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ABSTRACT 

 

        Natural convection in a three-dimensional square cavity with isotropic irregular roughness 

on both vertical walls is studied numerically considering the compressibility of the working 

fluid under both laminar and turbulent conditions. Based on consideration of realistic 

conditions, the roughness is generated using a given power spectrum density, and a 

compressible solver with preconditioning that uses a dual time-stepping method is applied to 

handle the low velocity of the natural convection flow. The compressible solver demonstrates 

satisfactory accuracy in terms of the average Nusselt number (Nu) when compared with 

incompressible benchmark solutions. However, the results for the local Nusselt number from 

the compressible and incompressible solvers differ. As the temperature difference between the 

two vertical sidewalls increases, the maximum value of the local Nusselt number increases, but 

in the downstream region, the local Nusselt number actually decreases. 

        It is found that the surface roughness affects the temperature fields near the wall but there 

is no effect on the temperature at the cavity center. The existence of roughness peaks will 

amplify the local Nu and under the condition of Rayleigh number (Ra) equal to 106, as the roll-

off wavenumber of roughness elements increases, this augment will increase as well. In 

contrast, the rough valleys will decrease the local Nu. Further, the partial average Nu over the 

roughness top region is affected slightly by the change of roughness roll-off wavenumber, but 

this effect is much more appreciable on the partial average Nu over the roughness bottom region. 

For the average Nu over an entire rough surface, the increase of roll-off wavenumber causes 

the decrease in average Nu. 

        For a Ra of 1×1010, the turbulent natural convection flows in a cavity of aspect ratio 4 

with irregular roughness on vertical isothermal sidewalls have been investigated using the 

method of compressible direct numerical simulation (DNS). The profiles of probability density 

functions of the thermal and hydrodynamic quantities show that at this Ra, the roughness will 

increase the instability of the nearby fluid. At the quasi-steady state, the results show the cavity 

with rough sidewalls has a lower Nusselt number on the hot wall than the smooth cavity. In 

other words, the roughness has a negative effect on the wall heat transfer performance. 

However, the results of eddy heat flux (EHF) represent the turbulent flows generated by the 



II 

 

roughness will enhance the heat transfer near the sidewalls obviously. For the instantaneous 

results, the isosurfaces of the Q-criterion uncover that the vortex will be generated in the 

vicinity of roughness peaks and increase the local heat transfer, but in the valley regions, it is 

difficult to find the vortex structures like the peak region. As Ra increases, the mixing effects 

of turbulent flows will strengthen, then the disparity of the average Nusselt number on the 

sidewall between rough and smooth cases will be reduced.   
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CHAPTER 1. INTRODUCTION 

 

1.1 Natural Convection 

        Heat transfer is one of the most common phenomena in modern industry and daily life, 

and attracts lots of researchers, engineers and manufacturers.  Roughly, heat transfer can be 

classified into these three forms: Radiation, Conduction and Convection[1]. The thermal 

convection widely exists in the applications where the fluid are involved in the heat transfer, 

such as power generators and turbines, and according to the driven forces of the fluid, 

convective heat transfer is further divided into forced convection, natural convection and 

combined-convection. In this study, the major concern is natural convection where the 

buoyancy force plays a role as the driving force of the fluid flow. The generation of buoyancy 

originates from the inhomogeneous density of the fluid, i.e. the fluid motion is not driven by 

any external force. The denser or heavier particles of fluid will be pulled by the gravity more 

strongly than the lighter particles, thus the relative motion inside the fluid will occur, and as 

the carrier of the energy and mass, convection of the fluid will bring the delivery of the energy. 

Generally, without considering the phase change, the temperature difference will mostly cause 

the density difference. In terms of the directions of the temperature gradient and the 

gravitational acceleration, the natural convection of the fluid will show different forms. Figure 

1.1 shows three typical examples. In these examples of natural convection flows, the 

temperature difference and the characteristic length are two key points to affect the instability 

of the fluid flow. Therefore, one dimensionless parameter, Rayleigh number (Ra), has been 

introduced to describe the structure of fluid flows. The classical form of Ra can be defined as 

following, 

𝑅𝑎𝑥 =
𝑔𝛽

𝜈𝛼
(𝑇𝑤 − 𝑇∞)𝑥

3 (1.1) 

where, 𝑔 represents the acceleration caused by the gravity, 𝛽 is the expansion coefficient of the 

working fluid, 𝜈 is the kinematic viscosity, 𝛼 is the thermal diffusivity, 𝑥 is the characteristic 

length and 𝑇𝑤, 𝑇∞ indicate the temperature on the object surface and the temperature of the 

fluid far from the object surface respectively.  

        No matter in nature or in engineering applications, the phenomenon of natural convection 

is so dominant and significant that it attracts lots of attention and interest from researchers and 
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engineers. Since no external source is required, natural convection can be found in small-scale 

to large-scale industrial applications. Thus, a better understanding of natural convection will 

lead to improving efficiency and saving energy.  

 

Figure 1.1. Typical natural convection examples: (a) over a hot vertical plate[2], (b) in an 

enclosured cavity with vertical heated walls[3], (c) Rayleigh-Bénard thermal convection[4]. 

 

1.2 Boussinesq or non-Boussinesq considerations 

        Due to the universality of natural convection, large volume numerical methods have been 

developed by previous researchers. One of the vital issues which all researchers should pay 

attention to is the change in the fluid density because of the change in temperature and the heat 

transfer. In order to deal with this issue, the Boussinesq approximation has been proposed. 

According to this approximation, the variation of the fluid density will only be considered when 

it is multiplied by the gravitational acceleration in the body force term of the momentum 

equations, and the fluctuations of density in the motion of the fluid are principally treated as 

the results from the heat transfer [5]. The other variations of fluid properties are negligible 

entirely. Thus, under the Boussinesq approximation, the continuity equation will keep its 

incompressible form and be able to deal with the effects of buoyancy in the flow problems. 

Obviously, the Boussinesq approximation will be valid under some specific conditions. Gray 

and Giorgini[6] assessed the validity of this approximation for liquids and gases, and pointed 

out that for the Rayleigh-Bénard problems, when the working fluid is air, the temperature 

difference should be smaller than 28.6K and the distance between roof and bottom boundaries 

should be smaller than 8.3×104 cm. For the flows in an enclosure cavity with 2 vertical heated 
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sidewalls, when the temperature difference ratio which is defined as 𝜖 = (𝑇𝐻 − 𝑇𝐶)/𝑇𝐶 is more 

than 0.1, the Boussinesq approximation might not be accurate[7]. For natural convection flows, 

the Mach numbers of main flows are usually much smaller than forced convection, a high 

enough temperature difference can also affect the velocity fields and heat transfer 

distributions[8]. Paillere et al.[9] found large temperature difference will result in the non-

symmetrical distribution of the heat transfer and the flow patterns, and the compressibility of 

the fluid must be taken into account and due to the low Mach number in natural convection 

flow, Low-Mach approximated solver is necessary[10]. Talukdar et al[11] also observed the 

anti-symmetry in the patterns of buoyancy-driven laminar flows in the square cavities, and the 

emergence of this anti-symmetry was attributed to the temperature-dependent fluid properties. 

Hamimid et al.[12] showed that the Boussinesq approximation will lack the accuracy to 

simulate the double-diffusive natural convective flow problem at a high buoyancy ratio, 

because in this situation, the temperature/solutal difference will conspicuously modify the 

physical properties of the fluid and the flow is compressible. There is no doubt that the 

Boussinesq approximation can be very convenient for incompressible solvers to handle the 

problems which involve the fluctuations of the fluid density, but the limitations of this 

approximation deserve thoughtful consideration. Although the mathematical formulations 

would be more complex when the fluid properties are variable[13], from the view of realistic 

industrial equipment, natural convection tends to occur under relatively imperfect and extreme 

conditions. For the applications which demand high heat transfer efficiencies, such as solar 

collectors, nuclear reactors, or building ventilation, because of the large and complex structures 

or the working environment of the extremely large temperature difference, it is difficult to 

investigate them through the numerical methods with Boussinesq approximation or the 

experimental methods in laboratory scale. Hence, it is of great significance to implement the 

numerical analysis under the non-Boussinesq conditions. 

 

1.3 Surface roughness 

        For solid materials, the surface roughness is inevitable and roughness can influence the 

flow field near the surface directly, thus there are numerous studies on it. In terms of the 

typology, the rough surfaces can be generally classified into homogeneous and 

inhomogeneous[14], as shown in Figure 1.2. Most engineering surfaces can be categorized into  

homogeneous surfaces. The homogeneous surface will be further divided into deterministic 
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and random surfaces according to the shapes of the roughness elements. For the deterministic 

surface, the roughness elements have identical shapes and sizes or periodically changing shapes. 

That means the shapes or the sizes of roughness elements are regular. The effects of the 

deterministic roughness on the flow field are more predictable, so the researchers and engineers 

can choose different types of roughness according to demand. However, for the random 

roughness, as the name implies, the most notable characteristic is the irregular element 

distribution. It is clear that in nature most surfaces show the characteristic of random roughness. 

Figure 1.3 shows the examples of these two different solid surface types. Because of the 

randomness of roughness element distribution, some statistical methods should be utilized to 

describe one random solid surface. Let us take ℎ(𝑥, 𝑦) to represent the local height on one 

random rough surface, (𝑥, 𝑦) is the location on the mean plane of the rough surface where the 

ensemble average of ℎ  equals 0. If the distribution of the local height ℎ  fits a Gaussian 

distribution, then this random rough surface is a Gaussian rough surface, otherwise, the surface 

is a non-Gaussian rough surface. In industry, the processing methods will determine the types 

of surfaces. Some cumulative processes like electropolishing or grinding will usually generate 

a surface of Gaussian type, and some single-point processes will lead to a non-Gaussian surface 

and anisotropic[17]. Furthermore, to uncover the statistical information on the random rough 

surface detailly, the power spectral density (PSD) of the surface is necessary[18]. We can draw 

an analogy between a randomly rough surface with a combination of several waves with 

different amplitudes and wavelengths. So, the PSD can depict the distribution of the roughness 

elements on the inverse-length units. Different from other description methods such as root-

mean square (RMS), PSD contains the surface information in both lateral and vertical directions, 

and different techniques of roughness measurement can be easily and conveniently expressed 

through the PSD function[19]. In current research, the PSD has been adopted as the main 

method to express and generate the random rough surface. 
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Figure 1.2. The general typology of solid surfaces. 

 

Figure 1.3. Comparision of different solid surface: (a) deterministic[15], (b) random[16]. 

 

1.4 Previous investigations 

        For the situation of high-temperature difference (>30K), the compressibility of the fluid 

should be considered during the numerical calculations, thus it is necessary to utilize the 

compressible flow solver due to the conspicuous density variations of fluid. But, the magnitude 

of fluid speed is too small compared with the speed of sound, as the result, the original 
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compressible solver is not allowed to be used directly. Thus, Weiss and Smith[20] adopted the 

preconditioning method to natural convection in a horizontal annulus and the results showed 

that the accuracy of this method is satisfied at the condition of Rayleigh number equals 4.7 × 

104. Yamoto et al[21] simulated the natural convection in a horizontal circular pipe using the 

same method to deal with compressible flows with low velocity and had proved that under the 

conditions of 32.5K temperature difference and Ra = 105, the preconditioning method could 

achieve a good agreement with experimental results in thermal boundary-layers and the heat 

transfer performance. Also, the preconditioning method can accelerate the simulation to the 

convergence in a steady situation[22].    

        Natural convection flows in enclosed cavities with differently heated sidewalls have been 

studied extensively. From the achievements of previous researchers[23-26], flow mechanisms 

have been interpreted meticulously, and the benchmark solutions of heat transfer (Nusselt 

number) and hydrodynamic performance (maximum value of velocity and its location) have 

been calculated and obtained accurately. Under the consideration of non-Boussinesq 

approximation, Chenoweth and Paolucci[27] reported that in 2D cavities, the temperature-

difference parameter has a conspicuous influence on the temperature and velocity fields, while 

the average Nu is quite independent of the changes in temperature difference. Wang et al. [28] 

also found this phenomenon in a wider Ra range from 105 to 2×109. Demou et al.[29] conducted 

the simulations in a 3D cavity with an aspect ratio equal to 4, the results showed that when Ra 

is set at 2×109, the transition can be found in the downstream regions on both hot and cold 

walls, and as the temperature difference between the heated walls increases, the laminar-

turbulence transition point on the hot wall will move upstream but on the cold wall, this point 

will move downstream. The movement of transition points cannot be found in 2D simulations 

clearly. According to the results of direct numerical simulations (DNS) in 2D and 3D cavities, 

M Soria et al.[30] concluded that for natural convection flows in enclosure cavities, the 2D 

simulation may only be enough for general features, such as average Nu. When it comes to 

turbulent statistics, 3D simulations are necessary.  

        The methods to enhance the heat transfer property of natural convection flows, such as 

nanofluids[31], bubbles[32], and roughness or partitions[33] on the heated walls, have been 

studied extensively and the method of roughness or partitions on the sidewalls has been proved 

as an effective way to influence the heat transfer. Xu et al.[34] installed a thin fin on the hot 

sidewall of a differentially heated cavity, and investigated the effects of this fin on the flow 

field. At the Ra of 2.29×108, and behind the fin, the intermittent plume of the fluid will be 
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generated due to the existence of the adverse temperature gradient in this region. The 

intermittent plume will trigger the fluctuations of the thermal boundary layer in the downstream 

area, then, near the fin, natural convection flows will be periodic based on time. Further, Dou 

and Jiang[35] showed the influence of the fin number on the hot sidewall on the heat transfer 

performance. At Ra of 3.38×106, the fin will aggravate the average Nu, but enhance the heat 

transfer at a higher Ra of  3.38×109. Differently, the effect of the fin number can be ignored at 

both Ra. Yousaf and Usman[36] used the Lattice Boltzmann method to study the influence of 

the sinusoidal roughness elements on vertical sidewalls on the heat transfer in a two-

dimensional square cavity. They found that, under a condition of laminar flow (Ra = 103 to 

106), as the number and size of roughness elements increase, the heat transfer performance 

decreases.  At the same time, some eddies were observed in the interstice between two 

roughness elements at Ra = 104, but disappeared in the case of 106.  The authors pointed out 

the reason may be the larger Rayleigh number brings larger buoyancy to the fluid and then 

prevented the fluid gets trapped between two roughness elements. Shakerin et al[37] took the 

method of the experiment to investigate the flow field in an air-filled square cavity with single 

discrete rectangular roughness on the hot sidewall. The results showed, at the Rayleigh number 

of 108,  no obvious eddy was observed in the vicinity of the roughness element, and compared 

with the smooth case, in the region just below and above the roughness element, the heat flux 

was reduced along the wall. Mohebbi et al[38] researched the natural convection flows in 2D 

square cavities filled with nanofluid using the Lattice Boltzmann method. Square roughness 

elements had been chosen to install on the vertical sidewall. The results indicated that when 

the size of roughness elements was one-tenth of the cavity height, the influence of the element 

number depended on Ra. For a lower Ra (Ra =103), the average Nu on the hot wall was 

independent of the roughness element number, while for a higher Ra (Ra = 106), as the 

roughness element number increased from 0 to 4, the average Nu decreased, and the number 

changed from 4 to 6, the average Nu kept constant. H Jiang et al. [39] used both experimental 

and incompressible numerical methods to investigate the natural convection in a rectangular 

cell with asymmetric ratchet surfaces at Ra = 5.7 × 109. For the case with vertical heated 

sidewalls, they found that the roughness increased the Reynolds number (Re) of the large-scale 

circulation roll and the case where the large-scale circulation roll sweeping along the smaller 

slope side of the ratchet surfaces had a better performance in heat transfer than the case where 

the large-scale circulation roll flowing along the steeper slope of the ratchets. But, for the 

Rayleigh-Bénard convection with ratchet-shaped roughness on horizontal walls, the result was 

opposite, that the large-scale circulation roll sweeping along the larger slope side of the ratchet 
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surfaces had a better heat transfer. This difference could be attributed to the plume emissions. 

When the circulation flow hit the sharp corners on the roughness elements, a greater number 

of emissions was caused and the convection from the boundary to the cavity bulk will be 

intensified. 

        In most of the above researches, the thin sheet, rectangular or sinusoidal were chosen as 

the shapes of roughness or partition. Considering the wall roughness geometry is characterized 

by irregular shapes in nature and engineering, Napoli et al[40] introduced the effective slope 

as a universal geometrical parameter to characterize the shapes of the irregular rough walls. At 

the condition of turbulence, Peeters and Sandham[41] researched the forced convection in the 

channel with cold irregular rough top and bottom filled with heated fluid. The authors found 

that the Reynolds stress and the heat flux near the rough wall decreased as the sizes of 

roughness elements increased. Kuwata[42] conducted similar simulations and the results 

showed, above the mean plane of the roughness, the sum of the viscous drag and pressure terms 

was much larger than the wall heat transfer term, thus, the Reynolds analogy factors of the 

rough walls decreased as the effect slope increased. For the laminar flows, the convections in 

microtubes with 3D random rough surfaces had been studied by Xiong and Chung[43] and it 

had been found that in the range of Reynolds number equal to 40 to 2000, the influence of 

roughness on the heat transfer could be ignored.   

 

1.5 Overview of the present study 

        The main objective of this study can be summed up as investigating the effects of 3D 

irregular surface roughness on natural convection flows in enclosed cavities considering the 

compressibility of the working fluid. To fulfill this objective, the process of current research 

has been divided into the following three sub-objectives: 

• Generate and install the 3D irregular surface roughness on the sidewalls of cavities. 

• Investigate the effects of different surface roughness on the heat transfer performance 

inside the cavities. 

• Investigate the influence of one certain irregular rough surface on flow fields and heat 

transfer of cavity flows under different Rayleigh numbers.   
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        To fit the reality of industrial devices’ surfaces, irregular or random surface roughness 

should be considered. Due to the complexity of the geometric features, the roughness is 

generated through a given power spectrum density function and this given PSD function comes 

from the measurements of real industrial or natural surfaces. By changing the relative 

parameters of the PSD function, different roughness with different traits will be generated. 

Under a constant condition, such as same temperature difference or same size of cavities, the 

changes of irregular roughness will directly affect the heat transfer and flow fields nearby. This 

is helpful to survey the changes in the fluid state and understand the mechanism hidden behind 

these changes. Meanwhile, as the Ra increases from a low level to a relatively high level, the 

instability of the fluid will increase. Since the fluid flows differently from laminar to turbulent 

situations, the effects of one surface roughness will be different as well. Therefore, there is 

significance to investigating the influence of irregular roughness under different Ra. 

        In terms of the above three sub-objectives, the dissertation is organized in the following 

sequence. 

        In Chapter 2, the governing equations and relevant numerical methods for compressible 

natural-convection flows will be introduced in detail. Because of the complex geometry of the 

irregular roughness, the immersed-boundary method (IBM)[44] is adopted in this study. On 

the other hand, to capture the information on the roughness accurately, the building-cube 

method (BCM)[45] is chosen to generate the numerical grids for the large-scale simulations.  

        In Chapter 3, the method to generate the 3D irregular roughness will be presented. The 

examples of PSD measured from reality will be shown, and the PSD type used in this study 

will be discussed.  

        The results of laminar flows in one square cavity will be reported in Chapter 4. The smooth 

and rough sidewalls will be installed respectively. In this chapter, the numerical method 

described in Chapter 2 will be proved effective and efficient to deal with the low-match natural 

convection considering the fluid’s compressibility and with the complex boundaries. The flow 

fields near both smooth and rough sidewalls will be also discussed. 

        Chapter 5 will show the results of the cavity flows with different rough surfaces. The 

specific differences of these rough surfaces will be described. Details of the flow fields near 

different irregular rough surfaces will be compared with each other. The temperature gradients 

inside the cavities will be shown and discussed.  
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        In Chapter 6, the influence of one certain irregular surface roughness will be first 

investigated under turbulent condition. The statistical results of the flow fields near the rough 

sidewall will be compared with the smooth case. Comparison will be also made to Nusselt 

numbers and the results of eddy heat flux. Then, under different Rayleigh numbers, the 

influence of the roughness under different Rayleigh numbers will be discussed. 

        The conclusions of current studies will be eventually presented in Chapter 7 as well as 

suggestions for future works. 
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CHAPTER 2. GOVERNING EQUATIONS AND NUMERICAL 

METHOD 

 

2.1 Governing Equations 

        To deal with the the natural convection under high temperature differences, the 

compressible governing equation has been considered, and the abbreviation for the governing 

equation is shown like the following form: 

𝜕𝑈

𝜕𝑡
+
𝜕𝐹1
𝜕𝑥1

+
𝜕𝐹2
𝜕𝑥2

+
𝜕𝐹3
𝜕𝑥3

= 𝑆 (2.1) 

𝑈 and 𝐹𝑖 can be written in following format,  

𝑈 =

[
 
 
 
 
𝜌
𝜌𝑢1
𝜌𝑢2
𝜌𝑢3
𝜌𝑒
]
 
 
 
 

(2.2) 

 

𝐹𝑖 =

[
 
 
 
 
 

𝜌𝑢𝑖
𝜌𝑢𝑖𝑢1 + 𝑃𝛿𝑖1 − 𝜇𝐴𝑖1
𝜌𝑢𝑖𝑢2 + 𝑃𝛿𝑖2 − 𝜇𝐴𝑖2
𝜌𝑢𝑖𝑢3 + 𝑃𝛿𝑖3 − 𝜇𝐴𝑖3

(𝜌𝑒 + 𝑃)𝑢𝑖 − 𝜇𝐴𝑖𝑗𝑢𝑗 − 𝑘
𝜕𝑇

𝜕𝑥𝑖]
 
 
 
 
 

, ∀𝑖 = 1,2,3 (2.3) 

and 

𝑆 =

[
 
 
 
 

0
0

−(𝜌 − 𝜌0)𝑔
0

−(𝜌 − 𝜌0)𝑔𝑢2]
 
 
 
 

(2.4) 

where specific energy is 𝑒 =
𝑃

𝜌(𝛾−1)
+
1

2
(𝑢1

2 + 𝑢2
2 + 𝑢3

2), 𝜇𝐴𝑖𝑗 indicates the stress term with 

𝐴𝑖𝑗 = 𝜕𝑢𝑗/𝜕𝑥𝑖 + 𝜕𝑢𝑖/𝜕𝑥𝑗 − 2/3(∇ ∙ 𝑢)𝛿𝑖𝑗  and 𝛿𝑖𝑗  is Kronecker delta. The relationship 

between pressure and density of air is represented by the ideal gas equation, 𝑃 = 𝜌𝑅𝑇 . 

According to Sutherland’s Law[46], the dynamic viscosity and thermal conductivity of 

working fluid are determined as:   
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𝜇(𝑇) = 𝜇0 (
𝑇

𝑇0
)

3
2 𝑇0 + 110.4

𝑇 + 110.4
(2.5) 

𝑘(𝑇) =
𝜇(𝑇)𝛾𝑅

(𝛾 − 1)𝑃𝑟
(2.6) 

where, the reference temperature of the fluid: 𝑇0 = 298.06 𝐾, the reference fluid density at 

reference temperature: 𝜌0 = 1.18 𝑘𝑔/𝑚3 , acceleration due to gravity: 𝑔 = 9.81 𝑚/𝑠2 , the 

reference dynamic viscosity: 𝜇0 = 1.85 × 10−5 𝑁 ∙ 𝑠/𝑚2 , specific heat ratio: 𝛾 = 1.4, gas 

constant: 𝑅 = 287 𝐽/𝑘𝑔, and Prandtl number: 𝑃𝑟 = 0.72. 

 

2.2 Numerical Method 

        For natural convection, the magnitude of fluid velocity due to the buoyancy force is 

generally smaller than the speed of sound by several orders of magnitude. For this reason, 

original compressible solvers are unsuited for this kind of flow field. To increase the efficiency 

of solving natural convection problems of compressible flows, a preconditioning method is 

adopted to resolve the governing equations which are developed by Weiss and Smith[20]. 

Combined with the Roe scheme[47] and dual time-stepping method[48], the new governing 

equation is shown as: 

𝛤
𝜕𝑈𝑝

𝜕𝜏
+
𝜕𝑈

𝜕𝑡
+
𝜕𝐹1
𝜕𝑥1

+
𝜕𝐹2
𝜕𝑥2

+
𝜕𝐹3
𝜕𝑥3

= 𝑆 (2.7) 

where, 𝛤 is the preconditioning matrix provided by Weiss and Smith, and 𝑈𝑝 is the primitive 

form of the variables, [𝑃, 𝑢1, 𝑢2, 𝑢3, 𝑇], but 𝑈 is the conservative form of [𝜌, 𝜌𝑢1, 𝜌𝑢2, 𝜌𝑢3, 𝜌𝑒]. 

𝜏 and 𝑡 represent the artificial and physical time respectively. Here, the dual time stepping 

technique is applied for speedy convergence of simulation and to ensure the stability of the 

numerical scheme. 

        The discretized form of Eq. (2.7) is 

𝛤
𝑈𝑝
𝑘+1−𝑈𝑝

𝑘

∆𝜏
+
3𝑈𝑘+1−4𝑈𝑛+𝑈𝑛−1

2∆𝑡
+

1

∆𝑥1
(𝐹1

𝑖+
1
2
,𝑗,𝑘

𝑘+1 − 𝐹1
𝑖−
1
2
,𝑗,𝑘

𝑘+1 ) +
1

∆𝑥2
(𝐹2

𝑖,𝑗+
1
2
,𝑘

𝑘+1 − 𝐹1
𝑖,𝑗−

1
2
,𝑘

𝑘+1 ) +

1

∆𝑥3
(𝐹3

𝑖,𝑗,𝑘+
1
2

𝑘+1 − 𝐹3
𝑖,𝑗,𝑘−

1
2

𝑘+1 ) = 𝑆𝑘 (2.8)
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The iteration of artificial time and physical time is shown through two superscripts 𝑘 and 𝑛 in 

Eq.(2.8). It is noting that, when the iteration of artificial time reaches a situation of convergence, 

the residual of ∂𝑈𝑝/𝜕𝜏 less than 10-3, the magnitude of the artificial term at (k+1)th step is 

equivalent to the magintude of physical time term at (n+1)th step, then, Eq. (2.8) would return 

back to the original Navier-Stokes equation approximately. 

        Afterward, it is necessary to linearize the terms of 𝑈𝑘+1 and 𝐹𝑖
𝑘+1. Thus, these terms can 

be expressed as follows: 

𝑈𝑘+1 = 𝑈𝑘 +𝑀∆𝑈𝑝 (2.9) 

𝐹1
𝑘+1 = 𝐹1

𝑘 + 𝐴𝑝∆𝑈𝑝 (2.10) 

where, 𝑀 = ∂𝑈/ ∂𝑈𝑝, ∆𝑈𝑝 = 𝑈𝑝
𝑘+1 − 𝑈𝑝

𝑘 . 𝐴𝑝 is the flux Jacobian (𝐴𝑝 = 𝜕𝐹1
𝑘/𝜕𝑈𝑝) and in 

the other 2 directions, the flux Jacobians are 𝐵𝑝 = 𝜕𝐹2
𝑘/𝜕𝑈𝑝, 𝐶𝑝 = 𝜕𝐹3

𝑘/𝜕𝑈𝑝 for 𝐹2
𝑘+1 and 

𝐹3
𝑘+1 respectively. 

        Thus, by substituting Eq. (2.9) and Eq. (2.10) into Eq. (2.8), the Eq. (2.8) can be rewritten 

into the following format as 

[
𝐼

∆𝜏
+ 𝛤−1𝑀

3

2Δ𝑡
+ 𝛤−1(𝛿𝑥1𝐴𝑝

𝑘 + 𝛿𝑥2𝐵𝑝
𝑘 + 𝛿𝑥3𝐶𝑝

𝑘)] Δ𝑈𝑝 = 𝛤−1𝑅𝑘 (2.11) 

where, 𝑅𝑘 = 𝑆𝑘 − (3𝑈𝑘 − 4𝑈𝑛 + 𝑈𝑛−1)/2∆𝑡 − (𝛿𝑥1𝐹1
𝑘 + 𝛿𝑥2𝐹2

𝑘 + 𝛿𝑥3𝐹3
𝑘) ,  and 𝛿𝑥𝑖  is the 

central-difference operator.  After the convergence in artificial time term, Eq. (2.11) can be 

rewritten into Eq. (2.12): 

[𝛤−1𝑀
3

2Δ𝑡
+ 𝛤−1(𝛿𝑥1𝐴𝑝

𝑘 + 𝛿𝑥2𝐵𝑝
𝑘 + 𝛿𝑥3𝐶𝑝

𝑘)] Δ𝑈𝑝 = 𝛤
−1𝑅𝑘 (2.12) 

The lower-upper symmetric-Gauss-Seidel (LUSGS) implicit method is then used to solve Eq. 

(2.12). To perform the calculation of 𝑅𝑘 in Eq. (2.12), it is helpful to divide the flux term in 

Eq.(2.3) into inviscid term and viscid term, shown in Eq.(2.13) and Eq.(2.14) respectively. 

Then the inviscid term in Eq.(2.12) can be discretized into Eq.(2.15) through Roe upwind 

scheme. 

𝐹𝑖𝑛𝑣𝑖𝑠𝑐𝑖𝑑 =

(

  
 

𝜌𝑢𝑖
𝜌𝑢𝑖𝑢1 + 𝑃𝛿𝑖1
𝜌𝑢𝑖𝑢2 + 𝑃𝛿𝑖2
𝜌𝑢𝑖𝑢3 + 𝑃𝛿𝑖3
(𝜌𝑒 + 𝑃)𝑢𝑖 )

  
 

(2.13) 
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𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠 = −

(

 
 
 
 

0
𝜇𝐴𝑖1
𝜇𝐴𝑖2
𝜇𝐴𝑖3

𝜇𝐴𝑖𝑗𝑢𝑗 + 𝑘
𝜕𝑇
𝜕𝑥𝑖)

 
 
 
 

(2.14) 

𝐹
𝑖𝑛𝑣𝑖𝑠𝑐𝑖𝑑,𝑖+

1
2
=
1

2
[𝐹𝑅(𝑈) + 𝐹𝐿(𝑈)] + 𝐹𝑑 (2.15) 

where, 𝐹𝑑 is the Roe dissipation term which can be described as: 𝐹𝑑 = −
1

2
{|𝛤−1𝐴𝑝|Δ𝑈𝑝}. 

        For the convective terms (𝐹𝑅 and 𝐹𝐿) in Eq.(2.15), the values at interfaces of cells are 

calculated by interpolating the corresponding values from a group of cell centers through fifth-

order Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL)[49] without a 

limitor function, shown in following way: 

𝑈𝐿
1+
1
2

=
1

60
[−3𝑈𝑖+2 + 27𝑈𝑖+1 + 47𝑈𝑖 − 13𝑈𝑖−1 + 2𝑈𝑖−2] (2.16) 

𝑈𝑅
1+
1
2

=
1

60
[2𝑈𝑖+3 − 13𝑈𝑖+2 + 47𝑈𝑖+1 + 27𝑈𝑖 − 3𝑈𝑖+1] (2.17) 

        In x1-direction, 𝐹𝑑 is expressed by Eq. (2.19): 

𝐹𝑑,𝑥1 = −
1

2

{
 
 

 
 

|𝑈𝐼𝐶|

[
 
 
 
 
∆𝜌

∆(𝜌𝑢1)

∆(𝜌𝑢2)

∆(𝜌𝑢3)

∆(𝜌𝑒) ]
 
 
 
 

+ 𝛿𝑈

[
 
 
 
 
𝜌
𝜌𝑢1
𝜌𝑢2
𝜌𝑢3
𝜌𝐻 ]

 
 
 
 

+ 𝛿𝑝

[
 
 
 
 
0
1
0
0
𝑢1]
 
 
 
 

}
 
 

 
 

(2.18) 

where 𝑈𝐼𝐶 is the cell interface velocity, and ∆ indicates the discontinuous jumps between the 

left and right states which can be obtained by Eq. (2.16) and (2.17), 𝐻 = 𝑒 +
𝑝

𝜌
. 𝛿𝑈 and 𝛿𝑝 are 

expressed respectively as: 

𝛿𝑈 = (𝑐′ −
1 − 𝜃′

2
𝑢1
𝑈′

𝑐̃
− 𝜃′|𝑢1|)

∆𝑝

𝜌𝜃𝑐2
+
𝑈′

𝑐̃
∆𝑢1 (2.19) 

𝛿𝑝 =
𝑈′

𝑐̃
∆𝑝 + (𝑐′ − |𝑢1| +

1 − 𝜃′

2
𝑢1
𝑈′

𝑐̃
) 𝜌∆𝑢1 (2.20) 
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where 𝜃′ = min [𝑀𝑙𝑜𝑐𝑎𝑙
2 , 1], 𝜃 = min [max(𝑀𝑟𝑒𝑓

2 ,𝑀𝑙𝑜𝑐𝑎𝑙
2 ) , 1], 𝑀𝑙𝑜𝑐𝑎𝑙 is the local Mach number 

and 𝑀𝑟𝑒𝑓 is a global cut-off Mach number. The discontinuous jumps of velocity and pressure 

are respectively calculated by ∆𝑢1 = 𝑢1𝑅 − 𝑢1𝐿 and ∆𝑝 = 𝑝𝑅 − 𝑝𝐿. Additionally, c represents 

the sound speed, 𝑐′ = 0.5√4𝑐2𝜃′ − (1 − 𝜃′)2𝑢1
2, 𝑐̃ = min [max(𝑀𝑟𝑒𝑓

2 ,𝑀𝑙𝑜𝑐𝑎𝑙
2 ) , 1]𝑐 and 𝑈′ =

0.5(1 + 𝜃′)𝑢1. It should be noted that, in the dissipation part, all variables are obtained from 

the Roe averages[47]. From Eq. (2.15), the calculation of inviscid terms will utilize both 𝐹𝑅 

and 𝐹𝐿, thus the accuracy order is sixth. 

        Different from the inviscid term, the viscous terms are discretized by second-order central 

differencing. Due to the primitive variables being defined at the location of numerical grid 

centers, the derivatives in viscous terms can be discretized using the following equations. 

𝜕

𝜕𝑥1
[
𝜕𝑢1
𝜕𝑥1

] =
(𝑢1𝑖+1,𝑗,𝑘 − 2𝑢1𝑖,𝑗,𝑘 + 𝑢1𝑖−1,𝑗,𝑘)

(∆𝑥1)2
, 

𝜕

𝜕𝑥1
[
𝜕𝑢1
𝜕𝑥2

] =
(𝑢1𝑖+1,𝑗+1,𝑘 − 𝑢1𝑖+1,𝑗−1,𝑘 − 𝑢1𝑖−1,𝑗+1,𝑘 + 𝑢1𝑖−1,𝑗−1,𝑘)

4∆𝑥1∆𝑥2
, (2.21) 

𝜕

𝜕𝑥1
[
𝜕𝑢1
𝜕𝑥3

] =
(𝑢1𝑖+1,𝑗,𝑘+1 − 𝑢1𝑖+1,𝑗,𝑘−1 − 𝑢1𝑖−1,𝑗,𝑘+1 + 𝑢1𝑖−1,𝑗,𝑘−1)

4∆𝑥1∆𝑥3
 

 

 

2.3 Immersed Boundary Method for Compressible Flows 

        Because of the complex geometry of the irregular rough surface, the immersed boundary 

method (IBM)[50] has been applied to ensure that the geometrical details are reproduced as 

accurately as possible. The key point of IBM is to simulate the existence of geometry by 

imposing the physical values into the numerical grids in the vicinity of geometry. Figure 2.1 

shows the configuration of IBM.  The cells which are defined as interface cell (IC) has the 

characteristic that the distance (d) from the cell center to the closest geometry element is less 

than one cell size. Image point (IP) is the point that the distance from which to IC is equal to d 

in the normal direction of the geometry element. IC and IP must be on the same side of 

geometry. Then, according to the relative locations of surrounding cells to IP, the physical 

value at IP, 𝜙𝐼𝑃, can be calculated by bilinear interpolation: 
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𝜙𝐼𝑃 = 𝑤1𝜙1 + 𝑤2𝜙2 + 𝑤3𝜙3 + 𝑤𝐼𝐶𝜙𝐼𝐶 (2.22)  

where, 𝑤1, 𝑤2, 𝑤3 and 𝑤𝐼𝑃 can be obtained using VanderMonde matrix [50].  Tullio et al.[51] 

recommended applying linear interpolation to evaluate 𝜙𝐼𝐶, shown in following equations: 

𝜙𝑤 = 𝜙𝐼𝐶 − (
𝜕𝜙

𝜕𝑛
)𝑑 = 𝜙𝐼𝐶 −

𝜙𝐼𝑃 − 𝜙𝑤
2𝑑

𝑑 (2.23) 

𝜙𝐼𝐶 =
1

2
(𝜙𝑤 + 𝜙𝐼𝑃) (2.24) 

        In present study, the no-slip and isothermal conditions are implemented on the walls, so 

𝜙𝑤  is an assigned value 𝜙𝑎𝑠𝑠𝑖𝑔𝑛 , thus the Dirichlet condition should be considered. Then 

according to Equations (2.22), (2.23) and (2.24), 𝜙𝐼𝐶 can be presented as following: 

𝜙𝐼𝐶 =
𝑤1𝜙1 + 𝑤2𝜙2 + 𝑤3𝜙3 +𝜙𝑎𝑠𝑠𝑖𝑔𝑛

2 − 𝑤𝐼𝐶
(2.25) 

        However, for pressure, Neumann condition, which considers 𝜙𝑤 = 𝜙𝐼𝑃, should be used, 

then 𝜙𝐼𝐶 can be presented as following: 

𝜙𝐼𝐶 =
𝑤1𝜙1 +𝑤2𝜙2 + 𝑤3𝜙3

1 − 𝑤𝐼𝐶 +𝜓
(2.26) 

where 𝜓 is a small value to prevent the denominator becoming zero. Because when IC is very 

close to the wall, 𝑤𝐼𝐶 will approach 1.  
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Figure 2.1. Configuration of Immersed Boundary Method.  

 

2.4 Building Cube Method 

        Because of the irregular distribution and sizes of the roughness elements, the normal 

numerical grids in curve-linear distribution are hard to capture the detail of the roughness. In 

the Cartesian coordinate system, the complex geometry demands a fine distribution of 

numerical grids in three axes. Thus, the Building cube method (BCM)[52] has been chosen to 

discretized the calculation domains in present study. This method employs the uniform-spacing 

mesh, so it is suitable for the numerical calculation problem with complex geometry. In 

addition, based on the uniform-spacing mesh, it is simpler to generate mesh and program the 

solution algorithm. In BCM, the calculation domain will be divided into numerous cubic 

subdomains called cubes, and every cube will further divided into cubic cells. In this way, each 

cube will contain the same number of cells. Due to the equal cell number, the cubes are equal 

and independent of each other. So, it is easy to achieve a high parallel efficiency[53]. 

        The density of cell in each cube is constant, but the sizes of cubes are different according 

to the local size of the geometry. In general, fine cubes will be arranged around the geometry 

to ensure accurate representation of the geometry. Figure 2.2 shows an example of numerical 

grids generated via BCM. The procedure of the mesh generation can be concluded in several 

steps. The computational domain should be determined first in terms of the simulation 
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conditions, such as the size of geometry and the boundary conditions. Then, the domain is 

divided into some coarse cubes, and to generate finer meshes, division should be repeated 

several times until a preset threshold such as the minimum size of the girds. In this process, the 

refinement ratio has to be restricted as constant for a constant mesh density in one cube. For 

instance, in Figure 2.2, the refinement ratio is kept as 2, and the refinement is conducted near 

the geometry. Therefore, the sizes of the adjacent cube are halved when moving closer to the 

geometry. After the determination of the cube distribution, each cube will be divided into 

equivalent cells and then the mesh generation is finished. 

        Attributed to the constant refinement ratio, the accuracy and efficiency of the data 

communication between cubes can be assured[54].  The calculations in the cells near the cube 

boundaries need the information from the neighboring cubes, so it is significant to exchange 

the necessary data between the cubes. A halo region are created around each cube, and the 

region is made up of several layers of dummy or ghost cells. The layer number is determined 

by the adopted numerical method. Taking one-layer halo region as the example, the ghost cells 

play a role as temporary storage cells for the data copied from the neighboring cubes, shown 

in Figure 2.3. Between cubes with the same size, the copied data can be directly used in the 

information communication. But for the communication between cubes with different sizes, 

the data interpolation has to be involved. This data interpolation is classified into these two 

types: interpolating data from a fine cube to a coarse one, and interpolating data from a coarse 

cube to a fine one. Figure 2.4 shows the diagrams of the 2 types of data interpolation 

respectively. For the data interpolation from fine cube to coarse cube, the exchanged data can 

be obtained through the following equation: 

𝜙𝐼,𝐽
𝑇𝐻 = 𝑤𝑖,𝑗𝜙𝑖,𝑗

𝑡 +𝑤𝑖+1,𝑗𝜙𝑖+1,𝑗
𝑡 + 𝑤𝑖,𝑗+1𝜙𝑖,𝑗+1

𝑡 + 𝑤𝑖+1,𝑗+1𝜙𝑖+1,𝑗+1
𝑡 (2.27) 

here, 𝜙 represents the arbitrary data in the cell center, 𝑤 is the interpolation weight and the 

superscripts (𝑇, 𝑡 and 𝐻) indicate coarse cube, fine cube and halo cell. Data exchange from a 

coarse cube to a fine cube halo cells can be achieved through simply copying the coarse cell 

data and allocating these data to all corresponding fine halo cells. This procedure shown in 

Figure 2.4(b) can be expressed as: 

𝜙𝐼−1,𝐽
𝑇 = 𝜙𝑖−2,𝑗

𝑡𝐻 = 𝜙𝑖−1,𝑗
𝑡𝐻 = 𝜙𝑖−2,𝑗+1

𝑡𝐻 = 𝜙𝑖−1,𝑗+1
𝑡𝐻 (2.28)  

        In summary, uniform spacing and the equal number of mesh in each cube make it easy to 

deal with massively parallel simulation with complex geometry, and the easy and 
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straightforward method of data exchange guaranteed the high efficiency of the information 

communication between the cubes.  

 

Figure 2.2. Example of BCM mesh[53]. 

 

Figure 2.3. Halo region of one cube[54]. 
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Figure 2.4. Data interpolation between cubes with different sizes. (a) from fine cube to coarse 

cube; (b) from coarse cube to fine cube[54]. 
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CHAPTER 3. GENERATION OF IRREGULAR ROUGHNESS 

 

        In current study, the type of roughness has been selected as irregular and random. 

Different from other deterministic surfaces such as a surface with rectangular or sinusoidal 

roughness elements, the irregular roughness is indescribable to some extent, but it can represent 

the real surface roughness in nature or industry. Although a full description cannot be provided 

based on a finite number of parameters, a more number of parameters can describe the irregular 

roughness more accurately[55]. The parameters to describe an irregular roughness should 

include the height of the roughness element, the probability density of the roughness element’s 

height, and the change frequency of the roughness elements and other necessary parameters, 

thus the power spectral density(PSD)[56][57] is an easy and efficient way to combine the 

structural information of the roughness in both vertical and lateral directions. 

        Consistent with Chapter 1, the height of a roughness element is indicated as ℎ, therefore, 

considering an irregular roughness located in a Cartesian system, the undulation on the surface 

can be represented as ℎ(𝑥, 𝑦)  where x and y are Cartesian coordinates. To minimize the 

quantities of roughness element size, such as heights and RMS, ℎ(𝑥, 𝑦) is measured from the 

mean plane of the roughness thus 〈ℎ〉 = 0, 〈… 〉 stands for the ensemble averaging. The spans 

of the rough surface in both x and y directions are denoted as 𝐿𝑥 and 𝐿𝑦 respectively, then the 

autocorrelation function (ACF) of the height is then defined as the following: 

𝐴𝐶𝐹(𝑥, 𝑦) =
1

𝐿𝑥𝐿𝑦
∫ ∫ ℎ(𝑥0 + 𝑥, 𝑦0 + 𝑦)ℎ(𝑥0, 𝑦0)

𝐿𝑦
2

−
𝐿𝑦
2

𝑑𝑥0𝑑𝑦0

𝐿𝑥
2

−
𝐿𝑥
2

(3.1) 

where, (𝑥0, 𝑦0)  is a point on the rough surface, and (𝑥, 𝑦) is the in-plane distance. If the 

irregular roughness is isotropic, the ACF depends only on the distance, 𝑟 = (𝑥2 + 𝑦2)1/2, but 

not on the the choice of (𝑥0, 𝑦0), that means the location of (𝑥0, 𝑦0) will not affect the result of 

ACF or the direction of the distance vector 𝜃 = arctan (𝑦/𝑥) [14]. So, (𝑥0, 𝑦0) can be chosen 

as the origin, and then (𝑥, 𝑦) is the location on the rough surface. From Equation (3.1), it is 

clear that when distance is 0, then the ACF of the height is equivalent to the root-mean square 

𝜎 of the roughness.  

        From Wiener–Khinchin theorem, the power spectral density (PSD) can be attained from 

the Fourier transform (FT) of ACF[58][59]: 
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𝐶(𝑞𝑥, 𝑞𝑦) =
1

4𝜋2
∬𝐴𝐶𝐹(𝑥, 𝑦)𝑒−𝑖(𝑥𝑞𝑥+𝑦𝑞𝑦) 𝑑𝑥𝑑𝑦 (3.2) 

here, 𝑞𝑥 and 𝑞𝑦 are the components of the wavevector 𝒒. 

        The inverse Fourier transform (IFT) of Equation (3.2) follows as: 

𝐴𝐶𝐹(𝑥, 𝑦) = ∬𝐶(𝑞𝑥, 𝑞𝑦)𝑒
𝑖(𝑥𝑞𝑥+𝑦𝑞𝑦) 𝑑𝑞𝑥𝑑𝑞𝑥 (3.3) 

thus, 𝜎 can be also treated as the integral of the PSD at the origin. This indicates the relationship 

between PSD and RMS. Furthermore, BNJ Persson et al.[60] pointed out when ℎ(𝑥, 𝑦) follows 

a Gaussian distribution, PSD can completely dominate the statistical properties of the rough 

surface. Therefore, we can change the roughness by only changing the PSD.  

        In order to generate an irregular roughness according to a given PSD, more information 

we should know. From Equation (3.2), we can deduce that 

〈ℎ(𝑥, 𝑦)ℎ(0)〉 = 𝐶(𝑥, 𝑦) 

then Equation (3.3) can be rewritten as following: 

𝐶(𝑞𝑥, 𝑞𝑦) =
1

4𝜋2
∬𝐶(𝑥, 𝑦)𝑒−𝑖(𝑥𝑞𝑥+𝑦𝑞𝑦) 𝑑𝑥𝑑𝑦 (3.4) 

The height of roughness can be represented through its Fourier series[61], shown as 

ℎ(𝑥, 𝑦) =∑𝐵(𝑥, 𝑦)𝑒𝑖[𝑥𝑞𝑥+𝑦𝑞𝑦+𝜑(𝒒)]

𝒒

(3.5) 

where, 𝜑(𝒒) is the phase, as mensioned above, for an isotopic roughness, the phase have no 

influence on the distribution of roughness elements, thus, in the roughness generation, 𝜑(𝒒) is 

independent and uniformly distributed random variable. After substituting Equation (3.5) into 

Equation (3.4), and we can achieve the next equaton: 

𝐶(𝒒) =
𝐴

(2𝜋)2
|𝐵(𝒒)|2 (3.6) 

where, 𝐴 = 𝐿𝑥𝐿𝑦. This is an important equation, because it reveals the connection between the 

surface height ℎ(𝑥, 𝑦) and the PSD. By imposing 𝐶(𝒒) = 𝐶(𝑞), here q is the magnitude of 

wavevector q, the directions of wavevectors will be eliminated, thus the statistical properties 

of this rough surface will show as isotropic. 
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        Figure 3.1 shows some PSDs of different rough surfaces[60]. From these experimental 

results of real surfaces, asphalt surfaces have several conspicuous features, which include a 

large and relatively constant PSD, a clear inflection point on the PSD curve, and a decrease of 

PSD magnitude after the inflection point. In fact, the road surface like asphalt and concrete 

surface has nearly perfect power spectra of the self-affine fractal surface, which forms the 

fundamentals for the studies of all thin-film rough surfaces. In addition, the description of the 

self-affine fractal surface is the most convenient and simplest[62]. This kind of surface has the 

property that the surface statistical properties are invariant under the uniform scaling[60][63]. 

For this reason, the isotropic self-affine fractal surface has been chosen in current study. 

        The PSD curve of a self-affine fractal surface can be abstracted in general terms as Figure 

3.2. The curve is located in the range of 𝑞𝐿 < 𝑞 < 𝑞𝑆 , here 𝑞𝐿  and 𝑞𝑆  represent the 

wavenumber of the largest wavelength and the wavenumber of the smallest wavelength 

respectively. Because for both experimental measurement of a real surface or the generation of 

the numerical surface, the spans of the surface are limited usually, thus there is a largest 

wavelength to restrict the smallest q, meanwhile sample interval cannot be infinitely small, so 

there is a smallest wavelength to restrict the largest q as well. From the figure, the curve of 

PSD is separated into two parts by a special wavenumber 𝑞𝑅, roll-off or cut-off wavenumber. 

In the range of 𝑞𝐿 < 𝑞 < 𝑞𝑅, the magnitude of PSD keeps invariant, and in the range of 𝑞𝑅 <

𝑞 < 𝑞𝑆, the log C-Log q plot abides a constant slope. This slope shows the power-law behavior 

in the power spectrum of the self-affine surface, and can be expressed as following[64]: 

𝐶(𝑞)~𝑞−2(𝐻+1) 

where H is the Hurst exponent which is related to the fractal dimension of the surface. 

Therefore, a PSD curve will be determined with precision by giving largest C, 𝑞𝐿, 𝑞𝑅, 𝑞𝑆 and 

H. 

        Following the theories introduced above, the generation of a numerical irregular rough 

surface can be broken down into these 5 steps:  

Step 1: the spans of the rough surface in the Cartesian system (𝐿𝑥, 𝐿𝑦) should be confirmed. 

Meanwhile, the pixel numbers along the x and y directions should be considered to guarantee 

appropriate 𝑞𝑆. After this step, the coordinates of pixels will be built. 

Step 2: the pixels should be converted into a polar system. Therefore, the information of 

wavevectors will be generated which includes the wavenumber q and phase 𝜑. 
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Step 3: the PSD distribution should be decided. In present study, the rough surface is chosen 

as an isotropic self-affine fractal surface, thus, the 𝑞𝑅 and H should be given. In addition, based 

on the Equation (3.1) and (3.3), the magnitude of PSD can be calculated through a provided 

root-mean square of roughness height. After the determination of PSD distribution in log C– 

Log q domain, B(q) in Equation (3.6) can be obtained. 

Step 4: in step 3, we only consider the magnitude of wavevectors because of the isotropic 

roughness we want to generate. But, the information of the phase is necessary, thus, the phase 

of the wavevector will be decided as uniformly random. After this step, all the variables on the 

right-hand side of Equation (3.5) have been determined. 

Step 5: so far, all the information is presented in the polar system, hence, we should convert 

the polar system back to the Cartesian system. Then, inverse Fourier transform (IFT) has to be 

utilized to get the heights of roughness elements, h(x,y). 

        Figure 3.3 shows the example of generated rough surface with the parameters of 𝑞𝑅 =

0.001 𝑚−1, 𝐻 = 0.8, 𝜎 = 0.5 𝑚𝑚. 

 

Figure 3.1. Examples of different rough surfaces and their PSD distributions. 
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Figure 3.2. Power spectrum of a self-affine fractal rough surface. 

 

Figure 3.3. The example of a computer generated rough surface. 

 

 

 

  



26 

 

CHAPTER 4. LAMINAR NATURAL CONVECTION IN A SQUARE 

CAVITY WITH 3D RANDOM ROUGHNESS ELEMENTS 

CONSIDERING THE COMPRESSIBILITY OF THE FLUID 

 

4.1 Physical Model  

        Because the three-dimensional geometries of random rough surfaces cannot be ignored in 

this work, the numerical simulations of the flows in the square cavity are performed under 3D 

conditions. Figure 4.1 shows the physical model of current study with differentially heated 

vertical sidewalls and adiabatic top and bottom surfaces. A high temperature of TH and a low 

temperature of TC, which are both constant and isothermal, are set on the left and right sidewalls, 

respectively. The no-slip boundary condition is imposed on the top, bottom and both sidewalls 

of the cavities, but slip boundary condition is imposed on both x3-direction boundaries (at 

𝑥3/𝐿3 = 0 and𝑥3/𝐿3 = 1 planes). For all cavity flows, Rayleigh number is constant at 106. 

The air with a Prandtl number (Pr) of 0.72 is selected as the working fluid. The initial 

temperature of the air contained in the core of the square cavity is 𝑇0 = (𝑇𝐻 + 𝑇𝐶)/2 and the 

pressure is 101,300 Pa. 

        The artificial random surface roughness is generated by using the method mentioned in 

Chapter 3 and based on a given power spectrum density (PSD), as illustrated in Figure 4.2. In 

this research, the root mean square roughness (σ) is equal to 1.5% of the cavity width (L1), 

where, 𝜎 = √
1

𝑛
∑ ℎ𝑖

2𝑛
𝑖=1 , and ℎ𝑖 is the height of each roughness element from the mean plane 

of the roughness. On the mean plane’s position, the heights of peaks and depths of valleys all 

add to zero. Because of the random distribution of the roughness elements, the depth-to-width 

aspect ratio (L3/L1) is selected to be 2 and the arrangement of the roughness elements is 

symmetrical with respect to the middle of the depth of the cavity. As noted above, in many 

previous works [36-38], the existence of the roughness will reduce the effective volume of fluid 

in the cavity. Therefore, to maintain a constant value for the effective volume, rough surfaces 

have been installed on both hot and cold sidewalls in this research, and the rough surface on 

the cold wall is generated by direct translation of the rough surface on the hot wall. 
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Figure 4.1. Physical Model of the Square Cavity.  

 

Figure 4.2. 3D random artificial roughness and the power spectrum. 

 

4.2 Results and Discussion 

4.2.1 Investigation of Fluid Compressibility in Enclosed Square Cavity 

        To discuss the effects of the compressible fluid on heat transfer, 3D cavities, shown in 

Figure 4.1, with smooth hot and cold sidewalls are investigated in this section. For all cavities, 

the Rayleigh number remains constant, where the Rayleigh number 𝑅𝑎 = 𝑔𝛽0∆𝑇𝐿2
3𝑃𝑟 𝜈0

2⁄ =

106 and all fluid properties are determined based on the ambient temperature.  
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        With regard to the influence of the compressibility of the working fluid on the heat transfer, 

three different temperature differences (10 K, 50 K, and 120 K) have been studied and the mesh 

distributions have been shown in Figure 4.3 (a). The finest grids are implemented in the vicinity 

of two sidewalls, and to save the computational resources, the coarser grids are implemented 

in the core regions of the cavities. There are 256 finest grids along with the height (L2) direction 

of the enclosed cavities, and the distributions of grids along the depth (L3) direction are uniform 

for all three cases. The Courant number (CFL) for all cases is set as 0.5 where 𝐶𝐹𝐿 =

max(𝑢𝑖 ∙ ∆𝑡/∆𝑥𝑖), 𝑖 = 1, 2, 3 to represent the components acting along the three axes in the 

coordinate system.  

                                      (a)                                                                      (b) 

Figure 4.3. Numerical grids distributions of smooth (a) and rough (b) cases at x3 = 0.5 plane. 

 

        Table 4.1 shows the average Nusselt numbers across the x2-direction and the maximum 

values of the local Nusselt numbers on the hot sidewalls across the height at 𝑥3/𝐿3  = 0.5 plane; 

these numbers can be obtained using Equation (4.1) and (4.2). The average Nusselt number 

over entire hot sidewall is calculated through Equation (4.3). The maximum nondimensional 

vertical velocity at the center of the hot sidewall across the nondimensional width of the cavity 

(𝑥1/𝐿1)  is also presented in the table. The nondimensional velocity is defined as 𝑢𝑖
∗ =

𝑢𝑖/√𝑔𝛽0Δ𝑇𝐿2. 

𝑁𝑢̅̅ ̅̅ =
1

𝐿2
∫ 𝑁𝑢𝑙𝑑𝑥2

𝐿2

0

(4.1) 
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𝑁𝑢𝑙 =
𝐿2

𝑘0(𝑇ℎ − 𝑇𝑐)
𝑘(𝑇)

𝜕𝑇

𝜕𝑥1
(4.2) 

𝑁𝑢̅̅ ̅̅ 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
1

𝐴
∫𝑁𝑢𝑙𝑑𝐴

𝐴

0

(4.3) 

where 𝑘0 = 𝑘(𝑇0) and 𝐴 = 𝐿2 ∙ 𝐿3 . 

 

Table 4.1. Convergence behaviors of hydrodynamic quantities and Nusselt numbers. 

Ra Ref. Numerical method u2
*

max (x1/L1) 𝑁𝑢 

106 E Tric[65] Incompressible 0.258 (0.033) 8.877 

 A Xu[66] Incompressible 0.258 (0.037) 8.881 

 Present Compressible (10 K) 0.260 (0.039) 8.854 

 Present Compressible (50 K) 0.259 (0.041) 8.874 

 Present Compressible (120 K) 0.264 (0.043) 8.787 

 

        The average Nusselt numbers of the three cases with various temperature differences from 

Table 4.1 show good agreement with the results from previous studies at the Ra of 106. The 

maximum deviation is 1.06%, which is the error between the case with the temperature 

difference of 120 K and the results of A Xu [66]. Figure 4.4 presents the local Nusselt number 

distributions at the middle depth on the hot sidewall. For the compressible solver, it is evident 

that as ΔT increases, the pattern of the local Nu numbers on the hot wall becomes steeper, i.e., 

the maximum value of the local Nu increases, but the cases with larger ΔT values will have 

smaller local Nu magnitudes in the x2/L2 > 0.3 region. Between the case with the temperature 

difference of 120 K and the results of Kuyper et al. [67], the maximum local Nusselt numbers 

reach their largest deviation of 6.233%. For the vertical velocity, Table 4.1 indicates that as the 

temperature difference increases, the location of the maximum vertical velocity moves away 

from the hot sidewalls. This phenomenon where the distribution of the local Nusselt number 

changes with the temperature difference was also reported in [68] and it was attributed to the 

temperature dependences of the fluid properties, as shown in Equation (2.5) and (2.6). In 

summary, a temperature difference between two heated sidewalls will change the local Nusselt 

number distribution but will have no effect on the average Nusselt number for a Rayleigh 
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number of 106. Therefore, it becomes necessary to consider adopting a compressible solver 

when local region heat transfer is the research target. 

 

Figure 4.4. Local Nusselt numbers of smooth cases with various temperature differences. 

 

4.2.2 Grid Sensitivity for the Enclosure with Rough Sidewalls 

        Due to the complex 3D random roughness, the Immersed-boundary method which is 

mentioned in section 2.3 requires suitable girds to capture the geometric features of the 

roughness. Meanwhile, for the simulation of the fluid among the roughness elements, an 

appropriate mesh resolution is necessary.  Therefore, in this part, the cavity with rough 

sidewalls is filled by numerical grids with 3 different resolutions shown in Table 4.2.  The 

mesh resolutions of 128 and 512 are respectively generated by coarsening or refining the grids 

based on the resolution of 256, shown in Figure 4.3 (b). For convenience, we use grid 128, grid 

256 and grid 512 to represent these three mesh resolutions. Table 4.2 shows the average Nusselt 

numbers over the entire hot sidewall from these 3 different grid strategies. After a comparison 

between the results of grid 256 and grid 512, the average Nusselt numbers are almost same and 

the difference is only 0.023%. However, the difference between grid 512 and grid 128 is 

10.942%. Further, Figure 4.5 shows the nondimensional temperature distributions across the 

horizontal centerline of the cavities’ midplane (x2/L2 = 0.5 line at x3/L3 = 0.5 plane). The profiles 

show that the temperature distributions of grid 256 and gird 512 almost overlapped near the 
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hot sidewall, but due to the insufficient resolution, grid 128 shows a different profile of 

temperature from the other two mesh resolutions.  

        According to the arrangement of roughness elements in current study, for the resolution 

of grid 256, there are at least 4 grids along x2 or x3-directions for one peak or one valley on the 

rough surface, but for the resolution of grid 128, this number is only 2 for one peak or one 

valley.  Thus, all subsequent results in the following section are based on the mesh resolution 

of grid 256.  

 

Table 4.2. Values of average Nu for grid sensitivity study. 

Mesh resolution 𝑁𝑢̅̅ ̅̅ 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 Difference (%) 

512 8.719 - 

256 8.717 0.023 

128 7.765 10.942 

 

Figure 4.5. Nondimensional temperature profiles. 

 

4.2.3 Influence of Roughness on Heat Transfer 

        Figure 4.6 shows the local Nusselt number distributions on the hot sidewalls of the smooth 

and rough cavity cases. For both the smooth case and the rough case, the local Nusselt numbers 

show a trend of being higher in the upstream region and lower in the downstream region. 

Because of the existence of the peaks and valleys on the sidewalls, the local Nusselt number 
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distribution on the rough surface shows good agreement with the distribution of the roughness 

elements and the local Nusselt numbers on the peaks are larger than those in the valleys. Table 

4.3 shows the average Nusselt numbers over the entire hot sidewall and the maximum values 

of the local Nusselt numbers for the two cases, where the symbols of + and – represent that 

compared with the results of the smooth case, the increase or decrease of the investigated values 

due to the rough sidewalls respectively. In Table 4.3, the largest local Nusselt number in the 

rough cavity case is much larger than that in the smooth case; however, in contrast, the average 

Nusselt number of the rough case is slightly smaller than that in the smooth case by 1.769%. 

        Table 4.4 presents the local average Nusselt numbers of the two cases above in the 

upstream and downstream regions. Here, the local average Nusselt number is considered to be 

the integral of the Nusselt number on a local part of the heated sidewall, as defined in Equation 

(4.4):  

𝑁𝑢̅̅ ̅̅ 𝑙 =
1

𝐴𝑙
∫ 𝑁𝑢𝑙𝑑𝐴

𝐴𝑙

0

(4.4) 

where the subscript l indicates a specific local part of the heated sidewall. 

 

Figure 4.6. Distributions of the local Nu values of the (a) smooth and (b) rough cases on the 

hot walls. 
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Table 4.3. Maximum values of the local Nusselt numbers and the average Nusselt numbers 

for the smooth and rough cases. 

 
smooth  rough  Difference (%) 

Nulmax 18.134 60.207 +232.012 

𝑁𝑢̅̅ ̅̅ 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 8.874 8.717 -1.769 

 

Table 4.4. Local average Nusselt numbers in the upstream and downstream regions. 

 
Smooth Rough Difference (%) 

Upstream (𝑥2/𝐿2 = 0 to 0.1) 17.613 18.622 +5.729 

Downstream (𝑥2/𝐿2 = 0.75 to 1) 2.822 2.743 -2.799 

 

        When compared with the smooth case, the local average Nusselt number in the upstream 

region in the rough case is higher, but in the downstream region, the local average Nusselt 

number in the rough case is smaller than that in the smooth case. To explain this phenomenon 

in greater depth, the temperature distribution on a slice at a quarter of the depth of the cavity is 

shown in Figure 4.7, where the nondimensional temperature is calculated using the following 

equation: 𝑇∗ = (𝑇 − 𝑇𝑐)/(𝑇ℎ − 𝑇𝑐). In the upstream region, the peaks will reduce the thermal 

boundary layer thickness, while the valleys can make the thermal boundary layer thicker, which 

means that the thermal boundary layer will undergo drastic changes in thickness within this 

region. However, as the thermal boundary layer develops, the thickness will inevitably increase, 

and then the effects of the roughness elements on the thermal boundary layer will decrease. 

From Figure 4.7 (c) and (d), the isothermal surfaces are distorted by the roughness elements 

near the rough sidewall, but in the core region of the cavities, the temperature stratifications 

are almost identical for smooth and rough cases. 
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Figure 4.7. Temperature distributions of smooth and rough cases: (a, b) slices at x3/L3=0.25 

plane (c, d) isothermal surface in half cavity from x3/L3=0 to 0.5. 

 

        Figure 4.8 (a) and (b) show the nondimensional velocity magnitudes of the two cases on 

three different planes (x1/L1 = 0.005, x2/L2 = 0.5 and x3/L3 = 0.25) respectively. From this figure, 

when the flow approaches the peaks on the rough surface, there is a slight acceleration in the 

magnitude of the velocity when compared with the smooth case, but after the peak has been 

crossed, the ensuing valley will cause the fluid velocity to decelerate sharply. Unlike the 

influence of the rough surface on the thermal boundary layer, the influence of the rough surface 

on the magnitude of the velocity in the downstream region is obvious. This can therefore be 

considered to be one explanation as to why the local Nusselt number distribution presents the 
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tendency where, in the case with the rough heated sidewalls, the local Nusselt number is higher 

than that in the smooth case in the vicinity of the peaks in the upstream region, while in the 

downstream region, the local average Nusselt number is smaller than that in the smooth case.  

 

Figure 4.8. Nondimensional velocity magnitudes (where (a) and (b) show the smooth and 

rough cases, respectively). 

 

        Figure 4.9 shows the contours of the nondimensional velocity magnitude of both smooth 

and rough cases near the hot sidewall at four different x1-x2 planes (x3/L3 = 0.125, 0.25, 0.375 

and 0.5), where the black curves are the profiles of hot sidewalls at these planes. From the 

figure, the velocity magnitudes of the flow field in the vicinity of the rough wall are smaller 

than smooth case generally, and only part of the fluid will be accelerated due to the roughness. 

In the region where the shape of roughness elements does not change drastically, the roughness 

plays a role more in slowing down the velocity of adjacent fluid rather than accelerating it. 

        Figure 4.10 (a) and (b) show the velocity vector fields in the half region located close to 

the hot sidewall at the same location used in Figure 4.9 (a) and (b). The figure containing the 

velocity vectors shows no evident fluid circulation to be found in the area between the two 

roughness elements on the x1-x2 plane at 𝑅𝑎 = 106. In addition, the eddies that occur near the 

core regions of the two cavities do not show particularly notable differences. 
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Figure 4.9. Contours of Nondimensional velocity magnitude of smooth (a) and rough (b) 

cases at different x1-x2 planes. 
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Figure 4.10. Velocity vector fields of smooth (a) and rough (b) cases at different x1-x2 planes. 

 

        In Figure 4.11, the components of the nondimensional temperature gradients in the x1-

direction have been measured in the cavities with both rough and smooth sidewalls at two 

measurement locations. These two locations are two different lines parallel to the x2-

direction(𝑥3/𝐿3  = 0.55 line and 𝑥3/𝐿3  = 0.8 line) at 𝑥1/𝐿1  = 0.05 plane starting from the 

mean plane of the hot rough sidewall. The black curves shown in Figure 4.11 are the profiles 

of the hot rough surfaces at x1-x2 planes where two measurement locations lie respectively. The 

figure shows that in the upstream regions, the temperature gradient fluctuates drastically and 

this trend follows the distribution of the roughness elements perfectly, which means that higher 

peaks will bring increased heat transfer. However, this dominance of the roughness decreases 

in the end region, particularly in the downstream region, and after the nondimensional height 

exceeds 0.8, the patterns from the two cases almost overlap. In Figure 4.12, at the center of the 

adiabatic surface and across the heights of the cavities, the temperatures in both the rough and 

smooth cases have been measured. The temperature curves show very good agreement, thus 
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indicating that the random artificial roughness cannot influence the heat transfer that occurs in 

the core region of the square cavity. 

 

Figure 4.11. Nondimensional temperature gradients across the height of the cavity at two 

different measurement locations (black curves: profiles of the rough surface at the two 

measurement locations). 

 

Figure 4.12. Nondimensional temperatures at the center of the adiabatic surface across the 

cavity height. 

 

        Figure 4.13 and Figure 4.14 show the effects of the surface roughness on the velocity 

component in the x3-direction. The slices in Figure 4.13 are located at different x1-x2 planes. 

The magnitudes of this velocity component shows a trend where the initial magnitude is very 
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small in the upstream region and then increases to reach a maximum in the middle region; 

however, in the downstream region, deceleration occurs. Furthermore, the effect of the rough 

surface cannot reach the core region of the cavity. The slice shown in Figure 4.14 is located at 

a position of 0.5% of the cavity width from the mean plane of the rough surface. In this figure, 

the changes in the colors near the roughness elements and the speed vectors demonstrate that 

the geometry of the 3D random roughness structure gives the fluid the possibility of bypassing 

the roughness elements and no evident eddies were found. However, in two-dimensional cavity 

flow with homogeneous roughness elements on the cavity sidewalls[36][37], the fluid will 

become trapped more easily between two adjacent roughness elements, and this represents a 

major cause of the reduction in the heat transfer.  

 

Figure 4.13. Magnitudes of the velocity component in the x3 direction. 

 

Figure 4.14. Flow field among the roughness elements of the hot sidewall. 
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CHAPTER 5. INVESTIGATION OF DIFFERENT IRREGULAR 

ROUGHNESS EFFECTS ON LAMINAR NATURAL CONVECTION 

FLOWS IN CUBOID CAVITY 

 

5.1 Physical model 

        The enclosed cavity shown in Figure 5.1 has been chosen as the physical model in this 

chapter. The aspect ratios of the cavity are L2/L1 = 4, L2/L3 = 2. On both sidewalls (planes at 

x1=0  and L1), the boundary conditions of isothermal and non-slip have been implemented, 

where the higher temperature is indicated as TH, and the lower temperature is TC. The 

temperature difference between these two sidewalls is a constant of 50K. For all cases involved 

in this chapter, the cavity size and the temperature difference are kept invariant and Ra is equal 

to 106 based on the height of the cavity. The adiabatic and non-slip boundary conditions are 

imposed on the top and bottom (planes at x2=0  and L2) of the cavity. Because of the 3D 

characteristic of the irregular random roughness, it is hard to adopt periodic boundary condition 

at both depth-direction boundaries, thus to reduce the boundary effects on the flow fields near 

the rough surfaces, a slip boundary condition is applied on the borders at x3=0  and L3. Inside 

the cavity, the physical properties of the working fluid are based on the initial temperature 𝑇0 =

(𝑇𝐻 + 𝑇𝐶)/2. And for all cavity flows, the working fluid is air with a Prandtl number of 0.72 

and the initial pressure is 101300 Pa. 

       Same with Chapter 4, the generation method of the irregular roughness introduced in 

Chapter 3 is applied. In this chapter, 4 different irregular rough surfaces have been generated 

according to 4 given PSD curves. These 4 rough surfaces have same root-mean square (𝜎 =

1.5%𝐿1) of roughness element height, and same Hurst exponent (𝐻 = 0.8), but different roll-

off wavenumbers (qR). That means, due to the constant size of cavities and Ra, this chapter 

focuses on the influence of roll-off wavenumber on the natural convection flows in the cavity 

with rough sidewalls. Under the condition of constant σ and H, qR dominates the “power” of 

the roughness waves of different wavelengths. Larger qR represents the geometric features of 

roughness elements with smaller wavelengths will be more conspicuous. In layman’s term, 

the surface looks rougher. To intuitively express the roll-off wavenumber, the 

nondimensional wavenumber is defined as following: 

𝑞∗ =
𝐿2𝑞

2𝜋
(5.1) 
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In this way, through 𝑞𝑅
∗  we can clearly calculate the number of the roughness waves with the 

wavelength of 2𝜋/𝑞𝑅  that the height of the cavity can hold. In this chapter, 𝑞𝑅
∗ =

9.5, 16, 24, 32. It should be noted, 𝑞𝑅
∗ = 9.5 is a typical roll-off wavenumber of an asphalt road 

surface[60]. Figure 5.2 shows 4 irregular rough surfaces based on these 4 wavenumbers. The 

probability density functions (PDF) of the heights of the 4 rough surfaces are expressed in 

Figure 5.3. Obviously, the height distributions of the surfaces abide by the Gaussian 

distribution with averages of 0 and the same root-mean square 𝜎.  

 

Figure 5.1. Illustration of physical and computational geometry. 
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Figure 5.2. Different irregular rough surfaces. 

 

Figure 5.3. The height probability density functions of the surface roughness. 
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5.2 Numerical setting and validation 

        Figure 5.4 shows the distribution of numerical girds in present chapter. The uniform 

spacing of the girds is suitable for discribing the local roughness elements especially under the 

application of Immersed-boundary method. From the figure, the finest meshes are arranged in 

the vicinity of the rough sidewalls, and the meshes in the core region of the cavity will be 

coarser, and the stretch rate of the grids is kept at 2. The number of finest grids along the height 

direction is decided as 2048 to capture the information of roughness as much as possible and 

avoid an unaffordable grid number. The simulations of all the cases in this chapter are based 

on the same numerical grid distribution and the total grid numbers are around 260 million. 

 

5.2.1 Code validation 

        To validate the grid distribution, a similar simulation with Xu et al[66] has been conducted. 

In this validation simulation, a cubic cavity with all six non-slip boundaries has been considered 

to keep consistent with the benchmark, and the comparisons of the results have been shown in 

Table 5.1. Here, the average Nusselt number 𝑁𝑢̅̅ ̅̅  is calculated on the hot sidewall at 𝑥3/𝐿3 =

0.5 plane, and the nondimensional velocity u2
* is measured at the line of 𝑥2/𝐿2 = 0.5 on the 

mid-depth plane. The average Nu and hydrodynamic quantities show good agreement with the 

achievements of previous researchers. 

 

Figure 5.4. Illustration of numberical grids distribution. 
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Table 5.1. Comparisons of Nusselt numbers and hydrodynamic quantities. 

Ra Ref. 𝑁𝑢̅̅ ̅̅ 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑁𝑢̅̅ ̅̅  𝑢2
∗
𝑚𝑎𝑥

 (x1/L1) 

106 A Xu[66] 8.643 8.881 0.258 (0.037) 

 Present 8.698 8.872 0.254 (0.039) 

 

5.2.2 Grid convergence study 

        In this section, the convergence studies of the numerical grid have been given. As 

mentioned in Chapter 3, the rough surface with a larger roll-off wavenumber (𝑞𝑅) contains the 

geometric details of roughness elements with smaller wavelengths, so the roughness with 

higher 𝑞𝑅  is more sensitive to the resolution of numerical grids. Thus, we chose the rough 

surface with 𝑞𝑅
∗  of 32 as the research object to test the grid convergence. On the other hand, the 

rough surfaces we generated in current study are isotropic, therefore on the x2-x3 plane, the 

distribution of roughness elements along the x2-direction includes roughness elements of all 

wavelengths theoretically. To reduce the mesh number, and consider the 3D roughness 

elements which are able to increase the velocity in the x3-direction of the nearby flow fields, 

we extracted a strip of the rough surface with a width of one-sixteenth of L3 along the x2-

direction at the middle depth of the cavity. Then a quasi-2D cavity with 2 differently heated 

rough striped sidewalls has been generated with the same boundary condition shown in section 

2.1. This 2D cavity has the same height and width as the original 3D cavity. On the hot rough 

striped surface, the quasi-2D Nusselt number is selected to present the mesh-independent 

solutions. This quasi-2D Nu can be calculated according to the following equation: 

𝑁𝑢̅̅ ̅̅ 2𝐷 =
1

𝐴𝑠𝑡𝑟𝑖𝑝
∫𝑁𝑢𝑙𝑑𝐴 

where, 𝐴𝑠𝑡𝑟𝑖𝑝 indicates the area of the rough strip.  

        The results are shown in Figure 5.5. The mesh resolutions in the figure are controlled by 

the number of the finest mesh along the x2-direction and scaled by the height of the cavity. 
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From the figure, as the resolution increases, the quasi-2D Nu is observed close to the asymptotic 

values. Hence, we used 1/2048 mesh resolution for the following main simulations. 

 

 
Figure. 5.5. Quasi-2D Nu with different mesh resolutions 

 

 

5.3 Results and discussion 

        In this section, the average and local Nusselt numbers have been chosen to assess the 

effect of rough sidewall on the heat transfer performance in the cavity flows. Because the 

temperature gradient on the wall should be considered along the normal direction of the heated 

wall, the calculation method of the Nusselt number should be adjusted from Equation (4.2) into 

Equation (5.2), where n represents the local normal directions of the measured surface. And 

the averaged Nusselt number can be still calculated through Equation (4.3). It should be noted, 

𝑁𝑢̅̅ ̅̅ 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is based on the total heat transfer through the solid surface, thus the calculation of 

this number includes the variation of surface area because of roughness elements. Thus, it is 

meaningful to use 𝑁𝑢̅̅ ̅̅ 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 as a direct measurement of the influence of roughened surfaces on 

the overall heat transfer performance. 

𝑁𝑢𝑙 =
𝐿2

𝑘0(𝑇𝐻 − 𝑇𝐶)
𝑘(𝑇)

𝜕𝑇

𝜕𝑛
(5.2) 
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        Table 5.2 presents the average Nusselt numbers of all 5 cases, of which case with smooth 

sidewalls is the benchmark to evaluate the influence of the rough surfaces on the heat transfer. 

The difference is computed by 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = (𝑅𝑜𝑢𝑔ℎ − 𝑆𝑚𝑜𝑜𝑡ℎ)/𝑆𝑚𝑜𝑜𝑡ℎ × 100%. Thus, 

from the table, the differences show that the roughness has an appreciable negative effect on 

the heat transfer performance of the natural convection flows in a cavity, and shown in Figure 

5.6, as the roll-off wavenumber 𝑞𝑅
∗  increases, the average Nu decreases. Figure 5.7 shows the 

augments of the surface area based on different 𝑞𝑅
∗ , where AS indicates the area of the smooth 

sidewall which is equal to 𝐿2 ∙ 𝐿3. It is obvious the area of the sidewall will increase following 

the increasing 𝑞𝑅
∗ , but the increase in the area did not provide an increase in 𝑁𝑢̅̅ ̅̅ 𝑜𝑣𝑒𝑟𝑎𝑙𝑙. From 

section 5.1, the changes in the area come with the changes in the geometry of roughness 

elements and, doubtless, changes in roughness elements will change the local Nu on the solid 

surfaces. Therefore, it is better to consider the effects of surface area and geometry of roughness 

elements on the heat transfer comprehensively and locally. 

       To reveal the influence of the roughness on the local heat transfer performance, the local 

Nu distributions on the different rough surfaces are illustrated in Figure 5.8. For all 4 rough 

cases, the distributions of local Nu have the tendency of high in the upstream region and low 

in the downstream region. This is consistent with the local Nu on the smooth sidewall. But, due 

to the existence of roughness elements, the fluctuations on the surfaces will vary the heat 

transfer locally. Generally speaking, roughness peaks will increase the local Nu, and the 

roughness valleys will have opposite effects. As roll-off wavenumber increases, the average 

wavelength of the roughness elements will decrease. Reflected in the shapes of roughness 

elements, these elements will be steeper and jaggeder. Thus, the patterns of locally high Nu 

progressively become more discrete and no longer connect together as 𝑞𝑅
∗  changes from 9.5 to 

32. Table 5.3 presents the maximums of local Nu on different rough surfaces. There is no doubt 

that the roughness peaks will extraordinarily amplify the local Nu, and this augment is more 

conspicuous on those steeper roughness peaks. According to the previous researches[69], the 

roughness peaks are able to accelerate the flow fields nearby and thicken the local thermal 

boundary layer. Further, in present research, steeper roughness peaks will have greater impacts 

on the local temperature and velocity fields. This results in a high local Nu and a drastic change 

rate of local Nu. Therefore, the figure of local Nu at 𝑞𝑅
∗ = 32 shows the feature of extremely 

high Nul but discrete distribution of high Nul regions. Although the total surface area of the 

rough sidewall will increase as 𝑞𝑅
∗  increases, from Figure 5.8, the regions with higher Nul 
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gradually cluster towards the peaks, and in other regions, the Nul will decrease. As a result, the 

increased surface area does not provide better overall heat transfer performance. 

        Considering the different influences of roughness peaks and valleys on the surface heat 

transfer, we have separated a rough surface into the top and bottom parts based on its mean 

plane and the respective contributions to heat transfer of these two parts are measured through 

the following equations: 

𝑁𝑢̅̅ ̅̅ 𝑇 =
1

𝐴
∫ 𝑁𝑢𝑙𝑑𝐴𝑇

𝐴𝑇

0

(5.3) 

𝑁𝑢̅̅ ̅̅ 𝐵 =
1

𝐴
∫ 𝑁𝑢𝑙𝑑𝐴𝐵

𝐴𝐵

0

(5.4) 

where AT and AB represent the area of the top (ℎ > 0) and bottom (ℎ ≤ 0) parts respectively. 

Figure 5.9 clearly illustrates the tendencies of 𝑁𝑢̅̅ ̅̅ 𝑇  and 𝑁𝑢̅̅ ̅̅ 𝐵  following 𝑞𝑅
∗  and the average 

Nusselt numbers show different performances. As 𝑞𝑅
∗  increases, 𝑁𝑢̅̅ ̅̅ 𝐵 decreases appreciably, 

but 𝑁𝑢̅̅ ̅̅ 𝑇 does not show a rigorous tendency of decrease and the change of 𝑁𝑢̅̅ ̅̅ 𝑇 is much smaller 

comparatively. From this, we can get a conclusion that the heat transfer on the bottom region 

of a surface is more sensitive to the change of roll-off wavenumber than it on the top region. 

One potential explanation for this situation is the different flow fields near the top and bottom 

regions. The fluid near the top region of one rough surface can be considered into two parts: 

one is among the roughness elements and will bypass the roughness elements, the other is from 

the large-scale circulation and will cross over the roughness peaks. Differently, the fluid near 

the bottom region is among the roughness elements only. The flow fields in the space formed 

by roughness elements are directly affected by the arrangement of these peaks and valleys. 

Figure 5.10 shows the velocity magnitude of the fluid among the roughness elements. The 

measurement location has been chosen at the plane where the distances to the mean plane of 

the rough hot sidewall are equal to 1.5% of L1. From these contours, the fluid is able to bypass 

the roughness elements, and the large space among the roughness elements will give the fluid 

the possibility to get rid of the boundary layer and achieve a relatively high velocity. However, 

the roughness elements with short wavelengths will tear this space into small pieces, so the 

fluid has to overcome more resistance to flow through these obstacles. Thus, as the 𝑞𝑅
∗  increases, 

the velocity magnitude of the fluid among the roughness elements decreases. And, the 

weakened convection will undoubtedly aggravate the heat transfer at the corresponding 
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locations. Then the effect of increased surface area on heat transfer will be diminished. On the 

other hand, the flows from the large-scale circulation will be accelerated by the roughness 

peaks, so the heat transfer through this part of flows will be augmented. Therefore, 𝑁𝑢̅̅ ̅̅ 𝑇 and 

𝑁𝑢̅̅ ̅̅ 𝐵 show different tendencies like Figure 5.9. 

 

Table 5.2. Values of average Nu for different cases. 

 𝑁𝑢̅̅ ̅̅ 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 Difference (%) 

Smooth 12.984 - 

𝑞𝑅
∗ = 9.5 12.545 -3.382 

𝑞𝑅
∗ = 16 11.641 -10.345 

𝑞𝑅
∗ = 24 11.062 -14.800 

𝑞𝑅
∗ = 32 10.579 -18.521 

 

Table 5.3. Maximums of local Nu on different surfaces. 

𝑁𝑢𝑙 Maximum 

Smooth 25.208 

𝑞𝑅
∗ = 9.5 77.279 

𝑞𝑅
∗ = 16 87.410 

𝑞𝑅
∗ = 24 97.026 

𝑞𝑅
∗ = 32 115.302 
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Figure 5.6. Averaged Nu with varying 𝑞𝑅
∗ . 

 

 
Figure 5.7. Total surface areas of roughened sidewalls with varying 𝑞𝑅

∗ . 
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Figure 5.8. Distributions of the local Nu values. 

 

 

Figure 5.9. Average Nusselt numbers on top and bottom regions of different rough 

surfaces. 
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Figure 5.10. Velocity magnitude of the flow field among the roughness elements. 
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CHAPTER 6. CHAPTER 6. DIRECT NUMERICAL SIMULATION OF 

TURBULENT NATURAL CONVECTION FLOWS OVER 3D 

IRREGULAR ROUGH SURFACE 

 

6.1 Physical model 

        In this chapter, the physical model of cavity is same with Chapter 5 in apsect ratios, initial 

environment settings and boundary conditions i.e the temperature difference of 2 vertical 

sidewalls is 50K. But in this chapter, Rayleigh number (𝑅𝑎 = 𝑔𝛽0∆𝑇𝐿2
3𝑃𝑟 𝜈0

2⁄ ) is chosen as 

1010, that means this chaper focuses on the turbulent flows in the enclosure cavity. Thus the 

size of the cavities involved in chapter is much larger than Chapter 5.  

        According to the results of Chapter 5, the largest 𝑞𝑅
∗  has the most negative effect on the 

surface heat transfer. Considering the different flow conditions between laminar and turbulent 

flows, in Chapter 6, the surface roughness is same as the roughness in Chapter 5 with a 

nondimensional roll-off wavenumber of 32 but proportionally enlarged to fit the size of the 

current cavity. 

 

6.2 Results and Discussion 

6.2.1 Validation of numerical simulation setup 

        In order to validate our compressible solver established in chapter 2, we took the previous 

achievements of F. X. Trias et al.[70] at a Rayleigh number of 1×1010 as a reference. The 

present grid spacing is uniform in the x3 (depth) direction and near the wall, the grids are 

uniform in x1 (width) and x2 (height) directions. The finest grids are implemented in the vicinity 

of sidewalls, and coarser grids are adopted in the core region of the cavity, and the stretch rate 

of the grids is kept at 2. The resolution shown in Figure 6.1 is chosen so that the simulation can 

deal with the eddies around the Kolmogorov microscale, which is defined as 𝜂 = (𝜐3/𝜀𝑢′)
1/4, 

where 𝜀𝑢′ = 𝜐(𝜕𝑢𝑖′/𝜕𝑥𝑗)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  [71]. There are 2048 finest grids along the height direction of the 

cavity, so that near the wall ∆𝑥1 = ∆𝑥2 = ∆𝑥3 < 0.118𝜂 and in the core region of the cavity, 

the mesh spacings, ∆𝑥1 = ∆𝑥2 = ∆𝑥3 < 1.07𝜂.  
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Figure 6.1. Numerical grids distribution. 

 

        Table 6.1 shows the comparison of vertical nondimensional velocities and the local 

Nusselt number on the hot sidewall and the reference length, temperature and velocity used for 

nondimensional forms are L2, ∆𝑇 = 𝑇𝐻 − 𝑇𝐶  and 𝑢𝑟𝑒𝑓 = √𝑔𝛽0Δ𝑇𝐿2 respectively. Based on 

the time-averaged and spanwise-averaged (depth direction) results, the local and average 

Nusselt numbers can be calculated using Equation (5.2) and (4.1) and the nondimensional 

vertical velocity 𝑢2
∗  is measured at the mid-height and across the nondimensional width of the 

cavity (𝑥1/𝐿1).  In general, the results show good agreement with the studies of incompressible 

direct numerical simulation from F Trias[70].  Figure 6.2 presents the distribution of the local 

Nusselt number across the hot sidewalls. Compared with the incompressible result, our 

compressible result has a higher local Nusselt number in the upstream region but in the region 

of  0.2 < 𝑥2/𝐿2 < 0.7 the temperature gradient will be slightly smaller than the incompressible 

result. Then, in the higher region, 𝑥2/𝐿2 > 0.8, the increase of local Nu in the incompressible 

result is hard to be observed from the compressible result. This phenomenon was also found in 

other cases with relatively low Rayleigh numbers[72] and as the temperature difference 

increases, the difference in local Nusselt number distributions of incompressible and 

compressible results will increase as well[9][69]. The temperature dependences of the fluid 

properties were considered as the reason for this difference.   

 



54 

 

Table 6.1. Convergence behaviors of hydrodynamic quantities and temperature gradient. 

Ra Ref. u2
*

max (x1/L1) 𝑁𝑢 𝑁𝑢𝑙𝑚𝑎𝑥 

1×1010 F Trias[70] 0.264 (1.50×10-2) 101.70 454.86 

 Present 0.254 (1.56×10-2) 102.12 426.69 

 

 

 
Figure 6.2. Local Nusselt number across the hot sidewall. 

 

 

6.2.2 Probability density functions 

        In this section, the time traces of the temperature and the three components of the velocity 

have been monitored at 2 different locations near the hot sidewall of the cavities (see table 6.2). 

It is clear that the local geometry of the rough surface will affect the flow field near sidewalls, 

thus Figure 6.3 manifests the distributions of roughness elements near the locations of the 

probes, and the dashed lines in the figure denote the location of the smooth hot sidewall.  

        The probability density distributions of the temperature and three components of the 

velocity at the locations are investigated and shown in Figure 6.4 and Figure 6.5. The 

probability density function (PDF) is defined as the function of related thermal and 
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hydrodynamic quantities, f, and ∫ 𝑃𝐷𝐹(𝑓)
∞

−∞
𝑑𝑓 = 1. In these figures, the blue dash lines 

represent the average value of the measured physical quantities. From the profiles of PFD, it 

is noted that the obvious fluctuations of all measured quantities at probe A can be found around 

their average values, thus the flows in the downstream region of the cavity show the 

characteristic of turbulence. At location A, for the smooth cases, the average values of u1* are 

positive and the PDF distributions of u1* are not symmetrical with respect to the time-averaged 

values, i.e. the time-averaged u1* is larger than the magnitude of u1* which has maximum 

probability density. This is because the existence of the sidewalls and the effects of walls will 

prevent the occurrence of large negative velocity and the circulations in the cavities will give 

the fluid an obvious horizontal velocity in the downstream corners. But, for the flow field near 

the rough sidewall, the u1* at A near the rough wall cannot reach the same maximum as the 

smooth case. Differently, it can be found in the PDF profiles of u2*, for the rough case, the 

average and minimum of u2* are larger than the smooth case. Meanwhile, due to the 

asymmetric distribution of the roughness elements, the profile of u3* of the rough case is 

slightly asymmetric to its average value compared with the smooth case. 

        The probe location B is located near the mid-height of the cavity, therefore, the profiles 

at point B show a completely different phenomenon with point A. Overall, the fluctuation of 

the flow field at point B is much smaller than that at point A. It should be noted that for all 

monitored physical values, the spans of PDF profiles of the rough case are larger than the 

smooth case. This means the existence of roughness elements will enhance the instability of 

the flow in the mid-height region of the cavity at the Ra of 1010. 
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Table 6.2.  Locations of monitor probes. 

Probe x1/L1 x2/L2 x3/L3 

A 0.05 0.85 0.5 

B 0.05 0.55 0.5 

 

 
Figure 6.3. Probes and the distributions of roughness elements near the probes. 
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Figure 6.4. Probability density functions of thermal and hydrodynamic quantities at A. 
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Figure 6.5. Probability density functions of thermal and hydrodynamic quantities at B. 
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6.2.3 Flow structures  

        The Q-criterion [73] has been adopted to investigate flow structures near the hot walls of 

cavities quantitively. Figure 6.6 shows the isosurfaces for different Q near the rough and 

smooth hot walls at the same instantaneous time step. The isosurfaces are colored by the 

nondimensional temperature. At Q = 500, for the rough sidewall, a large number of lumps of 

the isosurface emerge at the tips of roughness peaks, but in the downstream region, the velocity 

of the main flow decreases, and the number of lumps of the isosurface thus decreases gradually. 

We consider that these lumps are created by fluid flowing at relatively high velocities along 

the roughness peaks. Therefore, in the smooth case, there is no such apparent lump appearing 

when Q is reduced to 100, whereas in the rough case, the sizes of the lumps increase. 

Additionally, more lumps appear especially in the downstream region, and near the smooth 

wall, several lumps begin to emerge. At the lowest Q value of 20, the lumps are large near the 

rough wall but some connect away from the wall. Near the downstream corners, large and 

unsteady eddies are ejected from the sidewalls, generating strong recirculation. These eddies 

can also be observed but in more downstream locations near the smooth wall. Several 

transverse vortex structures appear in the smooth case, whereas there is no such vorticity in the 

rough case. We conclude from the results of the Q-criterion that surface roughness indeed 

affects flow structures near the sidewall. The roughness peaks notably increase the vorticity of 

the local fluid, and the mixing effect of this vorticity increases the local convection of the 

sidewall. However, these areas only account for a small part of the rough wall, and there is no 

evident lump on the Q-criterion isosurface in the valley areas. 



60 

 

 

Figure 6.6. Isosurfaces of different Q colored by the nondimensional temperature near the 

hot sidewall in rough (a) and smooth (b) cases.  

 

6.2.4 Thermal and flow fields 

         Figure 6.7 presents results of the temperature field in the cavities, where the 

nondimensional temperature T* is calculated as 𝑇∗ = (𝑇 − 𝑇𝐶)/(𝑇𝐻 − 𝑇𝐶). For each pair of 

solutions, the results for the rough case are shown on the left and those for the smooth case are 

shown on the right. The figure clearly shows that the existence of roughness distorts the 

isothermal surface near the wall, but in the core regions of the cavities, the distributions of the 

isosurfaces are similar in rough and smooth cases. In the downstream region, wrinkles emerge 

on the isosurfaces, and it is considered that there are fluctuations in the local fluid in this area. 

These fluctuations are obviously stronger in the rough case than in the smooth case and emerge 

in an earlier region in the rough case. Figure 6.7 (b) and (c) shows the isotherms of cavities 

with rough and smooth sidewalls on mid-depth planes. In the upstream region, compared with 

the smooth case, the thickness of the thermal boundary layer decreases near the roughness 

peaks. This effect is particularly obvious near the large peaks. In the valley regions, however, 

the thickness of the thermal boundary layer has the opposite trend. Downstream, the instability 
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of the fluid increases, and the flow ejects many unsteady eddies to the core region of the cavity. 

Taking the hot sidewall as an example, this phenomenon increases the local temperature, and 

it is thus seen in Figure 6.7 that the thermal boundary layer in the rough case is thicker than 

that in the smooth case in the downstream region. 

        Figure 6.8 presents the nondimensional velocity magnitudes in the rough and smooth 

cases on two planes (x1–x2 plane at 𝑥3/𝐿3 = 0.5 and x2–x3 plane at 𝑥1/𝐿1 = 0.005). There is a 

clear effect of roughness on the velocity field near the walls. In the areas near roughness peaks, 

there are detectable accelerations of the flow, but the average velocity magnitude is lower in 

the rough case than in the smooth case, especially in the very upstream region and downstream 

regions. In the valley areas, the fluid decelerates obviously. Meanwhile, contours on the x2–x3 

planes show the flow field near the hot sidewall of the cavities. The island-like objects in Figure 

6.8 (a) are the roughness elements that protrude from the measurement plane. In the smooth 

case, because the measurement plane (at 𝑥1/𝐿1 = 0.005 ) is located inside the velocity 

boundary layer, the magnitude of the velocity is much lower than the maximum of the main 

flow. In contrast, owing to the irregular roughness elements, there are many spaces among the 

elements, and the fluid in these spaces reaches a high speed under driving by the buoyancy 

force. 

 

6.2.5 Heat transfer 

        This section uses the average and local Nusselt numbers to assess the effect of the rough 

sidewall on the heat transfer in the cavity flows. Figure 6.9 shows the distributions of the local 

Nusselt number on the hot walls in rough and smooth cases. In general, the distributions of the 

local Nusselt number have higher Nusselt numbers in the upstream region and lower numbers 

in the downstream region. In the local area, the roughness peaks increase the Nusselt number 

and the valleys decrease the Nusselt number, which is consistent with the thermal boundary 

layer distribution shown in Figure 6.7. After the upstream region, the effect of the roughness 

peaks diminishes, and only large peaks increase the Nusselt number. Meanwhile, the velocity 

of the fluid in the valley areas is low. Therefore, even in the very upstream part of the cavity 

hot wall, the reductions in the Nusselt number in the valley areas are appreciable. Table 6.3 

gives the average Nusselt number and the maximum and minimum local Nusselt numbers for 

rough and smooth cases. In this study, the average Nusselt number over the entire hot sidewall 

is calculated according to the project area along the x1-direction. In the table, there is a notable 
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increase in the maximum local Nusselt number because of the effect of roughness peaks. At 

the same time, the minimum local Nusselt number in the rough case is much smaller than that 

in the smooth case owing to the existence of the roughness valley. The average Nusselt number 

is 8.321% smaller in the rough case than in the smooth case; i.e., in this study, the heat transfer 

performance of the heated wall is aggravated by the wall roughness.  

        Taking into account the difference in thickness of the thermal boundary layer and the flow 

structures in the upstream and downstream regions, we separate the hot sidewall into 16 equal 

parts along the height direction. For each part, we calculate the integral of the local Nusselt 

number and define it as local average Nusselt number, as shown in Figure 6.10 (a). It is seen 

that the curves in rough and smooth cases have a similar tendency of a higher local average 

Nusselt number upstream and lower local average Nusselt number downstream. For most of 

these parts, local average Nusselt numbers are lower in the rough case. Only in the region of 

x2/L2 around 0.4 is the local average Nusselt number larger in the rough case than in the smooth 

case. This phenomenon can be explained in that the fluid in this region has been accelerated to 

a considerable speed and there are notable positive effects due to the large rough elements 

distributed at this position, and the local Nusselt number thus increases.  

        Figure 6.10 (b) shows the difference in the local average Nusselt number between the 

rough and smooth cases. Generally speaking, the difference is less than 10% in the region of 

x2/L2 < 0.8. However, in the downstream region, the difference increases as the measurement 

location moves downstream. As in the results shown in Figure 6.7 and 6.8, in the very 

downstream region, the thickness of the thermal boundary layer increases but the velocity 

magnitude decreases, and the effects of roughness peaks diminish such that it is difficult to 

overcome the negative effects of the roughness valleys. In summary, although the roughness 

peaks reduce the thickness of the thermal boundary layer and increase the local Nusselt number, 

the reduction from the valley areas is stronger than the increment from the peaks. 

        In this study, the local Nusselt number and average Nusselt number indicate the heat flux 

or energy transmission on the hot sidewall, and the fluctuation of the fluid is thus considered 

negligible in the calculation of the Nusselt number. However, at Ra = 1010, turbulence becomes 

apparent, especially in the downstream corners of the cavity. The eddy heat flux is thus 

investigated to assess the rate of transfer of heat in the fluid by the turbulent eddies. The eddy 

heat flux is calculated as  

𝐸𝐻𝐹𝑖 = 𝜌̅𝐶𝑝𝑢𝑖′𝑇′̅̅ ̅̅ ̅̅ (6.1) 
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where Cp is the specific heat of the fluid and u and T are the fluctuations of the velocity and 

temperature respectively [74]. 

        Figure 6.11 (a) and (b) shows the eddy heat flux due to the velocity fluctuations in width 

and height directions for the rough case whereas Figure 6.11 (c) and (d) presents the results for 

the smooth case. It is noted that the distributions of roughness elements affect the local flow 

field. Therefore, in evaluating the overall effect of roughness, the results shown in Figure 6.11 

are based on the spanwise average eddy heat flux along the depth direction. Consistent with 

the results of the flow field, the unsteady eddies in the downstream corners increase the eddy 

heat flux in height and width directions. Additionally, it is clear that the eddy heat flux along 

the main flow direction is much stronger than that in the other direction for both rough and 

smooth cases. The figure shows that the eddy heat flux has a higher magnitude in the rough 

case than in the smooth case for both height and width directions. Meanwhile, compared with 

the smooth case, the point at which notable high eddy heat flux appears moves upstream in the 

rough case. Especially for the eddy heat flux generated by the fluctuations of the main flow, 

the high eddy heat flux emerges in the very upstream region. In general, the hot sidewall 

transfers heat to the fluid in the width direction. Figure 6.11 (a) and (c) shows that the roughness 

enhances the eddy heat flux along x1-direction (EHF1). The existence of roughness elements 

disrupts the development of the velocity boundary layer, and this disruption facilitates the 

exchange of fluid near the boundary layer. Owing to the flow having a higher magnitude of 

velocity in the main flow direction, the flow is more sensitive to the roughness in this direction, 

which explains how the roughness increases the eddy heat flux along x2-direction (EHF2) 

sharply. 

        To investigate the convective process near the solid surface, the wall shear stress and area-

averaged wall shear stress on the hot sidewalls are measured. Figure 6.8 shows that, owing to 

the irregular roughness elements and the spaces among the roughness elements, the fluid 

bypasses the roughness elements, and the two components of velocity perpendicular to the 

main flow direction are then much higher than those in the smooth case. This study thus 

considers the tangential velocity near the wall as [75] 

𝜏𝑤 = 𝜇
𝜕𝑢𝑡
𝜕𝑛
|
𝑤𝑎𝑙𝑙

(6.2) 
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where 𝜏𝑤 is the wall shear stress and 𝑢𝑡 is the tangential wall velocity with respect to the local 

wall surface. The area-averaged wall shear stress provides the overall magnitude of the wall 

shear stress of the rough or smooth sidewall: 

𝜏𝑤̅̅̅̅ =
1

𝐴
∫|𝜏𝑤| 𝑑𝐴 (6.3) 

        Figure 6.12 shows the distributions of the shear stress on the hot rough and smooth walls. 

Similar to the local Nusselt number distribution, in the areas of roughness peaks, the local wall 

shear stress is much higher than that in the smooth case, but in the valley areas, the shear stress 

is much lower. Table 6.4 gives the average values and the extrema of the wall shear stress on 

hot sidewalls in rough and smooth cases. The maximum value of the local wall shear stress on 

the rough sidewall is much greater than that in the smooth case, but the average shear stress in 

the rough case is only half that in the smooth case. According to the definition of shear stress, 

the velocity gradient plays a decisive role in determining the magnitude of shear stress. The 

fluid flows slowly in the valley areas, and the velocity gradients in the same areas are thus low 

inevitably. Meanwhile, the fluid near the peaks of roughness undergoes obvious acceleration, 

and the velocity gradients near these regions are thus much larger than those in other regions. 

The convective effects near the roughness peaks are thus stronger than those near the roughness 

valleys.  

        The results of the average Nusselt number and wall shear stress show that the irregular 

roughness on the sidewall has a negative effect on the heat transfer of the cavity flows in the 

case of vertical natural convection. This is opposite of the case for forced convection, where 

an irregularity has been widely shown to enhance the surface heat transfer but increase the wall 

shear stress notably [41,42,76]. The reason is that the driving forces of these two convection 

flows are different. In forced convection, there is usually a constant external source as the 

driving force. However, in natural convection, the only driving force is the buoyancy force, 

which depends on energy transfer from the heat source. Returning to the present study, the 

variances of velocity and temperature of the fluid inside the cavity originate from the energy 

conveyed from the hot sidewall. Therefore, this energy is calculated according to the heat flux 

of the wall as 

𝑞𝑤 = 𝑘
𝜕𝑇

𝜕𝑛
|
𝑤𝑎𝑙𝑙

(6.4) 
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𝐸𝑤 = ∫𝑞𝑤 𝑑𝐴 (6.5) 

It is clear that the conveyed energy is dominated by the surface heat flux, and the energy can 

thus be evaluated using the average Nusselt number. Table 6.3 shows that, even if the rough 

sidewall has a greater area, the energy coming from the rough sidewall is less than that coming 

from the smooth hot sidewall. Owing to the thermal boundary condition imposed on the hot 

and cold sidewalls of the cavities, the magnitudes of the local heat flux in different regions are 

different. The above results indicate that, in the areas of roughness valleys, the temperature of 

the fluid is high and the temperature gradient is thus low. This situation makes it difficult to 

transfer energy from the hot sidewall. Less energy is transferred from the rough wall, and the 

slight buoyancy is thus unable to drive the fluid in the roughness valley areas. Therefore, the 

fluid in the valleys flows at low velocity. The overall convection near the rough wall is then 

weaker than that in the smooth case.  
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Figure 6.7. Temperature distributions near the hot sidewall: (a) isothermal surfaces, (b) 

temperature on the mid-depth plane (𝑥3/𝐿3  =  0.5), and (c) temperature in the upstream 

region on the mid-depth plane. 
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Figure 6.8. Nondimensional velocity magnitudes in rough (a) and smooth (b) cases. In 

both cases, the x1–x2 plane is located at the mid-depth of the cavity (𝑥3/𝐿3  =  0.5) and 

the x2–x3 plane is located at 𝑥1/𝐿1  =  0.005. 
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Figure 6.9. Distributions of the local Nusselt number on the hot sidewalls in the (a) rough 

and (b) smooth cases. 
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(a) 

 

(b) 

Figure 6.10. Local average Nusselt number (a) and the difference (b) between rough and 

smooth cases. 
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Table 6.3. Averaged Nusselt number and extrema of the local Nusselt number 

 Rough Smooth 

𝑁𝑢̅̅ ̅̅  93.625 102.123 

𝑁𝑢𝑙𝑚𝑎𝑥 584.206 428.126 

𝑁𝑢𝑙𝑚𝑖𝑛 0.016 5.178 

 

 

 

Figure 6.11. Eddy heat flux: 𝐸𝐻𝐹1 (a) and 𝐸𝐻𝐹2 (b) in the rough case and 𝐸𝐻𝐹1 (c) and 

𝐸𝐻𝐹2 (d) in the smooth case. 
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Table 6.4. Comparison of wall shear stress between rough and smooth cases 

 Rough Smooth 

𝜏𝑤̅̅̅̅  (×10-3) 0.939 1.989 

𝜏𝑤𝑚𝑎𝑥 (×10-3) 7.34 2.95 

𝜏𝑤𝑚𝑖𝑛 (×10-3) 8.76 × 10-5 6.25× 10-4 

  

 

Figure 6.12. Distributions of wall shear stress on the hot walls in (a) rough and (b) smooth 

cases. 

 

6.2.6 Effect of roughness under different Rayleigh numbers 

        This section discusses the effects of rough surfaces on the heat transfer performance at 

different Rayleigh numbers. The Rayleigh number is changed by varying only the height of the 

cavity while keeping the temperature difference between hot and cold sidewalls, the aspect 

ratios of cavities, and other physical parameters constant. Meanwhile, the geometric model of 
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the roughness is scaled proportionally according to the ratios of the cavity heights. Four 

different Rayleigh numbers (Ra = 106, 107, 6.4 × 108, and 1010) are set. Table 6.5 gives the 

grids used for different Rayleigh numbers. As shown in this table, for all these four Ra, the 

finest resolution near the sidewalls is kept constant to ensure sufficient numerical grids to 

capture geometric details. Considering the low Ra, the fluid shows more laminar and steady, 

so the coarser grid structure has been used in the core region of the enclosure then the total 

number of the numerical grid is smaller than that of higher Ra. The differences in 𝑁𝑢̅̅ ̅̅  on the 

hot sidewall between rough and smooth cases are shown in Figure 6.13. These differences are 

calculated according to Difference = (𝑁𝑢̅̅ ̅̅ 𝑠𝑚𝑜𝑜𝑡ℎ − 𝑁𝑢̅̅ ̅̅ 𝑟𝑜𝑢𝑔ℎ)/𝑁𝑢̅̅ ̅̅ 𝑠𝑚𝑜𝑜𝑡ℎ × 100% ), and a 

positive difference thus indicates that the heat transfer on the rough sidewall is worse than that 

on the smooth sidewall. In the figure, there is the notable tendency that as the Rayleigh number 

increases, the difference between rough and smooth cases decreases. For Ra = 106 and 107, the 

flows in cavities have features of laminar flow, and the negative effects of a rough surface are 

more obvious than those in the case of the highest Rayleigh number. In the four cases, a higher 

Rayleigh number can be considered to correspond to more turbulent flow, and the negative 

effects of the roughness are alleviated by the mixing effects of the eddies. We thus expect that 

the gap between rough and smooth cases will narrow further as the Rayleigh number increases 

further.   

 

Table 6.5. Numerical grids for different Rayleigh numbers  

Ra Finest grids (Δximin/L2) Total grid number (millions) 

106 2048 260 

107 2048 260 

6.4×108 2048 450 

1×1010 2048 450 
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Figure 6.13. Differences in the averaged Nusselt number between rough and smooth cases 

for different Rayleigh numbers. 
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CHAPTER 7. CONCLUSION AND RECOMMENDATIONS 

 

7.1 Conclusion 

        This dissertation has focused on the influence of surface roughness on the heat transfer 

performance of natural convection flows inside the enclosure cavities. Considering the 

universality of environments with high-temperature difference in modern industry and nature, 

the working fluid has been treated as compressible and simulations have been conducted under 

the non-Boussinesq conditions. On the other hand, to fit the reality, the isotropic self-affine 

roughness has been taken into account. The irregular roughness is generated through the given 

power spectrum densities. The total dissertation is trying to research the effects of different 

irregular roughness on the surface heat transfer under a laminar condition and the influence of 

one irregular roughness on the laminar and turbulent natural convection in enclosures. 

        In Chapter 4, the natural convection in a cavity with 3D irregular roughness elements on 

sidewalls has been investigated at the Rayleigh number of 106, using a compressible solver. 

The roughness was generated through a given power spectrum density with the roll-off 

wavenumber equal to 103 m-1 and the temperature difference between two sidewalls was 50K. 

The results of thermal fields showed the peaks on the rough surface will decrease the thickness 

of the thermal boundary layer but the valleys will increase it in the upstream region. However, 

in the downstream region, the thickness of the thermal boundary layer is thick enough that this 

effect is no longer obvious. Near the hot sidewall, the peaks will accelerate the flow field 

slightly, but the valleys will give a conspicuous deceleration to the flow field, and this 

phenomenon exists in both upstream and downstream regions. On the other hand, the fluid will 

bypass the elements in 3D simulation instead of getting trapped between two roughness 

elements. 

        The influence of different irregular rough surfaces on heat transfer was investigated in 

Chapter 5. By changing the roll-off wavenumber, 4 different irregular rough surfaces were 

generated. An accurate method to measure the temperature gradient on the complex surface 

was applied and the results showed that as the 𝑞𝑅
∗  increases the average Nu on the surfaces 

decreases under the condition of 𝑅𝑎 = 106 . Another notable phenomenon is that large 𝑞𝑅
∗  

indicated the denser distribution of the roughness elements with short wavelengths, then these 

roughness peaks were able to amplify the maximums of local Nu, but meanwhile, the space 
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among the roughness elements would be separated into small pieces by these roughness peaks 

and valleys. After dividing the average Nu into top average Nu and bottom average Nu, the 

results showed that the bottom average Nu was more sensitive to the change of 𝑞𝑅
∗  than the top 

average Nu, and as 𝑞𝑅
∗  increased, the bottom average Nu had a conspicuous tendency to 

decrease.  

        Chapter 6 investigated compressible natural convection flows in a cuboid cavity with 3D 

irregular roughness elements on its sidewalls at a Rayleigh number of 1 × 1010 based on DNS. 

The irregular roughness with 𝑞𝑅
∗  of 32 was same as in Chapter 5. The power density functions 

of the temperatures and velocities at the monitor probes were measured and the profiles of PDF 

show the flows in the downstream regions had the features of turbulence and the roughness 

increased the fluctuations of the flows nearby. From the isosurfaces of Q-criterion near both 

rough and smooth sidewall, we noted that the roughness was able to increase the vorticity and 

change the structures of the fluid nearby, but the vortices only appeared in the local areas of 

roughness peaks, and the fluid in valley areas kept a very low rotation rate. The time-averaged 

results indicated that in the local areas, the roughness peak accelerated the fluid nearby, and 

then the local convection increased, but the roughness valley had an opposite effect on the fluid. 

Thus the distributions of local Nusselt numbers have a high value in the vicinity of roughness 

peaks but the low in valley regions. From the average Nu on the hot sidewall, the rough case is 

lower than the smooth case by nearly 8%. But results of EHF indicated that the heat transfer 

generated by the turbulence near the rough surface was much higher than the smooth case, and 

compared with the smooth case, conspicuous EHF could be found from a more upstream area 

near the rough sidewalls. Analysis of the total energy transferred from the hot sidewalls 

revealed that the smooth sidewall conveyed more energy than the rough sidewall on the basis 

of the isothermal boundary condition. The convection near the rough sidewall was weaker than 

that near the smooth wall, and the shear stress was lower in the rough case than in the smooth 

case. As the Ra increases, the difference of average Nusselt numbers between smooth and 

rough cases will be diminished, and the mixing effects of turbulence played an important role 

in this tendency. 

        The current study clarified the effects of isotropic irregular roughness on the compressible 

natural convection flows in enclosed cavities under both laminar and turbulent conditions 

without Boussinesq approximation. Meanwhile, the flow structures near the rough surfaces 

were represented in detail. The results of this dissertation can provide a reference for the design 

of engineering applications involving high-temperature problems. 
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7.2  Recommendations for future work 

        The following recommendations can be considered as potential directions for further 

research. 

 It would be very interesting to investigate the influence of different irregular roughness 

under the condition of turbulence. 

 Higher temperature difference could be imposed on both sidewalls to research the 

effects of the roughness on the heat transfer performance and flow structures under the 

extremely thermal boundary condition. 

 The thermal boundary condition imposed on the sidewalls could be considered as 

constant heat flux instead of isothermal. 

 The types of roughness surface could be extended such as anisotropic roughness which 

also extensively exists in modern industry. 
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