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Inaccuracy in urban canyons has been a persistent and lingering problem for the 

Global Navigation Satellite System (GNSS). This thesis reports the results of a study 

on performance improvement of the extended Kalman filter (EKF) to obtain more 

accurate positions in urban canyons.  

GNSS is a system that provides positioning on a global basis. GNSS receivers on the 

ground measure distance to satellites based on the time of flight of satellite signals. 

And then they determine their positions based on trilateration. GNSS positioning 

accuracy depends on signals' propagation delay due to, e.g., the troposphere and 

ionosphere. GNSS can achieve accuracy within ten meters with no objects in the lines 

of sight of satellites. The areas with no objects in the lines of sight of satellites are 

referred to as open sky areas. 

One last great unsolved GNSS problem is inaccuracy in urban canyons. Positioning 

with GNSS in urban canyons suffers from significant position errors due to 

Non-Line-Of-Sight (NLOS) reception. NLOS reception occurs where the direct signal is 

blocked, and the signal is received only via reflection or diffraction. Measurement 

errors due to NLOS reception are characterized by their sign and size. Since signals via 

reflection or diffraction arrive later than (blocked) signals via direct paths, 

measurement errors due to NLOS reception are always positive. Furthermore, their 

errors depend on their path delays and are potentially unbounded. They can be over a 

hundred meters and outliers that can degrade position accuracy significantly. 

Because of the low computational cost, almost all GNSS receivers employ the 

extended Kalman filter to determine their positions. The EKF performance is highly 

dependent on the accuracy of measurement and the setting of parameters in the EKF. 

Inaccurate and biased measurements due to NLOS reception can reduce the estimation 

accuracy of the EKF. This research aims to achieve a few meters of accuracy in urban 

canyons by removing outliers and choosing parameters in the EKF according to 

remained measurements. The enhanced EKF performance will benefit our society. 

This research solves the problem of inaccuracy in urban canyons in two stages. The 

first stage is to develop a method to reject outliers due to NLOS reception from the 

computation of the EKF. This stage begins with introducing the model that represents 

the surrounding environments, e.g., buildings, of a GNSS receiver to compute path 

delays geometrically due to reflection or diffraction. Since measurement errors in 

NLOS signals depend heavily on path delays due to reflection or diffraction, computed 

path delays using the geometric model can predict measurement errors. Based on the 

predicted values, the method can improve position accuracy by detecting and rejecting  
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outliers due to NLOS reception.  

However, removing outliers decreases the number of measurements and may cause 

poor satellite geometry. Poor satellite geometry means a biased distribution of satellites 

as seen by a GNSS receiver. As positioning accuracy highly depends on satellite 

geometry, it is necessary to show how poor satellite geometry affects the EKF 

performance.  

Therefore, the second stage begins with numerical examples to point out the problem 

caused by poor satellite geometry. These examples illustrate that a fictitious noise 

approach, which can avoid filter divergence by adding fictitious noise to process noise 

heuristically, results in excessive inflation of the estimation error covariance matrix in 

the EKF with poor satellite geometry. Further, this stage provides a theoretical 

analysis of the sensitivity of the estimation error covariance matrix varying on process 

noise in the EKF. From the examples and the theoretical analysis, a process noise 

model that chooses fictitious noise based on satellite geometry is proposed in this stage. 

The proposed process noise model can suppress inflation of the estimation error 

covariance matrix when satellite geometry is poor. To our best knowledge, the proposed 

model in the second stage is the first to choose process noise depending on satellite 

geometry. 

The key findings of this research are twofold and come from each of the stages 

described above. The first is the performance improvement in urban canyons by 

removing outliers and demonstrated through driving tests in Shinjuku, Tokyo, known 

for NLOS reception. The second is also performance improvement in urban canyons by 

avoiding unintentional inflation of the estimation error covariance matrix. It is 

revealed through theoretical and experimental results. In addition, the process noise 

model proposed in the second stage can be applied to applications with a generic EKF 

other than GNSS. Numerical simulations in robot localization show that the proposed 

model improves localization performance. 

Chapter 1 introduces the background and the main issue of this research. The 

background begins with the current GNSS status from the point of view of accuracy to 

define the main issue of this research, which is inaccuracy in urban canyons. And then, 

this chapter refers to some studies related to this research's main issue to show the 

difference between the studies and this research. The difference would show our 

contribution that represents an advance in current knowledge in the GNSS field. 

Further, this chapter summarizes the main results of this thesis through overviews of 

each chapter. Finally, three background materials and a mathematical introduction to  
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the EKF are given in this chapter that would be needed in later chapters. Three 

materials are the single point positioning with the EKF, measurement errors in urban 

canyons, and the role of satellite geometry in positioning. 

Chapter 2 is devoted to developing a method to detect and reject outliers due to NLOS 

reception. This chapter begins with a review of the adaptive extended Kalman filter 

proposed in previous studies to deal with measurement outliers in urban canyons. The 

adaptive EKF can determine the appropriate noise input level in real time with 

innovations or residuals of measurements. Although the adaptive EKF reduces the 

impacts of NLOS reception on estimates, measurement errors due to NLOS reception 

may make biased position errors because they are always positive. Thus, the adaptive 

EKF should not use measurements due to NLOS reception, even with the adjustment 

of noise input level. 

This chapter proposes a method to reject outliers from the adaptive EKF to reduce 

biased position errors, introducing a model that represents the surrounding 

environments in urban canyons to predict path delays of signals due to NLOS reception. 

Since measurement errors due to NLOS reception depend on path delays of reflected or 

diffracted signals to direct signals, measurement errors can be predicted geometrically 

using the model. The proposed method has a threshold to detect signals whose path 

delay is nearly equal to or longer than the predicted values of path delays. The 

threshold is chosen as a smaller predicted value so that it can detect NLOS signals as 

much as possible. Removing measurements whose path delays are too long can reduce 

biased position errors. Note that the prediction of path delays with the geometric model 

is sometimes inaccurate. And some NLOS signals might be accepted and used in the 

computation of the EKF. Since the adaptive EKF can determine the appropriate noise 

input level for accepted NLOS signals, it can reduce the impacts of the accepted NLOS 

signals on state estimates. The results of experiments in urban canyons show the 

performance improvement of the adaptive EKF with the proposed method. 

Chapter 3 begins with numerical examples to highlight the problem caused by 

fictitious noise for avoiding filter divergence. The problem is that estimation errors by 

adding fictitious noise to process noise can be distributed more widely in a particular 

direction determined by satellite geometry. Since the estimation error covariance 

matrix in the EKF varies depending on fictitious noise, the sensitivity analysis of the 

matrix due to fictitious noise can explain the cause of the problem. From the sensitivity 

analysis, the variation of the estimation error covariance matrix depends on 

measurement matrices, that is, satellite geometry. This analysis and numerical  
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examples indicate that fictitious noise may result in excessive inflation in a particular 

direction of the estimation error covariance matrix and eventually degrade filter 

performance. 

Based on the results of numerical examples and the sensitivity analysis, this chapter 

presents a process noise model that varies depending on satellite geometry. The process 

noise model can suppress the inflation of the estimation error covariance matrix due to 

poor satellite geometry by choosing a small or zero fictitious noise in a particular 

direction. The improvement of position accuracy due to the proposed model is 

demonstrated through experiments of stationary GNSS positioning with poor satellite 

geometry. 

Chapter 4 presents a process noise model extended from the proposed model in 

Chapter 3. As stated earlier, the proposed model in Chapter 3 is derived based on the 

sensitivity analysis of the estimation error covariance matrix under some assumptions. 

Although one of the assumptions is that the state transition matrix is an identity 

matrix, the assumption does not often hold in the EKF for GNSS positioning. This 

explains that the proposed model in Chapter 3 should be extended. 

This chapter begins with a sensitivity analysis of the estimation error covariance 

matrix without the assumptions introduced in Chapter 3. From this analysis, fictitious 

noise varies the estimation error covariance matrix. Keeping this in mind, let fictitious 

noise be chosen so that the variation of the estimation error covariance matrix will be a 

given value. For this purpose, the value is designed in two ways later described.  

Since the size of the estimation error covariance matrix is usually large, it is difficult 

to determine appropriate values for all elements. Therefore, the value should be 

constrained in some way to be able to determine. Recall that unintentional inflation of 

the estimation error covariance matrix may degrade filter performance, as Chapter 3 

pointed out. This indicates that the directions exist such that inflation in the 

estimation error covariance matrix is unnecessary. Based on the consideration, the 

constraint by measurement matrices can be effective in forming the value.  

In the first design, the value is chosen through a trial-and-error process. In the second 

design, the value is chosen to minimize the sum of the square of measurement 

residuals. In the sense of minimization, the value is referred to as a decision variable. 

Position accuracy improvement is demonstrated through stationary GNSS positioning 

for the first choice and in GNSS/INS positioning for the second choice. 

Moreover, the extended process noise model can be applied to applications other than 

GNSS and GNSS/INS. For example, robot localization is one important system to 
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determine the robot's position with range and vision sensors, such as LiDAR devices 

and cameras. It tends to suffer from unexpected dynamics errors in the prediction of 

robot motion. Furthermore, the information from these sensors often degenerates, for 

example, when the robot moves along the wall. This indicates that using the extended 

process noise model may improve the EKF performance by varying fictitious noise 

based on measurement matrices. Numerical simulations in robot localization show the 

improved performance of the EKF for the localization system. 

Chapter 5 concludes this thesis. This chapter begins with a brief revisit of the 

contents of each chapter and the key findings of this thesis. And then, it states the 

importance and significance of those findings compared with previous studies. Further, 

this chapter refers to possible applications to other areas with the proposed process 

noise model and the possibility of expanding the proposed process noise model to other 

nonlinear filters. Finally, future work on obtaining more accurate positions in urban 

canyons is presented. 

 


