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Chapter I
Introduction{ /
Enzymes are applied to microorganisms in order to biosynthesize a wide range of
industrial chemicals, pharmaceuticals, antibiotics and food additives. The variety of ’
useful substances has increased with the rapid de\{elopment of various technologies
such as genetic engineering, synthetic biology and metabolic engineering. Existing
enzymes may be capable of reacting with newly characterized substrates to synthesize
new products in addition to known natural reaction's. Furthermore, novel enzymes can
be harnessed to catalyze previously unknown reactions. Therefore, novel enZyme
discovery and the expansion of current metabolic pathwéys are required toincrease the

production of target compounds.

Proteih sequence information has been registered in various biological databases. The
number of unannotated sequences is explosively increasing due to the development of
genome sequencing technology. Numerous hypothetibal and uncharacterized enzyme
| ;’unctions aféial(r:celéi‘;xting.i‘whe nlrl.trrrlbei'woifr’ available e;lizymers'édueﬁges could poté;itia]ly
increase by explosively increasing in the number of unannotated sequerices. New
enzyme functions exist within the unannotated protein sequences. Novel énzyme
discovery is necessary to expand the pathways thatk can be accessed by metabolic
engineering for the biosynthesis of functional compounds. However, experimental
verification of all available unknown protein sequences cannot be achieved due to high
costs and time limitations. Therefore, a valid computational method to prﬁdict enzyme

functions from sequence information is needed to discovery novel enzymes within a

huge number of unannotated sequences.

The most basic solution in computational methods is to use Basic Local Alignment
Search Tool (BLAST) algorithm in which highly similar enzyme sequences to input
sequences are search from protein sequence databases and their functions are inferred
based on the most similar annotated enzymes. However, the method cannot predict the
function of uncharacterized enzymes with 1owl similarity to annotated enzymes.
Furthermore, it has recently been reported that machine learnings included in
computational methods performed better than BLAST. Therefore, several studies have
recently proposed machine learning models for prediction of various biological
annotations. Machine learning can process vast amounts of available protein sequences

and is suitable for the mass prediction of various biological functions. To build
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prediction models for classification tasks, protein sequence information with biological
annotation should be transformed to the feature vectors using feavtu,re extractions and
target classes which want to predict the annotations should be built. The feature
vectors and classes are learned by a machine learning method and then a prediction
model is built. Most importantly, the use of various feature extractions and machine
learning methods are needed because the optimal solutions for the methodsy depend on

the annotation to be predicted.

Conventional enzyme function prediction models built from enzyme sequences using
machine learnings have recently been developed to discover novel enzymes. However,
this strategy can only predict the information up to the enzymes. In order to synthesize
functional compounds using microorganisms, it is necessary to simultaneously predict
enzymes and even substrates and products in enzymatic reactions. This prediction will
not only discover new enzymes, but also apply to the discovery of novel’metabolic

pathways.

Chapter II ,

Exploration and Evaluation of Machine Learning Based Models for Predicting
Enzymatic Reactions ‘ _ | |

In this chapter, enzymatic reaction prediction models are developed to discover novel
enzymes and enzymatic reactions using several machine learnings which have the
potential to acquire new knowledge from a large number of datasets. First, Enzyme (E)
models are built from enzyme sequence information using same strategy as
conventional enzyme function predictions. Next, Substrate-Enzyme (SE) and
Substrate-Enzyme-Product (SEP) models combined enzyme sequence information with
compound chemical structure information predict enzyme-compound combinations in

enzymatic reactions.

Whilé\ accuracies of E models are not optimal, SE models and SEP models predict
enzymatic reactions with high accuracy using all tested machine learning-based
methods. In comparison to BLAST, most of SE and SEP models more correctly predict.
In this chapter, SEP-Random Forests (RF) model achieves the best performance using
Escherichia coli K-12 test. Various metrics indicate that the current strategy of
combining sequence and chemical structure information is effective at improving

enzymatic reaction prediction. However, these models cannot exclude unlikely
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enzyme-compound combinations, because they do not learn the combinations in which
enzymatic reactions do not occur. The current models are successfully built to provide
the basis for predicting enzymatic reactions. However, these models cannot exclude-
unlikely enzyme-compound combinations, because they do not learn the combinations
in which enzymatic reactions do not occur. Moreovér, more extensive testing using
enzyme and isozyme sequences from additional species is needed because the models

are evaluated using only . co/i K-12 test.

Chapﬁer 111 ;

Comprehensive Machine Learning Prediction of Extensive Enzymatic Reactions

In order to improve the previous prediction models, new E, SP, SE and SEP models are
developed using several machine learning algorithms, including Deep Neural Network
(DNN) by updating training datasets and feature extractions. Moreover, these SE and

SEP models can predict whether or not enzymatic reactions will occur. The models are

evaluated using test datasets including the enzyme seqﬁences derived from various

species.

Improvements in prediction performances for these. SE and SEP models over that of
the previous SEP-RF model reéult of the same test indicate that the updated methods
are more effective for prediction of enzymatic reactions. In addition, SE and SEP
models do not require rigorous optimization of datasets and feature extractions when
comparing the process of building these E models. The SEP-DNN model exhibits the
highest prediction accuracy with Macro F1 scores up to 0.966 using a number of enzyme
‘sequences derived from various species and with robust prediction of unknown
enzymatic reactions that are not included in the training data. This model can predict
more extensive enzymatic reactions in comparison to previously reported model
regardless of the test datasets. The current models will help to discover new enzymes
with novel functions, existing enzymes that may react with new substrates ahd
unknown combinations of substrates-enzymes-products that can expand current

metabolic pathways in the future.

On the other hand, the enzymatic _reaction prediction models need to be further
improved in the several points. First, the number of available compounds in the
training data is much smaller than the number of available enzyme sequences, and

prediction results greatly depend upon the included compound information. All SE and
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SEP models show lower prediction accuracy for the test reactions with compounds that
~ do not exist in the training data and for reactions which is low similarity with training
data. Therefore, the enzymatic reaction prediction models can be further improved by
optimizing feature extractions. It is also necessary to consider reducing the number of

dimensions for feature vectors.

Second, negative training datasets for SE and SEP models consist of random SE and
SEP combinations in order to prevent the models from relying only on comp'ound
feature information. The current models tend to misjudge some reactions as negative
because most of the negative samples are similar to positive samples. Thus, improved

methods to build negative training data are needed.

Chapter IV

EnzymeNet: Residual Neural Networks based model for Enzyme Commission number
prediction

The strategy in the previous chapters has hypothesized that amino acid sequences used
in the predictions are enzyme. However, the sequences may not be the enzyme when
actually predicting unknown reactions. Excluding non-enzyme proteins is necessary
before predicting with the appropriate combinations of sequence and compound using
enzymatic'reaction prediction models. Moreover, the previoué reported models predict
the sequences with numerous consecutive identical amino acids, which are found

within unannotated sequences, as enzymes.

Therefore, Enzyme Commission (EC) number prediction models named EnzymeNet are
developed using Residual Neural Networks (ResNet), which is included in deep
learning, to predict enzyme annotations for enzymatic reaction in addition to exclude
non-enzyme sequences and the exceptional sequences described above. EC number
system is used to classify enzymes using 4 digits based on the reaction type. Deep
learning has enabled to predict the 3-dimensional structures of proteins from protein
sequences. The results indicate that deep learning methods are capable of capturing
the extensive enzyme features within a sequence. Moreover, several studies have
reported models for prediction of protein annotations from sequence information using
Convolution Neural Network (CNN) which is often used in image recognition.
Therefore, EC number prediction models are built using ResNet, which contains the

structures of multiple CNN layers, and predict enzyme functions while capturing the
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extensive features of enzyme sequences.

In order to reduce the number of steps in EnzymeNet prediction, the models roughly
predict the EC number first digits and then determine the full EC numbers. As a result,
EnzymeNet models predict with higher accuracy than previously reported models and
with robust prediction of the enzymes which are low similarity with training data. The
robustness of EnzymeNet models will lead to discover novel enzymes for biosynthesis of

functional compounds using microorganisms.

- Chapter V

General Conclusion and Future work

Combining the EC number prediction models with enzymatic reaction prediction
models enables to predict comprehensive enzyme annotations related to enzymatic '
reactions. First, the EC number prediction models select only enzyme from the amino
acid sequences and roughly estimate a reaction catalyzed by the putative enzyme. Next,
based on the EC number prediction results, the enzymatic reaction prediction models
predict the substrate that is likely to react with the enzyme and the product that is
likely to be synthesized. This system which combines two prediction steps is evaluated
only on annotated data, and therefore must be optimized depending on the targets to
be prédicted. The current system will help to select enzyme sequences and discover
novel enzymatic reactions including missing links in metabolism and biosynthesis

pathways for the production of useful substances using microorganisms.
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