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Abstract

Inaccuracy in urban canyons has been a persistent and lingering problem for the Global Naviga-

tion Satellite System (GNSS). This thesis reports the results of a study on performance improve-

ment of the extended Kalman filter (EKF) to obtain more accurate positions in urban canyons.

GNSS is a system that provides positioning on a global basis. GNSS receivers on the ground

measure distance to satellites based on the time of flight of satellite signals. And then they

determine their positions based on trilateration. GNSS positioning accuracy depends on signals’

propagation delay due to, e.g., the troposphere and ionosphere. GNSS can achieve accuracy

within ten meters with no objects in the lines of sight of satellites. The areas with no objects in

the lines of sight of satellites are referred to as open sky areas.

One last great unsolved GNSS problem is inaccuracy in urban canyons. Positioning with

GNSS in urban canyons suffers from significant position errors due to Non-Line-Of-Sight

(NLOS) reception. NLOS reception occurs where the direct signal is blocked, and the sig-

nal is received only via reflection or diffraction. Measurement errors due to NLOS reception

are characterized by their sign and size. Since signals via reflection or diffraction arrive later

than (blocked) signals via direct paths, measurement errors due to NLOS reception are always

positive. Furthermore, their errors depend on their path delays and are potentially unbounded.

They can be over a hundred meters and outliers that can degrade position accuracy significantly.

Because of the low computational cost, almost all GNSS receivers employ the extended

Kalman filter to determine their positions. The EKF performance is highly dependent on the

accuracy of measurement and the setting of parameters in the EKF. Inaccurate and biased mea-

surements due to NLOS reception can reduce the estimation accuracy of the EKF. This research

aims to achieve a few meters of accuracy in urban canyons by removing outliers and choosing

parameters in the EKF according to remained measurements. The enhanced EKF performance

will benefit our society.

This research solves the problem of inaccuracy in urban canyons in two stages. The first

stage is to develop a method to reject outliers due to NLOS reception from the computation

of the EKF. This stage begins with introducing the model that represents the surrounding en-

vironments, e.g., buildings, of a GNSS receiver to compute path delays geometrically due to

reflection or diffraction. Since measurement errors in NLOS signals depend heavily on path

delays due to reflection or diffraction, computed path delays using the geometric model can

predict measurement errors. Based on the predicted values, the method can improve position

accuracy by detecting and rejecting outliers due to NLOS reception.
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However, removing outliers decreases the number of measurements and may cause poor

satellite geometry. Poor satellite geometry means a biased distribution of satellites as seen by

a GNSS receiver. As positioning accuracy highly depends on satellite geometry, it is necessary

to show how poor satellite geometry affects the EKF performance.

Therefore, the second stage begins with numerical examples to point out the problem caused

by poor satellite geometry. These examples illustrate that a fictitious noise approach, which can

avoid filter divergence by adding fictitious noise to process noise heuristically, results in exces-

sive inflation of the estimation error covariance matrix in the EKF with poor satellite geometry.

Further, this stage provides a theoretical analysis of the sensitivity of the estimation error co-

variance matrix varying on process noise in the EKF. From the examples and the theoretical

analysis, a process noise model that chooses fictitious noise based on satellite geometry is pro-

posed in this stage. The proposed process noise model can suppress inflation of the estimation

error covariance matrix when satellite geometry is poor. To our best knowledge, the proposed

model in the second stage is the first to choose process noise depending on satellite geometry.

The key findings of this research are twofold and come from each of the stages described

above. The first is the performance improvement in urban canyons by removing outliers and

demonstrated through driving tests in Shinjuku, Tokyo, known for NLOS reception. The second

is also performance improvement in urban canyons by avoiding unintentional inflation of the

estimation error covariance matrix. It is revealed through theoretical and experimental results.

In addition, the process noise model proposed in the second stage can be applied to applications

with a generic EKF other than GNSS. Numerical simulations in robot localization show that the

proposed model improves localization performance.

Chapter 1 introduces the background and the main issue of this research. The background

begins with the current GNSS status from the point of view of accuracy to define the main issue

of this research, which is inaccuracy in urban canyons. And then, this chapter refers to some

studies related to this research’s main issue to show the difference between the studies and this

research. The difference would show our contribution that represents an advance in current

knowledge in the GNSS field. Further, this chapter summarizes the main results of this thesis

through overviews of each chapter. Finally, three background materials and a mathematical

introduction to the EKF are given in this chapter that would be needed in later chapters. Three

materials are the single point positioning with the EKF, measurement errors in urban canyons,

and the role of satellite geometry in positioning.

Chapter 2 is devoted to developing a method to detect and reject outliers due to NLOS re-
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ception. This chapter begins with a review of the adaptive extended Kalman filter proposed in

previous studies to deal with measurement outliers in urban canyons. The adaptive EKF can

determine the appropriate noise input level in real time with innovations or residuals of mea-

surements. Although the adaptive EKF reduces the impacts of NLOS reception on estimates,

measurement errors due to NLOS reception may make biased position errors because they are

always positive. Thus, the adaptive EKF should not use measurements due to NLOS reception,

even with the adjustment of noise input level.

This chapter proposes a method to reject outliers from the adaptive EKF to reduce biased

position errors, introducing a model that represents the surrounding environments in urban

canyons to predict path delays of signals due to NLOS reception. Since measurement errors

due to NLOS reception depend on path delays of reflected or diffracted signals to direct signals,

measurement errors can be predicted geometrically using the model. The proposed method has

a threshold to detect signals whose path delay is nearly equal to or longer than the predicted

values of path delays. The threshold is chosen as a smaller predicted value so that it can detect

NLOS signals as much as possible. Removing measurements whose path delays are too long

can reduce biased position errors. Note that the prediction of path delays with the geomet-

ric model is sometimes inaccurate. And some NLOS signals might be accepted and used in the

computation of the EKF. Since the adaptive EKF can determine the appropriate noise input level

for accepted NLOS signals, it can reduce the impacts of the accepted NLOS signals on state es-

timates. The results of experiments in urban canyons show the performance improvement of

the adaptive EKF with the proposed method.

Chapter 3 begins with numerical examples to highlight the problem caused by fictitious

noise for avoiding filter divergence. The problem is that estimation errors by adding fictitious

noise to process noise can be distributed more widely in a particular direction determined by

satellite geometry. Since the estimation error covariance matrix in the EKF varies depending

on fictitious noise, the sensitivity analysis of the matrix due to fictitious noise can explain the

cause of the problem. From the sensitivity analysis, the variation of the estimation error covari-

ance matrix depends on measurement matrices, that is, satellite geometry. This analysis and

numerical examples indicate that fictitious noise may result in excessive inflation in a particular

direction of the estimation error covariance matrix and eventually degrade filter performance.

Based on the results of numerical examples and the sensitivity analysis, this chapter presents

a process noise model that varies depending on satellite geometry. The process noise model can

suppress the inflation of the estimation error covariance matrix due to poor satellite geometry by
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choosing a small or zero fictitious noise in a particular direction. The improvement of position

accuracy due to the proposed model is demonstrated through experiments of stationary GNSS

positioning with poor satellite geometry.

Chapter 4 presents a process noise model extended from the proposed model in Chapter 3.

As stated earlier, the proposed model in Chapter 3 is derived based on the sensitivity analysis of

the estimation error covariance matrix under some assumptions. Although one of the assump-

tions is that the state transition matrix is an identity matrix, the assumption does not often hold

in the EKF for GNSS positioning. This explains that the proposed model in Chapter 3 should

be extended.

This chapter begins with a sensitivity analysis of the estimation error covariance matrix

without the assumptions introduced in Chapter 3. From this analysis, fictitious noise varies the

estimation error covariance matrix. Keeping this in mind, let fictitious noise be chosen so that

the variation of the estimation error covariance matrix will be a given value. For this purpose,

the value is designed in two ways later described.

Since the size of the estimation error covariance matrix is usually large, it is difficult to

determine appropriate values for all elements of the matrix. Therefore, the value should be

constrained in some way to be able to determine. Recall that unintentional inflation of the

estimation error covariance matrix may degrade filter performance, as Chapter 3 pointed out.

This indicates that the directions exist such that inflation in the estimation error covariance

matrix is unnecessary. Based on the consideration, the constraint by measurement matrices can

be effective in forming the value.

In the first design, the value is chosen through a trial-and-error process. In the second

design, the value is chosen to minimize the sum of the square of measurement residuals. In

the sense of minimization, the value is referred to as a decision variable. Position accuracy

improvement is demonstrated through stationary GNSS positioning for the first choice and in

GNSS/INS positioning for the second choice.

Moreover, the extended process noise model can be applied to applications other than

GNSS and GNSS/INS. For example, robot localization is one important system to determine

the robot’s position with range and vision sensors, such as LiDAR devices and cameras. It tends

to suffer from unexpected dynamics errors in the prediction of robot motion. Furthermore, the

information from these sensors often degenerates, for example, when the robot moves along the

wall. This indicates that using the extended process noise model may improve the EKF perfor-

mance by varying fictitious noise based on measurement matrices. Numerical simulations in
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robot localization show the improved performance of the EKF for the localization system.

Chapter 5 concludes this thesis. This chapter begins with a brief revisit of the contents

of each chapter and the key findings of this thesis. And then, it states the importance and

significance of those findings compared with previous studies. Further, this chapter refers to

possible applications to other areas with the proposed process noise model and the possibility

of expanding the proposed process noise model to other nonlinear filters. Finally, future work

on obtaining more accurate positions in urban canyons is presented.
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Chapter 1

Introduction

1.1 Unsolved GNSS Problem in Urban Canyons

Inaccurate positioning in urban canyons is one last unsolved problem with the Global Naviga-

tion Satellite System (GNSS) [1, 2]. Since billions of devices and almost infinite applications

worldwide employ GNSS to determine their positions, inaccuracy in urban canyons signifi-

cantly impacts our society. The problem might result in fatal errors in near-future mobilities,

like autonomous vehicles or air mobility vehicles.

The position accuracy with GNSS is a few meters by single point positioning (SPP), a few

decimeters by precise point positioning (PPP) [3], and a few centimeters by real-time kinematic

(RTK) positioning [4]. This accuracy can be achieved only in open sky areas with few objects,

such as buildings or walls, that can block, reflect, and diffract signals from satellites. Unfortu-

nately, the position accuracy by SPP dramatically degrades above tens of meters due to Non-

Line-Of-Sight (NLOS) signal reception in urban canyons. Although positioning is performed

based on measurements extracted from satellite signals, measurements from NLOS signals tend

to be outliers. To make matters worse, the PPP and RTK do not work in urban canyons either,

because many obstacles can block direct signals from satellites and the temporary loss of the

lock of a tracked signal often occurs.

One approach to solving the problem is improving the accuracy of SPP. Since the extended

Kalman filter (EKF) [5, 6] usually accomplishes the SPP, the author has begun to enhance the

EKF performance to achieve a few meters of accuracy in urban canyons as in open sky areas.

The EKF performance depends heavily on measurement accuracy and setting parameters in the
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EKF. The parameters are known as measurement and process covariance matrices. We need to

address the issue in two stages to achieve the goal: (1) algorithm-based outlier rejection caused

by NLOS signal receptions and (2) process noise setting that takes into account poor satellite

geometry and its rapid change that may be caused by (1).

Although many researchers have developed methods to mitigate large position errors due

to NLOS reception from hardware and software perspectives, none completely eliminates the

effects due to NLOS reception on estimates. However, some different methods are not exclusive

but complementary so that a portfolio approach can be effective [7]. Several ingenuities for

GNSS antennas, such as multiple antennas, dual-polarization antennas, a well-designed GNSS

antenna [8], and the CRPA system [9], allow receivers to receive direct signals by attenuating or

rejecting NLOS signals. Some techniques, code discriminator design [9], early-late correlator

comparison [10], and Doppler domain multipath mitigation [11] have been proposed from the

view of the receiver’s design. Using additional sensors or resources, such as fish-eye cameras

and 3D-city maps [12, 13, 14], is also an attractive choice to mitigate position errors in urban

canyons. Although these approaches are quite effective, it is difficult to apply them to any device

due to costs and size.

More cost-effective approaches are algorithm-based outlier rejection. Receiver Autonomous

Integrity Monitoring (RAIM) is a technique based on the consistency check of redundancy of

measurements initially investigated in the aviation GNSS field [15, 16]. Within the framework

of RAIM, Kalman filter-based RAIM techniques are proposed [17, 18]. Since almost all mea-

surements would be obtained from NLOS signals in urban canyons, measurement outliers due

to NLOS signals may pass through the consistency check unexpectedly. Innovation filtering is

a generic method to reject outliers in the Kalman filter [9]. However, the literature [19] has

reported that the method results in biased estimates. Furthermore, even if outliers due to NLOS

signals are completely detected and rejected, such precise rejection leads to poor satellite geom-

etry. Poor satellite geometry means biased distribution of satellites as seen by a receiver [20].

To the best of our knowledge, no results in the literature dealing with NLOS reception show

how poor satellite geometry due to outlier rejection affects the EKF performance. For exam-

ple, whether process noise, often chosen heuristically, works appropriately with poor satellite

geometry must be examined.

The research aims to improve the EKF performance with an adaptive process noise setting
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in the EKF while rejecting outliers due to NLOS reception, where adaptive means choosing

process noise covariance in the EKF based on satellite geometry. Measurement outliers due to

NLOS signals violate the assumption of measurement noise in the EKF. We can improve perfor-

mance by rejecting measurement outliers from the filter computation. The rejection, however,

would result in poor satellite geometry if a GNSS device installed on a vehicle moves in ur-

ban canyons. We highlight that poor satellite geometry causes performance degradation with a

large process noise covariance. Thus, we can improve performance by choosing process noise

covariance based on satellite geometry.

We first propose a novel method to reject measurement outliers based on the results of the

state-of-the-art [13, 14]. The results show that measurement errors due to NLOS signals can

be predicted by ray tracing with a 3D-city model. However, ray tracing with a 3D-city model

requires a high computational cost. Therefore, we attempt to predict path delays due to NLOS

signals with a simple geometric model instead of a 3D-city model. Comparing predicted path

delays with a simple geometric model to innovations computed in the EKF, the method detects

and rejects measurement outliers. We show the performance improvement with actual data

collected in Shinjuku, Tokyo, famous for NLOS signal reception due to many skyscrapers.

We next design a process noise model based on satellite geometry. The EKF performance

mainly depends on process noise covariance, one tuning parameter in the EKF. We often choose

it to reduce unexpected estimation errors due to dynamics model uncertainties, that is, process

noise covariance tends to be large to cover dynamics model uncertainties. Through sensitivity

analysis and numerical examples, we point out that process noise covariance in a naı̈ve manner

may degrade the EKF performance with poor satellite geometry. To avoid degradation, we

propose a process noise model that process noise covariance varies on satellite geometry. We

show that the model improves the EKF performance through stationary single point positioning

experiments.

We finally extend the process noise model based on satellite geometry in the following

respects. The sensitivity analysis mentioned above is limited to the state transition matrix being

an identity matrix. We remove this limitation and again show the sensitivity of the estimation

error covariance matrix due to a process noise covariance. We design an extended process noise

model based on the results of the generalized sensitivity analysis. A process noise covariance is

determined by measurement matrices that represent satellite geometry. As far as we know, this is
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the first model to choose process noise covariance based on measurement matrices. Moreover,

we perform experiments to show enhanced position accuracy in driving tests in addition to

stationary positioning.

1.2 Accurate Positioning Difficulties in Urban Canyons

1.2.1 Overview of Single Point Positioning with Extended Kalman Filter

This section introduces an overview of the single point positioning with the extended Kalman

filter. Receiving a signal from a satellite, we obtain the distance between a GNSS receiver and

a satellite from the time of flight of a signal. Since the time of flight is measured with the

GNSS’s clock and a GNSS receiver’s clock, it includes the bias between these clocks. We call

the distance contained in the clock bias pseudo range. Since the position vector of a GNSS

receiver and the clock bias are unknown, we can compute the position and the clock bias by

receiving simultaneously four or more signals, i.e., pseudo ranges, with a least-squares method.

The single point positioning means that a single GNSS receiver computes its position and clock

bias.

The extended Kalman filter (EKF) can be applied to the single point positioning with a low-

computational cost to obtain more accurate positions than instantaneous least-squares methods.

This thesis assumes that a GNSS receiver is installed on a four-wheel vehicle that moves on

the ground. To construct the EKF requires a dynamics model of a state vector to represent how

the state vector evolves. Therefore, we must define an appropriate vehicle motion model to

represent the position of a driving car. Since the clock bias between the GNSS’s system clock

and a GNSS receiver’s clock also varies, it is necessary to define a proper dynamics model for

the clock bias.

Above mentioned dynamics model would have uncertainties. For example, we often use a

vehicle motion model in that a velocity or acceleration is the first-order Markov process [21].

This model differs from the actual vehicle motion, and the difference may lead to unexpected

position errors. To reduce unexpected position errors, we often select a process noise covari-

ance in the EKF that can cover the difference. Since the difference is usually poorly known or

unknown, we are apt to choose it heuristically.
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Another example is the clock bias model. Almost all GNSS receivers adopt a Temperature

Compensated Xtal Oscillator (TCXO) as a GNSS receiver clock. Since it varies depending

on various effects, it is difficult to represent it as a model accurately. For the same reason

as the vehicle motion model, we often choose the process noise covariance of the clock bias

heuristically.

Dynamics model uncertainty is a topic not limited to the GNSS field but perhaps com-

mon to many applications with the EKF. Although many techniques, e.g., fading memory filter

and adaptive estimation of process noise covariance [22, 23, 24], have been proposed so far,

none have shown the results under poor satellite geometry caused by outlier rejection in ur-

ban canyons as far as we know. The following sections introduce NLOS signals and satellite

geometry in urban canyons.

1.2.2 Multipath and NLOS Signals

This section explains the dominant sources of measurement error in a pseudo range in urban

canyons: NLOS and multipath signals. GNSS signals from satellites can be blocked, reflected,

and diffracted by nearby objects, such as buildings and walls. NLOS and multipath are different

phenomena, as shown in Fig. 1.1. NLOS signal reception occurs when the signal via a direct

path is blocked and only via a reflect or diffract path is received. In this thesis, we call a signal

via a reflected or diffracted path reflected or diffracted signal. A multipath signal means that

a signal via multiple paths is received. This thesis assumes that one of the multiple paths is a

direct one.

Their error characteristics vastly differ. Measurement errors due to multipath signals in

pseudo ranges are up to half a code chip that depends on the signal structure [25]. For example,

half a code chip of the GPS L1C/A signal currently in use is about 150 [m], and one of the

GPS L5 signal in the ongoing plan by the U.S. government is about 15 [m]. Using the GPS

L5 signal, measurement errors of multipath signals become one-tenth of the ones with the GPS

L1C/A signal. The U.S. government will schedule the full operational capability of the GPS L5

signal in the second quarter of 2028 [26]. This explains that we can see an effective solution to

measurement errors due to multipath signals coming shortly.
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(b) NLOS signal:
A signal only via a reflected or diffracted path is re-
ceived.

Figure 1.1: An illustration of multipath and NLOS signals

Measurement errors due to NLOS signals in pseudo ranges are potentially unbounded in

contrast to the ones due to multipath signals. A measurement error due to a NLOS signal is

equal to the path delay, which is the difference between the length of the path taken by the

signal via a reflected and the (blocked) direct path between a satellite and a receiver. We cannot

reduce measurement errors due to NLOS signals even using the GPS L5 signal mentioned

above. Measurement errors due to NLOS signals are always positive and tend to be few tens

of meters or more, i.e., they would be measurement outliers that can degrade position accuracy

considerably. Since the EKF assumes that measurement errors are zero-mean and Gaussian, we

must detect and reject measurements obtained from NLOS signals from the filter computation.

Since measurement errors due to NLOS signals depend on path delays, the state-of-the-art

predicts path delays by ray tracing with a 3D-city model [13, 14]. Ray tracing is a technique to

compute path delays regarding a signal from a satellite as a ray. Accurate ray tracing requires

a high computational cost, and mapping cities worldwide is not very practical. Therefore, we

consider a simple geometric model of the surrounding environments of a GNSS receiver instead

of a 3D city model and assume signal reflection and diffraction models based on the geometric

model. These reflection and diffraction models give predicted path delays with a low compu-

tational cost. We detect and reject measurement outliers due to NLOS signals based on the

predicted path delays.
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1.2.3 Satellite Geometry

Satellite geometry is a geometrical distribution of satellites as seen by a receiver and plays a

role as translating measurement noise into position errors. Thus, position errors vary depending

on satellite geometry even if measurement noise is equally added. This section begins with

a simple example of two-dimensional position estimation problem to illustrate how satellite

geometry effects on position errors.

This example is presented in the literature [27], which is the problem of two-dimensional

position estimation. In this example, a receiver and stations whose positions are known instead

of satellites are on the same plane, as shown in Fig. 1.2. The receiver measures its distance from

a pair of stations S 1 and S 2 and computes the receiver’s position based on trilateration. This

example assumes that measurement noise is added to all range measurements. Fig. 1.2 illus-

trates the measurements from S 1 and S 2 as arcs of circles whose centers are the stations when

measurement noise is zero and ±ε. If the range measurements are perfect, i.e., measurement

noise is zero, the receiver’s position is determined precisely as lying at the intersection of two

arcs centered at S 1 and S 2 as shown in Fig. 1.2. The measurements, however, are imperfect

and have noise ±ε. Trilateration using imperfect measurements results in position uncertainty

in position estimates, thus, position errors. Position uncertainty is illustrated in Fig. 1.2 as the

shaded region surrounding by arcs, which indicates that position errors can be distributed in this

region.

Figs. 1.2a and 1.2b show the regions of position uncertainty from positioning based on trilat-

eration with two different geometries of the stations. In Fig. 1.2a, two stations are distributed so

that the lines of sight from a receiver are orthogonal. On the other hand, in Fig. 1.2b, they are lo-

cated so that their lines of sight are almost parallel. The difference between the two distributions

of stations is the angle between the lines of sight of the stations. Thus, the first is acute, and the

second is obtuse. Unlike measurements obtained from two orthogonal directions in Fig. 1.2a,

only measurements are obtained in a specific direction in Fig. 1.2b. Although measurement

noise is equal to ±ε in Figs. 1.2a and 1.2b, these figures explain that the difference between the

geometry of the stations results in the difference of the region of position uncertainty.

The region of position uncertainty is larger in Fig. 1.2b than in Fig. 1.2a. In particular, it

does not evenly spread in each direction. The region of position uncertainty is more widely

distributed in a specific direction determined by the geometry of the stations. This explains that
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a direction with a larger position error may exist due to the geometry of stations.

(a) The angle between the line of sight of S 1 and
the one of S 2 is orthogonal. (b) The angle between the line of sight of S 1 and

the one of S 2 is obtuse.

Figure 1.2: Examples of satellite geometry of two-dimensional position estimation [27]. The
position accuracy depends on measurement noise and geometry of S 1 and S 2. The shaded
region represents position uncertainty.

The region of position uncertainty in these examples depends on the geometrical distribution

of stations, which shows that the region of position uncertainty in single point positioning could

depend on satellite geometry. Fig. 1.3 illustrates examples of satellite geometry, geometrical

distributions of satellites seen by a GNSS receiver on the ground. The illustration of satellite

geometry is referred to as a sky plot, and Fig. 1.3a is a sky plot on a fish-eye camera image

taken in an open sky area. Fig. 1.3a shows that blue dots that are visible satellites with no

obstacles in the lines of sight from a GNSS receiver are scattered in almost directions. Since

measurements from various directions would be available, this satellite geometry may make the

region of position uncertainty small, as shown in Fig. 1.2a.

On the other hand, Fig. 1.3b is a sky plot taken in an urban canyon. The figure illustrates

that satellites denoted as red dots are invisible due to buildings from a GNSS receiver on the

ground. They are referred to as NLOS satellites, which means satellites with obstacles in the

line of sight from a GNSS receiver. Since signals received from NLOS satellites are NLOS

signals and should be removed from the position computation, only four measurements from

satellites denoted as blue dots would be used for position computation in Fig. 1.3b. The four

satellites are in a particular direction; their distribution is biased. The biased distribution, i.e.,

poor satellite geometry, results in positioning using measurements only in a particular direction.
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This explains that the region of position uncertainty may be large and widely distributed in a

particular direction, as shown in Fig. 1.2b.

Poor satellite geometry would be inevitable in urban canyons even if we use multiple GNSS

constellations concurrently. Although the use of multiple satellite systems increases the number

of satellites, satellite visibility may not be enhanced because of limitations due to obstacles in

the lines of sight. One practical approach to improve accuracy in urban canyons is the inte-

gration of GNSS and other systems typified by GNSS/INS integration. INS stands for Inertial

Navigation System. This approach aims to make up for the shortage of visibility of satellites by

adding measurements from other sensors, such as inertial or visual sensors. The Kalman filter

or extended Kalman filter usually accomplishes the integration.

As mentioned in Sec. 1.2.1, dynamics model uncertainties in the EKF make large position

errors unexpectedly. To mitigate these unexpected errors, we often choose process noise covari-

ance heuristically, e.g., through a trial-and-error process. The process noise covariance tends to

be large to cover dynamics model uncertainties. In this thesis, we represent the process noise

covariance in the EKF as Q+ δQ, where Q is a nominal choice of process noise and δQ is a

choice of fictitious noise to cover dynamics model uncertainties. Adding fictitious noise δQ to

the dynamics model is called fictitious noise approach.

Our concern is what happens by adding fictitious noise when satellite geometry is poor. The

region of position uncertainty with poor satellite geometry would be more widely distributed

in a specific direction. Furthermore, fictitious noise might make the region more and more dis-

tributed in that direction. It eventually may lead to EKF performance degradation. To avoid

degradation, it would be necessary to vary fictitious noise according to satellite geometry. The-

oretical analysis and numerical examples show how fictitious noise and poor satellite geometry

affect the EKF performance. Moreover, based on the analytical results, we propose a process

noise model that chooses fictitious noise varying on satellite geometry.
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(a) Satellite geometry in an open sky area, Yasu-city,
Japan.

(b) Satellite geometry in an urban canyon, Kobe-
city, Japan.

Figure 1.3: Satellite geometry as seen by a receiver on a fish-eye camera image. Blue dots
are visible satellites and red dots are NLOS satellites. G, E, R, and Q mean GPS, Galileo,
GLONASS, and QZSS, respectively.

1.3 Extended Kalman Filter

This section is a mathematical introduction to the extended Kalman filter for single point posi-

tioning used in this thesis. In single point positioning, the state vector is chosen as

x = (rT, tb, ṙT, ṫb)T, (1.1)

where r [m] and ṙ [m/s] are position and velocity vectors represented in Earth-Centered Earth-

Fixed (ECEF) coordinates and tb [m] and ṫb [m/s] are a clock bias and a clock drift. The

measurement vector consists of pseudo ranges and Doppler frequencies as

y = (ρT, ρ̇T)T, (1.2)

where pseudo ranges are ρT = (ρ1, . . . ,ρm) [m] and Doppler frequencies are ρ̇T = (ρ̇1, . . . , ρ̇m)

[m/s]. The number of satellites is denoted as m. Although the unit of Doppler frequencies is

hertz, the unit is converted to meter-per-second by multiplying the wavelength of a signal. State

10



and measurement equations are given as

xk+1 = Fxk +wk, (1.3)

yk = h(xk)+ vk, (1.4)

where

F =

 I δtI

O I

 , (1.5)

hi(xk) = ||ri
k − rk||+ tb, (1.6)

hi+m(xk) =
(ri

k − rk)T

||ri
k − rk||

(ṙi
k − ṙk)+ ṫb. (1.7)

The ith element of h(xk) is hi(xk) and the state transition matrix is F. The ith satellite position

and velocity are denoted as ri
k and ṙi

k.

Since h(xk) in (1.4) is nonlinear, the EKF is used to estimate the state. The EKF computation

is conducted as follows:

x̂−k = Fx̂+k−1, (1.8)

P−k = FP+k−1FT+Qk, (1.9)

x̂+k = x̂−k +Kk[yk −h(x̂−k )], (1.10)

P+k = (I−KkHk)P−k , (1.11)

Kk = P−k HT
k (HkP−k HT

k +Rk)−1, (1.12)

where the state estimate and the estimation error covariance matrix are represented as x̂k and Pk

respectively, and Kk is Kalman gain. The superscripts − and + for x̂k and Pk mean ‘prior’ and

‘posterior’. The measurement matrix Hk is defined as

Hk =
∂h(xk)
∂xk

∣∣∣∣∣
xk=x̂−k

. (1.13)

Nominal noise covariance matrices are Qk for process noise and Rk for measurement noise. The

rest of this section shows where each topic in Sec. 1.2 locates in the EKF.
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Sec. 1.2.2 introduces measurement outliers in urban canyons, i.e., NLOS signals. As mea-

surement errors in pseudo ranges obtained from NLOS signals tend to be positive and large,

vk for NLOS signals would not be zero-mean. Furthermore, their covariance matrices may be

larger than Rk given as a nominal value. As a result, measurement outliers due to NLOS signals

can make biased estimates and large estimation errors. Therefore, they should be removed from

the measurement update in (1.10).

Sec. 1.2.3 shows the role of satellite geometry, which is a geometrical distribution of satel-

lites as seen by a GNSS receiver. Since the measurement matrix Hk is the function of satellite

positions, it depends on satellite geometry. In urban canyons, Hk tends to degenerate and vary

depending on the surrounding environment of a GNSS receiver. Keeping this in mind, the dy-

namics uncertainties introduced in Sec. 1.2.1 are recalled. To make estimation errors due to

dynamics uncertainties small, a larger process noise covariance should be chosen as Qk + δQk.

Although Qk would be known, it is difficult to choose an appropriate δQk heuristically because

of the variation of Hk in urban canyons. Furthermore, if δQk is chosen naively, it may degrade

the EKF performance.

1.4 Outline of This Thesis

This thesis is organized as follows: Chapter 2 presents a NLOS signal rejection method to

improve the positioning accuracy of integrated GNSS and INS systems for a vehicle in urban

canyons. Measurement errors due to NLOS signals are positive and may be large. Since they

have significant negative impacts on EKF performance, we should eliminate measurements

from NLOS signals from the EKF. Since measurement errors due to NLOS signals depend on

path delays, we can predict them geometrically. Therefore, we assume a signal’s reflection

and diffraction model based on a simple geometric model of the surrounding environments of

a vehicle. The reflection and diffraction model enables the prediction of path delays with a

low-computational cost.

A large measurement errors result in a large innovation in the EKF. If an innovation is

larger than its predicted path delay, this indicates that the signal via some reflected or diffracted

path is received, i.e., a NLOS signal. Comparing innovations with predicted path delays, the

method can remove measurements obtained from NLOS signals from the EKF. The prediction
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of path delays with the reflection and diffraction is sometimes inaccurate. When innovations

from NLOS signals are smaller than the inaccurately predicted path delays, the EKF uses the

measurements. We further apply an adaptive-estimation technique to mitigate position errors

due to accepted NLOS signals. It estimates measurement noise covariances based on innova-

tions. We implement the EKF with the proposed method and the adaptive estimation technique

to examine position accuracy. We demonstrate that the proposed method improves position

accuracy in urban canyons with actual data.

Chapter 3 presents performance improvement with a novel process noise model for poor

satellite geometry based on theoretical analysis of the estimation error covariance matrix. Due

to several studies about NLOS signal rejection, including the method proposed in Chapter 2, al-

most all NLOS signals can be excluded from calculating the position. However, precise NLOS

rejection would make satellite geometry poor, especially in urban canyons. Through numerical

simulations and theoretical analysis, we point out that poor satellite geometry leads to uninten-

tional performance degradation of the Kalman filter with a conventional approach to prevent

filter divergence. The conventional approach is to bump up the process noise covariance by

adding fictitious noise to a dynamics model. When satellite geometry is poor, fictitious noise

causes excessive inflation of the estimation error covariance matrix. We propose a novel choice

of process noise covariance based on satellite geometry that reduces excessive inflation. Since

satellite geometry is represented as measurement matrices in the EKF, the proposed model

chooses fictitious noise based on the measurement matrix at each time step. If satellite ge-

ometry is poor, the method makes fictitious noise small. Numerical and experimental results

demonstrate that the choice of process noise covariance matrix can improve performance even

for poor satellite geometry.

Chapter 4 extends the process model derived in Chapter 3 and shows position accuracy

improvement through three applications, i.e., stationary GNSS positioning, GNSS/INS posi-

tioning, and robot localization with a camera. This chapter begins with the sensitivity analysis

of the estimation error covariance due to fictitious noise without assumptions introduced in

Chapter 3. Although the sensitivity analysis in Chapter 3 is limited to a linear system whose

state transition matrix is an identity matrix, this analysis is for the linearized system of a generic

nonlinear system whose state transition matrix is arbitrary. Based on the analysis, this chapter

presents two designs of a process noise model using measurement matrices. The first is with
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a fixed parameter, and the second is the solution to the problem that minimizes the sum of

the square of measurement residuals. For the first design, stationary positioning in an open

sky area is performed by simulating poor satellite geometry. These experimental results show

that position accuracy improves with the process noise model based on the first design. Vehi-

cle positioning with a GNSS/INS integrated system is performed for the second design. Since

the second design chooses the process noise adaptively based on the minimization of measure-

ment residuals, it can improve position accuracy under environments that vary depending on

traveling. GNSS/INS positioning results with the second design show that position accuracy

improves in open sky areas and urban canyons. Moreover, the second design can be applied

to other applications with an EKF. This chapter also shows improvement using the second de-

sign for robot localization which often uses an EKF. The EKF with the process noise model

based on the second design is implemented in simulations of robot localization. Performance

improvement is shown by comparing the estimation results with other process noise models.
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Chapter 2

NLOS Signal Rejection Based on Simple

Geometric Model

2.1 Introduction

Global Navigation Satellite System (GNSS) is a promising global positioning sensor in intelli-

gent transportation systems, such as navigation systems, road pricing systems with electronic

toll collection, and assistance systems for safe driving. GNSS Positioning with the extended

Kalman filter (EKF) is inaccurate in urban canyons due to Non-Line-Of-Sight (NLOS) signal

reception.

NLOS reception occurs where the signal via a direct path is blocked and the signal is re-

ceived only via reflection or diffraction. Since measurement errors in pseudo ranges due to

NLOS signals depend on path delays, they are always positive and tends to be large. Although

the EKF assumes that measurement errors are zero-mean and Gaussian, measurement errors

due to NLOS signals violate the assumption.

To improve position accuracy in urban canyons, we should remove measurements obtained

from NLOS signals from the computation of the EKF. Since many GNSS receivers are consumer

grade, we must achieve the improvement without additional costs. Therefore, we propose a

novel algorithm-based method to reject measurements from signals that are supposed to be

NLOS signals assuming the signal’s reflection and diffraction models.

Inaccuracy in urban canyons is an unsolved GNSS problem. The state-of-the-art is to detect

NLOS signals using a 3D city model [13, 14, 28]. The outcomes show that path delays of NLOS

15



signals can be predicted accurately by ray tracing with a 3D city model, a technique to simulate

the propagation of GNSS signals. The prediction is based on a GNSS signal’s geometrical

reflection and diffraction models. However, a high-computational cost is needed to achieve

accurate prediction. Furthermore, mapping cities worldwide to 3D city models is challenging

due to cost.

Instead of using the state-of-the-art, we consider applying conventional outlier-rejection

techniques. Since measurement errors due to NLOS signals are outliers, conventional methods

may be effective. Receiver Autonomous Integrity Monitoring (RAIM) is a scheme to detect out-

liers using the redundancy of measurements [15, 18, 16, 17]. However, almost all measurements

would be outliers in urban canyons, and RAIM may not work. A popular outlier rejection for

the EKF is innovation filtering. The innovation filtering may result in biased estimates [9, 19].

Although an improved innovation filtering has been proposed for NLOS signal rejection [19],

no results show performance improvement in urban canyons with actual data.

The work aims to develop a NLOS signal rejection method using the fact that measurement

errors due to NLOS signals can be predicted by ray tracing. We assume signal’s reflection and

diffraction models to predict path delays based on a simple geometric model of the surrounding

environments of a GNSS receiver. The predicted path delay gives a threshold to detect measure-

ment outliers. Comparing innovations in the EKF with the threshold, we remove measurements

obtained from signals that are supposed to be NLOS signals. We believe that this is the first

time to propose a NLOS signal rejection method based on path delay prediction without a 3D

city model.

Since the prediction is sometimes inaccurate, we cannot remove measurements from NLOS

signals completely. Therefore, we concurrently use a noise-adaptive estimation technique in

the EKF [22, 23, 29]. In this thesis, we refer to this technique as adaptive EKF. The adaptive

EKF reduces the impacts of unexpected measurement errors by making measurement noise

covariance for NLOS signals large based on innovations. We integrate the proposed method

into the adaptive EKF and demonstrate peformance improvement through experiments with

data sets obtained by actual driving in urban canyons.
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2.2 Positioning with Adaptive Extended Kalman Filter

The adaptive extended Kalman filter (adaptive EKF) can reduce the impact of NLOS signals on

position accuracy by being measurement noise covariance large based on innovations [29, 30].

The adaptive EKF can achieve more accurate positioning in urban canyons. In this study, we

apply the adaptive EKF to the tightly coupled integration of GNSS and INS (Inertial Navigation

system). INS composes of IMU (Inertial Measurement Unit) and VSP (Vehicle Speed Pulse).

This section introduces the adaptive EKF that accomplishes the GNSS/INS integration.

Let state vector be

x = (rT, tb, ṙT, ṫb)T. (2.1)

The position [m] and velocity [m/s] are r = (rx,ry,rz)T and ṙ = (ṙx, ṙy, ṙz)T. They are repre-

sented in the Earth-Centered-Earth-Fixed (ECEF) coordinates. The difference between the

GPS’s clock and a GNSS receiver’s clock, namely, the clock bias, is tb [m]. Further, the time

variation of the clock bias is a clock drift ṫb [m/s]. When we use multiple GNSS constellations

concurrently, inter-system biases (ISBs), defined as the difference between the GPS’s system

clock and other GNSS systems’clock, should be added to the state vector. However, in this

work, we assume that we can reduce ISBs enough to ignore by subtracting correction terms

obtained from broadcast messages from pseudo ranges. Therefore, we do not add them to the

state vector.

We use three types of measurements obtained from GNSS and INS. The first and second

ones are pseudo ranges and Doppler frequencies from GNSS. We denote a pseudo range of the

ith satellite as ρi and a Doppler frequency of the identical satellite as ρ̇i, where i = 1, · · · ,m. The

third one is a vehicle velocity vector vINS = (vx,vy,vz)T in the ECEF coordinates from INS.
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We define a measurement vector y as

y =



ρ1
...

ρm

ρ̇1
...

ρ̇m

(vx,vy,vz)T



=



h1(x)+ v1
...

hm(x)+ vm

h1+m(x)+ v1+m
...

h2m(x)+ v2m

ṙ+ (v2m+1,v2m+2,v2m+3)T



, (2.2)

where {v1, · · · ,v2m+3} are measurement noise. Measurement functions can be written as

hi(x) = ||r− ri||+ tb, 1 ≤ i ≤ m, (2.3)

hi(x) = eT
i−m(ṙ− ṙS V

i−m)+ ṫb, 1+m ≤ i ≤ 2m, (2.4)

ei−m =
r− rS V

i−m

∥r− rS V
i−m∥

. (2.5)

The ith satellite’s position and velocity are rS V
i and ṙS V

i . They are computed from broadcast

ephemerides. Assuming that measurement noise is mutually independent, a measurement up-

date of the adaptive EKF can be processed by each element of y [6, 29, 30].

x̂+k = x̂−k +Kk[yi−hi(x̂−k )], (2.6)

P+k = P−k −Kk,iHiP−k , (2.7)

Kk,i = P−k HT
i (HiP−k HT

i +Ri)−1. (2.8)

The estimate of xk is x̂k and its estimation error covariance is Pk. The superscripts, namely, +

and −, mean posterior and prior, respectively. The Kalman gain for the ith element yi is Kk,i,

18



and the Jacobian matrix of hi(xk) is Hi.

Hi =
∂hi(x̂−k )

∂xk
= (eT

i ,1,O1×7), 1 ≤ i ≤ m, (2.9)

Hi =
∂hi(x̂−k )

∂xk
= (O1×4,eT

i−m,1,O1×3), 1+m ≤ i ≤ 2m, (2.10)
Hi

Hi+1

Hi+2

 =


∂hi(x̂−k )
∂xk

∂hi+1(x̂−k )
∂xk

∂hi+2(x̂−k )
∂xk

 = (O3×8, I3×3), i = 2m+1. (2.11)

We denote a zero matrix whose size is l×n as Ol×n and an identity matrix whose size is l× l as

Il×l. The measurement noise variance is Ri for the measurement yi.

A time update of the adaptive EKF is

x̂−k+1 = Fk x̂+k , (2.12)

P−k+1 = FkP+k Fk
T+Qk, (2.13)

Fk =

 I4×4 ∆tI4×4

O4×4 I4×4

 , (2.14)

where Fk is a state transition matrix, Qk is a process noise covariance. We choose ∆t = 1.

The rest of this section explains the adaptive estimation of Ri. The adaptive estimation of Ri

is to estimate measurement noise covarariance using measurements y. The estimate of Ri can

be computed as

R̂i =Ck −HiP−k HT
i , (2.15)

Ck =
1
N

k∑
j=k−N+1

di( j)2,

di(k) = yi(k)−hi(x̂−k ),

where we denote yi at time step k as yi(k). Substituting Ri = R̂i into (2.8), we obtain an adaptive

Kalman gain. We call the filter with R̂i adaptive EKF. We choose the time constant as N = 1 as

well as the literature [29, 30].

Fig. 2.1 shows a process flow diagram of the adaptive EKF. The process flow depends on the
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Figure 2.1: Process flow diagram for adaptive EKF

convergence of the adaptive EKF, where the convergence means that the sum of the diagonal

elements of P+k corresponding to r is smaller than 9 [m2] and the time step is over 25 [step]. A

standard deviation of measurement noise is σi in Fig. 2.1. We denote the Signal-Noise-Ratio

(SNR) of the signal of the ith satellite as si. Standard deviations of measurement noise of pseudo

ranges and Doppler frequencies are approximated as follows [29, 30, 31]:

σi = σρ(si) = 0.64+784e−0.142si , 1 ≤ i ≤ m, (2.16)

σi = σρ̇(si−m) = 0.0125+6767e−0.267si−m , m+1 ≤ i ≤ 2m. (2.17)

A standard deviation of measurement noise usually depends on a GNSS receiver and an antenna

which we use. Equations (2.16) and (2.17) are for a single frequency GNSS receiver (FURUNO

GN-8720) and a GNSS antenna (Taoglass AA.171.301111). Since measurement noise due to

SNR always exists, R̂i should be larger than σ2
i . Therefore, Ri = σ

2
i if R̂i ≤ σ2

i in Fig. 2.1.

Moreover, when N = 1, R̂i > σ
2
i is equivalent to

|di(k)|2 > HiP−k HT
i +σ

2
i . (2.18)
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2.3 NLOS Signal Rejection Method

2.3.1 Overview of NLOS Signal Rejection Method

Many obstacles, such as buildings and walls, can block, reflect, and diffract signals from satel-

lites in urban canyons. A NLOS signal is a reflected or diffracted signal without reception of a

signal via a direct path. Since a NLOS signal usually arrives later than the blocked signal via

a direct path, the measurement error of a NLOS signal is positive and apt to be large. Conse-

quently, the innovation in the EKF of the measurement from a NLOS signal may also be positive

and large. Since positive and large measurement errors may bias estimation errors, we should

remove measurements obtained from NLOS signals from the adaptive EKF. In this section, we

present a novel method that rejects measurements that are supposed to be obtained from NLOS

signals based on pseudo-range innovations.

Measurement errors due to NLOS signals depend on path delays. Assuming that the signals

are reflected and diffracted based on a simple geometric model of a GNSS receiver’s surround-

ing environments, path delays can be calculated for each location of the GNSS receiver. Since

the innovations in the EKF correspond approximately to measurement errors for an accurate

prior estimate, the innovations for NLOS signals would be positive and excessively large. We

can remove the measurements that are supposed to be from NLOS signals by comparing their

innovations with the predicted path delays. We do not use these positive and large innovations

at a measurement update step in the adaptive EKF.

The proposed method depends on a simple geometric model. Predicted path delays are

sometimes inaccurate. Then, the adaptive EKF may use measurements obtained from NLOS

signals whose errors are comparatively small than inaccurately predicted delays. The adaptive

EKF could reduce the impact of the accepted NLOS signals by adjusting the measurement noise

covariance.

2.3.2 Geometrical Model for NLOS Signals

This section describes a simple geometric model to predict path delays by assuming a geometric

model for NLOS signals. We assume that both a satellite and a GNSS antenna locate on the

orthogonal plane to the building, as shown in Fig. 2.2. We denote the distance from the building
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to the antenna as L and the height of the building as H. The reflection and diffraction occur at

the surface and edge of the building, where we denote the reflection and diffraction points as P.

Let the ith satellite’s elevation angle be θi. We assume that reflection and incidence angles

are equal at the reflection point P. The path delay ε1(θi,L) due to the reflection is predicted with

e1 and f1 defined in Fig 2.2a as follows:

ε1(θi,L) = e1− f1 = 2Lcosθi. (2.19)

In addition, the path delay ε2(θi,L,H) due to the diffraction is predicted as

ε2(θi,L,H) = e2− f2 =
√

L2+H2−Lcosθi−H sinθi, (2.20)

where e2 and f2 are distances from the diffraction point P, as shown in Fig. 2.2b. Note that

ε1 ≥ 0 and ε2 ≥ 0 because of 0 ≤ θi ≤ 90 [deg].

Although we assume that a satellite and a receiver are on the orthogonal plane to the building

in the simple geometric model, it does not always hold. The path delay of the reflected signal

from a satellite not on the plane is smaller than the predicted delay in (2.19). Furthermore,

the diffraction occurs by superimposing each diffracted signal from various diffraction points.

This indicates that we cannot predict path delays for diffraction accurately based on the simple

geometric model. In this thesis, we design a method to reject measurements whose errors are

larger than (2.19) or (2.20). The adaptive EKF can reduce the impact of measurements obtained

from accepted NLOS signals on the estimation.

Signals from satellites may reflect or diffract more than once in urban canyons. Since these

path delays would be longer than the ones for the single reflection or diffraction, we can reject

multiple reflected or diffracted signals based on (2.19) and (2.20). Further, signals also reflect

at the surface of the ground. We assume that a GNSS antenna is on the rooftop of a car to block

the reflected signals at the ground’s surface.
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Figure 2.2: Geometric model of NLOS signals

2.3.3 Threshold for NLOS Signal Rejection

Let the innovation of the pseudo range of the ith satellite be

zk,i = yk,i−hi(x̂−k ). (2.21)

We compute an innovation threshold ε based on the predicted path delay with the simple geo-

metric model and compare innovations with the threshold in the following way:

(zk,i > ε) ∧ (ε2 > HiP−k HT
i +σ

2
ρi

), (2.22)

where

ε =min(ε1(θi,L), ε2(θi,L,H))−σρi . (2.23)

We design the threshold in (2.23) with the geometrical model as follows. From the reflection

and diffraction models, we can predict the path delay, as shown in ε1 or ε2. Assuming that the

predicted measreuements hi(x̂−k ) is accurate, innovations mainly consist of actual path delays

and noise due to SNR. Therefore, to reject measurements obtained from NLOS signals as much
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as possible, we choose the smaller delay (2.19) or (2.20) and then subtract σi from the smaller

one.

Innovations obtained from NLOS signals would be positive and large. The first term in

(2.22) can detect innovations whose actual path delays are longer than predicted ones. If (zk,i >

ε), the signals are likely to be received via longer reflected or diffracted paths.

The second term in (2.22) is for avoiding unintentional detection of signals from visible

satellites. The threshold in (2.23) may become small depending on L, H, and θi. Since measure-

ments are noisy due to SNR, innovations from visible satellites may exceed a small threshold.

These measurements should not be removed. To this end, if zk,i > ε, we choose ε so that (2.18)

holds, i.e., R̂i > σ
2
i .

The value of ε in (2.23) depends on L and H. In this study, we assume that four-wheel

vehicles drive in urban canyons and choose L = 10 [m] and H = 150 [m].

The rest of this section is devoted to checking the sensitivity of the threshold due to L and H

through numerical analysis. Fig. 2.3 illustrates the threshold varying on si and θi for 0 ≤ si ≤ 54

[dB-Hz] and 0 ≤ θi ≤ 90 [deg] with H = 150 [m] and L = {1,10,100} [m]. When the value of ε

calculated from (2.23) is negative for a point (si, θi), we draw ε = 0 at the point instead.

The threshold ε is 1 [m] at a maximum with L = 1 [m]. Setting L = 1 [m] is not effective for

the following reasons. The first is that measurements whose errors depend on small path delays

may be negligibly small relative to noise due to SNR. It would be unnecessary to remove these

measurements. The second is that real road environments give a larger L than L = 1 [m] because

of vehicle width and sidewalks.

If L = 10 [m] and L = 100 [m], the thresholds ε are 20 [m] and 80 [m] at a maximum,

respectively. Removing measurements whose path delays are over these values may improve

position accuracy. In addition, path delays with L = 100 [m] is larger than the ones with L = 10

[m], i.e., ε|L=100 > ε|L=10, except for 40 [deg]≤ θi ≤ 50 [deg]. This indicates that, by setting

L to be 10 [m], we can reject most measurements that are obtained from the path delays with

L = 100 [m] as well as those from the path delays with L = 10 [m].

We next compute (2.23) with L = 10 [m] and H = {10,150,250} [m], although we do not

illustrate it by figures. The maximum value of ε in (2.23) is 3 [m] at maximum with H = 10

[m]. This means that we do not need to remove measurements for the same reason with L = 1

[m] and H = 150 [m]. For H = 150 [m] or 250 [m], the thresholds ε are almost the same at
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each point (si, θi). Most measurements whose path delays are over ε with H = 250 [m] can be

removed by setting H = 150 [m].

From the above results, the choice of L = 10 [m] and H = 150 [m] could effectively remove

measurements obtained from NLOS signals via various paths. Although measurements from

NLOS signals whose path delays are relatively small can not be rejected, we apply the adaptive

EKF to reduce estimation errors due to accepted NLOS signals.

Fig. 2.4 illustrates path delays in (2.19) and in (2.20) with L = 10 [m] and H = 150 [m].

When a satellite’s elevation angle is less than 68 [deg], measurements are rejected by the pre-

diction in (2.19). Otherwise, they are rejected by the prediction in (2.20). Note that satellite’s

elevation angles θi are obtained from ephemerides broadcasted by satellites.
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(b) L = 10 [m], H = 150 [m]
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(c) L = 100 [m], H = 150 [m]

Figure 2.3: Measurement error estimate
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Figure 2.4: Delay estimates by reflection and diffraction for L = 10 [m], H = 150 [m]

2.3.4 Adaptive EKF with NLOS Signal Rejection

We summarize the process flow of the proposed method where the NLOS signal rejection in

Sec. 2.3.3 is integrated into the adaptive EKF in Sec. 2.3.2 as in Fig. 2.5. The prediction of

path delays can be applied only to pseudo ranges from the satellites. However, the Doppler

frequencies from NLOS signals would not be reliable. When a pseudo range from a satellite is

rejected by using (2.22), we also reject a Doppler frequency from the same satellite.

Set 

EKF converged?

Rejection

yes

no

no

yes

no

yes

(2.22)

(2.18)

Figure 2.5: Process flow diagram for adaptive EKF with NLOS signal rejection
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2.4 Position Accuracy in Urban Canyons

2.4.1 Overview of Experiments

This section shows position accuracy enhancement due to the proposed method through exper-

iments in Shinjuku, Japan, where skyscrapers can block direct signals from satellites and lead

to NLOS signal reception. We choose a driving course in Shinjuku as shown in Fig. 2.7. A test

vehicle goes round the course to collect raw measurements to compute the vehicle’s positions

by post processing programs described later. Since position accuracy depends on the number of

satellites and their geometry as seen by a GNSS receiver, the test vehicle drove the course three

laps at different times, on October 18th, 2018. It took about 25 minutes to drive each lap.

The collected raw measurements include GNSS measurements, ephemerides, vehicle speed,

and inertial sensor outputs. GNSS measurements and ephemerides are obtained from a single-

frequency GNSS receiver (FURUNO GN-8720). Further, GNSS measurements obtained from

GPS/QZSS L1C/A, QZSS L1S, GLONASS L1OF signals compose of pseudo ranges, Doppler

frequencies and SLAS (Sub-meter Level Augmentation Service) messages to correct pseudo

ranges from GPS/QZSS L1C/A signals. The used inertial sensor is a MEMS 6-axis inertial

sensor (Bosch SMI130), and vehicle speed is measured based on the turning of wheels.

To compute the vehicle’s positions using the raw measurements in three ways, three post-

processing programs are implemented based on the adaptive EKF. The following difference

between the three programs in terms of rejection of NLOS signals exists. The first is without

the rejection of NLOS signals, the second is with the proposed method to reject NLOS signals,

and the third is with the other rejection method that will be introduced in Sec. 2.4.3. The

programs are referred to as method A, B, and C, respectively.

In the test vehicle, a reference system (Applanix POS-LV 520) is also installed to obtain

accurate positions that can be regarded as true positions of the vehicle. The reference system

provides highly accurate positions that are usually an accyracy within 10 [cm] using a ring laser

gyroscope, an accelerometer, a precise speed sensor, and high-grade GNSS receivers. Position

errors are defined as the difference between the positions with the reference system and the

positions with each method. Comparing position errors by the three methods, the improvement

due to the proposed method can be shown.
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Figure 2.6: Vehicle used for the experiments and a vehicle-fixed coordinate frame

Figure 2.7: Path of the vehicle in Nishi-Shinjyuku area

2.4.2 Exprimental Results of Driving Tests

This subsection shows the position accuracy of each lap with the three methods introduced in

the previous subsection. The position accuracy is represented by root mean squared (RMS)

errors and peak to peak (P-P) errors computed from the position errors in each lap.

Position errors at time step k represented in the body coordinate as shown in Fig. 2.6 are

denoted as ∆r̃k = (xk,yk,zk)T, where xk, yk, and zk are longitudinal (forward), lateral, and vertical

errors. For example, using xk, RMS and P-P errors in the longitudinal direction for each lap can
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be computed as follows:

RMS error =

√√√
1
np

np∑
k=1

x2
k , (2.24)

P−P error = max
1≤k≤np

(xk)− min
1≤k≤np

(xk), (2.25)

where np is the number of positioning in each lap.

Tables 2.1, 2.2, and 2.3 show RMS and P-P errors for each lap with the three methods.

We can see that the RMS and P-P errors for method B are smaller than the method A in the

tables. This explains that position accuracy for method B with NLOS signal rejection is better

than method A without NLOS signal rejection. The reason for the better results with method B

would be because some measurements from NLOS signals that may cause large position errors

are removed with the proposed method. Note that position errors in z-axis is larger than in the

x-axis and y-axis. This is caused by satellite geometry as seen by a GNSS receiver [32].

Table 2.1: RMS and P-P values for Lap 1

RMS P-P
x [m] y [m] z [m] x [m] y [m] z [m]

(A) 2.77 2.75 6.28 17.95 15.60 34.50
(B) 2.51 2.59 4.82 14.98 13.14 20.94
(C) 2.43 2.40 5.19 14.07 12.59 22.14
(A) = method A without NLOS rejection
(B) = method B with NLOS rejection
(C) = method C with innovation filtering

Table 2.2: RMS and P-P values for Lap 2

RMS P-P
x [m] y [m] z [m] x [m] y [m] z [m]

(A) 3.86 2.75 7.23 30.80 19.40 49.47
(B) 2.95 2.53 6.28 21.00 16.53 38.38
(C) 3.38 2.51 6.14 27.66 18.75 35.79

2.4.3 Discussion

This subsection discusses four topics based on additional experiments and through further data

analysis: (1) The effectiveness due to method B. (2) The comparison with other methods. (3)
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Table 2.3: RMS and P-P values for Lap 3

RMS P-P
x [m] y [m] z [m] x [m] y [m] z [m]

(A) 4.48 3.86 11.65 26.79 22.33 35.10
(B) 3.46 3.25 8.05 22.30 15.82 28.39
(C) 6.48 5.33 15.21 31.98 30.79 45.20

The accuracy varying on the parameters, L and H, in the proposed model. (4) The accuracy

with the proposed method in open-sky areas.

Effectiveness Due to NLOS Signal Rejection

This subsection examines the number of rejected measurements and the locations of satellites

of the rejected measurements. Table 2.4 shows the number of measurements used in the experi-

mental results introduced in Sec. 2.4.2 and computes the average number of measurements used

in the np positionings in each lap.

In method A, fourteen measurements are used on average in all laps. However, method B

uses ten or eleven measurements. This shows that method B removes three or four measure-

ments on average in all laps. Since method B improves position accuracy, it could remove

measurements that can degrade position accuracy, that is, NLOS signals. Further, Table 2.4

indicates that method B based on (2.22) can prevent degrading position accuracy with excessive

rejections of measurements.

Table 2.4: Average number of signals used in positioning

(A) (B) (C)
Lap 1 14.1 10.4 9.1
Lap 2 14.8 11.1 8.5
Lap 3 14.7 11.2 9.0

We next examine details of data in an area where position errors with method B are reduced

compared to method A to show which measurements were rejected. The area, Tokyo metropoli-

tan road 432, is illustrated in Fig. 2.8. The yellow arrow on the Fig. 2.8 designates the direction

of travel of the test vehicle. We can see a park and buildings on the left and right sides along

the direction of travel. The distance from the vehicle to the buildings is about 15 [m], and their

height is about 167 [m].
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In Fig. 2.8, we can see that position errors with method A are 11 [m] and the ones with

method B are 5 [m]. Position errors with method B in this area become in half compared to

method A. Besides, green dots (reference positions) distribute across the two roads in Fig. 2.8.

This is caused by changing driving lanes, not position errors with the reference system.

We define the utilization rate of signals to show how often each signal is used in this area as

follows:

uS V = 100× MS V

F
. (2.26)

The subscript S V is the satellite number of the received signal. The travel time along this road

shown in Fig. 2.8 is F. The number of the use of a signal from the S Vth satellite is MS V during

driving this road. We can see that the utilization rates of signals from satellites located on the

left side of the direction of travel in Fig. 2.9 are lower than the ones for the other satellites.

Trees in the park would block signals from satellites on the left side, and the buildings on the

right would reflect the signals. The situation can be consistent with our assumption of NLOS

signal reception. Thus, the proposed method based on (2.19) could reject the left-side satellites’

signals. Fig. 2.9 also shows that satellites whose elevation angles are higher than 60 [deg]

are rejected. Since trees in the park or skyscrapers can block direct signals from high-elevation

satellites [33], these satellites’ signals may be NLOS signals. Since the rejection due to a cut-off

elevation angle cannot remove these signals, it would be one advantage of the proposed method

to remove signals from high-elevation satellites.

Performance Comparison with Innovation Filtering

The literature [9, 19] introduces a generic outlier rejection method for Kalman Filter. We refer

to the method as innovation filtering. The innovation filtering rejects measurement outliers

whose innovations are more significant than a threshold. We integrate the innovation filtering

into the adaptive EKF, and then compare position accuracy with the innovation filtering to the

one with the proposed method.

We denote the adaptive EKF with the innovation filtering as method C. In method C, we
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Figure 2.8: Positioning results with the method A(blue dots) and the method B(magenta dots)

replace (2.22) with

z2
k,i

(HiP−k HT
i +σ

2
ρi)

> κ2. (2.27)

The left side in (2.27) is the normalized innovation of the signal from the ith satellite. The

denominator is the analytical variance of the innovation zk,i. A fixed threshold is κ and method

C rejects measurements whose normalized innnovation is more significant than κ.

The literature [9, 19] has pointed out that the innovation filtering can make biased estimation

errors if measurement errors are always positive, like NLOS signals. We choose κ = 4 as the

literature [19] proposes and shows RMS and P-P errors for method C in Tables 2.1, 2.2, and

2.3. Moreover, the number of satellites that are used in positioning is shown in Table 2.4.

Although position accuracy improves in the first and second laps, it degrades in the third lap

even compared with the ones for method A. On the other hand, method B improves estimation

accuracy in all laps. Since the number of satellites for method B is larger than the one for

method C, this indicates that method B detects NLOS signals more accurately using (2.22).

In this work, we implement method C in the adaptive EKF. Since the adaptive EKF affects

the estimation error covariance matrix P+k , it also has an impact on the threshold to reject sig-

nals. It is necessary to discuss the behavior for the combination of the adaptive EKF and the

innovation filtering. Further, although (2.22) is for rejecting measurements outside of the as-

sumed distribution, (2.27) is for passing through measurements that are distributed inside of
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Figure 2.9: Utilization rate of each satellite. Satellites are plotted by dots according to their
azimuth and elevation. The color of each satellite shows the utilization rate divided into 10
sections. N,S,E and W mean north, south, east and west respectively. SV1 ∼ 32 are the GPS
satellites, SV65 ∼ 88 are the GLONASS satellites, and SV193 ∼ 196 are the QZSS satellites.
The elevation and azimuth angles of satellites are obtained from broadcast ephemeirdes. The
arrow means the direction of the vehcle(246.8 [deg]).

the assumed distribution. We believe that using different methods simultaneously leads to more

accurate positioning. We will further investigate the possibility of improvement in future works.

Instead of using the innovation filtering, it would be possible to replace (2.22) with z2
k,i > ϵc,

where ϵc is a fixed threshold. We chose an appropriate ϵc through a trial-and-error process

based on the driving data. The results with a fixed ϵc showed that position accuracy is better

than method A and almost the same as method B. Although position accuracy is almost the same

as method B, the number of rejected signals with z2
k,i > ϵc is larger than the one with method B.

Method B improves accuracy with a fewer number of eliminated signals than the method with

z2
k,i > ϵc. This shows that method B would remove signals effectively. It should be noted that

method B may not eliminate signals whose innovations are large because of the second term in

(2.22), even if they should be removed. We will further investigate and improve the proposed

method for the second term in (2.22) by using the innovation filtering concurrently.

Sensitivity of Position Accuracy Due to L and H

Sec. 2.3.3 shows the sensitivity of the threshold due to a significant change of L and H. The

results of the sensitivity analysis show that (L,H) = (10,150) [m] would be an appropriate value

to remove signals via various reflected paths. We here show the sensitivity of position accuracy

due to a slight shift in L and H with the same data above used.
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Table 2.5: RMS and P-P values for (a) (L,H) = (25,150) [m] and (b) (L,H) = (10,130) [m],
with the method B for Lap 3

RMS P-P
x [m] y [m] z [m] x [m] y [m] z [m]

(a) 3.33 3.23 7.31 21.78 16.25 27.97
(b) 3.43 3.15 7.78 22.17 16.51 28.18

We choose (L,H) = (25,150) and (L,H) = (10,130) [m] and examine position accuracy

with method B for Lap 3. Table 2.5 shows RMS and P-P errors with (L,H) = (25,150) and

(L,H) = (10,130) [m]. Compared to the results in Table 2.3, Table 2.5 shows that method

B with both choices of (L,H) improves position accuracy from method A. This explains that

method B improves position accuracy, even if we approximately choose L and H.

Position Accuracy in Open Sky Area

Method B assumes reflection and diffraction models based on a simple geometric model of

the surrounding environments of a vehicle in urban canyons. We examine position accuracy

in open sky areas to show no unexpected degradation with method B due to the rejection of

measurements. Open sky areas give good satellite visibility and satellite signals may rarely

block. Thus, NLOS signal reception would not mostly occur.

We drove around Yoyogi - Park, Tokyo, an open sky area. Fig. 2.10 shows that the results

of positioning with method A and B. The difference between positioning results with method

A and B is slight. The dots on Fig. 2.10 for method A and B are overlapped. The average

number of rejected satellites is less than one in positionings with method B around the park.

Since method B does not reject signals whose measurement errors are small, position accuracy

with method B would not degrade in open sky areas.

2.5 Conclusion

In this chapter, we proposed a novel method to reject the measurements obtained from NLOS

signals based on a model where the signals are reflected and diffracted in a simplified sur-

rounding environment. The models give a threshold to remove measurements from the adaptive

extended Kalman filter. If an innovation in the adaptive EKF exceeds the threshold, it is re-
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Figure 2.10: Positioning results near Yoyogi-Park. (Blue points for the method A and pink
points for the method B are almost overlapped.)

moved from the filter computation. We performed experiments in urban canyons and showed

that the method can improve position accuracy. Moreover, position accuracy with the proposed

method does not degrade in open sky areas. The proposed method does not require additional

external sensors, e.g., cameras, and can be applied to extensive surrounding environments of a

vehicle.
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Chapter 3

Performance Improvement with Process

Noise Model for Poor Satellite Geometry

3.1 Introduction

Global Navigation Satellite System (GNSS) is an absolute positioning sensor widely used in

various applications. GNSS can determine the location of a receiver based on trilateration

by using pseudo-ranges between GNSS satellites and a receiver. It is well-known that posi-

tioning performance is dramatically degraded because of Non-Line-Of-Sight (NLOS) signal

reception in urban environments [7]. NLOS signal reception occurs where tall buildings block

Line-Of-Sight (LOS) direct signals from satellites and the signals are received via reflection

and/or diffraction. Pseudo ranges obtained from NLOS signals have tendency to be positive

outliers [29, 30], because they are computed from the times of flight of the signals. We, there-

fore, have to reject NLOS signals from position calculation to improve positioning accuracy in

urban environments.

Many researchers have developed NLOS signal rejection methods based on measurement

residuals [19, 9, 34], fisheye-camera images [35, 36], 3D city maps with ray tracing [14, 28, 37],

and so on. It is possible to reject NLOS signals precisely by applying these methods, and then

positioning performance can be improved if a sufficient number of satellites are available. Un-

fortunately almost all signals in dense urban environments could be NLOS signals. The precise

rejection of NLOS signals would greatly reduce the number of satellites available in position

calculation, thus cause poor satellite geometry, that is, a biased distribution of visible satellites.
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Since accuracy of trilateration is highly dependent on the geometric locations of the satellites

as seen by a receiver, poor satellite geometry may result in inaccurate positioning. The above

mentioned studies have not sufficiently dealt with the problem of poor satellite geometry caused

by NLOS rejection. Taking satellite geometry into account in addition to NLOS rejection might

yield more accurate positioning.

The estimate of position usually can be obtained by using Kalman filter [5, 38] under some

assumptions about process model, measurement model, and noise statistics. However, the es-

timation by Kalman Filter may suffer from its divergence [6, 39]. A typical example of filter

divergence occurs when the assumptions are inconsistent with actual model. The estimation

error covariance becomes excessively small due to the model errors, the filter gain is therefore

small, and eventually the filter begins to ignore new measurements. As a consequence, esti-

mate errors will be biased or diverge. Since these model errors are in general unknown and

unbounded, it is difficult to solve the divergence theoretically.

A conventional and simple technique [40] to prevent filter divergence is to bump up process

noise covariance to cover the uncertainty of model errors. This technique is easy to implement,

that is, we have only to add fictitious process noise covariance to its nominal value. Since this

technique is largely heuristic, it is important to discuss its effect not only on divergence but also

on filter performance.

In the application of the technique to GNSS positioning [9], bumping up process noise co-

variance inflates estimation error covariance in the prediction step. The inflated covariance can

be reduced by processing observations right after the inflation, if satellite geometry is good.

Consequently, the size of estimation error covariance is kept to be large enough to avoid the

divergence, but not too large. However, if satellite geometry is poor, what would be happened?

The inflation cannot be reduced in a certain direction according to the geometry, and the estima-

tion error covariance would become larger than expected. This unexpectedly large covariance

would lead to inaccurate positioning.

A proper choice of the process noise covariance has been of interest to many researchers

so far. Some filtering techniques have been developed to have an estimation error covariance

that is insensitive to changes in process noise covariance, through the steady-state analysis of

estimation error covariance [41, 42]. Furthermore, also noise-adaptive estimation techniques

have been proposed [43, 44, 23]. However, these techniques cannot handle with preventing the
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performance degradation caused by poor satellite geometry, because they do not take satellite

geometry into account.

There are some approaches that can be used to avoid the performance degradation caused

by poor satellite geometry. Constrained Kalman filter techniques can be utilized to mitigate the

degradation [45, 46]. The techniques automatically detect poor satellite geometry, and estimate

only the state variables for which poor satellite geometry would not cause the degradation.

However, it is difficult to choose a proper threshold for detecting poor satellite geometry in a

heuristic manner. The positioning degradation can also be resolved by integrating other sensors

such as IMU (Inertial Measurement Unit) and LiDAR (Light Detection and Ranging) device

into GNSS Kalman filter [9]. The observations from the sensors can compensate for the lack of

information due to poor satellite geometry. However, adding those sensors is often unacceptable

in terms of cost and installation space.

The main contribution of this work is twofold. First, we clarify the fundamental relationship

between process noise and satellite geometry through theoretical analysis. The analysis shows

that the inflation of estimation error covariance by fictitious process noise can be unexpectedly

large for poor satellite geometry. Secondly, from the theoretical results, we propose a novel

way to choose process noise covariance based on satellite geometry in order to remove the

unexpected inflation. Comparing with the approaches mentioned above, our approach is based

on a theoretical sensitivity analysis, and does not require other additional sensors.

3.2 Positioning from Poor Satellite Geometry

3.2.1 Poor Satellite Geometry Caused By NLOS Signal Rejection

This section illustrates the problem caused by poor satellite geometry. Fig. 3.1 is an example

of a satellite sky plot superimposed on a fisheye-camera image taken at Kobe city, Japan. As

shown in Fig. 3.1, tall buildings surround the location and can block almost all direct signals

from satellites. We suppose that satellites overlapped on buildings are NLOS satellites (denoted

as red dots), and the others are LOS satellites (denoted as blue dots). If complete NLOS satellite

rejection is done, only the five satellites will remain. We can see that remained satellites are

located along the northeast direction. If we bump up process noise covariance to avoid the filter
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divergence, position uncertainty in the direction of southeast will become larger unintentionally.

Although it will be explained from a theoretical point of view in Section 3.3, we will show it

through a simulation study in this section.

�

�

��

Figure 3.1: A sky plot onto a fisheye-camera image taken at Kobe city, Japan. A blue dot
represents a LOS satellite and a red dot represents a NLOS satellite. N, S, E, and W stand for
North, South, East, and West, respectively.

3.2.2 Motivating Examples for Poor Satellite Geometry

In order to show the problem clearly, we present some simulation results using a simplified

model for GNSS, under the assumption that five satellites are stationary and located in poor

satellite geometry. A GNSS receiver is also assumed to remain stationary on a horizontal sur-

face. Let the dynamical system and the linear measurement equations be as follows:

xk = xk−1+wk, (3.1)

yk = Hxk + vk, (3.2)

H =


−cosθ1 sinψ1 −cosθ1 cosψ1 −sinθ1

...
...

...

−cosθ5 sinψ5 −cosθ5 cosψ5 −sinθ5

 ,

where xk = (re,rn,ru)T is a position vector represented in the ENU (East-North-Up) coordinates,

yk is a measurement vector composed of ranges from five satellites to a receiver, H is a 5× 3

measurement matrix, vk is a measurement noise vector, and wk is a process noise vector. We
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assume that x0 ∼ N(0, I), E{wk} = E{vk} = 0, E{wkwT
l } = Q(k)δkl = 0.01Iδkl

1, and E{vkvT
l } =

R(k)δkl = 4Iδkl. E{a} is the expectation of a random variable a, and δkl is the Kronecker delta.

wk and vk are produced numerically by random number. θi and ψi are the elevation angle and

the azimuth angle of the ith satellite, respectively.

The five satellites are supposed to be located as shown in Figure 3.2. Their elevation an-

gles are θ = {90,15,15,15,15} [degree], and their azimuth angles are ψ = {0,40,50,220,230}

[degree]. The satellites are located along the northeast direction as in Figure 3.1. We can de-

termine whether the satellite geometry2 is poor or not by evaluating the eigenvalues of HTH;

If one of eigenvalues is zero or close to zero, HTH is singular or almost singular, and such

a satellite geometry is called poor. The eigenvectors of HTH corresponding to the minimum

and maximum eigenvalues coincide with a southeast direction and a northeast direction in this

satellite geometry (the locations of the five satellites were chosen so that the directions of the

eigenvectors of HTH are intuitively obvious. Although this work presents the results when the

elevation angles θi for four satellites are 15 degrees (i = 2, · · · ,5), similar numerical results are

obtained for θi = 0,30, or 45 degrees).

��

���

���

���

���

��	 ��
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�

��

Figure 3.2: A sky plot for simulation study. SV, NE, and SE stand for Satellite Vehicle, a
northeast direction, and a southeast direction respectively.

Simulation results are obtained by Kalman filter that will be described in Section 3.3, with

1Since the position vector xk is stationary, wk and Q(k) should be zero originally. However, such a choice of
wk and Q(k) would lead to numerical problems of Kalman filter [1]. To avoid the problems, small wk and Q(k) are
usually assumed to exist. In this work, we suppose that ”true process noise” denoted by wk and Q(k) includes this
inevitable small noise.

2It is well-known that DOP (Dilution of Precision) parameters characterize satellite geometry. In this work, we
attempt to integrate satellite geometry into Kalman filter.
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two parameter settings. For setting (1), the process noise covariance Q̃ in Kalman filter is chosen

as the true one Q. For setting (2), Q̃ is set by adding fictitious noise δqI to Q. Fig. 3.3 shows

the estimated positions in a re-rn plane that were obtained by repeating the filter computation

1000 times with different initial position estimates and different noise realizations.

Table 3.1 shows standard deviations that are computed by projecting the plotted estimate

errors to two eigenvectors of HTH, where σS E and σNE are standard deviations in the direc-

tions of two eigenvectors, southeast direction and northeast direction. The differences between

σS E and σNE mainly come from the satellite geometry in both (1) and (2). Since there is no

model error in these simulations, the plotted estimation errors spread depending on the satellite

geometry and the settings of process and measurement noises, and are consistent with the esti-

mation error covariance calculated from Kalman filter. However, we should note that the values

of σS E/σNE in (1) and (2) are quite different—3.48 and 4.22, respectively. This means that

the estimation errors in southeast direction are spread more widely than in northeast direction

even though the fictitious process noise is added equally in each direction. The fictitious noise

to avoid the filter divergence makes the estimation errors worse unintentionally in the southeast

direction that corresponds to the eigenvector of the smallest eigenvalue.
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(b) Filter results with setting (2)

Figure 3.3: Estimated positions obtained by repeating Kalman filter computation 1000 times.

We devote Section 3.3 to reveal the theoretical relationship among the inflation of estimation

error covariance, process noise covariance, and satellite geometry. Then, in Section 3.4, we will

describe how to reduce the unnecessary inflation of estimation error covariance.
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Table 3.1: Standard deviations of estimate errors.

Settings (1) (2)

σS E[m] 1.08 3.38
σNE[m] 0.31 0.80
σS E/σNE 3.48 4.22

3.3 Sensitivity Analysis of Estimation Error Covariance

We consider a linear system and Kalman filter for it:

xk = Fk−1xk−1+wk, (3.3)

yk = Hkxk + vk, (3.4)

x̂−k = Fk−1 x̂+k−1, (3.5)

P−k = Fk−1P+k−1FT
k−1+ Q̃k, (3.6)

x̂+k = x̂−k +Kk(yk −Hk x̂−k ), (3.7)

P+k = [(P−k )−1+HT
k R̃−1

k Hk]−1, (3.8)

Kk = P−k HT
k [HkP−k HT

k + R̃k]−1, (3.9)

where we use the same notations as in (3.1) and (3.2), and variables in the filter are listed in

Table 3.2. We suppose that R̃k and Q̃k are different from their true ones Rk and Qk.

First of all, we derive the difference equation between P+k−1 and P+k . Since HT
k R̃−1

k Hk is

symmetric, it can be diagonalized by an orthogonal matrix G, i.e., HT
k R̃−1

k Hk =GkΛ̃kGT
k , where

Λ̃k is a diagonal matrix whose diagonal elements are the eigenvalues of HT
k R̃−1

k Hk. Now we

make the following assumptions:

Assumption 3.3.1. Fk = I.

Assumption 3.3.2. GT
k P+k−1Gk and GT

k Q̃kGk are diagonal.

We drop the notation k for simplicity except for P+k−1 and P+k . Using Assumption 3.3.1 and

substituting HTR̃−1H =GΛ̃GT into (3.8), we can rewrite it as

P+k = [(P−k )−1+HTR̃−1H]−1

=G[(GTP+k−1G+GTQ̃G)−1+Λ̃]−1GT. (3.10)
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Table 3.2: Filter variables.

Variable Definition

x̂−k Prior estimate
x̂+k Posterior estimate
P−k Prior estimation error covaraiance
P+k Posterior estimationerror covaraiance
Fk State transition matrix
yk Measurement vector
Hk Measurement matrix
R̃k Measurement noise covariance
Q̃k Process noise covariance
Kk Filter gain matrix
k Time step

Multiplying GT and G to both sides of (3.10), we obtain

GTP+k G = [(GTP+k−1G+GTQ̃G)−1+Λ̃]−1. (3.11)

From (3.11) and Assumption 3.3.2, GTP+k G is also diagonal. Then the iith element of GTP+k G

denoted as P̃i,k can be written as

P̃i,k =
P̃i,k−1+ q̃i

1+ λ̃i(P̃i,k−1+ q̃i)
, (3.12)

where λ̃i is the iith element of Λ̃, and q̃i is the iith element of GTQ̃G. Equation (3.12) is the

difference equation of estimation error covariance from k−1 to k, and shows that P̃i,k depends

on q̃i and λ̃i, that is, process noise covariance and satellite geometry.

By using the true process noise covariance Q and a fictitious process noise δq, we represent

Q̃ as Q̃ = Q+ δq. It is assumed that each component in Q̃ is diagonalized by G, that is, GTQG

and GTδqG are diagonal matrices. Then, (3.12) can be rewritten as:

P̃i,k =
P̃i,k−1+qi+δqi

1+ λ̃i(P̃i,k−1+qi+δqi)
, (3.13)

where qi and δqi are the iith element of GTQG and GTδqG, respectively. Now we define the
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variation of P̃i,k due to δqi as ∆Pi. From (3.13), ∆Pi is approximated as the following equation.

∆Pi ≈
∂P̃i,k

∂δqi

∣∣∣∣∣∣
δqi=0

δqi

=
1

{1+ λ̃i(P̃i,k−1+qi)}2
δqi. (3.14)

From (3.14), we examine the sensitivity of ∆Pi with respect to λ̃i. Since HTR̃−1H is a

positive semidefinite matrix, λ̃i ≥ 0 and

∂∆Pi

∂λ̃i
< 0, for δqi > 0. (3.15)

That is, ∆Pi(λ̃i) decreases monotonically as λ̃i goes from zero to infinity. At the limits λ̃i→ +0

and λ̃i→∞, the values of ∆Pi(λ̃i) are given as

lim
λ̃i→0
∆Pi = δqi, lim

λ̃i→∞
∆Pi = 0.

For good satellite geometry, there is no eigenvalue λ̃i close to zero. The inflations of P̃i,k that are

caused by the fictitious noise δqi between time steps k−1 and k are suppressed for all i by the

observation at time step k, according to (3.14). By choosing an appropriate value of δqi through

trial and error, we can keep the covariance P+k reasonably large to avoid the filter divergence

even for the system with model errors. On the other hand, at least one of eigenvalues is zero or

close to zero for poor satellite geometry. If we choose the size of δqi for good satellite geometry,

it may be too large for poor satellite geometry and cause unintentionally large inflation of P̃i,k.

Too large covariance P̃i,k leads to widely distributed estimation errors along the corresponding

direction and degrades the filter performance.

In the next section, we will propose a new way to choose the fictitious process noise δqi

based on satellite geometry HT
k Hk to reduce the inflation. To derive the choice, we make an

additional assumption:

Assumption 3.3.3. R̃k = rkI, where rk is a positive scalar.

From Assumption 3.3.3, HT
k R̃−1

k Hk can be rewritten as

HT
k R̃−1

k Hk =
1
rk

GkΛkGT
k ,
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where Λk is diagonal. From (3.13) and (3.14), we obtain

P̃i,k =
rk(P̃i,k−1+qi+δqi)

rk +λi(P̃i,k−1+qi+δqi)
, (3.16)

∆Pi ≈
r2

k

(rk +λi(P̃i,k−1+qi))2
δqi, (3.17)

where λi is the iith element of Λk. It should be noted that λi is an eigenvalue of HT
k Hk and,

unlike λ̃i, represents the satellite geometry independently of R̃k.

Moreover, we can compute a steady-state solution of (3.12) (or (3.16)), under the assump-

tions that R̃k, Hk and Q̃k are time-invariant, and GTP+0 G is diagonal. Denoting the steady values

of P̃i,k and P̃i,k−1 as P̃i and substituting them into (3.12), we can obtain a steady-state solution:

P̃i =
−q̃i+

√
q̃2

i +
4q̃i
λ̃i

2
. (3.18)

The solution in (3.18) is equivalent to the solution of an algebraic Riccati equation of estimation

error covariance [47]. It should be noted that the solution in (3.18) is consistent with the results

in Section 3.2.2. The values of P̃i that are calculated with λ̃i and q̃i for the motivating example

coincide with the standard deviations in Table 3.1. Even though a steady-state solution is well-

known, the analysis in this section revealed how the covariance P̃i,k is inflated at each time

step depending on the fictitious noise δqi and the satellite geometry λi (or λ̃i). By using the

analytical result in (3.17), we will propose a novel process noise model in the next section to

avoid an unintentionally large inflation at each time step.

3.4 Novel Process Noise Model for GNSS Stationary Posi-

tioning

3.4.1 Extended Kalman Filter for Stationary Positioning

In this section, we describe the extended Kalman filter for GNSS stationary positioning. Since

the pseudo-range and Doppler frequency measurement equations are non-linear, the extended

Kalman filter (referred as EKF) is generally used. We define the state vector as x = [rT, tTs , t, ṫ]
T,
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where r[m] is the position vector of a receiver, t[m] is a clock bias, and ṫ[m/s] is a clock drift.

ts[m] is an inter-system bias (ISB) vector between GPS time and other GNSS’s time. We sup-

pose to use a multi-GNSS single frequency receiver, for example, FURUNO GN-8720, and ts

consists of three elements that are GPS-QZSS, GPS-GLONASS, and GPS-Galileo ISBs.

The dynamical system and the measurement equations are given as follows:

xk = Fk−1xk−1+wk, (3.19)

yk = h(xk)+ vk, (3.20)

h( j)(xk) = ||rk − r( j)
k ||+ t+ tm, (3.21)

h( j+M)(xk)= −
(rk − r( j)

k )Tṙ( j)
k

||rk − r( j)
k ||

+ ṫ, (3.22)

where

Fk =

 I6×6 O6×2

O2×6 F̄

 , F̄ =
 1 ∆t

0 1

 , (3.23)

h( j)(xk) and h( j+M)(xk) are the jth and the j+Mth elements of h(xk), r( j)
k and ṙ( j)

k are the position

and velocity vectors of the jth satellite, and tm is the ISB of the GNSS system to which the jth

satellite belongs. M is the number of satellites.

The EKF for this system consists of the computations outlined from (3.5) to (3.9), but with

(3.7) replaced by

x̂+k = x̂−k +Kk[yk −h(x̂−k )], (3.24)

and Hk computed as

Hk =
∂h(xk)
∂xk

∣∣∣∣∣
xk=x̂−k

.

The EKF may often produce a biased estimate and diverge due to unmodeled measurement

errors, dynamics errors, and non-linear effects of (3.21) [48]. To cover the uncertainties by a
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fictitious process noise, we usually choose the process noise covariance in the EKF as

Q̃ = Q+δq̄. (3.25)

For the EKF in this work, we set Q to 0.01I to avoid the numerical problems as in Section 3.2.2.

This Q̃ makes gain matrix Kk large from (3.6) and (3.9), thus the EKF updates the estimate x̂

by overweighting current observations. It should be noted that a larger R cannot be effective in

preventing filter divergence, since a larger R̃ makes Kk smaller. We choose R̃ so that it represents

actual measurement noise level. In this work, R̃ is determined based on the Signal-Noise-Ratios

(SNRs) of the receiver FURUNO GN-8720 as follows [29, 30]:

R̃ = diag(σ2
1(s1), . . . ,σ2

M(sM),µ2
1(s1), . . . ,µ2

M(sM)), (3.26)

σk = 0.64+784e−0.142sk ,

µk = 0.0125+6767e−0.267sk , k = 1, . . . ,M,

where sk, σk and µk are the SNR, the standard deviations of pseudo-range noise and Doppler

frequency noise for the kth satellite signal.

3.4.2 Process Noise Covariance Based on Satellite Geometry

In practical applications of EKF, it is not easy to find an appropriate choice of the fictitious

noise δq̄ in (3.25). It is often chosen and fixed through a trial and error process, so that a

required performance of EKF is obtained. If the satellite geometry is always good and all the

eigenvalues λi are equally large, such a choice of δq̄ could work well. In this work, we call it

the conventional choice, and consider only δq̄ in the following form:

δq̄ = δqI, (3.27)

where δq is a positive scalar. However, if the satellite geometry is poor, the conventional choice

of δq̄ would cause an unintentional inflation of P as described in Sections 3.2 and 3.3.

In this section, we propose a novel way to choose the fictitious noise δq̄ based on satellite

geometry by assuming that (3.16) approximately holds in our EKF. The basic idea is to choose
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δq̄ so that ∆Pi in (3.17) is less than or equal to a specified value ci at each time step k in order

to suppress the unintentional inflation. The fictitious noise is chosen as follows.

δq̄ =GkQGT
k , (3.28)

Qi =

 δq
′
i if δq′i ≤ δq

δq else
,

δq′i =
(rk +λi(P̃i,k−1+qi))2

r2
k

ci,

where the matrix Q is diagonal, and Qi is the ith diagonal element of Q, and δq is a positive

scalar for the conventional choice. From (3.17) and (3.28), if δq′i ≤ δq, ∆Pi satisfies ∆Pi ≈ ci

even for a small λi. If δq′i > δq, ∆Pi < ci holds approximately even for δqi = δq. Consequently,

we can expect that the unintentional inflation of P is suppressed, because ∆Pi is limited to the

maximum value of ci, regardless of satellite geometry λi. For the proposed choice of δq̄, we can

keep an appropriate inflation of P by the parameters ci. We will determine ci through simulation

study in Section 3.5.

Moreover, the steady-state solution P̃i in (3.18) does not hold for δq̄ in (3.28), because q̃i in

(3.12) includes P̃i,k−1. By substituting (3.28) into (3.16), we can obtain the following equation:

λ̃3
i ciP̃3

i + (λ̃i+ λ̃
2
i ci+2λ̃3

i ciqi)P̃2
i + (λ̃iqi− λ̃ici+ λ̃

3
i ciq2

i )P̃i− (ci+qi+2λ̃iciqi+ λ̃
2
i ciq2

i ) = 0.

(3.29)

By solving the above equation numerically, we can obtain an approximate steady-state solution

P̃i.

Strictly speaking, (3.16) does not hold for the EKF in this section, because the three assump-

tions in Section 3.3 may be unsatisfied, that is to say, (1) Fk , I, (2) GT
k P−k−1Gk is not diagonal,

and (3) R̃k , rkI. For Assumption 3.3.3 we choose R̃k as diagonal and give its diagonal elements

based on SNRs in this work. Since SNRs of LOS signals usually have similar values, we can

expect that R̃k ≈ rkI and Assumption 3.3.3 is approximately satisfied. For Assumptions 3.3.1

and 3.3.2, we cannot justify them theoretically. Although Assumption 3.3.1 is necessary to

show that both P+k and P+k−1 are diagonalized by Gk, they are almost diagonalized for the exper-

imental results shown in Section 3.6. Therefore, Assumption 3.3.2 is approximately satisfied
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in the experimental results, and then we do not need Assumption 3.3.1 to show it. However,

for F , I, (3.11) itself does not hold. In this work, we suppose that the effects of F with F̄ in

(3.23) are small, because only one nondiagonal element is nonzero. We also note that, in As-

sumption 3.3.2, Q̃ can be chosen with δq̄ in (3.28) such that GT
k Q̃Gk is diagonal. As a result, we

believe that (3.16) approximately holds in our EKF.

We finally summarize the proposed noise model. Employing the fictitious noise δq̄ in (3.28),

Q̃ varies depending on satellite geometry, and ∆P̃i can be insensitive to satellite geometry. We,

therefore, call the model satellite-geometry adaptive model. Although a noise-adaptive model

introduced in Section 3.1 is well known, Q̃ is estimated based on recent observations, and an

accurate estimation would be difficult for poor satellite geometry. To our best knowledge, our

model is the first process noise model that changes with HTH, i.e., satellite geometry.

3.5 Simulation Study

We present here some simulation results of the proposed process noise model to demonstrate its

effectiveness and to determine an appropriate value of ci. The model is applied to the Kalman

filter for the simplified system in Section 3.2.2, where all the assumptions in Section 3.3 are

satisfied and (3.16) holds.

We consider the following three settings of the process noise Q̃.

Setting (1) No fictitious process noise:

Q̃ = Q (3.30)

Setting (2) Conventional choice of fictitious process noise:

Q̃ = Q+δqI (3.31)

Setting (3) Proposed choice of fictitious process noise:

Q̃ = Q+GkQGT
k (3.32)

The first and second settings are the same as the settings in Fig. 3.4a and 3.4b, where δq is
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chosen as δq = 1 in (3.31). In this work, we assume that, for (3.32), all the ci are the same,

that is, ci = c for ∀i. Numerical simulations for setting (3) were performed with different values

of c: (3-a) with c = 1.0 to (3-f) with c = 0.01 as shown in Table 3.3. The standard deviations

σS E , σNE , and their ratios for all the settings are summarized in Table 3.3, where the results for

settings (1) and (2) in Table 3.1 are shown again. The Root Mean Squared Error (RMSE) d is

also computed for the three-dimensional position to show the positioning accuracy in the table.

For determining an appropriate value of c, we should pay attention to two points: avoiding

the filter divergence and suppressing the unintentional inflation of P along the eigenvectors cor-

responding to small eigenvalues λi. For the first point, σNE , that is the standard deviation along

the direction with a large eigenvalue, is increased to 0.80 in setting (2), comparing with setting

(1). A similar magnitude of σNE would be necessary even in setting (3) for the divergence

avoidance. For the second point, we check the ratio of σS E to σNE . In setting (1), the ra-

tio comes only from the satellite geometry, because there is no model error or fictitious noise.

Therefore, we suppose that the ratio in setting (1) is desirable even in setting (3) for suppressing

the inflation. From these two points, we can choose setting (3-c) c = 0.36 for the proposed

noise covariance model in this work. Moreover, it should be noted that the values of standard

deviations in (3-a) to (3-f) are consistent with the steady-state solutions computed from (3.29).

Table 3.3: Standard deviations, their ratios, and RMSEs with different process noise settings.

Settings (1) (2) (3-a) (3-b) (3-c) (3-d) (3-e) (3-f)

σS E[m] 1.08 3.38 3.52 3.14 2.71 2.22 1.63 1.29
σNE[m] 0.31 0.80 0.92 0.87 0.80 0.68 0.49 0.38
σS E/σNE 3.48 4.22 3.82 3.61 3.39 3.26 3.32 3.39

d 1.21 3.65 3.83 3.45 3.01 2.49 1.84 1.46

The settings from (3-a) to (3-f) are with c = {1.0,0.64,0.36,0.16,0.04,0.01}.

The effectiveness of the proposed noise model is verified by comparing the simulation re-

sults in settings (2) and (3-c). The estimated positions in a re-rn plane for the two settings are

plotted in Figure 3.4a,b, where the filter computation was repeated 1000 times for each set-

ting as in Section 3.2.2 and Fig. 3.4a is the same as Fig. 3.3b. Ellipsoids in these figures are

the 1σ contours of probability density function (Gaussian) that are calculated from (3.18) for

Fig. 3.4a and from (3.29) for Fig. 3.4b. The distribution of horizontal position errors obtained

by numerical simulations coincides with the ellipsoid obtained theoretically for each setting.

51



We can see that the estimation errors in setting (3-c) are reduced in the direction of southeast,

that is, the direction of the minimum eigenvalue of HTH. In this numerical results, the proposed

noise model suppresses the unintentional inflation of σS E by about 20%. It should be noted that

these results show that both precision and accuracy of positioning in the horizontal plane are

improved in setting (3-c), because the mean value of estimation errors is almost zero. We can

also check the positioning accuracy that includes the vertical errors, by comparing the RMSEs

for settings (2) and (3-c) in Table 3.3.
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(b) Filter results with setting (3-c)

Figure 3.4: Estimated positions obtained for settings (2) and (3-c).

3.6 Experimental Results of Stationary Positioning

This section presents experimental results to show the effectiveness of the proposed process

noise model by applying it to actual data obtained in an urban canyon. The data was collected

at the time and location shown in Table 3.4, and Fig. 3.5 is a fisheye-camera image with a

satellite sky plot at the beginning of data collection. We used a multi-GNSS single frequency

receiver, FURUNO GN-8720, that can receive the signals of GPS, QZSS L1C/A, GLONASS

L1OF, and Galileo E1, and acquired about ten minutes the data that includes pseudo-ranges,

Doppler frequencies, navigation messages, and so on. The receiver was fixed at the location

that corresponds to the center of Fig. 3.5 during the experiment, and the pseudo-ranges and

Doppler frequencies were used as the measurements for EKF. In the figure, blue dots are LOS

satellites, and red dots are NLOS satellites, as in Section 3.2.1. By detecting NLOS satellites
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from the fisheye-camera images, the signals from them were excluded from the measurements.

The LOS satellites are quite close to each other, and the satellite geometry can be considered as

poor, because the minimum eigenvalue of the LOS satellite geometry is always about 0.01 in

the data3.

�

��

�

Figure 3.5: A fisheye-camera image taken at the place where we gathered data.

Based on the numerical results shown in Section 3.5, we examine positioning performance

of the EKF in Section 3.4.1 with two parameter settings for process noise covariance: Setting

(2) with δq = 1 and Setting (3-c) with c = 0.36. The EKFs with the conventional and the pro-

posed noise settings were implemented in a laptop computer as post-processing programs, by

customizing the EKF program implemented in FURUNO GN-8720. The EKFs compute the

estimated position of the receiver by using only the measurements from LOS satellites.

In order to obtain an ensemble average of estimation errors, we make N measurement data

sets whose length is l, from the data acquired for about ten minutes, by shifting the start point by

one step. The EKF calculation is performed for each of the N data sets, Y1 = {y1,y2, · · · ,yl},Y2 =

3Although multipath signals may occur via diffraction/reflection even for LOS satellites, they would be largely
attenuated compared to LOS direct signals. In this work, we do not consider the effects of multipath signals by
assuming that they are sufficiently small
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{y2,y3, · · · ,yl+1}, · · · ,YN = {yN ,yN+1, · · · ,yl+N−1}, with the initial conditions shown in Table 3.4.

The length l of each data set is chosen such that the changes in x̂ and P become sufficiently

small in the EKF as the time step k approaches l. We focus on the estimation error in position

at the final step, r̂(l|l)− r, where the true position r is known as in Table 3.4, and denote it as r̃m

for mth data set.

Table 3.4: Algorithm and experimental settings.

Configurations and Parameters Remarks

True location 34.713817 N Latitude[degree]
135.335599 E Longitude[degree]
40.49 Ellipsoidal height[m]

Date of experiment 18/12/2020 04:15:37–04:26:20 UTC
Antenna Taoglass AA171.301111
δq 1 (3.31)
c 0.36 (3.28) and (3.32)
x̂(0|0) x̂0 ∼ N(xtrue(0),100I) xtrue(0) is the true state of x0
P+0 100I Initial value of P
l 120 Length of each data set
N 534 Number of data sets

We can compute estimation error covariance Σ and RMSE (Root Mean Squared Error) d as

follows:

Σ =
1

N −1

N∑
m=1

(r̃m− r̄)(r̃m− r̄)T, (3.33)

r̄ =
1
N

N∑
m=1

r̃m,

d =

√√√
1
N

N∑
m=1

r̃T
mr̃m. (3.34)

The minimum and maximum standard deviations σmin and σmax of the estimation errors r̃m are

obtained by calculating the minimum and maximum eigenvalues of Σ. Table 3.5 summarizes

the values of σmin, σmax, σmax/σmin and d for the two settings. The following two points can

be seen in Table 3.5:(a) σmax and σmax/σmin in setting (3-c) are less than the ones in setting (2),

while the values of σmin in both settings are almost the same, and (b) RMSE d in setting (3-c)

is also less than the one in setting (2). The first point (a) would indicate that the proposed noise

54



model can suppress the unintentional inflation of estimation error covariance even for actual

data in an urban canyon. From the second point (b), the positioning accuracy with the proposed

noise model is also improved compared to the conventional noise model. The estimation errors

r̃m for the two settings are shown in Figure 3.6a,b, where the errors r̃m are projected to the plane

spanned by the unit eigenvectors emin and emax that correspond to σmin and σmax, respectively.

The ellipsoid in each figure is the 1σ contour of probability density function that is supposed to

be Gaussian with the standard deviations σmin and σmax in Table 3.5.

Table 3.5: Standard deviations from estimation error covariance Σ, their ratios, and RMSEs.

Settings (2) (3-c)

σmax[m] 4.50 4.11
σmin[m] 0.31 0.30
σmax/σmin 14.33 13.57
d 4.90 4.44
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(b) Filter results with setting (3-c)

Figure 3.6: Estimated position errors in the plane spanned by emin and emax.

Although the results in this section demonstrate that the suppression of covariance inflation

is achieved by the proposed noise model, it should be noted that the eigenvector correspond-

ing to σmax is almost along the altitude direction. The standard deviations σmin and σmax in

Table 3.5 are also quite different from the ones calculated from (3.18) and (3.29). These dif-

ferences from the simulation results in Section 3.5 may be due to the following two reasons.

First, the satellite geometry in Fig. 3.5 is largely different from the one for the simulation re-

sults, because there is no LOS satellite with a low elevation angle in Fig. 3.5. The uncertainty
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in the altitude direction would be large due to the clock bias tb for such a satellite geometry4.

Secondly, Assumption 1 is not satisfied in the EKF in Section 3.4.1. Equations (3.18) and

(3.29) do not hold without the assumption. The non-diagonal component of F̄ in (3.23) would

be non-negligible, especially because the position estimation in the altitude direction is highly

dependent on the clock bias tb.

The above inconsistency between the simulation results and the experimental results could

be resolved by extending the proposed process noise model to the systems without the assump-

tions in Section 3.3. As shown in the next chapter, theoretical extension of the sensitivity analy-

sis is possible, and it will allow us to develop a process noise model in a more consistent manner

for the systems without the assumptions. Further improvement of the estimation performance

may also be possible by changing the choice of c or δq̄ itself. The extension and improvement

will be developed in the next chapter.

3.7 Conclusion

This chapter pointed out that a fictitious process noise to prevent the filter divergence can de-

grade the filter performance for a poor satellite geometry due to an unintentional inflation of

estimation error covariance. A sensitivity analysis of estimation error covariance by fictitious

process noise and satellite geometry was performed under some assumptions, and we proposed

a novel model of the fictitious process noise based on satellite geometry in order to suppress

the unintentional inflation of estimation error covariance. The effectiveness of the proposed

noise model was shown via simulation and experimental results. Although the sensitivity anal-

ysis and the proposed model derived from it are based on the assumptions, the approach in this

chapter can be extended to the systems without the assumptions. The extension and further

improvement of the proposed approach will be presented in the next chapter.

4If the elevation angles of all the satellites are close to 90 degrees, the errors in altitude estimation and clock
bias estimation would be indistinguishable. Through numerical simulations based on the simplified simulation
model introduced in Section 3.2.2 for the same satellite geometry as in Fig. 3.5, we can see that the uncertainty in
the altitude direction with clock bias estimation is much larger than the one without it
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Chapter 4

Adaptive Choice of Process Noise

Covariance Using Measurement Matrices

4.1 Introduction

Improving the accuracy of GNSS positioning in urban canyons is a challenging topic, especially

for low-cost GNSS receivers. Although Non-Line-Of-Sight (NLOS) signals can be rejected by

various methods, the number of satellites available in position calculation decreases, and their

geometric distribution is biased. In Kalman filter for GNSS positioning, the process noise

covariance is often bumped up to avoid the filter divergence in the presence of unknown model

errors, by assuming that there is a fictitious process noise in addition to the nominal process

noise.

For systems with inaccurate models, many approaches have been proposed so far to miti-

gate the increase in estimation errors or to avoid the filter divergence by choosing appropriately

the covariances of process noise and measurement noise in the filters. A common heuristic

approach is to add fictitious noises to the nominal covariances of the original system model.

Because of the fictitious noises for process noise and measurement noise, the covariance of

state estimation error in the filter becomes sufficiently large to cover the model error, and the

filter divergence is avoided. Although the fictitious noises are often given by trial and error,

naively chosen fictitious noises tend to unintentionally inflate the state estimation error covari-

ance and result in degraded estimation accuracy, especially for the systems where the number

of measurements is less than the number of state variables, as we pointed out in [49, 50]. Fad-
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ing Memory Filter (FMF) can be viewed as one of fictitious noise approaches. By weighting

the estimation errors according to their time steps, FMF takes more account of the recent es-

timation error, which is equivalent that the process noise covariance is increased by a certain

fictitious noise. Even when FMF is employed, the degradation of estimation accuracy with the

unintentional inflation of estimation error covariance has been reported in [24, 42, 51, 52].

Another common approach is to adaptively modify the process noise and measurement noise

covariances using actual measurements [43, 53]. The appropriate values of the covariances are

estimated based on the measurements obtained in multiple steps under the assumption that noise

statistics are ergodic. However, when the noise statistics vary with time steps, it is difficult to

choose how many measurement steps should be used for estimation. In addition, it has been

known that the estimation of the process noise covariance matrix cannot be determined uniquely

when the number of measurements is less than the number of state variables [22, 23].

Chapter 3 pointed out that fictitious noise can make the estimation error covariance exces-

sively large with poor satellite geometry, and the unintended inflation may degrade filter per-

formance in urban canyons. We proposed a process noise model based on satellite geometry to

suppress the unintended inflation. However, the results of Chapter 3 have three problems to be

resolved. (1) The sensitivity analysis for the estimation error covariance due to fictitious noise

is limited to a linear system whose state transition matrix is an identity matrix. (2) Although the

proposed model in Chapter 3 requires a threshold to switch fictitious noise to the smaller one, it

is difficult to choose an appropriate threshold for various satellite distributions. (3) We verified

performance improvement with the proposed model through numerical simulations and experi-

ments. However, they have been performed under the conditions that the number of satellites is

always the same and their geometry is the same or almost the same.

This chapter presents an extended process noise model based on measurement matrices.

The outcomes in this chapter overcome the three problems mentioned above. We show the sen-

sitivity of the estimation error covariance due to fictitious noise without assumptions defined in

Chapter 3. The extended process noise model based on the sensitivity analysis is developed to

improve the model presented in Chapter 3. The improved model give fictitious noise adaptively

based on the measurement matrix at each time step. This indicates that fictitious noise due to

this model varies depending on satellite geometry. We perform experiments, and the results

show (1) the same effect as in the previous model derived in Chapter 3 and (2) the improve-
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ment under the conditions that the number of satellites and their geometry varies on time. The

former is to suppress the unintentional inflation of the estimation error covariance matrix, and

the latter shows that the extended model improve the EKF performance with various satellite

distributions.

The contribution of this work is twofold: First, to the best of our knowledge, the proposed

model is the first to choose the process noise covariance adaptively to the measurement matrix

to overcome the accuracy degradation caused by inaccurate model. Second, it is shown that the

proposed model works well for GNSS stationary positioning and GNSS/INS positioning with

various satellite distributions.

The rest of this chapter begins with an overview of the extended Kalman filter. We develop

sensitivity equations of the estimation error and its covariance matrix due to fictitious noise

for a linearized system. We propose the extended process noise model based on the sensitivity

analysis by extending the previous one presented in Chapter 3. In this model, we design two

types of the choice of fictitious noise. The difference between the two types is how to determine

fictitious noise level. The first is to choose it with a fixed parameter, and the second is to mini-

mize the sum of squared residuals. We last present the results of experiments with each model

derived in this chapter. Further, we demonstrate numerical simulations of robot localization to

show that the proposed models can be employed in applications other than GNSS.

4.2 Sensitivity Analysis for Discrete Nonlinear Systems

4.2.1 Extended Kalman Filter for Discrete Nonlinear Systems

We consider a discrete nonlinear system:

xk = f (xk−1)+wk, (4.1)

yk = h(xk)+ vk, (4.2)

where the state vector and the measurement vector at time step k are denoted as xk ∈Rn and yk ∈

Rm respectively. The process noise and measurement noise are represented by wk ∈ Rn and vk ∈

Rm, and the sequences {wk} and {vk} are assumed to be white, zero-mean and uncorrelated with

one another. The covariance matrices for wk and vk are expressed by Qk and Rk, respectively.
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Assuming that the functions f and h are differentiable as necessary, the system in (4.1) and

(4.2) can be linearized around a prior estimate x̂−k as follows:

xk = Fk−1xk−1+uk−1+wk, (4.3)

ηk = Hkxk + vk, (4.4)

where

Fk =
∂ f (xk)
∂xk

∣∣∣∣∣
xk=x̂+k

, Hk =
∂h(xk)
∂xk

∣∣∣∣∣
xk=x̂−k

, (4.5)

uk = f (x̂+k )−Fk x̂+k , ηk = yk −h(x̂−k )+Hk x̂−k . (4.6)

The extended Kalman filter (EKF) for the system in (4.3) and (4.4) can be written as follows:

x̂−k = f (x̂+k−1), (4.7)

P−k = Fk−1P+k−1FT
k−1+Qk, (4.8)

x̂+k = x̂−k +Kk[yk −h(x̂−k )], (4.9)

P+k = (I−KkHk)P−k (4.10)

= (I−KkHk)P−k (I−KkHk)T+KkRkKT
k (4.11)

= [(P−k )−1+HT
k R−1

k Hk]−1, (4.12)

Kk = P−k HT
k (HkP−k HT

k +Rk)−1, (4.13)

= P+k HT
k R−1

k , (4.14)

where x̂k and Pk denote respectively the state estimate and the estimation-error covariance ma-

trix, and Kk is Kalman gain. The superscripts − and + for x̂k and Pk mean ‘prior’ and ‘posterior’.

In (4.10)-(4.14), P+k and Kk are represented in several ways for later use.

We also define estimation errors in x̂−k and x̂+k for convenience of later use as follows:

e−k ≡ xk − x̂−k , (4.15)

e+k ≡ xk − x̂+k . (4.16)
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From (4.9), by ignoring higher order terms, e+k and e−k satisfy the following linearized equation:

e+k = Ψke−k −Kkvk, (4.17)

where a filter transition matrix Ψk is defined as

Ψk = I−KkHk. (4.18)

In general, EKF works well if the functions f and h and the matrices Fk, Gk, Hk, Qk, and

Rk accurately approximate the actual system. However, it often suffers from model errors, and

inaccurate models tend to result in large or biased estimation errors; in particular, process model

uncertainties may cause filter divergence [6, 39].

One approach to coping with the model errors is to add fictitious noises to wk and vk and

inflate Qk and Rk appropriately. The inflated Qk and Rk may cover uncertainties due to model

errors and mitigate unexpected large or biased estimation errors. However, it would be difficult

to find appropriate fictitious noises, especially for the systems where the number and quality of

measurements vary with the environment. If fictitious noises are chosen in a naı̈ve manner, the

filter performance can be even worse, as shown in Sections 3.5 and 3.6 in Chapter 3.

In this paper, we consider adding fictitious noise to the process model in (4.3) based on

the measuremetn matrix Hk. In the following subsection, when the process noise covariance is

bumped up as Qk + δQk by fictitious noises, we will analyze the variations of P+k and Kk due to

δQk.

4.2.2 Sensitivity of Estimation Error Covariance Due to Fictitious Noise

In this subsection, we assume that filter computations at time step k−1 are completed and P+k−1

is given, and that a fictitious noise is added to wk at time step k. Then, in the EKF expressed in

(4.7) through (4.14), (4.8) is replaced by the following equation:

P−k (δQk) = Fk−1P+k−1FT
k−1+Qk +δQk, (4.19)

where δQk is a positive semi-definite matrix in Rn×n that corresponds to the fictitious noise.
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The variations of P+k and Kk due to δQk are defined as

∆Kk ≡ Kk(δQk)−Kk(0), (4.20)

∆Pk ≡ P+k (δQk)−P+k (0). (4.21)

Note that P−k , P+k and Kk are expressed as the functions of δQk, that is, P−k (δQk), P+k (δQk) and

Kk(δQk), in (4.19), (4.20) and (4.21). When δQk is a zero matrix, they are denoted as P−k (0),

P+k (0) and Kk(0) that coincide with those in the EKF without fictitious noise.

For a given δQk, ∆Kk and ∆Pk can be calculated from the following lemma.

Lemma 4.2.1. ∆Kk and ∆Pk satisfy the following equations:

∆Kk = ∆PkHT
k R−1

k , (4.22)

∆Pk = [I−Kk(0)Hk]δQk{[I−Kk(0)Hk]−T+HT
k R−1

k HkδQk}−1. (4.23)

Proof. From (4.14) and (4.21),

Kk(δQk) = P+k (δQk)HT
k R−1

k

= [P+k (0)+∆Pk]HT
k R−1

k .

Substituting the above equation into (4.20), we have (4.22). From (4.10),

P+k (δQk) = [I−Kk(δQk)Hk]P−k (δQk)

= [I− (Kk(0)+∆Kk)Hk](P−k (0)+δQk).

Substituting (4.22) into the above equation and noting that [I−Kk(0)Hk]−T = I+HT
k R−1

k HkP−k (0)

from (4.10) and (4.12), we obtain (4.23). □

On the other hand, if ∆Pk is given, the corresponding value of δQk can be obtained from the

following lemma.

Lemma 4.2.2. Under the assumption that P−k (δQk) is positive definite, δQk corresponding to a
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given ∆Pk is obtained as

δQk = [I− (Kk(0)+∆Kk)Hk]−1[∆Pk −∆Kk(HkP−k (0)HT
k +Rk)∆KT

k ][I− (Kk(0)+∆Kk)Hk]−T ,

(4.24)

where ∆Kk is calculated from (4.22).

Proof. From (4.11), ∆Pk in (4.21) can be written as

∆Pk = [I− (Kk(0)+∆Kk)Hk][P−k (0)+δQk][I− (Kk(0)+∆Kk)Hk]T

+ (Kk(0)+∆Kk)Rk(Kk(0)+∆Kk)T− [I−Kk(0)Hk]P−k (0)[I−Kk(0)Hk]T−Kk(0)RkKT
k (0)

= [I− (Kk(0)+∆Kk)Hk]δQk[I− (Kk(0)+∆Kk)Hk]T+∆Kk[HkP−k (0)HT
k +Rk]∆KT

k , (4.25)

where we used the following equation:

∆KkRkKT
k (0) = ∆KkRkR−1

k HkP+k (0)

= ∆KkHkP+k (0)

= ∆KkHkP−k (0)(I−Kk(0)Hk)T.

By solving (4.25) for δQk, we have (4.24). Note that [I − (Kk(0)+∆Kk)Hk]−1 always exists

because

[I− (Kk(0)+∆Kk)Hk]−1 = [I−P+k (δQk)HT
k R−1

k Hk]−1

= [(P+k (δQk))−1−HT
k R−1

k Hk]−1(P+k (δQk))−1

= P−k (δQk)(P+k (δQk))−1

= I+P−k (δQk)HT
k R−1

k Hk,

where, from (4.12) and P−k (δQk) > 0, we used

(P+k (δQk))−1 = (P−k (δQk))−1+HT
k R−1

k Hk.

□
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It should be noted that, while the filter is working properly, we can expect that P−k (0)> 0 and

the assumption that P−k (δQk) > 0 would hold. If P−k (0) > 0, P−k (δQk) is positive definite from

(4.19) for δQk ≥ 0. In addition, ∆Pk is a positive semi-definite matrix from (4.25) for δQk ≥ 0.

4.3 Process Noise Model with a Fixed Parameter

This section derives a process noise model with a fixed parameter αk based on the sensitivity

analysis in Sec. 4.2. Since Lemma 4.2.2 gives δQk corresponding to ∆Pk, we can choose ∆Pk

as the decision variable instead of δQk. Moreover, as will be discussed in Sec. 3.2.2, we assume

that ∆Pk is in the form of

∆Pk = αkHT
k R−1

k Hk. (4.26)

From Lemma 4.2.2, δQk corresponding to the above ∆Pk is

δQk ≈ αk[I−Kk(0)Hk]−1∆Pk[I−Kk(0)Hk]−T , (4.27)

where we suppose that αk is small.

An intuitive explanation of the effect of ∆Pk = αkHT
k R−1

k Hk in (4.26) is as follows: ∆Pk =

αkHT
k R−1

k Hk means that the inflation is restricted in the direction of HT
k R−1

k Hk. From (4.12),

Kalman filter can reduce the estimation-error covariance Pk only along the direction of HT
k R−1

k Hk

through each measurement update. If δQk inflates Pk along other directions, the inflation at each

time step is accumulated without suppression at the measurement update, and would result in

unintentionally large Pk in the directions. The choice of δQk in (4.27) can avoid the accumula-

tion by eliminating the inflation along the directions other than HT
k R−1

k Hk.

4.4 Process Noise Model Based on Measurement Residuals

4.4.1 Minimization of Measurement Residuals

In Kalman Filter, the Kalman gain Kk is derived so that the trace of the covariance matrix for

e+k , that is, E{∥e+k ∥
2} is minimized [6], where E{a} means the expectation of a randam variable
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a. In this paper, utilizing the parameter δQk, we minimize the expectation of measurement

residual to build a filter that gives more credence to the recent measurement without using the

measurement itself. The measurement residual mk is represented as a function of δQk by the

following equation:

mk(δQk) ≡ yk −h(x̂+k (δQk)) ≈ Hk(xk − x̂+k (δQk))+ vk

= Hke+k (δQk)+ vk. (4.28)

There are two reasons to focus on the measurement residual mk(δQk); First, many adaptive

filtering approaches utilize the measurements to modify Qk and Rk, because we can see the

estimation accuracy only through the measurement residuals or innovations. Even though we

use no measurement directly unlike conventional adaptive filters, the idea of modifying the

filter based on the measurements would be reasonable. Second, only the component of e+k that

corresponds to the measurement residual can be reduced by using δQk as shown in Appendix A.

Denoting I−Kk(0)Hk as Ψk(0), e+k (δQk) can be approximated as follows.

e+k (δQk) = xk − x̂+k (δQk)

≈ [I− (Kk(0)+∆Kk)Hk]e−k − (Kk(0)+∆Kk)vk

= (Ψk(0)−∆PkHT
k R−1

k Hk)e−k − (Kk(0)+∆PkHT
k R−1

k )vk. (4.29)

Substituting (4.29) into (4.28), the measurement residual mk(δQk) can be rewritten as

mk(δQk) = Hk[(Ψk(0)−∆PkHT
k R−1

k Hk)e−k − (Kk +∆PkHT
k R−1

k )vk]+ vk. (4.30)

To formulate the problem of minimizing mk(δQk), we introduce the following function:

Jk(∆Pk) = E{∥mk(δQk)∥2
R−1

k
}

= E{∥(Ψk(0)−∆PkHT
k R−1

k Hk)e−k ∥
2
HT

k R−1
k Hk
}+E{∥(I−HkKk −Hk∆PkHT

k R−1
k )vk∥2R−1

k
}.

(4.31)

It should be noted that the objective function Jk is defined as a function of∆Pk. Since Lemma 4.2.2

gives δQk corresponding to ∆Pk, we can choose ∆Pk as the decision variable instead of δQk.
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Moreover, we denote a norm of a vector b with a weighting matrix W as

||b||2W = bTWb.

Minimizing (4.31) gives

∆P⋆k = argmin Jk(∆Pk). (4.32)

Substituting ∆Pk = ∆P⋆k into (4.24), we have

δQ⋆
k =[I− (Kk(0)+∆K⋆

k )Hk]−1[∆P⋆k −∆K⋆
k (HkP−k (0)HT

k +Rk)∆K⋆
k

T][I− (Kk(0)+∆K⋆
k )Hk]−T ,

(4.33)

where ∆K⋆
k = ∆P⋆k HT

k R−1
k from (4.22).

4.4.2 Restriction on Fictitious Noise

Although the minimization problem is formulated by (4.32) in Sec. 4.4.1, it would be difficult

to find the optimal ∆P⋆k among all n× n positive semi-definite matrices. In this paper, we will

find the solution of (4.32) by restricting ∆Pk to a certain form.

To introduce the form of ∆Pk, we make the following assumption in this subsection.

Assumption 4.4.1. For the measurement matrix Hk ∈Rm×n, rank(Hk)=m≤ n, that is, (HkHT
k )−1

exists.

Under the assumption, Hk can be represented through singular value decomposition as fol-

lows.

Hk =GkΣkS T
k , (4.34)

where Gk ∈ Rm×m and S k ∈ Rn×n are orthogonal matrices and Σk ∈ Rm×n is expressed as

Σk =

(
Σ̃k Om×(n−m)

)
. (4.35)

Σ̃k ∈ Rm×m is a diagonal matrix whose diagonal elements are non-zero singular values of Hk.
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Since HT
k R−1

k Hk is symmetric, it can be represented as

HT
k R−1

k Hk = S k

 Λk Om×(n−m)

Om×(n−m) O(n−m)×(n−m)

S T
k , (4.36)

where Λk ∈ Rm×m is a positive definite matrix whose eigenvalues are positive eigenvalues of

HT
k R−1

k Hk.

Then, we restrict the decision variable ∆Pk to the following form:

∆Pk = αkHT
k R−1

k Hk +βkH⊥k , (4.37)

where αk and βk are non-negative scalar parameters, andH⊥k is defined using an arbitrary posi-

tive semi-definite matrix Λ⊥k ∈ R
(n−m)×(n−m) as

H⊥k = S k

 Om×m Om×(n−m)

Om×(n−m) Λ⊥k

S T
k . (4.38)

Note that the following equation is satisfied:

HkH⊥k = Om×n. (4.39)

In the rest of this subsection, we will describe the choice of the parameter βk, because αk

will be obtained through minimization of Jk(∆Pk) in Sec. 4.4.3. Substituting (4.37) into (4.31)

and using (4.39), we obtain

Jk(∆Pk)

= E{||(Ψk(0)−αk(HT
k R−1

k Hk)2)e−k ||
2
HT

k R−1
k Hk
}+E{||(I−HkKk −αkHkHT

k R−1
k HkHT

k R−1
k )vk||2R−1

k
}

(4.40)

From (4.40), the objective function Jk(∆Pk) is depedent only on αk by restricting ∆Pk to the

form of (4.37)1.
1Even if αkHT

k R−1
k Hk is replaced by αkHT

k CkHk with an arbitrary positive semi-definite matrix Ck in (4.37),
Jk(∆Pk) is depedent only on αk. That is, Ck can also be a parameter in the proposed method. In this paper, for
simplicity, we choose Ck as R−1

k .
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Since Jk(∆Pk) is independent of βk, we can choose any non-negative value of βk in the sense

of minimizing Jk(∆Pk). However, non-zero βk may make the estimation error covariance matrix

P+k excessively large and cause a severe degradation of filter performance especially at the time

step when Hk changes significantly from the previous ones Hk−i, as described in Appendix B.

Therefore, we choose βk = 0 in this paper, and then, ∆Pk becomes

∆Pk = αkHT
k R−1

k Hk. (4.41)

4.4.3 H-Adaptive Filter

In this section, we find the solution ∆P⋆k of the minimization problem (4.32) under the condition

that ∆Pk is restricted to the form of (4.41). Since the decision variable is reduced to only αk,

we can obtain ∆P⋆k analytically.

To derive the analytical solution that does not need the measurements yk themselves, we

make the following assumption:

Assumption 4.4.2. E{(e−k )(e−k )T} can be approximated as E{(e−k )(e−k )T} = P−k .

For brevity of notation, we denote HT
k R−1

k Hk as Ok in this subsection.

Noticing that we can suppose that Ok is a non-zero and positive semi-definite matrix, ∆P⋆k
is given by the following lemma.

Lemma 4.4.1. Under the Assumption 4.4.2, the solution to the minimization problem (4.32) is

derived for ∆Pk in the form of (4.41) as follows.

∆P⋆k = α
⋆
k Ok, (4.42)

α⋆k =
tr [O2

k]

tr [O5
kP−k +O

4
k]
. (4.43)

Proof. Since J(∆Pk) is a quadratic function of αk, we can solve the problem by finding α⋆k that

satisfies

∂J(∆Pk)
∂αk

∣∣∣∣∣
αk=α

⋆
k

= 0. (4.44)
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The left-hand side of (4.44) can be calculated as

1
2
∂J(∆Pk)
∂αk

= E{−e−k
TO3

kΨk(0)e−k +αke−k
TO5

ke−k − vT
k R−1

k HkOkHT
k R−1

k (I−HkKk(0))vk +αkvT
k R−1

k HkO3
kHT

k R−1
k vk}

= tr [αkO5
kP−k ]− tr [O3

kP−kΨ
T
k (0)]+ tr [αkO4

k]− tr [HkOkHT
k (I−HkKk(0))TR−1

k ]

= αktr [O5
kP−k +O

4
k]− tr [O2

k], (4.45)

where we used (4.14) and the following equations.

tr [HkOkHT
k (I−HkKk(0))TR−1

k ] = tr [HkOkHT
k R−1

k −HkOkHT
k KT

k (0)HT
k R−1

k ]

= tr [O2
k]− tr [Kk(0)HkO2

k],

tr [O3
kP−kΨ

T
k (0)] =tr [O2

kHT
k R−1

k HkP+k (0)]

= tr [Kk(0)HkO2
k].

From (4.44) and (4.45), we obtain (4.43). □

It should be noted that, from (4.43), α⋆k satisfies α⋆k > 0.

From Lemma 4.2.1, 4.2.2 and 4.4.1, the filter proposed in this paper is summarized as fol-

lows.

Time update:

x̂−k = f (x̂+k−1),

P−k (δQ⋆
k ) = Fk−1P+k−1FT

k−1+Qk−1+δQ⋆
k , (4.46)

Measurement update:

x̂+k (δQ⋆
k ) = x̂−k +Kk(δQ⋆

k )[yk −h(x̂−k )], (4.47)

P+k (δQ⋆
k ) = [I−Kk(δQ⋆

k )Hk]P−k (δQ⋆
k )

= P+k (0)+∆P⋆k , (4.48)

Kk(δQ⋆
k ) = P−k (δQ⋆

k )HT
k [HkP−k (δQ⋆

k )HT
k +Rk]−1

= Kk(0)+∆K⋆
k , (4.49)
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where

Ok = HT
k R−1

k Hk,

α⋆k =
tr O2

k

tr O5
kP−k +O

4
k

,

∆P⋆k = α
⋆
k Ok,

∆K⋆
k = ∆P⋆k HT

k R−1
k ,

δQ⋆
k = [I− (Kk(0)+∆K⋆

k )Hk]−1[∆P⋆k −∆K⋆
k (HkP−k (0)HT

k +Rk)∆K⋆
k

T][I− (Kk(0)+∆K⋆
k )Hk]−T .

In the above filter, fictitious noise δQ⋆
k is chosen at each time step depending on the measure-

ment matrix Hk, not on the measurement itself. Therefore, we call the filter with the proposed

choice of fictitious noise H-adaptive filter.

The H-adaptive filter inflates the estimation error covariance matrix P+k in the row space of

Hk. Thus, the H-adaptive filter forgets information to some extent in the row space of Hk com-

pared to the standard Kalman filter. In this sense, it can be regraded as one fading memory filter.

However, the fading memory filter forgets information uniformly in every direction, while the

H-adaptive filter forgets only in the row space of Hk. Since new information can be obtained

in the row space of Hk at time step k, forgetting some prior information in the row space would

not degrade the estimation accuracy. On the other hand, forgetting prior information perpendic-

ular to the row space of Hk excessively would lead to the degradation of estimation accuracy,

because no information in that direction is provided from the measurement.

Moreover, Lemma 4.2.2 does not guarantee that δQ⋆
k corresponding to ∆P⋆k is a positive

semi-definite matrix, although δQ⋆
k was always positive semi-definite in the numerical and ex-

perimental examples shown in the following two sections. If δQ⋆
k becomes negative in the above

filter, we could replace at that time step (4.42) with ∆P⋆k = skα
⋆
k Ok to get a positive semi-definite

δQ⋆
k by using sk ∈ (0,1).

70



4.5 Application

4.5.1 Stationary Positioning

This section shows experimental results in stationary positioning with the proposed process

noise model derived in Sec. 4.3. We recall the extended Kalman filter for stationary positioning

introduced in Sec. 3.4.1 in Chapter 3, but the state vector is replaced with

x = [rT, tTs , t, ṫ]
T, (4.50)

where r [m] is the position vector of a GNSS receiver, t [m] is a clock bias, and ṫ [m/s] is a

clock drift. Note that we remove ISBs from the state vector. Although we use multiple GNSS

constellations concurrently in Chapter 3, we use only GPS in this experiment to simulate poor

satellite geometry by reducing the number of satellites. We use (4.19) in a time update to apply

fictitious noise δQk to the EKF.

We demonstrate the effectiveness of the process noise model presented in Sec. 4.3 in the

scenario of GNSS positioning in urban environments. As shown in Fig. 4.1, we collected GNSS

data (raw measurements and ephemerides) through an antenna fixed at the roof of a building

by using a single-frequency GNSS receiver, Furuno GN-8720, for twelve hours. Although

the antenna is in open-sky conditions, we create 72 data sets of 600 [s] by assuming that the

satellites whose elevation angles θ satisfy θ ≥ 15◦ are visible from the start to 299 time steps,

and the satellites that satisfy θ ≥ 55◦ are visible from 300 time steps to the end. Those data sets

are intended to simulate the data sets of antennas that move from open sky areas to urban areas.

For the data sets, the average number of visible satellites is 7.8 for θ ≥ 15◦, and 2.1 for θ ≥ 55◦

(See Fig. 4.2 for satellite geometry in the data sets). We used only GPS L1C/A signals at each

time step.

We also assume that there is a modeling error in the clock drift dynamics, in order to show

that δQk in (4.27) can avoid the filter divergence while suppressing the degradation due to the

unintentional inflation of Pk. A constant bias b was introduced in the clock drift dynamics as

follows:

ṫk = ṫk−1+b+wtk, (4.51)
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GNSS antenna

Figure 4.1: Data collection by a fixed GNSS antenna. The antenna is located at 34.7136832
[deg] north latitude and 135.3353441 [deg] east longitude. There are few obstacles around the
antenna that block direct signals from satellites.

where wtk is the process noise of clock drift, and b was chosen as b= 0.1 [m/s]. As mentioned in

Chapter 1, a modeling error in the clock drift dynamics can occur for low-cost GNSS receivers

due to temperature changes, acceleration, and so on.

Using the above 72 data sets, we estimated the state vector x in (4.50) by the extended

Kalman filter with the following three settings of fictitious noise.

Setting (1): Nominal choice, δQk = O.

Setting (2): Conventional choice in a naiv̈e manner, δQk = qI, where q = 0.01.

Setting (3): Proposed choice with a fixed parameter, δQk = αWk, where α = 0.01.

The process noise covariance Qk was chosen from the literature [1] as

Qk =


O3×3 0 0

O1×3 0.013 0.005

O1×3 0.005 0.01

 . (4.52)

Note that the value of Qk achieves an accuracy of less than 6 [m] (2DRMSE) in open-sky

conditions with Setting (1), if the cut-off elevation angle is low. The accuracy is almost the

same as the one of a typical consumer receiver.

To compare the results obtained with the three settings, we define the following variable

rk(i) that represents the norm of estimation-errors in (e,n,u, t) at time step k for ith data set:

rk(i) =
√

x̃T
k (i)x̃k(i), (4.53)
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Figure 4.2: Satellite geometry for 12 hours as seen by a receiver. The blue and red dots represent
an example of skyplot at 12:02:38(UTC), December 11, 2020. A blue dot is a satellite whose
elevation angle is above 55 [deg], and a red dot is a satellite whose elevation angle is below it.

where x̃ = [ẽ(i), ñ(i), ũ(i), t̃(i))]T, and ẽ, ñ, ũ and t̃ are the estimation-errors of e, n, u and t

respectively. Then, the ensemble averages of rk(i) and estimation-error of clock drift ˜̇tk(i) are

computed as

¯̇tk =
1
N

N∑
i=1

˜̇tk(i), r̄k =
1
N

N∑
i=1

rk(i), (4.54)

where N = 72.

Fig. 4.3 shows the ensemble averages ¯̇tk and r̄k obtained for the three settings of process

noise model. Both errors ¯̇tk and r̄k for Setting (3) are much smaller than those for Setting (1) at

each time step. Although ¯̇tk for Setting (1) increases from the start time due to the bias error b,

¯̇tk for Setting (3) remains almost zero because of the fictitious process noise in (4.26) or (4.27).

Even after the number of visible satellites is reduced for k ≥ 300, ¯̇tk for Setting (3) is kept

sufficiently small. The error r̄k for Setting (3) is reduced by 20 [%] for k ≥ 300 and 10 [%] for

k < 300 compared with the one for Setting (1). On the other hand, ¯̇tk for Setting (2) is reduced to

some extent because of the fictitious process noise δQk = qI. However, the error r̄k for Setting

(2) increases from the start time compared to Setting (1), and rapidly for k ≥ 300. This could be

because the fictitious process noise δQk = qI makes the estimation-error covariance Pk inflate

unintentionally along a certain direction. These results show that Setting (3) can achieve the
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mitigation of estimation errors caused by modeling errors and the reduction of the unintentional

inflation of Pk simultaneously.
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Figure 4.3: Estimation errors for three settings of process noise model.

4.5.2 GNSS/INS Positioning

This section presents a practical application of the H-adaptive filter to a vehicle positioning with

Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) (Fig. 4.4).

Since GNSS and INS are complementary in terms of error characteristics, their integration

is commonly employed to improve positioning accuracy for automobiles. The integration is

accomplished in a tightly coupled manner by the extended Kalman filter as shown in Fig. 4.5.
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(a) (b)

Figure 4.4: Positioning system with GNSS/INS for a test vehicle. (a) Vehicle positioning with
GNSS/INS. (b) Test vehicle.

Figure 4.5: Block diagram of a tightly coupled integration of GNSS and INS.

The state and measurement vectors are given as

x = (rT, δt, ṙT, δṫ,bT)T, (4.55)

y = (ρT, ρ̇T,vT
INS )T, (4.56)

where r [m] is a position vector in R3 represented in the Earth-Centered-Earth-Fixed(ECEF)

coordinates, and ṙ [m/s] is a velocity vector in the ECEF coordinates. The clock bias and drift of

GNSS receiver are denoted as δt [m] and δṫ [m/s] in R respectively. When multiple (l+1) GNSS

constellations such as GPS and Galileo are used for positioning, inter-system biases (ISBs),

defined as the difference between the GPS’s system clock and other GNSS systems’clock, are

included as a l−dimensional vector b [m] in x. In the measurement vector y, pseudo ranges and

Doppler frequencies obtained from the signals of m satellites are denoted as ρ [m] and ρ̇ [m/s]
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in Rm respectively. The velocity vector provided from INS is represented as vINS ∈ R3. For

further details on GNSS/INS positioning, see, for example, [9, 1, 54].

The state and measurement equations for this system are

xk+1 = f (xk)+wk

= Fxk +wk, (4.57)

yk = h(xk)+ vk, (4.58)

where, denoting the ith element of h(xk) as hi(xk),

hi(xk) =

 ||rk − ri
k||+δtk +bk(i) 1 ≤ i ≤ m

eT
i,k(ṙk − ṙi

k)+δṫk m+1 ≤ i ≤ 2m
, (4.59)

(h2m+1(xk),h2m+2(xk),h2m+3(xk))T = ṙk, (4.60)

ei,k =
rk − ri

k

||rk − ri
k||
, (4.61)

F =


I4×4 ∆tI4×4 O4×l

O4×4 I4×4 O4×l

Ol×4 Ol×4 Il×l

 .

In (4.59), ri
k denotes the position vector of satellite i, and bk(i) is the ISB of the constellation

that satellite i belongs to.

To construct the extended Kalman filter, nominal noises Qk and Rk are set based on [1, 30,

49, 50, 55] as follows:

Qk =


Q1 Q̃ O4×l

Q̃T Q2 O4×l

Ol×4 Ol×4 0.01Il×l

 , Q̃ =

 O3×3 O3×1

O1×3 0.005

 , (4.62)

Q1 =

 diag(0.16,0.003||vINS ||2,10−5) O3×1

O1×3 0.013

 , Q2 =

 diag(0.64,10−5,10−5) O3×1

O1×3 0.01

 ,

Rk = diag(σ2
1, . . . ,σ

2
m, σ̇

2
1, . . . , σ̇

2
m,c1,c2,c3), (4.63)
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where, denoting the SNR of the signal from the ith satellite as si (i = 1, · · · ,m), σi = 0.64+

784e−0.142si , σ̇i = 0.0125+6767e−0.267si , and c1 = c2 = c3 = 0.16.

However, note that the process model of the GNSS/INS integration mainly depends on INS

accuracy. The INS accuracy often decreases due to unexpected sensor errors, which would

make the process model inaccurate. Consequently, the above nominal Qk may be relatively

small.

In addition, it is also known that estimation accuracy in the lateral and vertical directions

of a vehicle tends to degrade in urban areas [49, 50]. As shown in Fig. 4.6, satellite signals

from the lateral direction of a vehicle are often blocked by obstacles such as tall buildings. The

information from the satellite signals is nearly degenerate due to a biased distribution of visible

satellites.

Figure 4.6: Biased distribution of visible satellites in urban areas.

Experimental Results

Let us begin with the introduction to settings for process nosie covariance. The extended

Kalman filter for GNSS/INS positioining is constructed in the following three settings.

Setting (1): The filter is a conventional extended Kalman filter with

δQk = O. (4.64)

Setting (2): The filter corresponds to fading memory filter [51, 42] by choosing δQk as

δQk = cFk−1P+k−1Fk−1, (4.65)
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where c = 0.03.

Setting (3): The filter is H-adaptive filter with

δQk = δQ⋆
k , (4.66)

where δQ⋆
k is given by (4.33).

In Setting (2), c was set to be 0.03, because the estimation accuracy with c = 0.03 was the

highest among those with c = {0.01,0.02, · · · ,0.07}. By using the test vehicle shown in Fig. 4.4,

we collected the measurement data and performed the state estimation by the filters in the three

settings.

The measurements y were obtained by a vehicle positioning system (FURUNO GN-87,

Bosch SMI130, and vehicle speed pulse sensor) installed in the test vehicle. A reference system

(Applanix POS-LV 520) was also installed to provide highly accurate positions. We can calcu-

late the positioning errors of the three filters by using the positions from the reference system

as true positions.

The test vehicle made eight laps of the route shown in Fig. 4.7, running for 4330 seconds.

The visibility of satellites from the vehicle varies significantly on the route. At A point, the

vehicle is surrounded by a lot of objects located in its lateral direction. At B point, there is no

object blocking the signals from the satellites to the vehicle.

We show the visibility of satellites on the route by introducing the well-known indicator

PDOP (Position Dilution of Precision) [1]. PDOP at the time step k is defined as

PDOP(k) =

√√√√ 3∑
p=1

[(H̃T
k H̃k)−1]p,

where [A]p means the pth diagonal element of a matrix A, and, denoting the estimated value of

ei,k as êi,k,

H̃k =

 ê1,k · · · êm,k

1 · · · 1


T

.

When PDOP is larger, the visibility of satellites is lower, and the positioning accuracy tends

to degrade. The average value of PDOP for all the time steps of 4330 [sec] was 2.8, and the
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maximum and minimum value in the experiment were 15.8 and 1.8. At A point, PDOP was

about 4.3, that is, the visibility was lower than at other points. At B point, PDOP was about 2.1,

and the visibility was higher.

Figure 4.7: Route of the positioning experiment by a test vehicle in Nishinomiya city, Japan. It
is shown by green dots obtained from the reference system (Applanix POS-LV 520).

The positioning accuracies on the entire route in the three settings were computed as RMSEs

in the body coordinate frame, and are summarized in Table 4.1, where x, y and z are RMSEs

in the longitudinal (forward), lateral and vertical directions of the vehicle. We can see that the

accuracy in Setting (3) is the highest in every direction among them. Although the measurement

matrix Hk varied largely according to the visibility of satellites on the route, the H-adaptive filter

reduced the estimation error by choosing the fictitious noise δQk appropriately.

To examine the positioning accuracy near A and B points, we computed the RMSEs using

the data from the time steps when the vehicle was in the neighborhood of each point. Tables 4.2

and 4.3 show the results for A and B points respectively, where the RMSEs were calculated

from 80 data points created by collecting 10 time step data points around A or B point in each

lap. In Table 4.2 for A point, the accuracies in all the settings degrade due to the lower visibility

of satellites. However, the degradation is the smallest in Setting (3), and the H-adaptive filter

achieves quite better accuracy compared to other two filters. In Table 4.3 for B point, the

accuracies in all the settings become better because of the higher visibility of satellites. Even

when sufficient information is obtained from the measurements, the H-adaptive filter works

well while achieving the same level of accuracy as the fading memory filter.
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Table 4.1: RMSEs for positioning on the entire route.

x [m] y [m] z [m]
(1) Extended Kalman filter 2.0 2.2 4.4
(2) Fading memory filter 1.9 2.0 3.7
(3) H-adaptive filter 1.9 1.8 3.1

Table 4.2: RMSEs for positioning around A point.

x [m] y [m] z [m]
(1) Extended Kalman filter 2.2 3.3 6.3
(2) Fading memory filter 2.2 3.1 3.9
(3) H-adaptive filter 1.9 2.4 3.1

4.5.3 Robot Localization

Localization for Motion Robot

In this section, we demonstrate the effectiveness of H-adaptive filter through numerical simula-

tions for localization of a mobile robot [56]. We consider a mobile robot that moves on the XY

plane where there are several landmarks, as in Fig. 4.8. The position and heading angle of the

robot are denoted as r = (rX,rY)T [m] and θ [rad] respectively. The position of the jth landmark

is represented as m j = (m j,X,m j,Y)T [m], and assumed to be known. It is also supposed that

a camera is installed in the robot along its heading to measure distances and angles from the

robot to visible landmarks. Measurements from the jth landmark are expressed as y j = (l j,φ j)T,

where l j [m] is the distance and φ j [rad] is the angle.

Figure 4.8: Localization of a mobile robot
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Table 4.3: RMSEs for positioning around B point.

x [m] y [m] z [m]
(1) Extended Kalman filter 1.1 0.9 3.7
(2) Fading memory filter 1.1 0.9 1.7
(3) H-adaptive filter 1.1 0.9 1.6

The state and velocity input vectors for the robot are defined as x = (rX,rY , θ)T and u =

(ν,ω)T, where ν [m/s] is the translational velocity and ω [rad/s] is the angular velocity. The

state and measurement equations are as follows:

xk = f (xk−1,uk)

= xk−1+


νkω

−1
k [sin(θk−1+ωk∆t)− sinθk−1]

νkω
−1
k [−cos(θk−1+ωk∆t)+ cosθk−1]

ωk∆t

 , (4.67)

y j,k = h j(xk)+ v j,k

=


√

(m j,X − rk,X)2+ (m j,Y − rk,Y)2

arctan2((m j,Y − rk,Y), (m j,X − rk,X))− θ

+ v j,k, (4.68)

where v j,k is a Gaussian measurement noise, that is, v j,k ∼ N(0,R j,k). Note that, if ωk = 0, (4.67)

becomes xk = xk−1+ (νk∆t cos(θk−1), νk∆t sin(θk−1),0)T.

The uncertainties in the process model (4.67) are introduced by adding a disturbance wk to

the velocity vector uk as

u′k = uk +wk. (4.69)

The disturbance wk was set based on [56] in the simulations below, assuming that it consists of

two components: bias due to, e.g., the load imbalance of a robot and random noise due to, e.g.,

pebbles on the robot’s path. Then, (4.67) is replaced with

xk = f (xk−1,u′k). (4.70)
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Simulation Results

We performed numerical simulations where the robot moves at uk = (0.2,0.0)T(k ≥ 1) from x0 =

(−2.0,0,0)T on the XY plane. Three landmarks whose positions are (m1,k,X,m1,k,Y) = (4.5,0),

(m2,k,X,m2,k,Y)= (4.5,2.0), and (m3,k,X,m3,k,Y)= (4.5,−2.0) exist on the plane. Referring to [56],

the jth landmark is assumed to be visible when it satisfies the following conditions: |ł̄ j| < εl∧

|φ̄ j| < εφ for j = 1 and |ł̄ j| < εl ∧ |φ̄ j| < εφ ∧ z j,k > ε for j = 2,3, where ł̄ j and φ̄ j are the true

distance and angle of the jth landmark, and z j,k is a uniformly distributed random variable on

[0,1]. The parameters εl, εφ and ε were chosen as 6.0 [m], π/3 [rad] and 0.99 respectively.

These conditions mean that measurements y2,k and y3,k can rarely be obtained due to large ε,

that is, the observability is degenerate at almost all time steps.

Localization was accomplished by the EKF in the same three settings as in Sec. 4.5.2. Recall

that Setting (1) is for conventional extended Kalman filter, Setting (2) is for fading memory

filter, and Setting (3) is for H-adaptive filter. Note that, in Setting (2), the parameter c was set

to 0.04 in this experiment. In all the settings, the nominal Qk is computed at each time step

assuming the covariances of the noises in νk and ωk to be 0.0025 and 0.0027 respectively, and

the nominal R j,k is given as diag(0.01,0.001).

The numerical simulations were performed 25 times with different noise sequences {wk}

and {vk} for the filters in the above three settings, where the time step k was increased from 0

to 250 with ∆t = 0.1 [s]. The estimation accuracy at the final time step k = 250 was examined

by calculating the root mean squared error (RMSE) for 25 estimated states at k = 250 for each

setting, as shown in Table 4.4. The highest accuracy was obtained with the setting (3), namely

H-adaptive filter.

To illustrate the accuracy difference among the three settings, the behaviors of the true robot

and the estimated state on the XY plane for one set of noise sequences {wk} and {vk} are shown

in Fig. 4.9 as an example. In the figure, the true position and estimated position of the robot are

drawn by the black and blue lines respectively. The estimation error covariance P+k calculated

by the filter is also drawn in blue every 50 steps as a 3σ ellipse [57]. The behaviors in each

setting will be described below.

In Setting (1), the true position of robot is outside the ellipse at the final time step in

Fig. 4.9(a). We can see that the estimation error covariance matrix becomes very small, and

the filter divergence is caused. It would be because the nominal Qk is too small to cover the

82



model error. Moreover, the ratio of the major and minor axes of the final ellipse is 4.11.

In Setting (2), the true positions of robot are inside the ellipses even at the final time step in

Fig. 4.9(b), but all the ellipses are too large. The unnecessarily inflated ellipses cause very large

estimation errors (see also Appendix B), although they avoid the filter divergence. Moreover,

the ratio of the major and minor axes of the last ellipse is 10.2 in this setting. The ellipses are

more inflated in the direction perpendicular to the line of sight of the first landmark as shown in

Fig. 4.9(b), which results in the larger ratio compared to the one in Setting (1).

In Setting (3), the true positions are inside the ellipses at all the time steps, and the size of

the ellipses looks to be kept reasonable. As a result, the H-adaptive filter achieves the highest

estimation accuracy. The ratio of the major and minor axes is 4.09, which is close to the one

in Setting (1). It indicates that the H-adaptive filter avoided excessive inflation of P+k along the

direction perpendicular to the row space of Hk by choosing βk = 0.

Table 4.4: RMSEs in state estimation at the final time step.

rx [m] ry [m] θ [rad]
(1) Extended Kalman filter 0.32 0.55 0.29
(2) Fading memory filter 0.21 0.43 0.25
(3) H-adaptive filter 0.10 0.17 0.12

4.6 Conclusion

This chapter presented the extended process noise model that is the first to choose process noise

based on measurement matrices as far as we know. The model enables the filter to reduce unex-

pected estimation errors due to dynamics uncertainties while avoiding performance degradation

due to fictitious noise. We call the filter with the extended process noise model H-adaptive filter.

Since the H-adaptive filter is based on the sensitivity analysis of the estimation error covariance

matrix due to fictitious noise for a generic linearized system, they can be be employed in ap-

plications other than GNSS positioning, such as GNSS/INS positioning and robot localization.

We demonstrated the H-adaptive filter to show the improvement of estimation accuracy through

experiments and numerical simulations.
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(a) Extended Kalman filter

(b) Fading memory filter

(c) H-adaptive filter

Figure 4.9: Numerical results for localization of a robot by three filters. Black and blue lines
are the true and estimated positions of the robot respectively, and blue ellipses represent 3σ
error ellipses. (a) Setting (1): Extended Kalman filter. (b) Setting (2): Fading memory filter. (c)
Setting (3): H-adaptive filter.
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Chapter 5

Conclusion

This thesis reported the research results on performance improvement of the extended Kalman

filter for single point positioning in urban canyons. First, this chapter reviews the contents of

each chapter from Chapter 1 to 4. Second, the contribution of this thesis is summarized with

the possibility of expanding the proposed process noise model derived in Chapter 4 to other

applications and nonlinear filters. Finally, future work is described to obtain more accurate

positions in urban canyons.

Chapter 1 described the current GNSS status from the point of view of position accuracy

and introduced the problem of inaccuracy in urban canyons. Three background materials were

provided, i.e., the single point positioning with the EKF, NLOS and multipath signals, and

satellite geometry. Further, this chapter wrote a mathematical introduction to the EKF for single

point positioning used throughout this thesis.

Chapter 2 was devoted to developing a method to reject measurement outliers due to NLOS

reception that can considerably degrade position accuracy in urban canyons. This chapter be-

gan with an introduction to the adaptive EKF, a filter that can adjust the noise input level of

measurement outliers. And then, this chapter introduced a model that represents the surround-

ing environment of a GNSS receiver to predict path delays due to reflection or diffraction. The

rejection method is based on the model and can reject measurements whose innovations are un-

expectedly significant compared to the predicted path delays. Performance improvement with

the proposed method was shown through driving tests in an urban area, Shinjuku, Tokyo, Japan.

Chapter 3 began with numerical examples and theoretical analysis showing the unintended

degradation of position accuracy in urban canyons caused by rejecting NLOS signals. The re-
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jection of NLOS signals would result in poor satellite geometry. Poor satellite geometry is a

biased distribution of satellites. Keeping this in mind, recall that process noise covariance in

the EKF tends to be chosen heuristically. The theoretical analysis showed that a naı̈ve choice

of process noise could unintentionally make the estimation error covariance in the EKF large

with poor satellite geometry. Since this inflation can degrade accuracy, this chapter proposed a

process noise model based on satellite geometry to suppress the unintended inflation of the es-

timation error covariance under some assumptions. It was demonstrated that position accuracy

was improved through experiments in stationary positioning.

Chapter 4 presented an extended process noise model based on the model derived in Chap-

ter 3. The extended process noise model is designed to vary fictitious noise depending on

measurement matrices, that is, satellite geometry. This chapter began with the sensitivity anal-

ysis of the estimation error covariance matrix due to fictitious noise without the assumptions

introduced in Chapter 3. From the sensitivity analysis, fictitious noise makes the estimation er-

ror covariance matrix variation. And then, this chapter designed two patterns of fictitious noise

based on measurement matrices and demonstrated performance improvement with each design

of fictitious noise. Moreover, the numerical simulation of robot localization was shown with

the extended process noise model to show the possibility that the model can be applied to other

applications. The contribution of the extended process noise is given in the rest of this chapter.

Poor satellite geometry caused by NLOS signal rejection can degrade position accuracy

unintentionally in urban canyons with the extended Kalman filter. We have proposed a process

noise model based on satellite geometry to avoid preventing degradation. Since the model can

be implemented into all types of GNSS receivers, the model could be conducive to solving the

problem of inaccuracy in urban canyons.

Although many researchers have approached problem-solving for inaccuracy in urban canyons

from the point of view of rejecting measurement outliers, they have yet to show how poor satel-

lite geometry caused by rejection affects the EKF as far as we know. This thesis has pointed out

that fictitious noise to cover dynamics uncertainty in the EKF causes unintentional inflation of

the estimation error covariance in the EKF. The unintended inflation can degrade the EKF per-

formance in urban canyons. We have shown the sensitivity of the estimation error covariance

matrix due to fictitious noise and proposed a process noise model based on satellite geome-

try. The process noise model would play an essential role in single point positioning in urban
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canyons with the EKF. The outcomes of our work could be new findings in the GNSS field.

The process noise model can be applied to other applications. Measurement degeneracy,

like poor satellite geometry, often occurs in other applications [58]. For example, a robot lo-

calization usually uses a camera or a range sensor to measure the distance between a robot and

landmarks around the robot. The lack of geometrical structures for range sensors or the scarcity

of texture features for vision sensors is analogous to poor satellite geometry in GNSS. Further,

the dynamics model of a robot is often uncertain. A fictitious noise approach has to be taken

to construct the extended Kalman filter for robot localization. This explains that our model

can be effective in improving the performance of the EKF for robot localization. Numerical

simulations in a mobile robot localization show performance improvement in Chapter 4.

The process noise model can be applied to non-linear filters other than the extended Kalman

filter, such as the unscented and ensemble Kalman filters [59, 60, 61] and the particle filter [62].

These filters also suffer from divergence or biased estimation errors. For example, the particle

filter has a resampling step to reproduce particles. If the step unintentionally reproduces many

identical particles, the filter will diverge. To avoid divergence, particles should be distributed

effectively based on process noise in a time update step. The proposed process noise model

could be helpful for distributing particles in a time update step.

The process noise model is based on satellite geometry and measurement matrices. This

model has ∆P = αHT
k R−1

k Hk as a decision variable. Although α is determined to minimize the

sum of squared residuals, HT
k R−1

k Hk is based on an intuitive sense. We will further examine

the appropriateness of HT
k R−1

k Hk by comparing performance due to several settings based on

measurement matrices.

Although Chapter 2 presented the method to reject measurements from NLOS signals, we

have not shown the results of the EKF in urban canyons with both the rejection method and the

process noise model. We will implement the EKF with the rejection method and the process

noise model in a GNSS receiver that can use the modernized L5 signal that can reduce the

impact due to multipath signals. We will show position accuracy in urban canyons.

It was assumed in this thesis to improve the position accuracy in urban canyons without

additional costs. Since adding other sensors, such as LiDAR devices and cameras, requires an

extra cost, we have not used these sensors. However, autonomous and air mobility vehicles

will equip these sensors for advanced safety systems. This indicates that the EKF can use
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measurements from these sensors without additional costs. We will develop a sensor fusion

scheme in the EKF of GNSS and other sensors to obtain more accurate positions in urban

canyons [63]. The results of this thesis could play an essential role also in a fusion scheme.
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Appendix A

Reason for Minimizing Measurement

Residuals

Under the Assumption 4.4.1, we can divide e∗k into e∗k,a and e∗k,b as follows.

e∗k = e∗k,a+ e∗k,b, (A.1)

e∗k,a = PHke∗k, e∗k,b = (I−PHk)e∗k,

where ∗ means + or −, and PHk is a following projection matrix:

PHk = HT
k (HkHT

k )−1Hk. (A.2)

Then, using Ψk(0) = I−Kk(0)Hk, e+k (δQk) can be approximated as follows.

e+k (δQk) ≈ [I− (Kk(0)+∆Kk)Hk]e−k − (Kk(0)+∆Kk)vk

= (Ψk(0)−∆PkHT
k R−1

k Hk)e−k,a+ e−k,b

− (Kk(0)+∆PkHT
k R−1

k )vk. (A.3)

Further, we obtain

e+k,a(δQk) = PHk(Ψk(0)−∆PkHT
k R−1

k Hk)e−k,a

−PHk(Kk(0)+∆PkHT
k R−1

k )vk, (A.4)
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e+k,b(δQk) = (I−PHk)(Ψk(0)−∆PkHT
k R−1

k Hk)e−k,a+ e−k,b

− (I−PHk)(Kk(0)+∆PkHT
k R−1

k )vk. (A.5)

When ∆Pk is chosen as ∆Pk = αkHT
k R−1

k Hk+βkH⊥k in Section 4.4, (A.5) can be rewritten as

e+k,b(δQk) = (I−PHk)Ψk(0)e−k,a+ e−k,b

− (I−PHk)Kk(0)vk = e+k,b(0), (A.6)

which means that e+k,b(δQk) does not depend on δQk or ∆Pk. Therefore, the norm of e+k (δQk)

can be represented as

∥e+k (δQk)∥2 = ∥e+k,a(δQk)∥2+ ∥e+k,b(δQk)∥2

= ∥e+k,a(δQk)∥2+ ∥e+k,b(0)∥2. (A.7)

Since ∥e+k,a(δQk)∥2 = ∥Hke+k (δQk)∥2 = ∥mk(δQk)−vk∥2, minimization of ∥e+k (δQk)∥2 corresponds

to minimization of ∥mk(δQk)∥2 except for the term of vk.

In the sense of minimization of estimation error covariance, we can consider the problem

of minimizing E{∥e+k,a(δQk)∥2}. However, in Section 4.4, we employ the problem of minimiz-

ing E{∥mk(δQk)∥2
R−1

k
} from the perspective of an adaptive filter based on the measurements. It

should be noted that these problems are not equivalent because e+k,a(δQk) and mk(δQk) contain

vk differently.
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Appendix B

Accumulation of Fictitious Noise

In this appendix, we show by a simple example that fictitious noises with non-zero βk accu-

mulate in the estimation error covariance matrix P+k and cause large estimation errors when the

measurement matrix Hk varies significantly. We consider the system where n = 2m, Fi = In×n,

Qi =On×n and Ri =R for all i, and suppose that Hi varies with i, but it satisfies Hi = (Im×m,Om×m)

for i = k,k+1, · · · ,k+N.

We also assume that, after the computation of EKF at time step k− 1, the estimation error

covariance P+k−1 is block diagonal as

P+k−1 =

 P+1,k−1 Om×m

Om×m P+2,k−1

 .
At time step k, fictitious noise δQk is added to Qk such that

∆Pk = αkHT
k R−1

k Hk +βkH⊥k ,

=

 αkΛk Om×m

Om×m βkΛ
⊥
k

 .
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Then, P+k (δQk) can be obtained from (4.21) by straightforward calculation as

P+k (δQk) =

 P+1,k Om×m

Om×m P+2,k

 ,
P+1,k = (I−P+1,k−1(P+1,k−1+R)−1)P+1,k−1+αkΛk, (B.1)

P+2,k = P+2,k−1+βkΛ
⊥
k . (B.2)

Repeating (B.2) from time step k to time step k+N, we obtain

P+2,k+N = P+2,k−1+

k+N∑
i=k

βiΛ
⊥
i . (B.3)

From (B.3), we can see that βiΛ
⊥
i caused from the fictitious noise accumulates in P+2,k+N without

decreasing. It should be noted that, as N increases, the inflation of P+2,k+N becomes large un-

boundedly. On the other hand, from (B.1), P+1,k can be reduced from P+1,k−1 through multiplying

it by the gain (I−P+1,k−1(P+1,k−1+R)−1). Although αkΛk is added in the right-hand side of (B.1),

it can also be reduced at time step k+1 in P+1,k+1 by the gain (I−P+1,k(P+1,k +R)−1).

Next, we assume that the measurement matrix changes at time step k+N + 1 as Hk+N+1 =

(Im×m, Im×m). Then, the Kalman gain at time step k+N +1 can be calculated as

Kk+N+1 =

 P+1,k+N(P+1,k+N +P+2,k+N +R)−1

P+2,k+N(P+1,k+N +P+2,k+N +R)−1


≡

 K1

K2

 .
If P+2,k+N is very large due to the accumulation of βiΛ

⊥
i , K1 ≈ Om×m and K2 ≈ Im×m. Denoting

x̂+k+N+1 as [x̂T
1 , x̂

T
2 ]T, x̂1 would not be updated sufficiently according to the measurement innova-

tion, because the Kalman gain K1 for x̂1 is much smaller than it should be. On the other hand,

x̂2 would fluctuate greatly due to the measurement noise, because K2 for x̂2 is too large. As a

result, the accumulation of βiΛ
⊥
i would lead to the degradation of filter performance.

It should be noted that the observability is guaranteed by the variation of Hk. However,

since the observability is temporarily degenerate for i = k,k+ 1, · · · ,k+N, the inflation of P+2,i
due to βiΛ

⊥
i cannot be suppressed. Too large inflation of P+2,i degrades the filter performance as
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mentioned above, at the time step when the measurement matrix changes. This measurement

matrix change often happens for the systems working in unknown environments such as an

automobile in Sec. 4.5.2 and a mobile robot in Section 4.5.3.

98





Doctor Thesis, Kobe University

Accurate GNSS Positioning in Urban Canyons with Extended Kalman Filter

Submitted on January, 18, 2023

When published on the Kobe University institutional repository /Kernel/,

the publication date shall appear on the cover of the repository version.

©TAKAYAMA Yoji

All Right Reserved, 2023


