) < zL0 . (B.45)

This boundedness is guaranteed by locality. Third, D
d
2
− 3

2
L (z) behaves as

D
d
2
− 3

2
L (z) ∼ z−L−1 . (B.46)

Hence, for L > L0, we can deform the contour integral C4 as depicted in Fig. B.2,

fL(t)

=
π

d−3
2

22−dΓ(d2 − 3
2)

Γ(L+ 1)

Γ(L+ d− 3)

[∫ −∞

−z1

dzD
d
2
− 3

2
L (z)DisczM(t, z) +

∫ ∞

z2

dzD
d
2
− 3

2
L (z)DisczM(t, z)

]
,

=
π

d−3
2

22−dΓ(d2 − 3
2)

Γ(L+ 1)

Γ(L+ d− 3)

[
(−1)L

∫ ∞

z1

dzD
d
2
− 3

2
L (z)DisczM(t, z) +

∫ ∞

z2

dzD
d
2
− 3

2
L (z)DisczM(t, z)

]
,

(B.47)

where Disc means the discontinuity on the branch cuts,

DisczM(t, z) =M(t, z + iϵ)−M(t, z − iϵ) . (B.48)

We note that one has to deal with odd and even L separately. Otherwise, (−1)L = eiπL leads an

exponentially growing for imaginary L. Therefore we decompose scattering amplitudes into an odd

L part and an even L part, and analyze separately. For each L, the integrals fall off exponentially

because

D
d
2
− 3

2
L (coshχ) ∼ e−Lχ , (for χ > 0) . (B.49)

Also, the coefficient does not grow for d = 4 and falls off for d > 4,

Γ(L+ 1)

Γ(L+ d− 3)
∼ L4−d . (B.50)

Hence fL(t) falls off exponentially. Thus we have found the desirable expression of fL(t). Notice

that this expression is only applicable for ReL ≥ L0.
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Figure B.3: ϕϕ→ ϕϕ scattering processes at tree level.

B.3 Gravity mediated amplitudes

In this appendix, we calculate scattering amplitudes mediated by gravity. As an illustrative example,

we consider the Einstein Gravity with a minimally coupled scalar field,

S =
Md−2

pl

2

∫
ddx

√
−gR−

∫
ddx

√
−g
(
1

2
gµν∂µϕ∂νϕ+

m2

2
ϕ2
)
. (B.51)

In particular, we analyse ϕϕ → ϕϕ scattering at tree level. Corresponding Feynman diagrams are

depicted in Fig. B.3. Relevant terms are

S =
Md−2

pl

2

∫
ddx

(
− 1

4
∂λhµν∂λhµν +

1

2
∂µh

µρ∂νhνρ +
1

2
h∂µ∂νh

µν +
1

4
∂ρh∂ρh

)

−
∫
ddx

(
1

2
∂µϕ∂µϕ+

m2

2
ϕ2 − 1

2
hµν∂µϕ∂νϕ+

1

4
h∂µϕ∂µϕ+

m2

4
hϕ2

)
+ · · · , (B.52)

where hµν is a perturbation around the flat metric,

hµν = gµν − ηµν . (B.53)

This system has the gauge symmetry under

hµν → hµν + ∂µΛν + ∂νΛµ . (B.54)

To fix this redundancy, we add the gauge fixing term,

SGF =
Md−2

pl

2

∫
ddxQB

[
C̄µ(∂νhµν −

1

2
∂µh+

1

2
ξBµ)

]
, (B.55)

where QB is BRST charge, and BRST transformations are given by,

QBhµν = ∂µCν + ∂νCµ ,

QBCµ = 0 ,

QBC̄µ = Bµ ,

QBBµ = 0 . (B.56)
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After integrating Bµ, the action reads

S + SGF =
Md−2

pl

2

∫
ddx

[
− 1

4
∂λhµν∂λhµν +

1

2

(
1− 1

ξ

)
∂µh

µρ∂νhνρ +
1

2

(
1− 1

ξ

)
h∂µ∂νh

µν

+
1

4

(
1− 1

2ξ

)
∂ρh∂ρh+ C̄µ∂2Cµ

]

−
∫
ddx

[
1

2
∂µϕ∂µϕ+

m2

2
ϕ2 − 1

2
hµν∂µϕ∂νϕ+

1

4
h∂µϕ∂µϕ+

m2

4
hϕ2

]
+ · · · . (B.57)

Next let us make Feynman rules to calculate the diagrams. First we calculate the time-ordered

propagator of the graviton. This satisfies the differential equation,[
δαµδ

β
ν ∂

2 − 1

2
ηµνη

αβ∂2−
(
1− 1

ξ

)
(δαµ∂ν∂

β + δαν ∂µ∂
β − ηµν∂

α∂β + ∂µ∂νη
αβ +

1

2
ηµνη

αβ∂2)

]
× ⟨T [hαβ(x)hρσ(y)]⟩|0 = i

2

Md−2
pl

(δµρδνσ + δµσδνρ) δ
d(x− y) , (B.58)

where |0 means that we turn off the couplings. The derivatives are in terms of x. In the momentum

space, this differential equation is solved as

⟨T [hµν(x)hρσ(y)]⟩|0

=
2

Md−2
pl

∫
ddp

(2π)d
eipx

−i
p2

[
− 2

d− 2
ηµνηρσ + ηµρηνσ + ηµσηνρ − 4

(
1− 1

ξ

)
p(µην)(ρpσ)

p2

]
(B.59)

Therefore, the Feynman rule for the graviton propagator reads as,

hµν hρσp

=
−2i

Md−2
pl p2

[
− 2

d− 2
ηµνηρσ + ηµρηνσ + ηµσηνρ − 4

(
1− 1

ξ

)
p(µην)(ρpσ)

p2

]
(B.60)

The Feynman rule for the ϕϕh vertex reads from the action (B.57) straightforwardly as,

ϕ

ϕ

hµν

p1

p2 p3

= i

[
pµ1p

ν
2 +

(
m2

2
− p1 · p2

2

)
ηµν
]
. (B.61)

Then we calculate the scattering amplitudes. The s-channel amplitude is calculated as,

M(s, t)s =
1

Md−2
pl

[
tu

s
+ 2m2 − 4

d− 3

d− 2

m4

s

]
. (B.62)
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This amplitude has no ξ dependence, which guarantees the gauge invariance. t and u channels are

calculated by permutation of the Mandelstam valuables. Finally, we add all channels and obtain

M(s, t) =
1

Md−2
pl

[(
tu

s
+
us

t
+
st

u

)
+ 6m2 − 4m4d− 3

d− 2

(
1

s
+

1

t
+

1

u

)]
. (B.63)



Appendix C

Massless higher spin theory

In this chapter, we derive the field equation of higher spin fields (3.32). We begin with massless

higher spin fields. These actions are uniquely determined by a higher spin gauge symmetry. Notice

that in curved spacetime, mass terms appear due to a coupling with curvature tensors even in

massless cases. An action of massive higher spin fields are determined by adding a mass term to

the massless action. Massive higher spin fields should satisfy the Fierz-Pauli condition. Imposing

this condition, the field equations reduce to Eq. (3.32).

In Sec. C.1, first we study an example of massless spin two fields. One can find that the gauge

symmetry is realized as a divergence free condition of an equation of motion. Second, we produce

a system of massive spin two fields by adding the Fierz-Pauli mass term. We show that massive

spin 2 fields are constrained by the Fietz-Pauli condition. By imposing these constraint, the field

equation reduces to Eq. (3.32). Besides, one can find that there appears a gauge symmetry for a

specific mass, for which fields are called a partially massless field. In Sec. C.2, first we determine an

action of massless spin S fields by utilizing a higher spin gauge symmetry in flat space. Next, we

extend it to (A)dS space. The main difference is the mass term coming from the curvature. Finally,

adding a mass term, we obtain massive higher spin theories.

C.1 Spin two example

By illustrating massless spin two fields in de Sitter space, we show how a gauge symmetry can be

seen in their field equation. Besides, we also study massive cases. One can find that there appears

a gauge symmetry for a specific mass.

Massless field One can obtain a field equation of a massless spin two field by considering a second

order perturbation of Einstein gravity, which is given by

Xµν = DρD
ρϕµν −DµD

ρϕρν −DνD
ρϕρµ +DµDνϕ+ gµν (DρDσϕ

ρσ −DρD
ρϕ)

−2H2

(
ϕµν +

1

2
ϕgµν

)
= 0 , (C.1)

where

ϕ = gµνϕµν . (C.2)
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We note that µ = 0 or ν = 0 components of Eq. (C.6) have no second time derivative. Hence

these are constraint equations. The divergence of these constraint does not yield a new constraint.

Instead, it becomes an identity,

DµXµν = 0 . (C.3)

Notice that this equality holds without using equations of motion. This implies an existence of a

gauge symmetry. Let us consider the following transformation,

δϕµν = DµΛν +DνΛµ , (C.4)

where Λµ is an arbitrary vector function. A variation of an action reads

δS =

∫
ddx

√
−gXµν δϕ

µν , (C.5)

which is a consequence of the variation principal. Substituting (C.4) and integrating by parts, we

can check that the right hand side vanishes. Thus, the action is invariant under the transformation.

Notice this gauge symmetry originates from the diffeomorphism invariance of the Einstein gravity.

Massive field An equation of motion of a massive spin two field is given by adding a Fierz-Pauli

mass term to the massless field equation,

Xµν = DρD
ρϕµν −DµD

ρϕρν −DνD
ρϕρµ +DµDνϕ+ gµν (DρDσϕ

ρσ −DρD
ρϕ)

−2H2

(
ϕµν +

1

2
ϕgµν

)
−m2(ϕµν − ϕgµν) = 0 (C.6)

Similarly to the massless fields, µ = 0 or ν = 0 components of Eq. (C.6) have no second time

derivative. Hence, these are constraint equations. The divergence of the constraints also requires a

constraint,

DνXµν = m2(Dνϕνµ −Dµϕ) = 0 , (C.7)

Furthermore, the divergence of the constraint (C.7) requires an additional constraint, 1

DµDνXνµ −m2gµνXµν = m2(m2 − 2H2)ϕ = 0 . (C.8)

The constrains for m2 ̸= 0, H2 are summarized as

ϕ = 0 , Dµϕµν = 0 . (C.9)

1To derive Eqs. (C.7)-(C.8), it is convenient to use the Riemann curvature,

Rµνρσ =
1

H2
(gµρgνσ − gµσgνρ) ,

and the identities of the covariant derivatives, e.g.

[Dµ, Dν ]ϕρσ = Rµνρ
λϕλσ +Rµνσ

λϕρλ .
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The above constraints reduce ten degrees of freedom of a rank two symmetric tensor to five, which is

the appropriate number for spin two fields. Under the transverse and traceless condition, Eq. (C.6)

is simplified to

DρD
ρϕµν − (2H2 +m2)ϕµν = 0 . (C.10)

We note that Eqs. (C.7) and (C.8) become trivial if m2 = 0 or m2 = 2H2, which implies that

the system has a gauge symmetry. The massless case was studied in the last paragraph. In the

m2 = 2H2 case, an action is invariant under a gauge symmetry,

δϕµν =
(
DµDν +m2gµν

)
ω , (C.11)

where ω is an arbitrary scalar. 2 This gauge symmetry is small compared to the massless case.

Hence, the spin two field with the mass squared 2H2 is called a partially massless field. For

simplicity, we do not consider the massless and partially massless fields in the rest of this section.

C.2 General spin

Let us determine a field equation and an action for higher spin fields of general spin by utilizing a

higher spin gauge symmetry. First, we study a flat space background. Because it is complicated to

consider an entire gauge symmetry, we begin with a partially gauge-fixed situation, where fields are

double traceless. Second, we extend it to maximally symmetric spacetime, which is de Sitter space

for a positive curvature and is anti-de Sitter space for a negative curvature. The main difference is

a mass term due to a coupling with curvature tensors. The coefficients are also fixed by the higher

spin gauge symmetry. Finally, By addint a mass term and applying the Fierz-Pauli condition, we

obtain the field equations of massive higher spin fields (3.32).

Flat space Let us start with a flat space background. A gauge transformation for spin S fields

is given by

δΦµ1···µS = ∂(µ1
Λµ2···µS) , (C.13)

where Λµ1···µS−1 is an arbitrary function. In general, Φµ1···µS is just symmetric, and hence possible

terms of an action are considerable. To avoid this complexity, first we fix the gauge symmetry

partially such that the field is double-traceless,

ηµ1µ2ηµ3µ4Φµ1···µS = perm = 0 . (C.14)

The perm means a permutation for the indices. The residual gauge symmetry is given by

ηµ1µ2Λµ1···µS−1 = perm = 0 . (C.15)

2Under the gauge transformation (C.11), the action varies as

δS =

∫ √
−gXµν ·

(
DµDν +m2gµν

)
ω = −

∫ √
−g

(
DµDν −m2gµν

)
Xµν · ω . (C.12)

In the partially massless case, δS = 0 because
(
DµDν − 2H2gµν

)
Xµν = 0 .
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A generic action for double-traceless fields can be written as

S = −1

2

∫
ddx

√
−g Φµ1 ···µS Xµ1 ···µS ,

where Xµ1 ···µs is

Xµ1 ···µs = ∂2Φµ1 ···µS +A∂(µ1
∂νΦµ2 ···µS) ν +Bg(µ1 µ2

∂2Φµ3 ···µS) ν
ν

+ Cg(µ1 µ2
∂µ3∂

νΦµ4 ···µS) ν ρ
ρ +Dg(µ1 µ2

∂ρ∂σΦµ3 ···µS)ρσ +D∂(µ1
∂µ2Φµ3 ···µS)ν

µ . (C.16)

Notice that we can take the same coefficient for the last two terms because they are equivalent up

to a total derivative. A field equation is given by

Xµ1 ···µS = 0 . (C.17)

Let us fix the coefficients by demanding that the action is invariant under the gauge transformation.

A variation of the action is given by

δS = −
∫
ddx ∂(µ1Λµ2 ···µS) Xµ1 ···µS =

∫
ddx Λµ2 ···µS ∂µ1Xµ1 µ2 ···µS . (C.18)

Hence the gauge invariance is equivalent to the divergence free condition of Xµ1 µ2 ···µS . The diver-

gent term is calculated as

∂µ1Xµ1 µ2 ···µS =

(
1 +

A

S

)
∂2∂νΦµ2 ···µSν +

(
S − 1

S
A+

2

S
D

)
∂ν∂ρ∂(µ2

Φµ3 ···µS)νρ

+
2

S
(B +D) ∂(µ2

∂2Φµ3 ···µS)ν
ν +

(
2

S
C +

S − 2

S
D

)
∂(µ2

∂µ3∂
ρΦµ4 ···µS)ρν

ν + · · · , (C.19)

where we neglected terms which have indices of the metric, e.g.,

g(µ1 µ2
∂ρ∂σΦµ3 ···µS)ρσ . (C.20)

These terms do not contribute to the variation (C.18) since the gauge parameter Λµ1 ···µS is traceless.

For the action to be gauge invariant, the coefficients should be

A = −S , B = −S(S − 1)

2
, C = −S(S − 1)(S − 2)

4
, D =

S(S − 1)

2
. (C.21)

Curved background In the curved background, we have to include a coupling with curvature

tensors even in the massless case. Here, we consider a maximally symmetric space for simplicity,

where the Riemann tensor becomes

Rµνρσ =
R

d− 2
(gµρgνσ − gµσgνρ) . (C.22)

In particular, for de Sitter space,

R = H2d(d− 1) . (C.23)
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Similarly to the flat space case, we study the double-traceless field,

gµ1µ2gµ3µ4Φµ1 ···µS = perm = 0 . (C.24)

The gauge transformation is given by

δΦµ1···µS = D(µ1
Λµ2···µS) , (C.25)

where Λµ1···µS−1 is traceless,

gµ1µ2Λµ1···µS−1 = perm = 0 . (C.26)

A meaning of perm is the same as the flat space case. A generic action of the double-traceless field

is given by

S = −1

2

∫
ddx

√
−g Φµ1 ···µS Xµ1 ···µS ,

where Xµ1 ···µs is

Xµ1 ···µs = D2Φµ1 ···µS − SD(µ1
DνΦµ2 ···µS) ν −

S(S − 1)

2
g(µ1 µ2

D2Φµ3 ···µS) ν
ν

− S(S − 1)(S − 2)

4
g(µ1 µ2

Dµ3D
νΦµ4 ···µS) ν ρ

ρ +
S(S − 1)

2
g(µ1 µ2

DρDσΦµ3 ···µS)ρσ

+
S(S − 1)

2
D(µ1

Dµ2Φµ3 ···µS)ν
µ + Z1RΦµ1 ···µS + Z2Rg(µ1 µ2

Φµ3 ···µS)ν
ν . (C.27)

We chose the parameters as this action reduces to Eq. (C.16) in the flat space limit. The two terms

proportional to the curvature cannot be fixed, which are determined by the gauge invariance. A

variation of the action becomes

δS =

∫
ddx Λµ2 ···µS Dµ1Xµ1 µ2 ···µS . (C.28)

Hence the gauge invariance is equivalent to the divergent free condition of Xµ1 µ2 ···µS . The divergent

is calculated as,

Dµ1Xµ1 µ2 ···µS =
(
Z1 +

S2 + S(d− 6)− 2d+ 6

d(d− 1)

)
Dµ1Φµ1 µ2 ···µS

+

(
Z2 +

S(S − 1)

d(d− 1)

)
RD(µ2

Φµ3 ···µS)ν
ν (C.29)

For the action to be invariant under the transformation (C.25), the coefficients should be

Z1 = −S
2 + S(d− 6)− 2d+ 6

d(d− 1)
, Z2 = −S(S − 1)

d(d− 1)
. (C.30)

A field equation of massless higher spin fields is Xµ1···µS . By fixing the gauge as the field is sym-

metric, traceless and transverse, and adding a mass term, we can yield a field equation of massive

higher spin fields (3.30),[
DµD

µ +H2(S2 + (d− 6)S − 2d+ 6)−m2
]
Φµ1···µS = 0 . (C.31)



Appendix D

Details of spiky strings with internal

motion

In this appendix, we summarize details of spiky strings with internal motion.

D.1 Derivation of Eq. (5.30)

We begin by providing a derivation of Eq. (5.30). For this, it is convenient to note the following

relation which follows from Eq. (5.29):

ωNr + νψ′ = NλrSr
(1− ν2)− (1 + ω2)r

rS − r
, (D.1)

where we defined

rS =
1

1 + λω
. (D.2)

Substituting this into Eq. (5.27) gives

D =
(ωNr + νψ′)2(1− r)2

C2
=
N2λ2r2S
C2

· r
2(1− r)2

(rS − r)2
·
(
(1− ν2)− (1 + ω2)r

)2
. (D.3)

On the other hand, we can reformulate Eq. (4.15) using Eq. (5.29) as

D =
(
(1− ν2)− (1 + ω2)r

)(
ρ′2 −

N2r2S
ν2

· r(1− r)

(rS − r)2
· F (r)

)
, (D.4)

where F (r) is a quadratic polynomial defined by

F (r) = (λ− ω)2r2 +
(
(1 + λ2)ν2 − (λ− ω)2

)
r − ν2 . (D.5)

Comparing Eq. (D.3) and Eq. (D.4) gives

ρ′2 =
N2λ2r2S
C2

· r(1− r)

(rS − r)2
·
[
r(r − 1)

(
(1 + ω2)r − (1− ν2)

)
+

C2

λ2ν2
F (r)

]
. (D.6)
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Figure D.1: The blue curves are y = (r − rS)
(
r2 − r + C2

ω2

)
, which intersect with the r-axis at

r = r0, r̄0, rS . The red curves are y = ν2rSr(1 − r). The intersection points of the blue and red

curves are the three solutions rA,B,C of Eq. (D.10). In the limit ν → 0, the three solutions approach

to r0, r̄0, rS , and the solutions in Sec. 4.3 are reproduced. For example, when r0 < rS < r̄0, finite ν

solutions with rA < rB < rS < rC are reduced to the outward spike solutions.

Then, we conclude that

r′2 = 4r(1− r)ρ′2 =
4N2λ2(1 + ω2)r2S

C2
· r

2(1− r)2

(rS − r)2
·
[
r3 + F̃ (r)

]
, (D.7)

where F̃ (r) is a quadratic polynomial defined by

F̃ (r) =
1

1 + ω2

[
−
(
(1 + ω2) + (1− ν2)

)
r2 + (1− ν2)r +

C2

λ2ν2
F (r)

]
. (D.8)

This reproduces Eq. (5.30) by identifying rA,B,C with three solutions for r3 + F̃ (r) = 0.

D.2 J = 0 limit

Finally, we discuss the limit where the internal charge vanishes J = 0. First, the internal velocity

ν and the internal space dependence ψ′ of the string have to vanish to reproduce the solutions in

Sec. 4.3. In particular, Eq. (5.29) shows that this is achieved in the limit

(λ− ω)2 ≪ ν2 ≪ 1 . (D.9)

Note that ψ′ diverges if we take the limit ν2 ≪ (λ−ω)2 ≪ 1 instead. Then, let us study properties

of rA,B,C for λ = ω with a finite ν. Under this assumption, the defining equation r3 + F̃ (r) = 0 of

rA,B,C is reduced to

(r − rS)

(
r2 − r +

C2

ω2

)
= ν2rSr(1− r) , (D.10)

where note that rS = (1+ω2)−1 in the limit λ = ω. If we further take the limit ν → 0, one of rA,B,C

coincides with rS . Therefore, the double pole at r = rS and one of three zeros collide and form a

single pole at r = rS , which is identified with a single pole of ρ′2 at ρ = ρ1 shown in Eq. (4.35).



94 APPENDIX D. DETAILS OF SPIKY STRINGS WITH INTERNAL MOTION

To see how the limit ν → 0 reproduces the three classes of solutions in Sec. 4.3, let us parame-

terize the two solutions r = r0, r̄0 for r2 − r + C2

ω2 = 0 as

r0 = sin2 ρ0 , r̄0 = sin2(π2 − ρ0) = cos2 ρ0 , (D.11)

where ρ0 is identified with that in Sec. 4.3. Notice that we can employ this parameterization without

loss of generality since r0 + r̄0 = 1. Also, in order for r0 and r̄0 to be real, 0 ≤ r0r̄0 = C2

ω2 ≤ 1
4 has

to be satisfied, under which we can choose ρ0 such that 0 ≤ ρ0 ≤ π
2 . The classification in Sec. 4.3

is then rephrased as

� r0 < rS < r̄0: outward spike solutions,

� r0 < r̄0 < rS : rounded spike solutions,

� rS < r0 < r̄0: internal spike solutions.

As depicted in Fig. D.1, the outward spike solutions and rounded spike solutions are obtained in the

limit ν → 0 of solutions with the ordering rA < rB < rS < rC , whereas the internal spike solutions

are obtained from those with rS < rA < rB < rC .
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