
Kobe University Repository : Kernel

PDF issue: 2025-01-13

Modern Maritime Information Support Systems
with Microservices Architecture: Designing,
Developing, and Deploying

(Degree)
博士（工学）

(Date of Degree)
2023-03-25

(Date of Publication)
2024-03-01

(Resource Type)
doctoral thesis

(Report Number)
甲第8667号

(URL)
https://hdl.handle.net/20.500.14094/0100482415

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

劉, 鴻澤

Doctoral Dissertation

Modern Maritime Information Support Systems
with Microservices Architecture:

Designing, Developing, and Deploying

 מٔزؠط؞٭ؓ تل٭ئٞؠُؕ
槁♣嶮◜䝠㖥佻䴈ّطتب

 陭阛٬ꪛ溪٬ꏕ翝יַחמ

January 2023

Graduate School of Maritime Sciences

Kobe University

LIU HONGZE
(ⱦմ론 憐)

()

DISSERTATION

Modern Maritime Information Support Systems
With Microservices Architecture

Designing, Developing, and Deploying

LIU HONGZE

January 2023

Kobe University

Disclaimer
The views and opinions expressed in this dissertation are those of the author and do not necessarily reflect
the official policy or position of Kobe University. The author assumes full responsibility for the accuracy and
completeness of the information presented in this dissertation. The author makes no warranties, express
or implied, with respect to the contents of this dissertation, including but not limited to any warranties of
merchantability or fitness for a particular purpose. The author shall not be liable for damages of any kind
arising from the use of this dissertation.

Publisher
Published by Kobe University

O EVER YOUTHFUL, O EVER WEEPING

– Jack Kerouac, The Dharm Bums

Contents

Contents v

1 Introduction 1
1.1 Background and Motivation . 1
1.2 The Main Ideas . 6
1.3 Outline . 8

Modern Software Architecture and Web Applications 11

2 Designing Microservices 13
2.1 A Glimpse of Microservices . 13
2.2 Services in Pieces . 15
2.3 Inter-Service Communication . 17
2.4 Summary . 21

3 Developing Microservices 23
3.1 Handling Incoming AIS Data . 23

3.1.1 Different Types of AIS Messages . 23
3.1.2 Parsing AIS Messages . 26

3.2 Preparing Trajectory Data . 29
3.2.1 Extracting Trajectories from AIS Data . 29
3.2.2 Compressing Trajectory Data . 29

3.3 Integrating with Databases . 31
3.3.1 NoSQL and MongoDB . 31
3.3.2 Database Structure . 32

3.4 Summary . 33

4 Leveraging Microservices 35
4.1 BlueNavi: Providing 2D Visualization . 35

4.1.1 Background and Scenarios . 35
4.1.2 Tooling and Framework . 36
4.1.3 Design and Implementation . 38

4.2 RedNavi: Building 3D Scenes . 40
4.2.1 Background and Scenarios . 40
4.2.2 Tooling and Frameworks . 40
4.2.3 Design and Implementation . 41

4.3 GreenNavi: Tracing Historical Data . 43
4.3.1 Background and Scenarios . 43
4.3.2 Tooling and Framework . 43
4.3.3 Design and Implementation . 44

4.4 Summary . 47

Modern Communication Framework and Cross-Platform Applications 49

5 Defining gRPC Services 51
5.1 A Glimpse of gRPC . 51

5.1.1 From RPC to gRPC . 51
5.1.2 gRPC over HTTP/2 . 53
5.1.3 gRPC Communication Patterns . 54

5.2 gRPC Services Design . 56
5.2.1 Providing Maritime Information . 56
5.2.2 Collecting Maritime Information . 59
5.2.3 Exchanging Maritime Information . 61

5.3 Summary . 61

6 Implementing gRPC Services 63
6.1 Implementing gRPC Server . 63

6.1.1 Tooling and Framework . 63
6.1.2 Implementation . 65

6.2 Implementing gRPC Client . 68
6.2.1 Background and Scenarios . 68
6.2.2 Tooling and Framework . 69
6.2.3 Implementation . 70

6.3 Summary . 73

Modern Deployment Approach and Microservices Containerization 75

7 Deploying Microservices 77
7.1 Deploying Microservices on Docker . 77

7.1.1 Packing Services to Containers . 77
7.1.2 Going Live with Services . 80

7.2 Deploying Microservices on Kubernetes . 82
7.2.1 Orchestrating Containers with Kubernetes . 82
7.2.2 Going Live with Services . 82

7.3 Summary . 87

8 Testing Microservices 89
8.1 General Idea and Test Environment . 89
8.2 Test Methods and Test Results . 90
8.3 Discussion . 92
8.4 Summary . 93

9 Conclusions and Outlook 95
9.1 Conclusions . 95
9.2 Outlook . 97

Bibliography 101

List of Terms 105

Acknowledgements 109

List of Figures

1.1 Concept for VDL and IP Communications . 5

2.1 Monolithic Architecture . 13
2.2 Monolithic Architecture with Load Balancing . 14
2.3 Microservices Architecture . 15
2.4 System Components . 16

3.1 AIS Message Structure . 25
3.2 AIS Message Parse . 28
3.3 Relational Database Schema . 31
3.4 MongoDB Database Schema . 32
3.5 Database Design . 32

4.1 Web Application Schematic . 36
4.2 Angular Framework . 38
4.3 BlueNavi UI (Web Application) . 39
4.4 BlueNavi UI (Desktop Application) . 39
4.5 RedNavi UI: First-Person View . 41
4.6 RedNavi Workflow . 42
4.7 RedNavi UI: Third-Person View . 42
4.8 Data Binding . 44
4.9 Virtual DOM . 45
4.10 Incremental DOM . 45
4.11 GreenNavi UI: Historical Scene . 45
4.12 GreenNavi UI: Trajectories. 47

5.1 Unary RPC . 55
5.2 Server-Streaming RPC . 55
5.3 Client-Streaming RPC . 55
5.4 Bidirectional Streaming RPC . 56

6.1 GreenNavi Web Application . 69
6.2 PinkNavi Project Structure . 70
6.3 PinkNavi UI . 72
6.4 PinkNavi UI: Sliding-Up Panel . 72

7.1 Concept of Operating System . 77
7.2 Concept of Virtual Machine . 78
7.3 Concept of Container . 79
7.4 Container Built from Image . 79
7.5 Raspberry Pi . 80
7.6 Concept of Kubernetes . 83
7.7 Kubernetes Cluster . 83
7.8 Deploying Microservices With Kubernetes . 84

List of Tables

1.1 Digital Communication Technologies . 3

2.1 Design of Some APIs . 18

3.1 AIS Messages . 24
3.2 Reserved Characters Used in NMEA 0183 Format Messages . 25
3.3 Meaning of Each Part in Message 3.2 . 25

8.1 Overview of Test Environment . 90
8.2 Summary of Test Result . 91

Introduction 1
1.1 Background and Motivation 1
1.2 The Main Ideas 6
1.3 Outline 8

The maritime industry has played a critical role in shaping the mod-
ern world, connecting people and nations through trade and commerce.
However, as the industry becomes more complex and competitive, the
effective sharing, management, and application of maritime information
have become increasingly important. Advances in technology have cre-
ated new opportunities for the maritime industry to better manage this
information and improve its operations. This chapter provides an intro-
duction to this dissertation, including background and motivation, main
ideas, and an outline of the dissertation.

1.1 Background and Motivation

The growth and development of themaritime industry have been a direct
result of the continuous efforts of human navigation throughout history.
From the early days of prehistoric Austronesian expansion [1] and Poly-
nesian navigation [2] to the present day, humans have never ceased in
their endeavors to traverse the seas and oceans, exploring new territo-
ries and establishing trade and commerce relationships with other civi-
lizations. The development of trade and commerce, in turn, has led to
the growth of the maritime industry, which today plays a critical role in
the global economy.

The maritime industry encompasses a wide range of activities, from ship-
building to cargo transportation, fishing, and tourism. Among these, the
shipping industry occupies an important place, transporting raw materi-
als and finished goods from country to country, accounting formore than
80% of world trade by volume and more than 70% by value [3, 4]. The
maritime industry plays a vital role in facilitating international trade and
commerce, thereby fostering economic growth and development world-
wide.

To operate efficiently and effectively in this complex and ever-evolving
industry, it is essential to have access to accurate and timely (sometimes
historical) maritime information, which typically includes information
on shipping lanes, ports, weather conditions, cargo and vessel move-
ments, etc. Maritime information is critical to the industry to ensure
the safe and efficient operation of vessels, plan and execute trade routes,
mitigate risk, etc. As a result, maritime communication technologies are
becoming increasingly important for sharing this information.

It is said that the earliest Polynesian navigators did not use any on-board
equipment to aid navigation, relying solely on visual observation of birds
and stars [5]. However, as human civilization advanced, so did the meth-
ods and tools of navigation and marine communication. Hundreds of
years ago, humans evolved to use navigational instruments such as com-
passes and sextants to aid in positioning [6], and to use natural signals
such as sound and light to communicate in limitedways with steamwhis-
tles and signal flags [7, 8].

2 1 Introduction

The technological revolution, also known as the Third Industrial Revo-
lution, which began in the mid-20th century and continues today, has
enabled human civilization to take another giant step forward, moving
humanity from the era of mechanical and analog electronics to the era
of digital and information technology [9]. In just a few decades, it has
brought about a sea change— technologies have shifted from analog com-
puters to digital computers (1950s), from telegraphs to faxes (1980s), from
analog telephones to digital mobile phones (1990s), and further to smart-
phones (2010s), and so on. Among them, digital transmission technology
is considered to be one of the pillars. The emergence and rapid develop-
ment of computer networks, digital broadcasting, various radio technolo-
gies, etc., and especially the internet, have brought communication into
an unprecedented new era.

With the rapid advancement of digital technology, the maritime industry
is not immune to the trend of digitalization. Maritime information digi-
talization refers to the process of converting traditional maritime infor-
mation into digital format and integrating it into a comprehensive infor-
mation management system [10]. Through the digitalization, the mar-
itime industry can significantly improve its operational efficiency, en-
hancemonitoring, control, quality assurance and verification, and strengthen
decision-making capabilities by providing a clearer and more accurate
understanding of maritime conditions [11]. This is in stark contrast to
traditionalmaritime communication systems that rely on radiowaves [12],
such as Morse code (radiotelegraphy), which is considered the oldest
maritime communication system; Medium Frequency (MF), Intermedi-
ate Frequency (IF), and High Frequency (HF)-based radio communica-
tions; as well as the international Very-High Frequency (VHF) and ma-
rine VHF communications, which emerged in the 1960s and 1990s, re-
spectively [13].

While traditional maritime communication systems have served the in-
dustrywell formany years, the limitations of radiowaves havemade it in-
creasingly necessary to seek more advanced and efficient means of com-
munication. For example, weather conditions and obstacles can affect
radio wave communications, resulting in potential communication fail-
ures. Radio wave communications also have limited bandwidth, result-
ing in slower transmission speeds. In addition, the reliance of traditional
maritime communication systems on manual methods of inputting, pro-
cessing, and transmitting information can be time-consuming and error-
prone. On the other hand, the integration of the internet into modern
digital communications enhances real-time information sharing, collab-
oration and accuracy, which is essential in the fast-paced and dynamic
maritime industry. With the development of Third Generation of Wire-
less Mobile Telecommunications Technology (3G) technology and its up-
grades to Fourth Generation of Cellular Communications Standards (4G)
and now Fifth Generation of Cellular Mobile Communications (5G), as
well as the use of satellite communications, the internet has becomemore
accessible and reliable in both inshore and offshore situations at sea.

3G is an upgrade of the Second Generation of Wireless Mobile Telecom-
munications Technology (2G), Second and a Half Generation of Wire-
less Mobile Telecommunications Technology (2.5G), General Packet Ra-
dio Service (GPRS), and Enhanced Data Rates for GSM Evolution (EDGE)
technologies and is first researched in 1992 and first pre-commercialized

1.1 Background and Motivation 3

in Japan in 1998. The 3G technology was initially able to increase the
mobile communication rate of mobile phones to 144 kbps, and this fig-
urewas increased to several megabits per second in subsequent upgrades.
3G technology was gradually replaced around the 2010s by 4G, which al-
lows mobile devices to access the internet at rates of up to 100 Mbps as
long as they are in range, and has reached a 58% share of the globalmobile
telecommunications technology market by 2021 [14]. Today, Fifth Gen-
eration of Cellular Mobile Communications (5G) is replacing 4G as the
new telecommunications standard. In addition, the use of technologies
such as Wi-Fi extenders can also solve the problem of mobile internet
access at sea in some near-shore navigation situations.

When sailing in distant seas, ships can access the internet via satellite.
There is a decades-long history of using satellites for long-distance com-
munications at sea, with Inmarsat founded in 1979 to ameliorate mar-
itime telecommunications. With the first lauch ofHigh Throughput Satel-
lite (HTS) around 2004, people were able to access high-speed internet
services from space for the first time. With the development of satellite
communications, it is now possible to achieve high speed, low latency
satellite internet access with up to 100 Mbps downlinks using the Ku-
band1 1: The Ku band is in the microwave

range of frequencies from 12 to 18 GHz.
low earth orbiting satellites [15].

Table 1.1 lists some of the common technologies currently used for mar-
itime digital communications as summarized by the International Associ-
ation ofMarineAids toNavigation and LighthouseAuthorities (IALA) [16].
These technologies allow the exchange of maritime information in digi-
tal form.

Table 1.1: Digital communication technologies.

Communication
Technology Data Rate Infrastructure Coverage Transmission Objective

NAVDAT 12 ~ 18 kbps NAVTEX 250 / 300 NM Broadcast Maritime

VDES VDE 307 kbps VHF Data Link 15 ~ 65 NM
(w/o satellite)

Addressed /
Broadcast Maritime

VDES ASM 19.2 kbps VHF Data Link 15 ~ 65 NM Addressed /
Broadcast Maritime

Wi-Fi
(IEEE 802.11ac) 1,300 kbps Routers /

Access Points 50 m Addressed Public

Digital VHF 9.6 ~ 19.2 kbps Base Station /
Mobile Radios 15 ~ 65 NM Addressed Maritime

Digital HF 19.2 kbps Base Station /
Mobile Radios Global Addressed Maritime

4G (incl. LTE) 600 Mbps 4G Base Stations 5 ~ 30 km Addressed Public
5G 1,200 Mbps 5G Base Stations 5 ~ 30 km Addressed Public

Inmarsat C 600 bps Satellite Service Global,
Spot Beams

Addressed /
Broadcast Maritime

Inmarsat GX 50 Mbps Satellite
(Ka Band)

Global,
Spot Beams

Addressed /
Broadcast Cross Industry

Iridium ~ 134 kbps Satellite
(L Band)

Global
(constellation
size)

Addressed /
Broadcast

Cross Industry
(Iridium Pilot
Maritime)

4 1 Introduction

When accessing data through the internet (or similar computer networks),
devices communicate over Internet Protocol (IP), the network layer com-
munications protocol in the internet protocol suite22: It is beyond the scope of this disser-

tation to discuss the internet protocol
suite, seven-layer Open Systems Inter-
connection (OSI) model, and related con-
cepts; please refer to Reference [17].

. There are many
reasons why people choose IP communication, such as it is more mature,
reliable3

3: In fact, IP by itself does not pro-
vide reliable communication; Transmis-
sion Control Protocol (TCP) and IP, to-
gether, provide a reliable service.

, etc. With the increasing use of IP communications, there is an
opportunity to exchange the following types of maritime information,
which are currently sent and received using a variety of very different
traditional means, in a more uniform and standardized manner in the fu-
ture. For example, IALA has proposed their next-generation VHF Data
Exchange System (VDES) that primarily uses VHF Data Link (VDL) for
data exchange. In introducing VDES, IALA uses IP and VDL as parallel
communicationmethods that serve both ship-to-shore and shore-to-ship
communication from different aspects, as shown in Figure 1.1.

Navigational Information (from the vessel) This navigational informa-
tion is transmitted from the ship, primarily via VHF, and includes
the ship’s identification, location, course, speed, destination, and
other navigational data. The shipborne AIS equipment is currently
responsible for sending and receiving this information [18]. The
data sources are on-board electronic navigation sensors or manual
input from the ship’s officers.

Navigational Information (from the administration) This kind of navi-
gational information is sent by authorities or maritime administra-
tions, including various navigational warnings, notices, etc. Cur-
rently, these messages are mainly distributed through VHF, Navi-
gational Telex (NAVTEX), etc., and sometimes also on the web [19].

Meteorological Information Meteorological information includesweather
forecasts and observational data, specifically temperature, visibil-
ity, weather forecasts (in text or weather chart format), etc. For
ships, forecast information is needed from shore to guide naviga-
tion [20]. For shore, real-time observations from ships may be
needed. Currently, meteorological information is mainly transmit-
ted via NAVTEX, radiofacsimile (Weatherfax), Inmarsat, etc.

Hydrographic Information Hydrographic information includes informa-
tion onwater depth, navigational hazards such aswrecks and rocks,
etc. Currently, hydrographic information is distributedmainly through
the publication of nautical charts, notices to mariners, etc., and
sometimes also through NAVTEX, Inmarsat, etc. Under Interna-
tional Convention for the Safety of Life at Sea (SOLAS), all ships
must have adequate and up-to-date charts to assist navigation [21].

Reporting The ship reporting system is adopted by many countries and
regions around the world to ensure the safety of navigation to a
greater extent. The types of ship reports include voyage plans, po-
sition reports, deviation reports, final reports, dangerous goods re-
ports, harmful substances reports, marine pollutants reports, etc.
[22]. Ship reporting is mainly done via VHF, Inmarsat, or Long-
Range Identification and Tracking (LRIT).

Emergency Message In order to maximize the safety of human life at
sea, International Maritime Organization (IMO) established Global
MaritimeDistress and Safety System (GMDSS) in the 1990s. In case
of an emergency, distress signals andmessages can be sent through
various systems of GMDSS, including Emergency Position-Indicating
Radio Beacon (EPIRB), NAVTEX, satellite, HF, Search and Rescue
Transponde (SART), Digital Selective Calling (DSC), etc. [23].

1.1 Background and Motivation 5

Figure 1.1: Concept for VDL and IP communications [16].

In addition, IP communication can also perform the function of gen-
eral communication, such as liaison with shipping companies and agents
ashore, etc., and the consumers ofmaritime information aremuch broader
than ship officers — for example, maritime pilots, students, researchers,
shipmasters, administrations, etc. [24–28], are all important users of mar-
itime information.

However, despite the rapid development of maritime information and
communication technology, the current state of maritime information
management is still characterized by fragmented and decentralized sys-
tems with multiple sources of information and limited coordination be-
tween them [29]. The lack of a centralized platform for the collection
and distribution of maritime information leads to inefficiencies and dif-
ficulties in accessing timely and accurate information, thus affecting the
safety and efficiency of maritime operations. Specifically, some of the
challenges the maritime industry faces in managing maritime informa-
tion include:

Data Integration The growing number of electronic navigation sensors,
ship management systems, and other sources of maritime data has
led to an explosion of information. However, these sources often
use different data formats, protocols, and data structures, making
it difficult to integrate and use the data effectively. To address this
challenge, a unified approach to data integration is needed, includ-
ing the development of data standards and the use of common data
protocols. This will enable the effective exchange and use of infor-
mation, resulting in more efficient and safer operations.

6 1 Introduction

Timeliness Maritime operations depend on timely, accurate, and rele-
vant information. However, the collection and dissemination of
real-time information in the maritime sector can be challenging
due to a number of factors. For example, the vast geographic scope
of the maritime sector makes it difficult to transmit and dissemi-
nate data in a timely manner. The solution to this challenge is a
robust and efficient information system that can collect, process,
and distribute maritime information in a timely manner. However,
this may require investment in technology and infrastructure, as
well as collaboration among stakeholders to ensure that informa-
tion is shared in a standard format and that privacy and security
are maintained.

Information Security As the maritime industry becomes more digitized,
the risk of cyber-attacks, data breaches, and unauthorized access
to sensitive information increases. To address these security chal-
lenges, the industry may need to implement comprehensive secu-
rity measures such as firewalls, encryption, and multi-factor au-
thentication. In addition, relevant stakeholders, such as govern-
ments and technology companies, must work together to establish
security standards and protocols to ensure the secure exchange of
maritime information.

Data Quality Several factors can affect the quality of maritime infor-
mation, including errors in data collection, measurement, and pro-
cessing, as well as inaccurate or outdated data sources. The sheer
volume of data generated from multiple sources can also make
it difficult to identify and correct errors in a timely manner. To
overcome this challenge, maritime organizations must invest in ro-
bust data quality management processes, including data validation,
standardization, and quality monitoring. This also requires collab-
oration between all parties involved in the data collection and pro-
cessing cycle.

The current challenges in maritime information collection, management,
and application highlight the need for a comprehensive solution in the
design, development, and deployment of modern maritime information
support systems. Based on these perspectives, this dissertation endeav-
ors to provide a comprehensive approach to the design, development,
and deployment ofmodernmaritime information support systems, which
takes into consideration some of the above challenges faced by the indus-
try. In doing so, it aims to contribute to ongoing efforts to address these
challenges and improve overall maritime information support.

1.2 The Main Ideas

As mentioned in Section 1.1, this research is motivated by the challenges
and limitations faced by the maritime industry in collecting, managing,
and applying maritime information. The overall objective of this disser-
tation is to propose a general solution for the design, development and
deployment of modern maritime information support systems. In gen-
eral, the system should be flexible, allowing for easy changes and modifi-
cations; scalable, ensuring that it continues to perform effectively as the
system scales; and efficient, providing the right information at the right
time.

1.2 The Main Ideas 7

Specifically, in terms of design, this dissertation seeks to achieve the fol-
lowing objectives:

▶ Identify an optimal system architecture that can effectively support
the needs of a modern maritime information support system;

▶ Find suitable communication means to be used for both one-way
(unidirectional) and two-way (bidirectional) data transfer at the IP
communication level;

▶ Design and define clear communication interfaces betweenmicroser-
vices as well as externally facing Application Programming Inter-
faces (APIs) to ensure seamless data transfer;

▶ Design tailored solutions and corresponding user-friendly frontend
applications to address some practical problems of maritime in-
formation communication in different scenarios and with varying
characteristics.

In terms of development, this dissertation aims to:

▶ Select the optimal set of programming languages, tools, and frame-
works to efficiently develop the backend services and frontend ap-
plications of the system;

▶ Implement the design for the backend services and frontend ap-
plications with the selected programming languages, tools, and
frameworks, to achieve the best possible performance and func-
tionality.

In terms of deployment, this dissertation aims to:

▶ Highlight the benefits of the system’s architecture in terms of flex-
ibility, scalability, and other key features during the deployment
phase;

▶ Provide a lightweight and streamlined deployment solution for spe-
cific, practical application scenarios that require simplicity;

▶ Demonstrate the ability to fully and efficiently deploy the system
in more complex and demanding application scenarios, including
through cloud deployment.

In addition to the above objectives, this dissertation also focuses on ad-
dressing practical issues in specific application scenarios, including:

▶ Offer a reliable and cost-effective solution for the exchange of nav-
igational data for ships that are not mandated by the IMO to be
equipped with AIS;

▶ Provide Three-Dimensional (3D) visualization of navigational data
for Maritime Education and Training (MET), as well as lookout as-
sistance;

▶ Provide a comprehensive range of data, including real-time and
historical AIS data, vessel trajectory, statistical data, and other rel-
evant information to maritime information consumers on demand;

▶ Design and implement effective communication services to pro-
vide information subscriptions, active reporting, and automated re-
porting capabilities, catering to the diverse needs of various stake-
holders.

Due to time and resource limitations, this dissertation will focus primar-
ily on the use of AIS data as a representative sample within the broader

8 1 Introduction

scope of maritime information. The proposed solutions and design con-
siderations outlined in this dissertation focus on AIS or similar data be-
cause it provides both dynamic and static, real-time and historical infor-
mation, making it a comprehensive representation. However, it is impor-
tant to note that the proposed solutions are not limited to AIS data and
can be adapted to meet the specific requirements of other data types and
practical applications.

1.3 Outline

This dissertation is comprised of three main parts. The first part, Mod-
ern Software Architecture and Web Applications, covers Chap-
ters 2 to 4 and delves into the software architecture of the system. The
second part, ModernCommunication FrameworkandCross-Platform
Applications, encompasses Chapters 5 and 6 and focuses on the com-
munication between the system’s services. Finally, the third part, Mod-
ern Deployment Approach and Microservices Containerization,
which includes Chapters 7 and 8, examines the modern deployment ap-
proach for the system.

At the conclusion of the first part, a basic backend system for the pro-
vision of maritime information will be established along with the corre-
sponding frontend applications. The second part will focus on improv-
ing inter-service communication through the use of optimized commu-
nication protocols and frameworks, as well as incorporating additional
functionality through innovative communication methods. Finally, in
the third part, the system will be deployed in various production envi-
ronments to move beyond the laboratory phase and become a practical
solution. The structure of this dissertation is outlined as follows:

Chapter 1 Introduction This chapter provides a comprehensive overview
of the dissertation, including its background, motivation, objec-
tives, and outline.

Modern Software Architecture and Web-Based Applications

Chapter 2 Designing Microservices This chapter delves into one
of the main focuses of this dissertation, the microservices ar-
chitecture, and provides an in-depth examination of the de-
sign of a system that providesAIS information, primarily from
a backend perspective, using the microservices architecture.
The chapter covers topics such as the system structure, RESTful
APIs, request and response messages, etc.

Chapter 3 Developing Microservices This chapter covers the pro-
cess of using AIS data as the primary source for the system,
and explains the method used to parse the raw AIS messages.
It also details the algorithms for extracting continuous ship
trajectories from the discrete AIS data and compressing these
trajectories for storage. The chapter also includes informa-
tion on selecting a NoSQL database to store the processed AIS
and trajectory data.

1.3 Outline 9

Chapter 4 Leveraging Microservices This chapter focuses on de-
veloping bothweb applications and desktop applications based
on web technologies. To meet the needs of different applica-
tion scenarios such as ship navigation, meteorology, and traf-
fic management, three applications are developed using mod-
ern web technologies and frameworks. These applications
communicate with the backend services using the RESTful
APIs developed in the previous chapter.

Modern Communication Framework and Cross-Platform Applications

Chapter 5 Defining gRPC Services This chapter explores the use
of gRPC, a cutting-edge communication framework based on
the HTTP/2 protocol. The chapter defines the communica-
tion service interface and the relevant messages, taking into
account the different communication patterns of gRPC and
the specific data requirements of different application scenar-
ios. In addition, this chapter presents the design approach
and code samples in the protocol buffers format.

Chapter 6 Implementing gRPC Services This chapter implements
the server and client sides of the gRPC services, using the de-
sign presented in the previous chapter. For the server side,
the Go programming language was chosen because of its ad-
vantages, which will be discussed in this chapter. On the
client side, a cross-platform applicationwas developed, which
offers distinct advantages over previousweb technology-based
applications. This chapter also introduces a new application
scenario for cross-platform applications in the maritime in-
dustry and proposes a solution to a practical problem.

Modern Deployment Approach and Microservices Containerization

Chapter 7 Deploying Microservices This chapter delves into the
packaging of microservices that were designed and developed
in the previous chapters using modern containerization tech-
nologies. Taking advantage of the benefits of the microser-
vices architecture, such as increased flexibility, reduced cou-
pling, enhanced reliability, and improved scalability, the mi-
croservices are deployed through theDocker platform and the
Kubernetes container orchestration system to accommodate
various application scenarios at different scales.

Chapter 8 Testing Microservices This chapter focuses on evalu-
ating the performance of the previously designed, developed,
and deployed microservices. It compares the advantages and
disadvantages of the backend API implementations discussed
in the dissertation with respect to request and response pay-
load, server throughput, latency, resource consumption, and
other key metrics. The discussions are based on the results of
the experiments conducted.

Chapter 9 Conclusions and Outlook This chapter summarizes themain
findings of this dissertation, provides valuable insights and reflec-
tions on the research conducted, and highlights future research di-
rections.

Modern Software Architecture and
Web Applications

Designing Microservices 2
2.1 A Glimpse of Microservices 13
2.2 Services in Pieces 15
2.3 Inter-Service Communica-

tion 17
2.4 Summary 21

Monolithic architecture has been the conventional way of designing sys-
tems. However, this approach is known to have several shortcomings
such as lack of flexibility and limited scalability, particularly in larger
projects. As a result, microservices architecture has emerged as a promis-
ing solution to address these challenges and provide a more adaptable
and scalable system design.

2.1 A Glimpse of Microservices

Microservices architecture is a modular approach to software design that
differs from traditional monolithic architecture. In a monolithic archi-
tecture, all business logic is encapsulated together, leading to the deploy-
ment of the software system being deployed as a single unit [30]. In con-
trast, a microservices architecture allows the system to be divided into
smaller, independent units that can be developed, deployed, and scaled
individually.

Figure 2.1 provides a visual representation of a simple monolithic archi-
tecture, where all components are integrated and packaged as a mono-
lithic deployment bundle. Communicationwithin the system is facilitated
through method calls [31, 32].

Figure 2.1: Monolithic architecture.

The performance of a single computing component is limited. To solve
the problem of high concurrency and high availability in the architec-
ture, redundancy is introduced. Deploying monoliths on multiple server
components with load balancing, rather than on a single component, ra-
tionally distributes a large number of jobs acrossmultiple operating units
for execution, and can therefore improve the reliability of the overall sys-
tem. Figure 2.2 illustrates a systemwithmonolithic architecture and load
balancing introduced.

Although software systemswithmonolithic architectures can also follow
themodular mindset, meaning that each business logic can be structured,
developed, and tested separately inside the monoliths, they must be de-
ployed simultaneously on the same infrastructure and share the same

14 2 Designing Microservices

Figure 2.2:Monolithic architecture with
load balancing.

resources, such as Central Processing Unit (CPU), memory, and storage.
As a result, they suffer from maintainability and scalability issues [30,
33].

The advent of microservices architecture has alleviated these problems.
A system based on microservices architecture is a collection of distinct,
small, well-grained, single-purpose, and independently deployed services,
typically organized by functionality. Microservices communicate over
the network using Application Programming Interfaces (APIs) or mes-
sages [30].

Figure 2.3 gives an example of the microservices architecture. In this ex-
ample, the client applications communicate onlywith the external-facing
microservices. Once their communication interfaces are well designed,
each microservice can be implemented, tested, and deployed indepen-
dently. In this case, the database is deployed separately and is not ex-
posed to other microservices, but only to the responsible one.

Microservices architecture has gained widespread popularity due to its
significant advantages in technology heterogeneity, interchangeability,
maintainability, scalability, and availability.

Following the idea of modularization, well-grained microservices can
be designed, developed, and deployed independently, giving developers
more freedom of choice in terms of technological implementation, in-
cluding code base, platform, and database, depending on the need. Their
highly modular nature makes it easy to replace a single component with
even a different technology, as long as the same interface is maintained.
Maintenance is also easier. Furthermore, unlike monoliths, which have
to scale everything togetherwhen the performance bottleneck is reached,
microservices can be scaled independently as needed (e.g. only the in-
tensely requested ones). In addition, the failure of a microservice does
not usually cascade. The failure may not affect other parts of the re-
maining system for the other functions, which also helps in troubleshoot-
ing. [30, 34]

2.2 Services in Pieces 15

Figure 2.3: Microservices architecture.

2.2 Services in Pieces

When designing a modern maritime information support system, it’s im-
portant to consider a microservices architecture. This approach granu-
lates the system into functional pieces, which can improve scalability,
flexibility, reliability, and maintainability. For example, in terms of scal-
ability, if there’s a sudden increase in demand for the exchange of navi-
gational information, only the relevant microservice needs to be scaled
up without affecting other services. A shipping company may need a
service for tracking cargo, while a port authority may need a service to
analyze the ship’s historical trajectory, highlighting the importance of
flexibility. Additionally, if one service, such as the weather information
service, fails, it will not affect other services, such as the emergency no-
tification service, thereby ensuring reliability. Moreover, microservices
can be deployed across multiple servers, improving system availability
and reliability. The microservices architecture also makes it easier to
maintain and update the system without having to tear down the entire
system to redeploy it.

This concept can be demonstrated through an example of a system that
provides navigational information using AIS data, as illustrated in Figure
2.4. The diagram includes several separate microservices that work to-
gether to offer the necessary functionality. The individual microservices
and components are listed as follows:

16 2 Designing Microservices

Figure 2.4: System components.

AIS Equipment The equipment installed on board a vessel that receives
AIS messages broadcast by other AIS equipment via VHF and for-
wards them to the AIS Receiver microservice over the ship’s Local
Area Networks (LAN).

AIS Receiver A microservice responsible for receiving and parsing in-
coming AIS messages in real-time. The AIS Receiver parses the
incoming messages from the AIS Equipment and stores the parsed
data in the Real-Time Database.

Real-Time Database A database that stores real-time AIS data received
from the AIS Receiver. The data is set with a Time To Live (TTL)
value and is periodically purged of obsolete data based on the mod-
ified time and TTL to ensure timeliness.

AIS Analyzer Amicroservice responsible for analyzing raw AIS data for
tasks such as statistics and trajectory extraction. The AIS Analyzer
connects to both the Real-Time and Historical Databases and is re-
sponsible for periodic or full backups of real-time data to the His-
torical Database for long-term preservation.

Historical Database A database that stores historical AIS data from the
Real-Time Database. The Historical Database is populated by the
AIS Analyzer and provides access to historical data for analysis and
other purposes.

AIS Provider A microservice that provides AIS-related data to external
users. If the requested data is not available directly from the database,
the AIS Provider forwards the request to the appropriate microser-
vice, such as the AIS Analyzer.

App Provider Amicroservice that delivers the frontend application (User
Interface (UI)) for users to interact with. Users access the web ap-
plication provided by the App Provider to access the functionality
of the system.

API Server The API entry point that sits between the user (frontend ap-
plication) and other microservices. The API Server allows users to
access the various microservices through a single interface, provid-
ing a seamless and consistent user experience.

2.3 Inter-Service Communication 17

2.3 Inter-Service Communication

Traditionalmonolithic systems integrate their various components through
simple function calls, enabling them to work together. In contrast, in
a microservices architecture, each component, or microservice, is rela-
tively independent. This independence requires careful design of the
communication mechanisms to enable effective collaboration between
microservices.

There are two primary types of communication in a microservices ar-
chitecture: synchronous and asynchronous[35]. In synchronous com-
munication, one microservice sends a request and waits for a response
from anothermicroservice. This approach requires bothmicroservices to
maintain the connection until the response is received. In asynchronous
communication, one microservice sends messages and finishes immedi-
ately without waiting for a response.

The choice between synchronous and asynchronous communication styles
depends on the specific application scenario. For example, if the business
logic of one microservice requires a response from another microservice
before proceeding, synchronous communication is appropriate.

Asynchronous Communication

Building on the previous discussion and the system design presented in
Section 2.2, the system is designed to be response-insensitive when re-
ceiving AIS messages, meaning that it only needs to receive the mes-
sage from the shipborne AIS equipment and initiate the parsing pro-
cess without the need to return any result to the AIS equipment. To
achieve this, the system utilizes asynchronous communication between
the AIS equipment and the AIS Receiver microservice, as opposed to
synchronous communication which would require both microservices
to maintain a connection until a response is received. An example of the
asynchronous communication messages used in the system is provided
in Message 2.1.

Message 2.1: Asynchronous AIS message.

!AIVDM,1,1,,A,152lbV`000ad<<`CoB=UbTRJ0Dg:,0*7C

Further details on the interpretation of AIS messages are presented in
Section 3.1.

Synchronous Communication

In most cases, the system needs to be able to respond to user requests
in a timely manner. For instance, when users request dynamic informa-
tion about the ships in their vicinity, they expect the system to respond
as quickly as possible. To achieve this, the system is designed to use
synchronous communication in these scenarios.

One commonly used architectural design for synchronous communica-
tion is Representational State Transfer (REST), which creates distributed

18 2 Designing Microservices

systems based on hypermedia [36]. In the REST model, resources are
referred to as objects and services, and when the application accesses a
resource using a Uniform Resource Identifier (URI), a representation of
the resource is returned. Although Hypertext Transfer Protocol (HTTP)
is the most commonly used implementation protocol for REST, it is pro-
tocol agnostic [35].

In REST, the Uniform Resource Locator (URL) of a resource serves as its
identifier, and the HTTP verbs GET, PUT, DELETE, POST, etc. can be used to
perform standard operations on the resource. The design of the REST
architecture is based on synchronous communication.

Table 2.1 provides a brief overview of the request paths, parameters, and
return values for some of the APIs. For examples of actual requests and
responses for some of the APIs described in the table, see Requests 2.1
through 2.3 and Responses 2.1 through 2.3. For a more detailed descrip-
tion of utilizing the APIs, see Chapter 4.

Request 2.1: Example requests to the /dynamics endpoint.

GET https://{{baseUrl}}/api/v1/dynamics
Accept: application/json

Table 2.1: Design of some APIs.

Endpoint URI HTTP
Method

Required
Parameters

Optional
Parameters

Description

/dynamics GET - populate, mmsi Query dynamic AIS data in the real-
time database.

/dynamics/near GET mmsi, range populate Query dynamic AIS data near the
given ship in the real-time database.

/statics GET - mmsi, name Query static AIS data in the real-
time database.

/statics/near GET mmsi, range - Query static AIS data near the given
ship in the real-time database.

/history/dynamics GET timestamp max_lat, max_lon,
min_lat, min_lon,
populate, mmsi

Query dynamic AIS data at a given
timestamp in the historical database.

/history/statics GET timestamp max_lat, max_lon,
min_lat, min_lon,
mmsi

Query static AIS data at a given
timestamp in the historical database.

/trajectories GET start, end max_lat, max_lon,
min_lat, min_lon,
populate, mmsi

Query the trajectory data of a ship
with the given area in the given time
period.

/dynamics PUT N/A N/A Report real-time dynamic AIS data
in the request body.

/statics PUT N/A N/A Report real-time static AIS data in
the request body.

2.3 Inter-Service Communication 19

Response 2.1: Example response from the /dynamics endpoint.

HTTP/1.1 200 OK
Content-Type: application/json
{

"found": 311,
"data": [

{
"mID": 1,
"uID": 338504346,
"tSt": 1610713800000,
"nSt": 8,
"SOG": 0.0,
"COG": 145.0,
"HDG": 145,
"ROT": 0,
"lat": 34.714544,
"lon": 135.482700

}, ...
]

}

Request 2.2: Example request to the /history endpoint.

GET https://{{baseUrl}}/api/v1/history/dynamics?
timestamp=1605870000000&populate=true
Accept: application/json

Response 2.2: Example response from the /history endpoint.

HTTP/1.1 200 OK
Content-Type: application/json
{

"found": 311,
"data": [

{
"mID": 3,
"uID": 235050802,
"tSt": 1605870000000,
"nSt": 5,
"SOG": 0,
"COG": 309,
"HDG": 40,
"ROT": 0,
"lat": 34.6495,
"lon": 135.40063333333333
"static": {

"mID": 5,
"uID": 235050802,
"tSt": 1589401554362,
"imo": 9384875,
"cSg": "MAQJ",

20 2 Designing Microservices

"vNm": "TOKYO TOWER",
"typ": 70,
"dim": [132, 40, 17, 10],
"dft": 9.3,
"dst": "JPOSK",
"ETA": "2020-11-20T07:00+09"

},
}, ...

]
}

Request 2.3: Example request to the /trajectories endpoint.

GET https://{{baseUrl}}/api/v1/trajectories?
mmsi=431300065&start=1607583396082&end=1609426799999
Accept: application/json

Response 2.3: Example response from the /trajectories endpoint.

HTTP/1.1 200 OK
Content-Type: application/json
{

"found": 38,
"data": [

{
"metadata": {

"from": {
"type": "Point",
"coordinates": [135.293166, 34.71653]

},
"to": {

"type": "Point",
"coordinates": [135.292805, 34.71719]

},
"len": 891,
"start": 1579150252772,
"end": 1579157989309,

},
"static": {

"uID": 431300065,
"imo": 8716710,
"cSg": "JJ3518",
"vNm": "FUKAEMARU",
"typ": 99,
"dim": [26, 24, 3, 7],
"dft": 3.5,
"dst": ">JP UKB XX",
"ETA": "2020-01-16T07:30+09"

},
"geometry": [

[34.716536, 135.293166],

2.4 Summary 21

[34.716475, 135.29315],
[34.716415, 135.29312],
[34.716366, 135.293095],
[34.716316, 135.29307],
[34.716265, 135.29304], ...

],
}, ...

]
}

2.4 Summary

Chapter 2 focused on a central aspect of this dissertation, the design of
microservices. Microservices architecture has been proposed as a sys-
tem architecture solution for larger projects, as traditional systems de-
signed with monolithic architecture have certain problems, such as lim-
ited flexibility and scalability. The chapter begins with a broad overview
of microservices architecture and its importance in shaping the design
of modern maritime information support systems. It then examines the
variousmicroservices that make up the system, outlining their individual
functions and purposes. The third section of the chapter focused on the
intricacies of inter-service communication, specifically the design of the
backend RESTful APIs that facilitate communication between microser-
vices. This chapter serves as the foundation for the rest of the develop-
ment and implementation of the system.

Developing Microservices 3
3.1 Handling Incoming AIS

Data 23
3.1.1 Different Types of AIS

Messages 23
3.1.2 Parsing AIS Messages . . 26
3.2 Preparing Trajectory Data 29
3.2.1 Extracting Trajectories

from AIS Data 29
3.2.2 Compressing Trajectory

Data 29
3.3 Integrating with

Databases 31
3.3.1 NoSQL and MongoDB . . 31
3.3.2 Database Structure 32
3.4 Summary 33

AIS is a critical data source for navigation systems, and this chapter pro-
vides an in-depth look at AIS as a data source for the system. It describes
the technique for parsing encapsulated raw AIS messages and outlines
algorithms for extracting continuous trajectories from discrete AIS dy-
namic data as well as compressing the extracted trajectories. Finally, a
NoSQL database is selected to store the corresponding AIS and trajectory
data.

3.1 Handling Incoming AIS Data

TheAIS Receivermicroservice is responsible for receivingmessages from
AIS devices. These messages are encapsulated, which means that they
must be parsed before the information they contain can be accessed.
Therefore, the AIS Receiver microservice is designed and developed to
parse these encapsulated messages and extract the relevant navigational
information from them.

3.1.1 Different Types of AIS Messages

The AIS system consists of 27 different message types, each with a spe-
cific function, as described in the Recommendation R-REC-M.1371: Tech-
nical characteristics for an automatic identification system using time di-
vision multiple access in the VHF maritime mobile frequency band and
shown in Table 3.1 [37]. The messages transmitted by AIS devices can
be categorized into three types: dynamic, static, and voyage-related. Dy-
namic messages provide real-time navigational information on a vessel’s
position, Speed Over Ground (SOG), and Course Over Ground (COG).
Static messages provide static navigational information such as vessel
name, call sign, and dimensions. Voyage-related messages contain navi-
gational information manually entered by the ship officer for each voy-
age, such as destination and Estimated Time of Arrival (ETA). To process
AIS data, the AIS Receiver microservice is designed to filter and parse
eight relevant AIS message types: Identifiers (IDs) 1 to 3, 5, 18, 19, 24,
and 27, depending on the system design.

24 3 Developing Microservices

Table 3.1: AIS messages.

ID Name Description

1 Position report Scheduled position report (Class-A shipborne mobile equipment)
2 Position report Assigned scheduled position report (Class-A shipborne mobile

equipment)
3 Position report Special position report, response to interrogation (Class-A ship-

borne mobile equipment)
4 Base station report Position, UTC, date and current slot number of base station
5 Static and voyage related data Scheduled static and voyage related vessel data report; (Class-A

shipborne mobile equipment)
6 Binary addressed message Binary data for addressed communication
7 Binary acknowledgement Acknowledgement of received addressed binary data
8 Binary broadcast message Binary data for broadcast communication
9 Standard SAR aircraft position

report
Position report for airborne stations involved in SAR operations,
only

10 UTC/date inquiry Request UTC and date
11 UTC/date response Current UTC and date if available
12 Addressed safety related mes-

sage
Safety related data for addressed communication

13 Safety related acknowledge-
ment

Acknowledgement of received addressed safety related message

14 Safety related broadcast mes-
sage

Safety related data for broadcast communication

15 Interrogation Request for a specific message type (can result in multiple responses
from one or several stations)

16 Assignment mode command Assignment of a specific report behaviour by competent authority
using a base station

17 DGNSS broadcast binary mes-
sage

DGNSS corrections provided by a base station

18 Standard Class-B equipment
position report

Position report & standard position report for Class-B shipbornemo-
bile equipment to be used instead of Messages 1 to 3

19 Extended Class-B equipment
position report

No longer required; extended position report for Class-B shipborne
mobile equipment; contains additional static information

20 Data link management mes-
sage

Reserve slots for base station(s)

21 Aids-to-navigation report Position and status report for aids-to-navigation
22 Channel management Management of channels and transceiver modes by a base station
23 Group assignment command Assignment of a specific report behaviour by competent authority

using a base station to a specific group of mobiles
24 Static data report Additional data assigned to an MMSI
25 Single slot binary message Short unscheduled binary data transmission (broadcast or ad-

dressed)
26 Multiple slot binary message

with communications state
Scheduled binary data transmission (broadcast or addressed)

27 Position report for long-range
applications

Class-A and Class-B SO shipborne mobile equipment outside base
station coverage

3.1 Handling Incoming AIS Data 25

Figure 3.1: AIS message structure.

Different AIS messages contain different information, as shown in Figure
3.1, but follow the exact encoding specification, namely NMEA 0183 data
specification, created andmaintained by the National Marine Electronics
Association (NMEA), formatted as Message 3.1.

Message 3.1: AIS message format.

!AABBB,c,d,e,F,g-g,h*II<CR><LF>

Table 3.2 shows the reserved characters and their uses in the NMEA 0183
specification, while Table 3.3 explains the meanings of the remaining
parts, represented by the letters A through I.

As an example of a typical AIS message, consider the partial message
shown in Message 3.2, sent from a shipborne AIS device and encapsu-
lated according to the NMEA 0183 specification:

Message 3.2: AIS message example.

!AIVDM,1,1,,A,152lbV`000ad<<`CoB=UbTRJ0Dg:,0*7C

ASCII Hex Use

<LF> 0x0a Line feed, end delimiter
<CR> 0x0d Carriage return
! 0x21 Start of encapsulation sentence delimiter
$ 0x24 Start delimiter
* 0x2a Checksum delimiter
, 0x2c Field delimiter
\ 0x5c TAG block delimiter
^ 0x5e Code delimiter for HEX representation of

ISO/IEC 8859-1 (ASCII) characters
~ 0x7e Reserved for further use

Table 3.2: Reserved characters used in
NMEA 0183 format messages.

Part Meaning

AA Talker identifier, AI for AIS
BBB Sentence formatter, VDO for the ownship, and VDM

for other vessels
c Total number of sentences of the message
d Sentence sequential number
e Sequential message ID
F AIS channel
g-g Encapsulated data
h Data end
II Bitwise XOR checksum result of characters

between $/! and * (not inclusive)

Table 3.3: Meaning of each part in Mes-
sage 3.2.

26 3 Developing Microservices

3.1.2 Parsing AIS Messages

The received AIS messages are encapsulated, and must be parsed before
being written to the database and used by other microservices. Parsing
the messages involves reducing the American Standard Code for Infor-
mation Interchange (ASCII) characters one by one to 6-bit binary code,
according to the encoding rules in Recommendation R-REC-M.1371, and
then grouping and converting them to decimal numbers to obtain the spe-
cific data values. The g-g field in Message 3.1 encodes dynamic, static,
and voyage-related information, and needs to be parsed first, depending
on the message type. In case of messages consisting of multiple sen-
tences, such as messages of type 5, it is necessary to wait until all the
sentences are received and then perform the parsing work by concate-
nating the g-g parts according to the sentence sequence number (part d
in Message 3.1).

Figure 3.2 illustrates how dynamic AIS information in messages with IDs
1 to 3 is decapsulated from the g-g part, using Message 3.2 as an example.
The g-g part consists of 28 ASCII characters, reduced to 168 bits and di-
vided into 16 sections according to the specification. The groups of bits
are shown along with the information they represent within the mes-
sage. The method of grouping the bits varies for different message IDs
and a general flow of the decoding is given in Algorithm 3.1, which also
includes a checksum algorithm (Algorithm 3.2) to ensure the integrity of
the received messages and the accuracy of the resulting data.

3.1 Handling Incoming AIS Data 27

Algorithm 3.1: Parsing AIS Message
Name :ParseAIS
Param :AIS message 𝑚𝑠𝑔
Param : (optional) Previously stored partial bit message 𝑝𝑟𝑒𝑣𝐵𝑖𝑡𝑀𝑠𝑔
Return :Parsed AIS data 𝑑𝑜𝑐
Return :Any error 𝑒𝑟 𝑟 during parsing process

1 𝑑𝑜𝑐, 𝑒𝑟 𝑟 ← 𝜙;
2 𝑟𝑒𝑐𝑣𝑇 𝑖𝑚𝑒 ← current time;
3 𝑟𝑒𝑐𝑣𝑇 𝑖𝑚𝑒 → 𝑑𝑜𝑐;
4 if XORCheck (𝑚𝑠𝑔) then
5 𝑎𝑠𝑐𝑖𝑖𝑆𝑡𝑟 ← extract g-g part from 𝑚𝑠𝑔;
6 𝑏𝑖𝑡𝑀𝑠𝑔 ← 𝜙;
7 foreach 𝑐ℎ𝑎𝑟 ∈ 𝑎𝑠𝑐𝑖𝑖𝑆𝑡𝑟 do
8 convert 𝑐ℎ𝑎𝑟 to 6-bit binary number → 𝑏𝑖𝑡𝑀𝑠𝑔;
9 get sentence number 𝑠𝑁 𝑜 and total sentences from 𝑚𝑠𝑔;
10 if 𝑠𝑁 𝑜 = 1 then
11 parse message ID 𝑚𝐼𝐷 from 𝑏𝑖𝑡𝑀𝑠𝑔;
12 𝑚𝐼𝐷 → 𝑑𝑜𝑐;
13 if 𝑚𝐼𝐷 ∈ {1, 2, 3, 18, 19, 24} then
14 parse remaining items according to specification in

Recommendation R-REC-M.1371 → 𝑑𝑜𝑐;
15 else if 𝑚𝐼𝐷 = 5 then
16 store 𝑏𝑖𝑡𝑀𝑠𝑔 for further parsing process, passing as

𝑝𝑟𝑒𝑣𝐵𝑖𝑡𝑀𝑠𝑔;
17 else
18 𝑒𝑟 𝑟 ← Unsupported message type

19 else if 𝑠𝑁 𝑜 = 2 then
20 if 𝑝𝑟𝑒𝑣𝐵𝑖𝑡𝑀𝑠𝑔 ≢ 𝜙 then
21 𝑏𝑖𝑡𝑀𝑠𝑔 → 𝑝𝑟𝑒𝑣𝐵𝑖𝑡𝑀𝑠𝑔;
22 parse remaining items according to specification in

Recommendation R-REC-M.1371 → 𝑑𝑜𝑐;
23 else
24 𝑒𝑟 𝑟 ← Missing prefix message

25 else
26 𝑒𝑟 𝑟 ← Message integrity check failed

Algorithm 3.2: Checksum
Name :XORCheck
Param :AIS message 𝑚𝑠𝑔
Return :Check result 𝑝𝑎𝑠𝑠𝑒𝑑

1 𝑝𝑎𝑠𝑠𝑒𝑑 ← False;
2 𝑠𝑢𝑚 ← 0;
3 𝑠𝑡𝑟 , 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 ← Extracts the string 𝑠𝑡𝑟 to be verified and the

expected result 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 from 𝑚𝑠𝑔;
4 foreach 𝑐ℎ𝑎𝑟 ∈ 𝑠𝑡𝑟 do
5 𝑜𝑟𝑑 ← get ASCII code of 𝑐ℎ𝑎𝑟 ;
6 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 ⊕ 𝑜𝑟𝑑 ;
7 𝑠𝑢𝑚 ← Convert 𝑠𝑢𝑚 to hexadecimal;
8 if 𝑠𝑢𝑚 = 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 then
9 𝑝𝑎𝑠𝑠𝑒𝑑 ← True;

28 3 Developing Microservices

Figure 3.2: AIS message parse.

3.2 Preparing Trajectory Data 29

3.2 Preparing Trajectory Data

AIS data are discrete, i.e., the dynamic information is represented as dis-
crete points when plotted on a Two-Dimensional (2D) plane. To obtain
the ship’s trajectory data, additional processing of the AIS data is neces-
sary.

3.2.1 Extracting Trajectories from AIS Data

The first step in preparing the trajectory data is to extract the continuous
trajectories from the discrete dynamic AIS data. This involves segment-
ing the data according to certain rules to determine which data points
belong to the same trajectory. Since AIS data is received and stored in a
time series, the segmentation process is based on time intervals.

Algorithm 3.3 provides the steps for simultaneous trajectory recording
when dynamic AIS information is received. This algorithm can also be
applied to extract trajectories from historical AIS data.

Algorithm 3.3: Trajectory Recording / Extraction
Name :TrajectoryRecord
Param :Received AIS dynamic data 𝑑𝑎𝑡𝑎
Param : (optional) Trajectory data being processed 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦

1 if 𝑑𝑎𝑡𝑎 is valid then
2 if 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ≡ 𝜙 then
3 𝑑𝑎𝑡𝑎 → 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ;
4 𝑛𝑒𝑥𝑡𝐷𝑎𝑡𝑎 ← wait for / get next dynamic data;
5 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ← TrajectoryRecord (𝑛𝑒𝑥𝑡𝐷𝑎𝑡𝑎, 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦);
6 else
7 𝑙𝑎𝑠𝑡𝑇 𝑖𝑚𝑒 ← receive time of the last data in 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ;
8 𝑡ℎ𝑖𝑠𝑇 𝑖𝑚𝑒 ← receive time of 𝑑𝑎𝑡𝑎;
9 if 𝑡ℎ𝑖𝑠𝑇 𝑖𝑚𝑒 − 𝑙𝑎𝑠𝑡𝑇 𝑖𝑚𝑒 > threshold then
10 Add metadata → 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ;
11 Do statistics → 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ;
12 if 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 is valid then
13 Save 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ;
14 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ← TrajectoryRecord (𝑑𝑎𝑡𝑎, 𝜙);
15 else
16 𝑑𝑎𝑡𝑎 → 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ;
17 𝑛𝑒𝑥𝑡𝐷𝑎𝑡𝑎 ← wait for / get next dynamic data;
18 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ← TrajectoryRecord (𝑛𝑒𝑥𝑡𝐷𝑎𝑡𝑎, 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦);
19 else
20 𝑛𝑒𝑥𝑡𝐷𝑎𝑡𝑎 ← wait for / get next dynamic data;
21 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ← TrajectoryRecord (𝑛𝑒𝑥𝑡𝐷𝑎𝑡𝑎, 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦);

3.2.2 Compressing Trajectory Data

AIS messages can be broadcast as often as once every 2 seconds, which
can result in a considerable amount of data when tracking a vessel. The
transmission of large amounts of data can cause problems related to
transmission rate, stability, and data integrity. As a result, it is common

30 3 Developing Microservices

practice to compress trajectory data to address these issues. Compres-
sion can be achieved using appropriate algorithms that still ensure the
accuracy of the data.

Algorithms 3.4 and 3.5 provide a trajectory compression algorithm based
on the Ramer-Douglas-Peucker algorithm, which uses the divide-and-
conquer approach [38, 39]. The Ramer-Douglas-Peucker algorithm sim-
plifies a polyline by recursively eliminating intermediate points that can
be accurately approximated by the remaining points.

Algorithm 3.4: Trajectory Compression
Name :TrajectoryCompression
Param :Trajectory data 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦
Param :Tolerance 𝜖 from a compressed point to the trajectory line
Return :Compressed trajectory 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

1 𝑖𝑛𝑑𝑖𝑐𝑒𝑠, 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 ← 𝜙;
2 0 → 𝑖𝑛𝑑𝑖𝑐𝑒𝑠;
3 CompressionStep (𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 , 0, |𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 |, 𝜖, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠);
4 |𝑡 𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 | − 1 → 𝑖𝑛𝑑𝑖𝑐𝑒𝑠;
5 foreach 𝑑𝑎𝑡𝑎 ∈ 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 do
6 if index of 𝑑𝑎𝑡𝑎 ∈ 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 then
7 𝑑𝑎𝑡𝑎 → 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

Algorithm 3.5: Trajectory Compression Step
Name :CompressionStep
Param :Trajectory data 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦
Param : Index of the first point 𝑓 𝑖𝑟𝑠𝑡 to be compressed
Param : Index of the last point 𝑙𝑎𝑠𝑡 to be compressed
Param :Tolerance 𝜖 from a compressed point to the trajectory line
Param : Indices of the compressed trajectory points 𝑖𝑛𝑑𝑖𝑐𝑒𝑠

1 𝑖𝑛𝑑𝑒𝑥 ← 𝜙;
2 𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝜖;
3 foreach idx, 𝑓 𝑖𝑟𝑠𝑡 < 𝑖𝑑𝑥 < 𝑙𝑎𝑠𝑡 do
4 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← distance from the trajectory data point with index 𝑖𝑑𝑥

to the line segment from the point with index 𝑓 𝑖𝑟𝑠𝑡 to the point
with index 𝑙𝑎𝑠𝑡 ;

5 if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 then
6 𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑑𝑥 ;
7 𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒;
8 if 𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝜖 then
9 if 𝑖𝑛𝑑𝑒𝑥 − 𝑓 𝑖𝑟𝑠𝑡 > 1 then
10 CompressionStep (𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 , 𝑓 𝑖𝑟 𝑠𝑡 , 𝑖𝑛𝑑𝑒𝑥, 𝜖, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠);
11 𝑖𝑛𝑑𝑒𝑥 → 𝑖𝑛𝑑𝑖𝑐𝑒𝑠;
12 if 𝑙𝑎𝑠𝑡 − 𝑖𝑛𝑑𝑒𝑥 > 1 then
13 CompressionStep (𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 , 𝑖𝑛𝑑𝑒𝑥, 𝑙𝑎𝑠𝑡 , 𝜖, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠);

3.3 Integrating with Databases 31

3.3 Integrating with Databases

Databases can be categorized into different types, such as relational databases,
NoSQL databases, etc., eachwith its own strengths andweaknesses. Rela-
tional databases use a table structure to store data and have been around
for a long time, making them a mature technology. On the other hand,
NoSQL databases support more flexible data structures, making them
ideal for unstructured and complex data. In this dissertation, MongoDB,
a popular NoSQL database, is chosen as the database solution due to its
ability to handle large and complex datasets.

3.3.1 NoSQL and MongoDB

Traditional relational databases are designed to manage structured and
relatively static data, with data sets stored in predefined tables, as shown
in Figure 3.3. While suitable for many complex applications, relational
databases struggle with unstructured data and are difficult to scale as the
size and complexity of the data increases. In addition, the mismatch be-
tween the relational model and the data structure in memory, known as
impedancemismatch, can also be a bottleneck for relational databases [40].
These challenges gave rise to NoSQL databases, which support more flex-
ible data structures and can handle unstructured and complex data more
effectively. MongoDB is a widely-used NoSQL database that can over-
come many of the challenges of relational databases and is well suited to
the needs of modern maritime information support systems.

Figure 3.3: Relational database schema.

The original definition of NoSQL referred to database systems that could
store unstructured data based on a multidimensional relational model,
making it a better choice than traditional relational databases for man-
aging rapidly growing and almost unlimited amounts of ship naviga-
tional data, such as AIS data. NoSQL databases can be classified into
different types based on their characteristics and application scenarios,
including key-value, graph, column, and document-oriented databases.

32 3 Developing Microservices

This dissertation selects the document-oriented MongoDB, which has
several advantages over relational databases, including a flexible struc-
ture, high scalability, and the ability to handle high concurrency and
large volumes of data. MongoDB uses an expressive query language that
efficiently handles complex queries, despite not using Structured Query
Language (SQL) like relational databases. Figure 3.4 illustrates the data
storage structure of MongoDB.

Figure 3.4: MongoDB database schema.

3.3.2 Database Structure

The database structure is shown in Figure 3.5 and consists of three lay-
ers: the database layer, the collection layer, and the document layer,
where each document contains several key-value pairs. To store data
from AIS devices, real-time data are collected and stored in the real-time
database with a predefined lifetime, or TTL, after which it is deleted
by the database management system. For microservices to use histori-
cal data, real-time data is synchronized and backed up to the historical
database, which retains the data indefinitely.

Figure 3.5: Database design.

The specific description of the databases is as follows:

Real-Time Database The real-time database stores the real-time data in
collections. The collections in the real-time database are designed
with a TTL feature that allows the database management system
to automatically delete data that exceeds the expiration time. This
ensures that the database contains only the most current and rele-
vant data.

Historical Database The historical database stores data that has been
synchronized from the real-time database. It can be implemented
in two ways: as a live incremental backup of the live database that
contains all the information received, or as an incomplete backup
that is synchronized at intervals to reduce the size of the database.

To store dynamic and static data separately, both the real-time and his-
torical databases contain a collection of dynamic data and a collection of
static data. This approach is taken due to the different characteristics of
how often messages are sent, what information they contain, and how
often they are used. Additionally, a special trajectory collection is used
to store the trajectory data extracted in Section 3.2.

Dynamic Information Collection The dynamic data collection is respon-
sible for storing parsed ship dynamic information, particularly from
messages with IDs 1 to 3, 18, and 19.

Static Information Collection The static data collection stores parsed
ship static information, particularly from messages with IDs 5, 24,
and 19.

Trajectory Collection The trajectory collection, on the other hand, is
used to store the extracted historical trajectories of the ships. The
trajectory extraction process can be either online or offline, de-
pending on the needs and the chosen algorithm.

3.4 Summary 33

3.4 Summary

Chapter 3 focused on the critical role of AIS data, the representative real-
time navigational information, in modern maritime information support
systems, and the development of microservices to manage this data ef-
fectively. The chapter covers various aspects of AIS data handling, in-
cluding the identification of different types of AIS messages, the parsing
process, and the algorithms for extracting and compressing trajectory
data. The chapter also examines the integration of the system with Mon-
goDB, a NoSQL database solution, highlighting its strengths in terms of
flexibility and scalability. Overall, this chapter provides a comprehensive
understanding of the techniques and tools required to efficiently handle
AIS data in modern maritime information support systems.

Leveraging Microservices 4
4.1 BlueNavi: Providing 2D

Visualization 35
4.1.1 Background and Scenarios35
4.1.2 Tooling and Framework . 36
4.1.3 Design and Implementa-

tion 38
4.2 RedNavi: Building 3D

Scenes 40
4.2.1 Background and Scenarios40
4.2.2 Tooling and Frameworks 40
4.2.3 Design and Implementa-

tion 41
4.3 GreenNavi: Tracing

Historical Data 43
4.3.1 Background and Scenarios43
4.3.2 Tooling and Framework . 43
4.3.3 Design and Implementa-

tion 44
4.4 Summary 47

In the previous chapters, significant progress was made in designing and
implementing the necessary APIs to retrieve data from the backend sys-
tem. However, the development process is not yet complete, as this chap-
ter focuses on creating the client side of the applications. To achieve
this, the unique data requirements of different users need to be consid-
ered. Three different web applications will be designed and developed
to meet these needs. The goal is to create intuitive applications that can
effectively utilize maritime information, while also providing a seamless
experience for the end user, ensuring that users can quickly and easily
access the information they need. This requires careful consideration
of various factors, such as the application’s intended use cases and data
processing requirements.

4.1 BlueNavi: Providing 2D Visualization

The integration of AIS data into the Electronic Chart Display and Infor-
mation System (ECDIS) allows for the real-time display of surrounding
vessel identification and navigational information on electronic charts,
thus supporting safe navigation. However, the lack of a mandate for
smaller vessels to carry AIS, and the high cost of ECDIS installation,
limit access to this critical information. To overcome these challenges,
BlueNavi, a frontend application designed to provide real-time AIS infor-
mation over IP communications, has been developed. By offering a cost-
effective solution, BlueNavi makes AIS information available to vessels
that may not have access to ECDIS, thereby increasing the availability of
this important data.

4.1.1 Background and Scenarios

Despite the SOLAS regulation requires all ships of 300 Gross Tonnage
(GT) or more engaged in international voyages, ships of 500 GT or more
not engaged in international voyages, and all passenger ships regardless
of size to carry AIS since 2008 [21], many smaller vessels, such as recre-
ational craft, fishing vessels, and vessels between 300 and 500 GT that are
not engaged in international voyages, are still not covered by the regula-
tion [18, 41]. The smaller size of these vessels makes it difficult for other
ships to detect and identify them using passive systems such as radar,
and they cannot communicate with other ships using AIS.

A modern maritime information support system with microservices ar-
chitecture is designed and developed to address this problem. The system
can be deployed on a range of devices, including regular computers and
even single-board computers such as the Raspberry Pi1

1: A credit-card-sized single-board com-
puter that is designed to promote com-
puter science education and enable Do-
It-Yourself (DIY) electronics projects.
The specific discussion of system deploy-
ment is presented in Chapter 7.

. The system uses
Class-B AIS devices as the primary data source, which are more suitable
for small vessels due to their lower cost and compliance with interna-
tional standards. However, Class-B AIS can only receive and transmit

36 4 Leveraging Microservices

encapsulated AIS messages but has no display capabilities22: In fact, even the Class-A AIS device
can only provide very limited display
through its Minimum Keyboard Display
(MKD) unit and not enough for actual
ship handling and collision avoidance.

. Therefore, a
user interface for providing 2D visualization is essential.

While ECDIS are commonly used in the industry to display AIS data,
they can be too expensive and bulky for smaller vessels. Moreover, com-
mercial systems are often highly closed, limiting the ability to customize
features. To make AIS information more accessible, a modern frontend
application, named BlueNavi, is designed and developed to provide a tan-
gible visual form of the received navigational data. BlueNavi is based on
web technologies and can either be accessed via web browsers or run
natively as a desktop application.

4.1.2 Tooling and Framework

Since BlueNavi uses mainly web technologies, this section will first dis-
cuss what a web application is and the reasons for choosing web tech-
nologies, followed by the specific choice of development tools and frame-
works.

Web Applications

A web application is a computer program that uses a web browser to
render interfaces and interact with users. As shown in Figure 4.1, web
applications are usually composed of server-side (backend) and client-
side (frontend).

Figure 4.1: Web application schematic.

The backend is mainly responsible for the core data processing and busi-
ness logic, while the frontend is mainly responsible for displaying data
and interacting with users. As the name implies, the entire web applica-
tion is based on web technologies, and the frontend is often delivered to
users over the IP communication. Specifically, when requesting a web
application, the user opens a web browser and sends a request to the
server, which receives the request and sends the application’s structure,
usually handled by Hyper Text Markup Language (HTML) files; styles
and layout, usually handled by Cascading Style Sheets (CSS) files; and ex-
ecution logic and behavior, usually handled by JavaScript (JS) files; over
the network to the client. The browser can then render the frontend
and interact with the user. In the interaction process, if data requests or
heavy data processing tasks are encountered, several more such request-
response communications can be performed between the frontend and
backends. In addition, unlike simple websites, web applications are more
interactive (i.e., functional).

The opposite of web applications are native applications. Unlike native
applications, web applications require no installation and only a modern

4.1 BlueNavi: Providing 2D Visualization 37

browser (e.g., Safari, Chrome, etc.). Since modern browsers are a must
for almost all device platforms (desktop, laptop, smartphone, tablet, etc.)
and operating systems (Windows, macOS, iOS, Android, etc.) today, web
applications have inherent cross-platform support compared to native
applications.

Desktop Applications using Web Technologies

Although web applications have the advantage of being accessible from
any device with a browser and a network connection and do not need
to be manually installed or updated, they have the drawbacks of limited
offline functionality (web applications rely on a constant network con-
nection to function), accessibility of native features (web applications
cannot directly access native features of the operating system, such as
the file system), compatibility (some browser compatibility issues may
occur since it is not possible to predict the type and version of browser
used by the user), etc. Most of these problems stem from the fact that
users have to use the web application through a browser, which also af-
fects the user experience.

In order to solve as many of these problems as possible, while retain-
ing the benefits of web applications, new frameworks have been created,
such as Electron.js. Using web technologies such as JavaScript, HTML,
and CSS, people can create cross-platform desktop applications using the
Electron.js framework. It is built on top of Node.js, which enables the
server-side use of JavaScript, and Chromium, the open-source variant
of Google Chrome, which serves as the rendering engine for the appli-
cation’s UI. This means that programmers can easily incorporate native
features while still using the same codebase to produce applications for
Windows, macOS, and Linux. However, because it is a desktop applica-
tion, it must still be manually installed and updated by users and cannot
be installed on operating systems such as iOS and Android.

Considering the actual usage scenario of BlueNavi (need to support as
many platforms as possible to maximize compatibility with users’ exist-
ing devices, but also to take into account the offline usage scenario and
improve the user experience as much as possible, etc.), and the fact that
the development of the Electron.js desktop application and the web appli-
cation can basically share the same codebase, both the web and desktop
versions of BlueNavi are developed.

Angular Framework

As the saying goes, there is no need to reinvent the wheel; most of the time,
people do not have to build their applications from scratch.

The Angular framework is a standardized set of concepts, practices, and
criteria for dealing with a common type of problem that can be used
as a reference to help developers approach and solve new problems of
a similar nature [42]. It provides a standardized set of design patterns,
project structures, and code styles that make code more readable and
maintainable.

38 4 Leveraging Microservices

In frontend development, Angular, React, and Vue are the three most
popular frameworks. While there is no best framework among them, An-
gular is a full-fledged Model-View-Controller (MVC) styled framework
that provides clear guidance on how the application should be structured.
It is maintained by Google, is open source, and supports bi-directional
data flow while providing a real Document Object Model (DOM).

The Angular architecture includes models, components, templates, meta-
data, services, etc., and their relationship is shown in Figure 4.2. Angu-
lar’s comprehensive documentation provides an in-depth explanation of
the framework’s concepts and features, making it easy for developers to
get started and leverage its capabilities.

Figure 4.2: Angular framework [43].

4.1.3 Design and Implementation

The BlueNavi application has a user interface consisting of a menu bar
and a map interface, as shown in Figure 4.3. The menu bar provides
access to functions of the application, which are displayed in pop-up
windows. The map interface is the main component for viewing and
interacting with data.

The map interface includes layers for the map, chart, and fetched AIS
data. The bottom layer consists of map data from third-party APIs. Users
can select different types of maps, such as normal, topographic, or satel-
lite, provided by various organizations. For example, users can overlay
the visualized AIS data on Google Maps. Third-party map data are gener-
ally free to use, but access to themmay require an internet connection.

The BlueNavi application also supports the display of simple nautical
charts in GeoJSON format if the user does not have an internet connec-
tion33: While IP communication is com-

monly associated with the internet, it
can also take place over a LAN.

or if the user is not satisfied with the map data provided by third-
party organizations4

4: Because these map data are often not
intended for nautical use.

. Figure 4.3 shows that the system displays the sim-
ple nautical chart data provided by the Japan Coast Guard (JCG). This
chart data accurately shows navigational information, such as coastlines,
breakwaters, andwaterways, that are not available on land-orientedmaps.
The chart data is displayed on top of the map layer.

The third layer of the map interface displays the visualized AIS data, and
the fourth layer is used to display other information. Each marker is
bound to a click event. When the user clicks on a marker, additional
information is displayed.

4.1 BlueNavi: Providing 2D Visualization 39

As discussed in Section 4.1.2, web technologies are not limited to develop-
ing web applications but can also be used to create desktop applications.
Figure 4.4 shows a desktop version of the BlueNavi application, which
uses almost the same codebase as the web version.

Figure 4.3: BlueNavi UI (web application).

Figure 4.4: BlueNavi UI (desktop application).

40 4 Leveraging Microservices

4.2 RedNavi: Building 3D Scenes

In Section 4.1, an application was developed using web technologies to
display One-Dimensional (1D) navigational information on a map, trans-
forming it into more visually intuitive 2D information. This section goes
one step further and explores other visualization methods for AIS infor-
mation.

4.2.1 Background and Scenarios

In the BlueNavi system, navigational information is presented in a 2D
format. However, novice mariners may find it challenging to correlate
these 2D displays with the complex real-world 3D environment without
extensive on-the-job experience [44]. For this reason, a 3D system can
serve as a helpful bridge to expedite the development of these skills for
less experienced mariners.

Compared to 2D graphics, 3D models offer several advantages: they are
more visually efficient, easier to interpret, can provide more detailed in-
formation, and have the potential to increase users’ awareness of their
surroundings and understanding of the objects they represent [45]. Con-
sequently, 3D visualization solutions have been extensively researched
in different fields as diverse as the humanities and arts [46], public health [47],
and MET [48–50]. Drawing inspiration from these studies and taking
into account the unique features of AIS data, RedNavi has been developed
as a web application that generates 3D scenes on the computer screen.
These scenes are based on information about the own ship and AIS data
from other ships, and provide a representation of both the environment
and traffic.

Mariners rely on 2D AIS information during navigation, and correlat-
ing this information with real-world scenarios is a skill that typically
takes time and experience. The RedNavi web application generates 3D
representations of the environment and vessel traffic based on AIS data,
allowing novice mariners and students to develop this skill during train-
ing. Moreover, computer-generated 3D scenes remain unaffected by ad-
verse weather conditions or low visibility, providing valuable assistance
to lookouts and enhancing situational awareness.

4.2.2 Tooling and Frameworks

RedNavi and BlueNavi share a common approach to data formatting and
utilize similar web technologies. These similarities between the two ap-
plications enable RedNavi to inherit a number of features from BlueNavi.
As discussed in Section 4.1.2, the use of a framework can significantly
speed up the development process, which is why the same framework,
Angular, is chosen for RedNavi as for BlueNavi.

The Three.js JavaScript library is utilized for rendering and presenting
the 3D models. It is a well-established and widely used library for cre-
ating 3D graphics using web technologies. Three.js is built on top of
the Web Graphics Library (WebGL) and provides a user-friendly set of
APIs that abstract away the complexities of working with WebGL. With

4.2 RedNavi: Building 3D Scenes 41

Three.js, developers can easily create and display 3D graphics on web
pages, enabling them to build rich and interactive experiences for their
users.

4.2.3 Design and Implementation

The user interface of RedNavi is very similar to that of BlueNavi, featur-
ing a menu bar, but with a 3D interface instead of a 2D map, as shown
in Figure 4.5. The Three.js JavaScript library (i.e., the WebGL engine)
handles the rendering of the entire 3D interface.

Figure 4.5: RedNavi UI: first-person view.

RedNavi’s interaction with the backend follows the same logic as Blue-
Navi. Therefore, the development of RedNavi involved the reuse of Blu-
eNavi’s models and services5 5: Here, the term service refers to the

concept within the Angular framework,
and not to a microservice in the backend.

. However, the frontend of RedNavi has
its unique processing flow once the application fetches data from the
server. The system operation relationship diagram is depicted in Figure
4.6. The application distinguishes the own ship from other ships based
on the Maritime Mobile Service Identity (MMSI) before rendering the
terrain, updating the sun’s azimuth and elevation, and other geographic
location-dependent properties. The system then renders the ship at the
origin, calculates the relative positions and headings of other ships based
on the AIS information, and updates their headings accordingly.

After all the processing is complete, the user can interact with a 3D scene
of the current sea surface. The scene view is not fixed, and the user can
modify it using a mouse, keyboard, touch screens, etc. For example, it’s
possible to change the viewpoint of the scene, as shown in Figure 4.7.

42 4 Leveraging Microservices

Figure 4.6: RedNavi workflow.

Figure 4.7: RedNavi UI: third-person view.

4.3 GreenNavi: Tracing Historical Data 43

4.3 GreenNavi: Tracing Historical Data

Although AIS was originally designed to help ships avoid collisions at
sea, the users of AIS are now far from being limited to mariners. In this
section, another application is developed using web technologies to meet
the needs of land users for AIS data.

4.3.1 Background and Scenarios

The IMO lists threemain objectives of AIS: improving the preservation of
the maritime environment, ensuring safety of life at sea, and enhancing
navigation efficiency [18]. In addition to identifying ships and tracking
targets, AIS supports SAR operations, reduces the need for verbal ship
reporting, and enhances situational awareness. While these goals pri-
marily benefit Officer of the Watch (OOW) onboard ships, the use of AIS
data extends far beyond the maritime industry. Maritime pilots, ship-
ping companies, port and traffic management departments, and others
rely on AIS data for a variety of purposes, such as tracking ships, man-
aging fleets, evaluating new projects, and performing statistical analysis
of waters. Thus, AIS data has become an essential tool in all aspects of
the maritime industry.

The various usage scenarios for AIS data, as described above, show that
unlike ship collision avoidance, which requires real-time data with a high
degree of timeliness, these scenarios typically rely on historical AIS data
from the ship or water. Historical data is particularly useful for statistical
analysis and other tasks.

With this in mind, the value of historical AIS data was thoroughly con-
sidered during the initial design of the entire system. A historical data
database was designed to store obsolete data received, rather than dis-
carding it directly. In addition, microservices for statistics were designed
to analyze and process the historical data, and specific APIs were created
to obtain these traces or statistics. To fully utilize the AIS historical data,
the third web application, named GreenNavi, was designed and devel-
oped in this section.

4.3.2 Tooling and Framework

Although GreenNavi’s frontend can use the Angular framework like Blu-
eNavi and RedNavi, this dissertation opted to use the React library for
frontend development in this section. React has gained widespread pop-
ularity and has become a go-to choice for web developers. Compared
to Angular, React has some key differences and features that are worth
noting.

Library In this chapter, the term framework is used to describe Angular,
while library is used to describe React. This is because Angular
comes with many functional libraries for different tasks, making
it possible to do almost anything with Angular alone. React, on
the other hand, focuses solely on building reusable UI components
and requires other libraries, such as Redux for state management
and React Router for route management, to build a full-featured

44 4 Leveraging Microservices

application. This gives React more flexibility, but it can also make
it more dependent on other libraries.

One-Way Data Binding React uses one-way data binding, meaning that
changes to UI components do not affect changes to the state. In
contrast, Angular uses two-way state binding, where the same data
is updated across both the HTML element and the model variable,
allowing changes to be made to the component’s state as well as
being displayed. Figure 4.8 illustrates the difference between one-
way and two-way data binding.

Virtual DOM React uses a virtual DOM that generates a virtual repre-
sentation of the entire user interface whenever changes are made.
This virtual DOM is then compared to the previous virtual DOM
to identify the differences, which are then rendered onto the real
DOM, as shown in Figure 4.9. This approach significantly improves
performance. In contrast, Angular uses incremental DOM, which
converts each component into a set of instructions to build and
modify the DOM tree, as shown in Figure 4.10. This reduces mem-
ory usage but is not as efficient as the virtual DOM.

Other differences between React and Angular include the languages used
— Angular uses traditional HTML and JavaScript, while React uses JSX
syntactic sugar66: JSX is a syntax extension for

JavaScript that allows HTML-like
elements and components to be written
in JavaScript code.

. However, these differences do not determine the best
frontend solution, and React was chosen in this chapter to explore a dif-
ferent development approach.

Figure 4.8: Data binding.

4.3.3 Design and Implementation

This subsection focuses on using React to develop the frontend of Green-
Navi, which shares a similar layout with BlueNavi and RedNavi, with
some UI design changes. As shown in Figure 4.11, the data displayed
in GreenNavi is sourced from the backend API that retrieves historical
data from the historical database. In addition to using the settings pro-
vided in the menu, GreenNavi also allows users to query historical data
directly from the URL. For example, to view sea conditions at 20:00 on
November 20, 2020, Japan Standard Time (JST), a user can either open
the settings interface to set the target date and time or send a request as
shown in Request 4.1 by typing the URL directly into the address bar of
the browser.

4.3 GreenNavi: Tracing Historical Data 45

Figure 4.9: Virtual DOM.

Figure 4.10: Incremental DOM.

Figure 4.11: GreenNavi UI: historical scene.

46 4 Leveraging Microservices

Request 4.1: Example request to the /history endpoint.

GET https://{{baseUrl}}/history/at/2020/11/20/2000
Accept: */*

In this case, since the HTTP request sent by the user from the browser
is aimed at getting the entire page of the display, not only the data them-
selves, the request here is different from the requests in Chapter 2. This
feature is called routing and requires React to work with other libraries,
e.g., React Router. The response returned by the server is shown in Re-
sponse 4.1.

Response 4.1: Example response to the /history endpoint.

HTTP/1.1 200 OK
Content-Type: text/html
<!DOCTYPE html>
<html>

<head>
<meta charSet="utf-8" />
<meta name="viewport" content="width=device-width" />
<title> GreenNavi </title>
...

</head>
<body>

...
</body>

</html>

In addition to visualizing sea conditions, GreenNavi has the capability
to display other types of historical or statistics data by utilizing designed
APIs. For instance, Figure 4.12 shows the trajectories of the ship YAHATA-
MARU throughout the year 2020. The use of historical navigation data
can serve a critical function in ship management or port administration,
as well as an aid to navigation. For example, in situations where two
ships may cross paths, combining trajectory and statistical data with real-
time AIS data can help the ship officer anticipate the movement of the
other ship.

4.4 Summary 47

Figure 4.12: GreenNavi UI: trajectories.

4.4 Summary

In Chapter 4, the focus shifted to the implementation of the client side
of the systems by designing and developing three different applications
based on web technologies to cater to the varying data needs of the mar-
itime industry. The first application, BlueNavi, was designed to provide
real-time navigational information in a 2D form using AIS data. The sec-
ond application, RedNavi, was designed to provide a visually intuitive
3D representation of navigational information. Finally, GreenNavi was
developed as a demonstration of how web technologies can be used to
satisfy the needs of users for historical data. Each of these applications
was designed with a specific purpose in mind, but all three applications
are the result of the integration of the system with microservices. The
design and development of these applications demonstrate the potential
for extending the functionality of modern maritime information support
systems.

Modern Communication Framework
and Cross-Platform Applications

Defining gRPC Services 5
5.1 A Glimpse of gRPC 51
5.1.1 From RPC to gRPC 51
5.1.2 gRPC over HTTP/2 53
5.1.3 gRPC Communication

Patterns 54
5.2 gRPC Services Design . . 56
5.2.1 Providing Maritime

Information 56
5.2.2 Collecting Maritime

Information 59
5.2.3 Exchanging Maritime

Information 61
5.3 Summary 61

In Section 2.3, inter-service communicationwas designed using the RESTful
API based on the HTTP/1.x communication protocol, which is still the
most widely used communication protocol. However, this protocol has
some limitations that affect its performance. Therefore, starting from
this chapter, gRPC will be explored as an alternative means of communi-
cation. gRPC is based on the next-generation HTTP protocol, HTTP/2,
which offers several advantages over HTTP/1.x.

5.1 A Glimpse of gRPC

This section introduces gRPC and the HTTP/2 protocol on which it is
based.

5.1.1 From RPC to gRPC

In Section 2.3, RESTful APIs were designed for inter-service communi-
cation. REST is an architectural style introduced by Roy Fielding in
2000 [51]. However, it was not the first inter-service communication
method. This section examines the evolution of inter-service communi-
cation methods, starting with Remote Procedure Call (RPC). It also intro-
duces gRPC, a contemporary inter-service communication technology
that builds upon the RPC foundation and is based on the next-generation
HTTP protocol, HTTP/2.

RPC

To understand the benefits of gRPC, it is important to first discuss RPC,
the first inter-service communicationmethod developed in the 1970s and
1980s. In non-distributed or monolithic systems, where all the code is de-
ployed together, communication is typically achieved through function
calls. The idea of RPC is to extend this concept to distributed or microser-
vice architecture-styled systems, allowing remote services to be called
as if they were local procedures, without worrying about the details of
remote communication implementation. This model works by sending
a request from the calling system (client) to the called system (server),
which executes the request and returns the response, making it possi-
ble to create distributed systems where different components can reside
on different machines while functioning as if they were on the same ma-
chine. While early implementations of RPC, such as the Common Object
Request Broker Architecture (CORBA) and Java Remote Method Invoca-
tion (RMI), were complex and bloated in specification, they paved the
way for the evolution of inter-service communication methods [52].

52 5 Defining gRPC Services

REST

REST, which stands for Representational State Transfer, was first pro-
posed by Roy T. Fielding in his doctoral dissertation in 2000 [51]. REST
is based on the first generation of the HTTP protocol (HTTP/1.x) and is a
popular architectural style for building web services. Unlike RPC, which
uses verbs to describe endpoints (e.g., /getTrajectories), REST uses sev-
eral HTTP methods such as GET (for requesting), POST (for creating), PUT
(for modifying), DELETE (for deleting), PATCH (for partial updating), etc.
These methods are also known as HTTP verbs and are combined with
endpoints to form a request (e.g., GET /trajectories).

REST messages support various formats, including JavaScript Object No-
tation (JSON), Extensible Markup Language (XML), HTML, and YAML
Ain’t Markup Language (YAML). Among them, JSON has become the de
facto format for buildingmicroservices due to its widespread support and
ease of use. However, despite being a human-readable plain text format,
JSON also have performance implications.

In addition to the challenges associatedwith theHTTP/1.x protocol, which
will be discussed in detail in Section 5.1.2, the REST architectural style
itself can be problematic due to its high degree of flexibility. While flex-
ibility can be considered a strength that gives designers and developers
with the freedom to create and develop APIs, excessive flexibility can
lead to a number of issues. For example, using DELETE /trajectories
to insert trajectory data and GET /dynamics to delete navigational data
is possible with the REST architecture, despite being extremely counter-
intuitive. In other words, the REST architectural style is not rigid and is
challenging to enforce.

Moreover, the flexibility offered by REST can lead to weak interface bind-
ing between services. Unlike other communication styles, RESTful inter-
faces do not require up-front definition, and their implementation is not
strictly standardized. For instance, when using the JSON format for data
transfer, a vessel’s unique identifier, the MMSI, can be represented in a
variety of ways, such as { MMSI: 123456789 }, { mmsi: "123456789"
}, { UserID: 123456789 }, { user_id: "123456789" }, etc. While
all of these representations are valid, the service consumer has no way
of inferring the response definition unless it is agreed upon during the
service’s design phase of the service. Unfortunately, this definition is op-
tional and flexible, often leading to compatibility issues and bugs if not
carefully managed. Although some third-party tools have emerged for
defining RESTful APIs have emerged, such as the Open API used in our
systems, they are still considered optional, not mandatory.

gRPC

gRPC is an open source RPC framework released by Google1

1: Despite being developed by Google,
the letter g in gRPC does not stand for
Google, but rather has different mean-
ings in different releases. For example,
in the first version, 1.0 of gRPC, the
g stands for gRPC itself, and in subse-
quent versions such as 1.1, 1.2, and 1.3,
the g stands for good, green, and gentle,
respectively. In the latest version, 1.51
(as of February 2023), the g stands for
galaxy. To learnmore about themeaning
of g in each version of gRPC, see Refer-
ence [53].

. It offers
a combination of the benefits of RPC and REST, and has quickly gained
popularity. gRPC offers several features and benefits, including:

High Performance gRPC uses a binary protocol called protocol buffers
to transfer data, which is more efficient than text-based protocols.
gRPC’s protocol is based on HTTP/2, which further improves its
performance.

5.1 A Glimpse of gRPC 53

Emphasis on Definition gRPC requires the developer to first define the
service interface and then implement it in code. All microservices,
including client and server implementations, must strictly adhere
to this service definition to avoid compatibility issues.

Strongly Typed Messages gRPC supports messages with strongly typed
data, where the data type is included in the message definition.
This makes communication more predictable.

Cross-Language, Cross-Platform Support gRPC is not tied to a specific
programming language. During the design phase, only the mes-
sage and service interfaces need to be defined, and the gRPC code
generator can generate the necessary implementation code for dif-
ferent languages and platforms. Currently, gRPC supports a wide
range of programming languages and platforms, includingC#/.NET,
C++, Dart, Go, Java, Kotlin, Node.js (JavaScript), Objective-C, PHP,
Python, Ruby, etc.

Streaming Support gRPC natively supports streams, which means that
it can send and receive multiple messages in a single RPC call. This
is one of the main advantages of gRPC.

gRPC is now used by many well-known companies and organizations,
due to its many benefits and features.

5.1.2 gRPC over HTTP/2

While RESTful APIs are typically built on top of the widely adopted
HTTP/1.x protocol, this protocol still suffers from several drawbacks, in-
cluding [54]:

Network Latency With HTTP/1.x, multiple open TCP connections may
cause network latency.

Head-of-Line (HOL) Blocking HTTP/1.x can only handle one request
per connection at a time. If a request gets blocked (e.g., due to
output congestion), subsequent requests have to wait.

Redundancy of Headers In HTTP/1.x, headers such as User-Agent are
sent repeatedly over multiple requests, resulting in redundant data
being sent over the wire and potentially wasting bandwidth.

Text-Based Protocol HTTP/1.x is a text-based protocol that uses a human-
readable format (e.g., JSON or XML) to transmit requests and data.
While this makes it convenient for developers, it also consumes
transmission bandwidth, degrades performance, and introduces po-
tential security issues.

To address the issues with HTTP/1.x, HTTP/2 was proposed as the sec-
ond major version of the HTTP protocol to provide a more efficient and
secure protocol for web communications. HTTP/2 supports all of the
core features of HTTP/1.x, but is more efficient, simpler, and more ro-
bust [55]. It has several key features and benefits:

Binary Protocol Using protocol buffers as the default payload format
in gRPC means that less data needs to be transmitted over the net-
work, reducing bandwidth usage and improving overall systemper-
formance. In a modern maritime information support system, this
can be particularly useful when transmitting large amounts of real-
time data, fromnavigational information such as ship locations and

54 5 Defining gRPC Services

meteorological information such as weather charts, to media such
as audio and video.

Bidirectional Data Flow HTTP/2 introduces the concept of streams, al-
lowing communication to occur in both directions in frames, rather
than in a one-to-one request-response mode, once a TCP connec-
tion is established between the client and server. gRPC supports
bidirectional streaming, allowing both clients and servers to send
and receive multiple messages in real-time. This can be useful
in a modern maritime information support system where there is
a need for real-time communication between different vessels or
with shore-based stations.

Multiplexing HTTP/2 divides messages into separate frames, which is
the smallest unit of data transmittion. HTTP/2 achieves multi-
plexing by sending data in these frames instead of the entire mes-
sage. Multiplexing allows server-client communication over a sin-
gle TCP connection without the HOL blocking as of HTTP/1.x by
eliminating the need for additional connections. This can be es-
pecially useful in a modern maritime information support system
with multiple devices and systems that need to communicate with
each other.

Header Compression HTTP/2 usesHPACK for header compression, which
is secure and efficient. HPACK uses static Huffman coding to com-
press headers, which reduces the size of the header data being
transmitted, further reducing bandwidth usage and improving per-
formance [56]. In a real-world application scenario of a modern
maritime information support system, where bandwidth may be
limited, this can be a critical feature.

Stream Prioritization HTTP/2 allows developers to optimize the order
of data transfer by constructing a priority tree, enabling critical
data to be transmitted first and less critical data to be transmitted
later, as opposed to the sequential transfer of HTTP/1.x. Data with
higher priority can be transferred first. This can be useful in a mod-
ern maritime information support system where some data, such
as distress signals, must be transmitted with the highest priority.

Server Push With HTTP/2, the server can intuitively push data, skip-
ping the roundtrip instead of waiting for the client to request. The
client has the option to accept or reject the server push. In a mod-
ern maritime information system where time is critical, this can be
a valuable feature.

5.1.3 gRPC Communication Patterns

One of the key advantages of gRPC is its support for a variety of com-
munication patterns beyond simple request-response. With gRPC, both
the client and server can use streaming semantics to send a stream of
messages in a single RPC call, rather than one message at a time. gRPC
supports four types of communication patterns: unary (simple) RPC,
server-streaming RPC, client-streaming RPC, and bidirectional stream-
ing RPC [52]. This flexibility enables gRPC to handle a wide range of use
cases, from simple point-to-point communication to complex, real-time
applications.

5.1 A Glimpse of gRPC 55

Unary RPC

Unary RPC is a straightforward communication pattern of gRPC, sim-
ilar to REST. The gRPC stub sends a request to the gRPC server, and
the server returns a response. Figure 5.1 shows a diagram of the unary
RPC.

Figure 5.1: Unary RPC.

Server-Streaming RPC

Unlike unary RPC, server-streaming RPC returns a sequence of responses
after the client sends a request to the server. For example, the server can
send all corresponding real-time data about the current sea state to the
client as a stream. When there is no more data, the gRPC server sends
a trailer to the gRPC stub to close the connection. Figure 5.2 shows a
diagram of the server-streaming RPC.

Figure 5.2: Server-streaming RPC.

Client-Streaming RPC

Client-streaming RPC, on the other hand, is the opposite of server-streaming
RPC. The gRPC stub sends a sequence of requests to the gRPC server, and
the server can return a response to the client at any time, not just after
receiving all the messages. After sending all messages, the client sends
an End of Stream (EOS) flag to the server to close the connection. Figure
5.3 shows a diagram of client-streaming RPC.

Figure 5.3: Client-streaming RPC.

Bidirectional streaming RPC

In bidirectional streaming RPC communication, the gRPC stub sends a
message stream to the gRPC server, and the server returns a message
stream back to the stub. Bidirectional streaming communication must

56 5 Defining gRPC Services

first be initiated by the client, and the subsequent communication de-
pends on the business logic design of the system. Figure 5.4 shows a
diagram of bidirectional streaming RPC.

Figure 5.4: Bidirectional streaming RPC.

5.2 gRPC Services Design

To effectively design a modern maritime information support system us-
ing gRPC, it is essential to prioritize interface design. This sectionwill de-
fine the service interfaces andmessages from the server-side perspective,
with the primary hypothetical user being the shipboard user. Three sce-
narios for the system will be considered: providing data to the client, col-
lecting data from the client, and exchanging data with the client. The im-
plementation of these service interfaces and messages will be described
in detail in the next chapter.

5.2.1 Providing Maritime Information

Providing information from the server to the client is a primary function
of a modern maritime information support system. In the case of the
new system, users can query or subscribe to receive updates on various
information.

In Section 4.1, BlueNavi was developed to cater to the needs of small
vessels without onboard AIS equipment by providing AIS data through
a backend server. The frontend application then uses the data to plot it
on the map. The server uses RESTful APIs to provide the data. However,
this communication mechanism has certain limitations. The client has
to send requests to the server at regular intervals, which can result in
delays in receiving the latest data. On the other hand, sending data at
too short intervals can lead to redundant data transfer, which results in
wastage of resources.

Using a stream-supported gRPC communication solves these problems.
With gRPC, the client sends a request to the server, which returns all cur-
rent data in the real-time database as a stream. Any changes (events) that
occur in the database are then automatically sent back to the client via
the same connection, provided that the request conditions are met. This
approach ensures that the client always receives the latest real-time data
and minimizes redundant data transmission, making the system more
efficient.

5.2 gRPC Services Design 57

Providing a Single Point of Query

A gRPC service is essentially a group of remotely invokable methods.
Defining a service using protocol buffers involves two key steps: defining
the service methods and defining themessages used within the service.

If the client wants to make simple requests, unary RPC is the ideal choice.
For example, if a client wants to retrieve static information about a par-
ticular ship based on its MMSI just once, the service can be defined as
shown in Listing 5.1.

Listing 5.1: Definition of gRPC service
Static.

1 service Static {
2 rpc getStatic(StaticDataRequest) returns (StaticData) {};
3 ...
4 }

In Listing 5.1, the service keyword is used to specify a named gRPC ser-
vice Static that contains an RPC method getStatic specified by the rpc
keyword. With the getStaticmethod, the client can send a request mes-
sage StaticDataRequest using the stub and receive a response message
StaticData from the server. The StaticDataRequest and StaticData
messages are defined as in Listings 5.2 and 5.3, respectively.

Listing 5.2: Definition of message Stat-
icDataRequest.

1 message StaticDataRequest {
2 string cID = 1;
3 int32 uID = 2;
4 }

Listing 5.3: Definition of message Stat-
icData.

1 message StaticData {
2 optional string _id = 1;
3 int32 mID = 2;
4 int32 uID = 3;
5 int64 tSt = 4;
6 optional int32 imo = 5;
7 string vNm = 6;
8 string cSg = 7;
9 int32 typ = 8;
10 repeated int32 dim = 9;
11 optional string dst = 10;
12 optional double dft = 11;
13 repeated int32 ETA = 12;
14 }

Listings 5.2 and 5.3 define the named messages StaticDataRequest and
StaticData using the keyword message. The StaticDataRequest mes-
sage consists of two fields:

cID Client ID, of type string;
uID User ID (MMSI), of type int32 (32-bit integer).

The StaticData message consists of twelve fields, each with a unique
identification number used to identify the fields when the data is trans-
mitted in binary format2 2: In gRPC, the field identification num-

ber is actually more significant than the
field name in binary format messages.
Consequently, if a field is required to
be deprecated due to changes in require-
ments, its identification number must
typically be reserved using the reserved
keyword and cannot be reassigned to
other fields.

. The keyword optional in protocol buffers in-
dicates that a field is not required and may be omitted from the message,
and repeated indicates that a field may occur zero or more times in a
message and is typically used to transfer arrays or lists of values.

_id ID of the document in the database, of type string;

58 5 Defining gRPC Services

mID Message ID, of type int32;
uID User ID (MMSI), of type int32;
tSt Timestamp of the time the message was received, in milliseconds, of

data type int64 (64-bit integer);
imo IMO number, of type int32;
cSg Vessel call sign, of type string;
vNm Vessel name, of type string;
typ Vessel type, of type int32;
dim Vessel’s dimensions, of type int32;
dst Voyage destination, of type string;
dft Maximum draft, of type double (double-precision 64-bit IEEE 754

floating point);
ETA Formatted estimated time of arrival, of type int32.

Continuously Providing Data to the Client

When dealing with dynamic information, unary RPC may not be the
best approach as data changes frequently and transmission redundancy
should be avoided to ensure efficient data transfer. Listings 5.4 through
5.6 define the gRPC service Dynamic, the message DynamicDataRequest,
and the message DynamicData, respectively:

Listing 5.4: Definition of gRPC service
Dynamic.

1 service Dynamic {
2 rpc getDynamics(DynamicDataRequest)
3 returns (stream DynamicData) {};
4 ...
5 }

This service includes the method getDynamics, which returns a stream
of response messages DynamicData in response to a DynamicDataRequest
from the client. The keyword stream is used to indicate that the response
consists of multiple messages.

Listing 5.5: Definition of message Dynam-
icDataRequest.

1 message DynamicDataRequest {
2 string cID = 1;
3 optional double lat = 2;
4 optional double lon = 3;
5 optional int32 RNG = 4;
6 }

DynamicDataRequest, as defined in Listing 5.5, has four fields:

cID Client ID, of type string;
lat Latitude of the request location, of type double;
lon Longitude of the request location, of type double;
RNG Range or radius of the area in which the user wants to request data,

centered on the [lat, lon] coordinates, of type int32.

Listing 5.6: Definition of message Dynam-
icData.

1 message DynamicData {
2 optional string _id = 1;
3 optional int32 mID = 2;
4 int32 uID = 3;
5 int64 tSt = 4;
6 double lat = 5;
7 double lon = 6;
8 optional int32 nSt = 7;

5.2 gRPC Services Design 59

9 optional float SOG = 8;
10 optional float COG = 9;
11 optional int32 HDG = 10;
12 optional int32 ROT = 11;
13 }

The response message DynamicData returned by the server includes the
following eleven fields:

_id ID of the document in the database of type string;
mID Message ID, of type int32;
uID User ID (MMSI), of type int32;
tSt Timestamp of the time the message was received, in milliseconds, of

data type int64;
lat Latitude, of type double;
lon Longitude, of type double;
nSt Navigation status, of type int32;
SOG Speed Over Ground, of type float (single-precision 32-bit IEEE 754

floating point);
COG Course Over Ground, of type float;
HDG True heading, of type int32;
ROT Rate of Turn (ROT), of type int32.

Pushing Notifications to the Client

The server-streaming RPC enables the server to send information such
as notifications, messages, and warnings to the client. The notification-
pushing feature is defined using the same communication pattern as de-
scribed above, so only a brief description is provided here.

Listing 5.7 gives the definition of the gRPC service Notification.

Listing 5.7: Definition of gRPC service
Notification.

1 service Notification {
2 rpc subscribeNotification(Subscription)
3 returns (stream Notification) {};
4 ...
5 }

To use this service, the client establishes a connection by invoking the
subscribeNotification RPC method and sending the requested data in
the Subscription message during initialization or as specified by the
user. The connection is maintained by the client, and the server can
push data to the client through the Notificationmessage whenever nec-
essary.

5.2.2 Collecting Maritime Information

Aside from transmitting data to the client, the server may also need to
gather data from the client, with various types of data being possible.
For instance, the ship reporting system commonly used in navigation
practice requires eligible ships to report to the appropriate authority in
a timely fashion, which includes detailed reporting requirements for en-
tering and leaving ports at sea or on inland rivers in some countries or
areas. Currently, the ship reporting system is moving towards digital-
ization and informatization, allowing reports to be completed online. In

60 5 Defining gRPC Services

this section, RPC services will be designed to facilitate the reception and
collection of data from the client.

Receiving Static Reports

Referring to systems such as ship reporting as static reporting, since they
only need to be reported once over a long period of time, unary RPC
communication can be used without the need to maintain a constant
connection to the client.

Part of the definition of the gRPC service Report is given in Listing 5.8.

Listing 5.8: Definition of gRPC service
Report (static report).

1 service Report {
2 rpc reportFromReportintLine(StaticReport)
3 returns (StaticReportResponse) {};
4 rpc reportFromReportingPoint(StaticReport)
5 returns (StaticReportResponse) {};
6 rpc reportFromAnchorage(StaticReport)
7 returns (StaticReportResponse) {};
8 ...
9 }

Receiving Dynamic Reports

Dynamic data reports report data to the server at shorter intervals and
may contain information such as geographic location, heading, speed,
and other custom information from various sensors. While AIS can be
used to transmit dynamic navigational information, there are reasons
why it needs to be reported to the server via gRPC, which will be dis-
cussed in Chapter 6. The service interface for reporting such data is
defined in Listing 5.9.

Listing 5.9: Definition of gRPC service
Report (dynamic report).

1 service Report {
2 ...
3 rpc reportDynamic(stream DynamicReport)
4 returns (DynamicReportResponse) {};
5 ...
6 }

In contrast to static reports, the client sends a stream of DynamicReport
messages to the server, as defined in Listing 5.10, using the client-streaming
RPC.

Listing 5.10: Definition of message Dy-
namicReport.

1 message DynamicReport {
2 string cID = 1;
3 int64 tSt = 2;
4 double lat = 3;
5 double lon = 4;
6 float SOG = 5;
7 int32 HDG = 6;
8 optional int32 alt = 7;
9 optional int32 hAcc = 8;

10 optional int32 sAcc = 9;
11 }

5.3 Summary 61

Several non-optional fields in Listing 5.10 have the same meaning and
data type as those in the previous AIS dynamic data (message Dynamic-
Data in Listing 5.6), and the remaining fields (alt, hAcc, and sAcc) are
described as follows. A more detailed explanation of the dynamic report
and its application will be given in Chapter 6.

alt Altitude, of data type int32;
hAcc Horizontal accuracy, of type int32;
sAcc Speed accuracy, of type int32.

5.2.3 Exchanging Maritime Information

Suppose that the user only needs information about a specific set of ships
at sea, for example, all ships within a certain range or vicinity (e.g., 6
nautical miles) from their current location. Moreover, the user’s location
is constantly changing as the ship navigates the waters. In this case,
the client may need to include its location information (along with other
query conditions) in each request message. The server then filters and
queries the data according to these conditions and returns the results to
the client. For such a scenario, bidirectional streaming RPC is a better
communication method to use.

The RPC method exchangeDynamics, defined in Listing 5.11, is an exam-
ple of the dynamic data-exchange RPC method that uses bidirectional
streaming. Thismethod involves the client continuously sending Dynami-
cReports, containing its location information, to the request stream. The
server then captures the necessary report information, includes its corre-
sponding response in messages DynamicData, defined in Listing 5.6, and
sends them to the response stream.

Listing 5.11: Definition of gRPC service
Dynamic (exchange dynamics).

1 service Dynamic {
2 ...
3 rpc exchangeDynamics(stream DynamicReport)
4 returns (stream DynamicData) {};
5 ...
6 }

5.3 Summary

Chapter 5 focused on the use of gRPC as a means of communication for
the modern maritime information support system. The chapter begins
with an introduction to gRPC and the underlying HTTP/2 protocol. This
is followed by the definition of the gRPC services for the system. The
chapter outlined the three main scenarios for the gRPC services: provid-
ing data to the client, collecting data from the client, and exchanging data
with the client. The implementation of these services will be described in
the following chapter. The use of gRPC emphasizes the importance of in-
terface design, making it a valuable addition to the system’s inter-service
communication.

Implementing gRPC Services 6
6.1 Implementing gRPC

Server 63
6.1.1 Tooling and Framework . 63
6.1.2 Implementation 65
6.2 Implementing gRPC

Client 68
6.2.1 Background and Scenarios68
6.2.2 Tooling and Framework . 69
6.2.3 Implementation 70
6.3 Summary 73

Chapter 5 provided the service interface and messages for gRPC. As dis-
cussed in Section 5.1.1, traditional RPC can be cumbersome due to the
need for manual specification and implementation. One of the major
advantages of gRPC is that it supports multiple languages and platforms
through code generation. After defining services and correspondingmes-
sages, gRPC generates code for the desired language or platform. This
simplifies remote communication between microservices or clients and
servers, as developers can call remote services in the same way they call
local functions.

This chapter focuses on selecting appropriate tools and frameworks from
both server-side and client-side perspectives and utilizing them to imple-
ment the services.

6.1 Implementing gRPC Server

Chapter 3 introduced several microservices based on the REST architec-
ture, focusing mainly on functional implementation. In contrast, this
section aims to improve performance and efficiency by implementing
critical microservices using gRPC as the communication framework and
a new language base. By leveraging gRPC’s code generation capabilities,
the system’s microservices will have better multi-language and multi-
platform support, leading to a more scalable and efficient microservice
architecture.

6.1.1 Tooling and Framework

When it comes to backend development, there is no one best program-
ming language. In this dessertaion, Node.js was chosen for its simplicity
and versatility. As a unified platform for both frontend and backend
development, Node.js offers many benefits, including ease of collabora-
tion between frontend and backend teams due to its use of a shared lan-
guage. Meanwhile, JavaScript is a dominant language in frontend devel-
opment, making it a natural choice for many web applications. By using
Node.js for backend development, developers can leverage the power of
JavaScript and take advantage of a unified development ecosystem.

However, as a system scales, it is important to reconsider the choice of
implementation tools, as Node.js presents some challenges:

Dynamic Typing Unlike some other strongly typed languages, JavaScript
is dynamically typed. While dynamic typing provides flexibility, it
also increases the likelihood of bugs, especially as a project grows.

Asynchronous Programming JavaScript uses an asynchronous program-
ming model, which can provide benefits in terms of scalability.
However, it also introduces issues such as the well-known callback

64 6 Implementing gRPC Services

hell problem. The complex asynchronous model can make large
projects difficult to maintain.

Excessive Dependencies and Instability Node.js boasts a robust ecosys-
tem and rich third-party libraries, but projects often rely on many
third-party libraries with complex dependencies. This can lead to
compatibility issues and additional maintenance costs as develop-
ers update versions, change, or deprecate APIs.

Given these challenges, a more suitable backend development language
is desired. The Go programming language has garnered attention as a
potential solution.

Go is a relatively new programming language developed by Google in
2007 and first released in 2009. It was designed to avoid the problems
of previous programming languages while incorporating several advan-
tages [57]. Here are some of Go’s main strengths:

Simplicity Go’s simplicity comes from its neat and clean syntax, which
is a departure from the simplicity of Node.js. For example, the Go
language has only 25 keywords, which increases the clarity and
readability of the code. This simplicity makes Go code easier to
develop and maintain.

Performance As a compiled language, Go has a performance advantage
over many other high-level languages because it can be compiled
directly into machine language. In contrast, JavaScript is an inter-
preted language thatmust be interpreted by the browser at runtime.
However, Go also has the features of a high-level language, such
as garbage collection.

Concurrency Go was designed from the ground up to support concur-
rent computing and processing. Goroutines enable functions and
methods to execute in parallel, but with an appropriate communi-
cation mechanism, sharing memory and avoiding competition. In
contrast, Node.js supports concurrency through its event callback
mechanism, but it is still essentially a single-threaded tool where
only one function or method can occupy computing resources at a
time. Consequently, its support for concurrency is inferior to that
of Go.

Go is an open-source, statically-typed, multi-purpose programming lan-
guage that is gaining popularity due to its simplicity, performance, and
concurrency support. Its cross-platform capability also makes it an at-
tractive choice for developing applications that can run on different op-
erating systems.

In this dissertation, since the backend services of a modern maritime
information support system may require high performance and concur-
rency to handle the large volume of data parsing, computing, and pro-
cessing required while serving multiple users simultaneously, Go was
selected as the implementation language for some specific microservices
to take advantage of its concurrency support and efficient memory man-
agement.

6.1 Implementing gRPC Server 65

6.1.2 Implementation

As discussed earlier, gRPC is a cross-platform framework that supports
multiple languages, including Go, and provides code-generation capabili-
ties. Once Go is selected as the language for implementing gRPC-related
microservices and the gRPC service definition is complete, the code re-
quired to implement the service interface can be easily generated using
simple commands.

This subsection uses the Dynamic service defined in Chapter 5 as an exam-
ple. The protoc command for generating the code is shown in Listing 6.1,
which generates interfaces, structs, and other code components in Go
based on the associated .proto file for the Dynamic service definition.

Listing 6.1: Command for generating
code in Go.

1 protoc --proto_path=proto --go_out=./pbs/dynamic \
2 --go-grpc_out=./pbs/dynamic protos/dynamic/v1.dynamic.proto

Running the protoc command for the Dynamic service will generate two
files: v1.dynamic.ais.pb.go formessage-related code and v1.dynamic.ais_-
grpc.pb.go for gRPC communication-related code. Listings 6.2 and 6.3pro-
vide examples of the code generated in these two files.

Listing 6.2: protoc generated file
v1.dynamic.ais.pb.go.

1 // Code generated by protoc-gen-go. DO NOT EDIT.
2 // versions:
3 // protoc-gen-go v1.28.1
4 // protoc v3.21.5
5 // source: ais/v1.dynamic.ais.proto
6

7 package ais
8

9 import ...
10

11 const (...)
12

13 type DynamicDataRequest struct {
14 state protoimpl.MessageState
15 sizeCache protoimpl.SizeCache
16 unknownFields protoimpl.UnknownFields
17

18 CID string `protobuf:"bytes,1,opt,name=cID,proto3,
19 oneof" json:"cID,omitempty"`
20 Lat *float64 `protobuf:"fixed64,2,opt,name=lat,proto3,
21 oneof" json:"lat,omitempty"`
22 Lon *float64 `protobuf:"fixed64,3,opt,name=lon,proto3,
23 oneof" json:"lon,omitempty"`
24 RNG *float64 `protobuf:"fixed64,4,opt,name=RNG,proto3,
25 oneof" json:"RNG,omitempty"`
26 }
27

28 func (x *DynamicDataRequest) Reset() {...}
29

30 func (x *DynamicDataRequest) String() string {...}
31

32 ...
33

34 func (x *DynamicDataRequest) GetCID() string {...}
35

36 func (x *DynamicDataRequest) GetLat() float64 {...}

66 6 Implementing gRPC Services

37

38 func (x *DynamicDataRequest) GetLon() float64 {...}
39

40 func (x *DynamicDataRequest) GetRNG() float64 {...}
41

42 ...
43

44 type DynamicData struct {...}
45

46 func (x *DynamicData) Reset() {...}
47

48 ...

Listing 6.3: protoc generated file
v1.dynamic.ais_grpc.pb.go.

1 // Code generated by protoc-gen-go-grpc. DO NOT EDIT.
2 // versions:
3 // - protoc-gen-go-grpc v1.2.0
4 // - protoc v3.21.5
5 // source: ais/v1.dynamic.ais.proto
6

7 package ais
8

9 import ...
10

11 // This is a compile-time assertion to ensure that this
12 // generated file is compatible with the grpc package it
13 // is being compiled against.
14 // Requires gRPC-Go v1.32.0 or later.
15 const _ = grpc.SupportPackageIsVersion7
16

17

18 // DynamicClient is the client API for Dynamic service.
19 // ...
20 type DynamicClient interface {...}
21

22 ...
23

24 // DynamicServer is the server API for Dynamic service.
25 // All implementations must embed
26 // UnimplementedDynamicServer for forward compatibility
27 type DynamicServer interface {
28 GetDynamics(
29 *DynamicDataRequest,
30 Dynamic_GetDynamicsServer
31) error
32 SubscribeDynamics(
33 *DynamicDataRequest,
34 Dynamic_SubscribeDynamicsServer
35) error
36 ExchangeDynamics(
37 Dynamic_ExchangeDynamicsServer
38) error
39 ...
40 mustEmbedUnimplementedDynamicServer()
41 }
42

43 // UnimplementedDynamicServer must be embedded to have
44 // forward compatible implementations.
45 type UnimplementedDynamicServer struct {

6.1 Implementing gRPC Server 67

46 }
47

48 func (UnimplementedDynamicServer) GetDynamics(
49 *DynamicDataRequest,
50 Dynamic_GetDynamicsServer
51) error {...}
52 func (UnimplementedDynamicServer) SubscribeDynamics(
53 *DynamicDataRequest,
54 Dynamic_SubscribeDynamicsServer
55) error {...}
56 func (UnimplementedDynamicServer) ExchangeDynamics(
57 Dynamic_ExchangeDynamicsServer
58) error {...}
59 ...
60 func (UnimplementedDynamicServer)
61 mustEmbedUnimplementedDynamicServer() {}
62

63 ...

The code-generation tool protoc generates all the necessary interfaces,
structs, and funcs for both the gRPC server and client APIs. However,
since only the server-side of the system is being built in Go, the client-
side-related code can be ignored. To implement the interfaces, the gen-
erated code needs to be used. Listings 6.4 and 6.5 demonstrate the imple-
mentation of these interfaces.

Listing 6.4: Implementation of Dynamic-
Server with Go.

1 package servers
2

3 import ...
4

5 type DynamicServer struct {
6 ais.UnimplementedDynamicServer
7 }
8

9 func (s *DynamicServer) GetDynamics(
10 req *ais.DynamicDataRequest,
11 res ais.Dynamic_GetDynamicsServer
12) error {...}
13

14 func (s *DynamicServer) SubscribeDynamics(
15 req *ais.DynamicDataRequest,
16 res ais.Dynamic_SubscribeDynamicsServer
17) error {...}
18

19 func (s *DynamicServer) ExchangeDynamics(
20 stream dynamic.Dynamic_DynamicQueryServer
21) error {...}
22

23 ...

Listing 6.5: Implementation of main
function with Go.

1 package main
2

3 import ...
4

5 func main {
6

7 listener, err := net.Listen("tcp", ":9090")
8

68 6 Implementing gRPC Services

9 ...
10

11 grpcServer := grpc.NewServer()
12

13 ais.RegisterStaticServer(
14 grpcServer,
15 &servers.StaticServer{}
16)
17 ais.RegisterDynamicServer(
18 grpcServer,
19 &servers.DynamicServer{}
20)
21

22 ...
23

24 go grpcServer.Serve(listener)
25 defer grpcServer.Stop()
26

27 ...
28

29 }

Listing 6.4 provides the implementation of the DynamicServer interface,
which is an essential part of the gRPC server. In Listing 6.5, the main
function creates a new grpcServer, registers the services implemented
in Listing 6.4, and listens for incoming messages from the client on port
9090. This completes the construction of the gRPC server, and it is now
ready to handle incoming requests from the client.

6.2 Implementing gRPC Client

In Chapter 4, three applications, BlueNavi, RedNavi, andGreenNavi, were
designed and developed based on web technologies. However, web ap-
plications have certain limitations when it comes to supporting HTTP/2
and the gRPC communication framework. To address this, this section
explores alternative frontend implementations that can work seamlessly
with gRPC.

6.2.1 Background and Scenarios

The scenario presented in Section 4.1 involves small vessels that are not
required to have onboard AIS equipment by IMO regulations or national
laws. To improve navigation safety and vesselmanagement, a cost-effective
Class-B AIS equipment can be used alongside the BlueNavi system. This
solution enables the OOW to capture information and movements of
other vessels in the surrounding sea.

However, there is a prerequisite for this solution: the vessel must already
be equipped with other devices or sensors, such as Global Positioning
System (GPS), as AIS does not produce any data, and all data must be
input from other sources. While small cargo ships often choose to equip
themselves with GPS for positioning, this is not an option for smaller
vessels such as fishing boats or yachts. Without a data source, AIS can-
not transmit any information related to the vessel’s position, speed, etc.,

6.2 Implementing gRPC Client 69

although this does not affect the reception of AIS messages from other
vessels within the communication range.

Ensuring the safety of navigation is a mutual responsibility. Although
large vessels are easy for smaller vessels to identify, small vessels may
be more difficult for larger vessels to detect visually or by radar due to
their smaller size. Therefore, it is important for both large and small
vessels to have access to each other’s navigational data to ensure safe
navigation.

Today, many handheld devices are equipped with positioning solutions,
in addition to dedicated GPS devices. Some newer devices even have
dual-frequency GPS in the L1 band at 1575.42 MHz and L5 at 1176 MHz,
which significantly increases GPS performance and positioning accuracy
to the centimeter level. For example, in addition to dual-frequency GPS,
the latest iPhone supports Global Navigation Satellite System (GLONASS),
Galileo, Quasi-Zenith Satellite System (QZSS), and BeiDou. This has
greatly increased the availability of mobile positioning. The portability,
low cost, and high positioning accuracy of these devices make it possible
to easier and more efficient to exchange navigational and other maritime
information.

6.2.2 Tooling and Framework

Web applications can be run onmobile browsers by following responsive
design principles1 1: Responsive design is a web design ap-

proach that aims to create a user inter-
face that adapts to different devices and
screen sizes, in order to optimize the
user experience.

, as demonstrated in Figure 6.1. However, since web
applications run within the browser, their performance can be impacted
by system restrictions on browser permissions for hardware like cameras
and GPS, as well as software such as calendars and phone functions. As
a result, the user experience and functionality of web applications are
often limited.

Figure 6.1: GreenNavi web application.

Native applications offer better performance and hardware access than
web applications on mobile devices, but they can be costly to develop
and maintain due to different development environments and Software
Development Kits (SDKs) across platforms, resulting in increased invest-
ment when developing and maintaining two completely different appli-
cations in different technology stacks for different platforms, such as
Swift or Objective-C for iOS and Kotlin or Java for Android.

In an effort to address the issue of development time and cost, hybrid
applications have been proposed, which essentially wrap a native appli-
cation shell around a web application to provide access to hardware re-
sources and device APIs. While this shortens the development cycle and
saves costs, the hybrid solution still relies on web application principles
and falls short in terms of speed and user experience when compared to
native applications.

A new approach, known as cross-platform application development, has
emerged to tackle this challenge. This approach involves utilizing a cross-
platform framework and a single set of code to develop applications for
multiple platforms, providing the advantages of native applicationswhile
solving the problem of code reuse.

70 6 Implementing gRPC Services

Among the various cross-application platforms available, such as Xam-
arin, Ionic, and React Native, this dissertation chose Flutter, which was
released by Google in 2017, because of the following advantages.

Near-to-Native Performance Many other cross-platform frameworks uti-
lize a bridge between the application and the platform, which maps
the application’s components, animations, etc. using JavaScript or
other languages to native components on the platform to achieve
functionality. However, this communication can adversely impact
performance. In contrast, Flutter renders the UI directly on the
canvas, resulting in near-native performance.

UI Consistency Because other cross-platform solutions rely on native
components, the definition and implementation of these compo-
nents often vary from platform to platform, leading to consistency
issues. On the other hand, Flutter uses its rendering engine to ren-
der UI and animations directly to the canvas, reducing consistency
issues.

The Dart Language Flutter uses the Dart language, which was also de-
veloped by Google. Dart has several features, including support
for Just-in-Time (JIT) and ahead-of-time compilation, allowing for
hot reloading during development without sacrificing efficiency in
production environments.

Therefore, despite its relatively recent release, this dissertation selected
Flutter as the client-side development language.

6.2.3 Implementation

The cross-platform mobile application, named PinkNavi, also adopts the
MVC design pattern. The project structure of PinkNavi is illustrated
in Figure 6.2, which provides an overview of the organization of the var-
ious application components.

Figure 6.2: PinkNavi project structure.

The gRPC communication-related components are the focus of this sub-
section. Leveraging gRPC’s native support for Dart used in Flutter, the
protoc tool is again used to generate the necessary code for the client-
side communication, as presented in Listing 6.6.

Listing 6.6: Command for generating
code in Dart.

1 protoc --proto_path=proto \
2 --dart_out=grpc:./pbs protos/ais/v1.dynamic.ais.proto

In Listing 6.6, the protoc command generates four files: v1.dynamic.ais.pb.dart,
v1.dynamic.ais.pbenum.dart, v1.dynamic.ais.pbgrpc.dart, and
v1.dynamic.ais.pbjson.dart. These files contain message data struc-
tures, communicationmethod implementations, and other necessary com-
ponents. To use these generated files in the corresponding services, they
need to be imported into the project. An example of how to call these
methods is shown in Listing 6.7.

Listing 6.7: Implementation of Dynamic-
Service in Dart.

1 import ...
2

3 class DynamicService {
4

5 Location location = Location();
6 final String _clientID = "...";

6.2 Implementing gRPC Client 71

7

8 ...
9

10 static DynamicClient stub = DynamicClient(
11 ClientChannel(
12 "...",
13 port: 9090,
14 options: ...,
15),
16);
17

18 LocationService() {
19 _init();
20 }
21

22 Future<void> _init() async {...}
23

24 Stream<DynamicData> getDynamics(...) async* {...}
25

26 ...
27

28 Stream<DynamicData> ExchangeDynamics(int range) async* {
29 if (_allReady) {
30 StreamController<DynamicDataRequest> streamController =
31 StreamController<DynamicDataRequest>();
32 _locationSubscription = location.onLocationChanged
33 .listen((LocationData locationData) {
34 streamController.add(DynamicDataRequest()
35 ..cID = _clientID
36 ..lat = locationData.latitude!
37 ..lon = locationData.longitude!
38 ..rNG = range
39);
40 });
41 final dynamics =
42 stub.exchangeDynamics(streamController.stream);
43 await for (DynamicData dynamic in dynamics) {
44 yield dynamic;
45 }
46 }
47 }
48

49 ...
50

51 }

In the DynamicService class, the gRPC stub—DynamicClient—is first cre-
ated using the code generated by protoc, and then the client-side busi-
ness logic of the three gRPCmethods is implemented. Once the functions
are implemented, Flutter UI components (widgets) can use the gRPC ser-
vice by calling the functions in the DynamicService class.

Figure 6.3 shows the final prototype of the PinkNavi cross-platform appli-
cation (Android version followed by iOS version). By calling the platform
API, the application retrieves the current location, speed, heading, and
other relevant data about the own ship, and includes this information in
the query request when calling the gRPCmethod to retrieve the dynamic
information of the surrounding ships from the server-side. Furthermore,

72 6 Implementing gRPC Services

PinkNavi can calculate the target ships’ bearing, distance, Distance to
Closest Point of Approach (DCPA), Time to Closest Point of Approach
(TCPA), etc., based on the received data, as shown in Figure 6.4.

Figure 6.3: PinkNavi UI.

Figure 6.4: PinkNavi UI: sliding-up panel.

6.3 Summary 73

6.3 Summary

In Chapter 6, the implementation of gRPC services was discussed in de-
tail, covering both the server-side and the client-side perspectives. The
implementation of the gRPC server focused on performance and effi-
ciency, while the implementation of the gRPC client explored alterna-
tives for frontend development other than web applications, specifically
cross-platform applications. With gRPC’s code generation capabilities,
remote communication between microservices or between clients and
servers can be achieved simply by calling remote services as local func-
tions.

Modern Deployment Approach and
Microservices Containerization

Deploying Microservices 7
7.1 Deploying Microservices

on Docker 77
7.1.1 Packing Services to Con-

tainers 77
7.1.2 Going Live with Services 80
7.2 Deploying Microservices

on Kubernetes 82
7.2.1 Orchestrating Containers

with Kubernetes 82
7.2.2 Going Live with Services 82
7.3 Summary 87

In Chapter 2, it was mentioned that microservices architecture involves
breaking down services into relatively individual and independent mi-
croservices, based on functional or other principles. Consequently, un-
like a monolithic system that only needs to be deployed only on a sin-
gle server, microservices need to be deployed separately. Furthermore,
even the same microservice may need to be deployed in different envi-
ronments if the requirements are different. As a result, containerization
has been proposed as an idea to simplify the tedious deployment work.
This chapter delves into the deployment of microservices using this con-
tainerization technology.

7.1 Deploying Microservices on Docker

In 2013, Docker introduced a technology called containerization, which
has since gained widespread adoption. This section explores the concept
of containerization, the benefits it provides, and how microservices can
be deployed using Docker.

7.1.1 Packing Services to Containers

In modern operating systems, the kernel manages hardware resources
and any process that needs to access these resources must communicate
with the kernel via a system call. The kernel then directs the request to
the appropriate resource, as depicted in Figure 7.1.

Figure 7.1: Concept of operating system.

Ensuring consistent and stable system environments across development,
testing, and production stages can be challenging due to differences in
hardware, software configurations, and dependencies. Even if a service
passes testing in the development environment, environmental differ-
ences in the production environment can cause various problems.

To address this challenge, virtual machines on different hardware have
been used to unify the runtime environment. As illustrated in Figure 7.2,

78 7 Deploying Microservices

a virtual machine runs on top of the host operating system and commu-
nicates with the host kernel through a hypervisor. Each virtual machine
has its own isolated operating system environment where different pro-
cesses interact only with the virtual machine’s operating system. This
way, as long as the same virtual machine is configured, services can run
in the same virtual environment, regardless of the underlying host oper-
ating system.

Figure 7.2: Concept of virtual machine.

However, virtualmachines are often considered too cumbersome, resource-
intensive and slow to boot, making them less than ideal for deploying sys-
tems at scale. This is especially true for microservices, where each mi-
croservice may require an isolated runtime environment. Starting and
running multiple virtual machines simultaneously consumes a signifi-
cant amount of resources. As a result, containerization has emerged as
an alternative solution.

Containers can be thought of as lightweight virtual machines. However,
unlike virtual machines, multiple containers can run on the same host
and share the same system kernel11: Different containers are essentially

independent processes that can be iso-
lated from each other thanks to the
namespaces and control groups features
of the Linux system.

, as shown in Figure 7.3. The operat-
ing system can allocate different portions of hardware resources to dif-
ferent containers without interfering with each other, which allows the
container to be considered an isolated runtime environment.

In Docker, a container is essentially an instance of an image. An image
contains a snapshot of the files needed to run the container and the com-
mand to start the container, as shown in Figure 7.4. When a container
is created, Docker copies the snapshot from the image to the container’s
hard drive and starts the container using the command specified in the
image. Once the container is started, it runs independently.

Images, on the other hand, are built from Dockerfiles. A Dockerfile is
a script that defines the steps needed to create an image. For example,
Listing 7.1 shows the Dockerfile for building an image of a App Provider
microservice (for BlueNavi) developed in Go, while Listing 7.2 provides
the command to build the image using the Dockerfile.

7.1 Deploying Microservices on Docker 79

Figure 7.3: Concept of container.

Figure 7.4: Container built from image.

Listing 7.1: Dockerfile for building mi-
croservice App Provider.

1 FROM golang:1.18-alpine as builder
2

3 WORKDIR /go/src/blue-server
4

5 COPY ./blue-server ./
6 RUN CGO_ENABLED=0 GOOS=linux go build -o /blue-server
7

8 FROM gcr.io/distroless/base-debian11
9

10 LABEL maintainer = "..."
11

12 WORKDIR /
13

14 COPY --from=builder /blue-server /blue-server

80 7 Deploying Microservices

15 COPY --from=builder /go/src/blue-server/app/dist /app/dist
16

17 USER nonroot:nonroot
18 ENTRYPOINT ["/blue-server"]

Listing 7.2: Command for building the
docker image.

1 docker build -t .../blue-server:latest .

The Dockerfile in Listing 7.1 demonstrates the creation of a lightweight
container image for a Go server named blue-server, containing only
the necessary files to run the application. The build process consists of
two phases. In the first phase, an image named builder is built using
the golang:1.18-alpine image as the base. The Go code for the web ap-
plication is copied to the working directory /go/src/blue-server, and
the binary is built and copied to the root directory. In the second phase,
the final image is built using the gcr.io/distroless/base-debian11 im-
age. The working directory is set to /, and the binary built in the first
phase is copied from the builder image to the /app/dist directory, which
contains the distribution package or assets required for running the Blu-
eNavi application. Finally, the entry point is set to the binary, allowing
the container to run independently.

Containerization enables consistent deployment of applications in pro-
duction environments and also facilitates deployment on platforms with
different architectures. For example, while most computers currently in
use have Complex Instruction Set Computers (CISC) architectures such
as x86 and ARM64, using a miniature and affordable computer like Rasp-
berry Pi, as depicted in Figure 7.5, to deploy microservices can signif-
icantly reduce costs. However, Raspberry Pi is a Reduced Instruction
Set Computer (RISC) that uses the ARMv7 architecture, making cross-
platform compilation and deployment a challenging task. Fortunately,
Docker simplifies this task. For instance, Listing 7.3 outlines the com-
mands to build an ARMv7 platform image blue-server-armv7:latest
on anARM64 architecture platformusing the docker buildx command.Figure 7.5: Raspberry Pi [58].

Listing 7.3: Commands for building an
ARMv7 image on a different platform.

1 docker buildx create --name xbuilder
2 docker buildx use xbuilder
3 docker buildx inspect --bootstrap
4 docker buildx build --platform linux/arm/v7 \
5 -t blue-server-armv7:latest \
6 -o type=docker,dest=- . > blue-server-armv7.tar

7.1.2 Going Live with Services

After the container image is built, it can be used to start a container with
the docker run command. Tomake the container accessible from outside
the host, the -p flag is used to expose the container’s internal ports, as
demonstrated in Listing 7.4.

Listing 7.4: Command for starting the
docker container.

1 docker run -p 80:9900 .../blue-server:latest .

When deploying the blue-server, port 9900 is used to provide the ser-
vices. To make the service accessible from a browser using a domain
name or IP address, the -p flag is used with the docker run command
to expose the container’s internal port 9900 to port 80 on the host, as
demonstrated in Listing 7.4.

7.1 Deploying Microservices on Docker 81

However, the BlueNavi application provided by blue-server needs to
interact with the backend microservices to retrieve data. Because they
are independent, the backend microservices should be run in separate
and isolated containers. Although the microservices can be launched
using Docker commands, manually configuring the network and other
settings can be a tedious and error-prone task. Instead, docker-compose
can be used to simplify the process.

Docker-compose is a separate Command-Line Interface (CLI) tool that is
installed with Docker and is used to launch multiple Docker containers
simultaneously. It automates some of the verbose and time-consuming
arguments of the docker run command. The docker-compose configu-
ration is defined in a YAML file, which is shown in Listing 7.5.

Listing 7.5: docker-compose.yaml for
configuring docker-compose.

1 version: '3'
2 services:
3 ais-receiver:
4 build:
5 context: ./ais-receiver
6 ports:
7 - '52000:3000'
8 restart: unless-stopped
9 ais-provider:
10 build:
11 context: ./ais-provider
12 ports:
13 - '9000:9000'
14 restart: unless-stopped
15 blue-server:
16 build:
17 context: ./blue-server
18 ports:
19 - '80:9900'
20 restart: unless-stopped
21 ...
22 mongodb:
23 image: 'mongo:6.0'
24 volumes:
25 - './mongodb/data:/data/db'
26 restart: always

Listing 7.5 configures fourDocker containers: ais-receiver, ais-provider,
blue-server, and mongodb. Each container’s image file is created from
the Dockerfile located in the specified path. The ais-receiver container
needs to receive forwarded AISmessages via the User Datagram Protocol
(UDP) port, so it must be exposed to the corresponding external port. The
ais-provider container listens on port 9000 to provide AIS data, while
the app-provider container must be directly accessible via the browser
and thus requires exposure to external port 80. Since containers are bet-
ter suited for stateless services, a Docker volume is used to map the data
stored on the host to the mongodb container to ensure data persistence.

Once the configuration is complete, the command in Listing 7.6 can be
used to build and launch all microservices simultaneously.

Listing 7.6: Command for starting mi-
croservices using docker-compose.

1 docker-compose up --build

82 7 Deploying Microservices

7.2 Deploying Microservices on Kubernetes

The Docker technology allows microservices to be containerized and de-
ployed on the host server. As described in Chapter 2, microservice archi-
tectures offer many advantages over traditional monolithic architectures,
such as increased flexibility, availability, and scalability. However, the
benefits of scalability and availability may not be fully realized in Docker
deployments since they often extend beyond the capabilities of contain-
ers. To address this, this section will delve into the deployment of mi-
croservices through container orchestration technologies, specifically the
Kubernetes platform, to attain high scalability and availability.

7.2.1 Orchestrating Containers with Kubernetes

In the context of large-scale systems, ensuring high availability and scal-
ability is essential. While containerization offers several benefits, such
as flexibility and portability, it may not be sufficient to address the afore-
mentioned concerns on its own. This is where container orchestration
technologies come into play. Kubernetes, an open-source platform de-
veloped and released by Google, is a leading choice for container orches-
tration. Its popularity has been growing rapidly and it has become the
de facto industry standard.

Kubernetes provides a rich set of features that enable automatic scaling,
rolling updates, and self-healing capabilities for containerized applica-
tions. Figure 7.6 illustrates a simplified model of the Kubernetes archi-
tecture, which consists of a cluster of nodes that host the containers and
a set of control plane components that manage and orchestrate the con-
tainers.

As illustrated in Figure 7.6, Kubernetes operates by orchestrating contain-
ers in clusters. Each cluster consists of nodes, which are either physical or
virtual hosts capable of running containers. Inside each node are pods,
which are the smallest units of Kubernetes that manage containers. A
pod can run a single container or a set of containers that work together
to implement a specific business logic. Containers within the same pod
share the same resources and network, making communication between
them fast and efficient. The master component manages all nodes in the
cluster and is responsible for orchestrating the containers. Figure 7.7
provides a higher-level view of the Kubernetes cluster architecture.

7.2.2 Going Live with Services

Kubernetes offers two methods for deploying systems: declaratively or
imperatively. This subsection will deploy the system declaratively, using
configuration files.

The system configuration diagram for deployment on the Kubernetes
cluster is shown in Figure 7.8. All deployment configuration files in this
section are based on this diagram.

Figure 7.8 introduces several Kubernetes abstractions, including Deploy-
ment, Service, PVC, and Ingress. These abstractions provide higher-level

7.2 Deploying Microservices on Kubernetes 83

Figure 7.6: Concept of Kubernetes.

Figure 7.7: Kubernetes cluster.

84 7 Deploying Microservices

Figure 7.8: Deploying microservices with Kubernetes.

views of the system and make it easier to manage and deploy the com-
ponents. To complete the declarative deployment of the entire system,
different configuration files must be created for each abstraction.

Configuring Deployments

As explained in Section 7.2.1, Kubernetes manages containers through
the Pod abstraction, but it does so indirectly through the Deployment ab-
straction. The Deployment manages the scaling and updating of Pods, al-
lowing declarative management of the desired state of eachmicroservice,
including the desired number of replicas. Listing 7.7 shows the YAML
file for the Deployment configuration of the grpc-server microservice
depicted in Figure 7.8.

Listing 7.7: grpc-server-
deployment.yaml for configuring
gRPCServer.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: grpc-server-deployment
5 spec:
6 replicas: 1
7 selector:
8 matchLabels:
9 component: grpc-server

10 template:

7.2 Deploying Microservices on Kubernetes 85

11 metadata:
12 labels:
13 component: grpc-server
14 spec:
15 containers:
16 - name: grpc-server
17 image: .../grpc-server
18 ports:
19 - containerPort: 9090
20 name: grpc-port

Configuring Services

The Service abstraction in Kubernetes facilitates communication between
pods within a cluster. Services ensure that there are consistent endpoints
for pods, even if their underlying IPs change. Services also enable com-
munication between the pods and external clients. The YAML Service
configuration file for the grpc-server is given in Listing 7.8. By specify-
ing the service type, the port, and the selector to match the label of the
pods, the Service is created to expose the grpc-server pods.

Listing 7.8: grpc-server-service.yaml
for configuring gRPCServer.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: grpc-server-service
5 spec:
6 type: LoadBalancer
7 selector:
8 component: grpc-server
9 ports:
10 - port: 80
11 targetPort: 9090
12 name: grpc-port

Configuring PVC

Containers are better suited for stateless services. For stateful services,
such as a database, a better approach is to put the data in a Persistent
Volume (PV) that can store data permanently and persist even if the Pod
fails. The Persistent Volume Claim (PVC) is a Kubernetes abstraction
used to declare the storage requirements of the Pod. In other words, it
specifies how much storage is required for the Pod to function properly.
Listing 7.9 provides the YAML file for configuring a PVC.

Listing 7.9: ais-database-pvc.yaml for
configuring a PVC.

1 apiVersion: v1
2 kind: PersistentVolumeClaim
3 metadata:
4 name: ais-database-pvc
5 spec:
6 accessModes:
7 - ReadWriteOnce
8 resources:
9 requests:
10 storage: 10Gi

86 7 Deploying Microservices

Configuring Ingress

In Kubernetes, Ingress acts as a reverse proxy that routes external traf-
fic to the appropriate Services within the cluster. It provides an easy
and flexible way to manage external access to microservices. Ingress is
placed in front of the Services and listens for requests coming from ex-
ternal sources. Based on the hostname and path of the request, Ingress
routes the requests to the appropriate Service. Listing 7.10 provides a
YAML file for configuring Ingress and enabling external access to the
gRPC server.

Listing 7.10: ingress.yaml for configur-
ing Ingress.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: ingress
5 annotations:
6 kubernetes.io/ingress.class: nginx
7 cert-manager.io/cluster-issuer: letsencrypt-prod
8 nginx.ingress.kubernetes.io/rewrite-target: /
9 spec:

10 tls:
11 - hosts:
12 - ...
13 - ...
14 secretName: ...-tls
15 rules:
16 - host: ...
17 http:
18 paths:
19 - path: /...
20 pathType: Prefix
21 pathRewrite: /...
22 backend:
23 service:
24 name: grpc-server-service
25 port:
26 name: grpc-port
27 - ...

Configuring TLS

Ensuring secure access to the system is an essential aspect that must be
taken into account in designing and developing a modern maritime in-
formation support system. In order to protect the transmission of data
over the internet, the HTTPS protocol is usually employed, with encryp-
tion provided by Transport Layer Security (TLS) or Secure Sockets Layer
(SSL). In Kubernetes, a TLS certificate can be configured to secure com-
munication between clients and services. Listings 7.11 and 7.12 provide
the YAML configuration files for two different abstractions, ClusterIssuer
and Certificate, respectively. The ClusterIssuer is used to specify the is-
suer of the certificate, while the Certificate is used to define the Domain
Name System (DNS) names and the Secret abstraction to use for encryp-
tion. The Secret contains the TLS certificate and key, which are used to
encrypt the data exchanged between clients and servers. By configuring
TLS, sensitive information can be protected from unauthorized access

7.3 Summary 87

and eavesdropping, thereby enhancing the overall security of the sys-
tem.

Listing 7.11: issuer.yaml for configur-
ing the TLS certificate issuer.

1 apiVersion: cert-manager.io/v1
2 kind: ClusterIssuer
3 metadata:
4 name: letsencrypt-prod
5 spec:
6 acme:
7 server: https://acme-v02.api.letsencrypt.org/directory
8 email: ...
9 privateKeySecretRef:
10 name: letsencrypt-prod
11 solvers:
12 - http01:
13 ingress:
14 class: nginx

Listing 7.12: certificate.yaml for con-
figuring the TLS certificate service.

1 apiVersion: cert-manager.io/v1
2 kind: Certificate
3 metadata:
4 name: ...-tls
5 spec:
6 secretName: ...-tls
7 issuerRef:
8 name: letsencrypt-prod
9 dnsNames:
10 - ...
11 - ...

7.3 Summary

Chapter 7 discussed the deployment of modern maritime information
support system microservices in a containerized environment. The use
of containerization technology was proposed to simplify the deployment
process, which is otherwise cumbersome due to the granularization of
microservices into individual, independent components. Both Docker
and Kubernetes provide efficient and effective methods for deploying
microservices, with Docker offering a straightforward deployment solu-
tion and Kubernetes offering high scalability and availability capabilities,
which are essential for demonstrating the benefits of a microservices ar-
chitecture. Overall, this chapter highlighted the important role of con-
tainerization and container orchestration in deployingmicroservices and
the benefits they provide in terms of flexibility, availability, and scalabil-
ity.

Testing Microservices 8
8.1 General Idea and Test

Environment 89
8.2 Test Methods and Test

Results 90
8.3 Discussion 92
8.4 Summary 93

The previous chapters defined and implemented both REST and gRPC-
based microservices for serving AIS data. This chapter will test these
services by deploying them to a remote server.

8.1 General Idea and Test Environment

This chapter aims to compare the performance of the REST API and the
gRPC API developed in the previous chapters. To achieve this, two spe-
cific tasks will be tested: querying static AIS information for a single
vessel and querying dynamic AIS information for multiple vessels in the
surrounding sea. These tasks were chosen for the following reasons:

▶ Single-vessel static AIS data has a small data size, while multi-
vessel dynamic AIS data has a large data size. Comparing the per-
formance of the REST and gRPC APIs in handling different data
payloads can provide insight into their relative strengths andweak-
nesses;

▶ The gRPCAPI uses unary RPC for single-shipAIS static data queries,
while the REST API uses standard REST communication. Compar-
ing the performance of these two communication modes can eval-
uate the effectiveness of using gRPC’s unary RPC for static naviga-
tional information queries;

▶ The gRPC API uses server-streaming RPC for multi-ship AIS dy-
namic data queries, while the REST API uses standard REST com-
munication. Comparing the performance of these two communica-
tion modes can evaluate the effectiveness of using gRPC’s server-
streaming RPC for dynamic navigational information queries.

To test the performance of the two APIs, three microservices have been
developed using different communication models and programming lan-
guages. These services are identified as follows:

grpc-go Microservice built in Go and provides gRPC services.
rest-go Microservice built in Go and provides REST services.
rest-js Microservice built in Node.js and provides REST services.

The three services were built based on the microservices defined in the
previous chapters, with some modifications made for testing purposes.
These modifications were implemented for the following reasons:

▶ To ensure consistent data for each test, the response returned by
each service is static and represents a fixed point in time, rather
than real-time data from the AIS database. This is achieved by ter-
minating the data reception process, i.e., the service is not actively
receiving data and the database is not being updated;

90 8 Testing Microservices

▶ To avoid any performance issues caused by the cold start of the
service and data transfer between the database and the service, all
data is read into memory in advance to simulate the actual opera-
tion of the service;

▶ All computational tasks have been removed from the workflow
of the services, with the services solely focused on returning the
queried data;

▶ The tests have been streamlined for simplicity, excluding other fea-
tures such as user authentication. This also means that the size of
the request header and body (if applicable) is smaller than what
would be needed in a real production environment.

The microservices used for testing are deployed in a containerized fash-
ion, as described in Chapter 7, on the Google Kubernetes Engine (GKE)11: A managed service for running con-

tainerized applications on Google Cloud
Platform (GCP).

using the n2d-standard-2 machine type. The test environment has two
second-generation AMD EPYC series CPUs clocked at 2.25 GHz, 8.34 GB
of memory, and 29.34 GB of ephemeral storage. However, since the Ku-
bernetes system requires certain resources, the specific resources that
can be allocated to each service are slightly smaller, as shown in Table
8.1.

Table 8.1: Overview of test environment.

Service Label API Type Language Allocatable CPU Allocatable Memory Allocatable Storage

grpc-go gRPC Go 1.93 CPU 6.33 GB 9.23 GB
rest-go REST Go 1.93 CPU 6.33 GB 9.23 GB
rest-js REST Node.js 1.93 CPU 6.33 GB 9.23 GB

All tests are performed on a physical machine equipped with a 10-core
Apple M1 Pro chip, 16 GB of LPDDR5 memory with a maximum band-
width of 200 GB/s, and an APPLE SSD. The operating system used is
macOS Monterey version 12.5.1.

8.2 Test Methods and Test Results

To test the performance of the microservices, intensive requests are sent
from the client side to the services remotely deployed on GKE (server
side) for a duration of 60 seconds, and the responses are recorded. Statis-
tics are collected both on the client and server sides, and the analysis
is based on these statistics. The performance test is conducted with the
following specific parameters:

Test Duration 60 seconds;
gRPC Client Concurrency 1 or 10 (number of gRPC request workers);
gRPC Client Connections 1 or 10 (concurrency is evenly distributed across

the connections, i.e., one connection per concurrency);
REST Client Concurrency 1 or 10 (number of REST request workers);
Requests per Second (QPS) 0 (no limit on the request rate);
gRPC Request Body Payload 0 to 5 bytes;
REST Request Body Payload not applicable to the HTTP GET method.

8.2 Test Methods and Test Results 91

To ensure the reliability and generality of the test results, performance
testing was conducted at nine different locations, including:

▶ Nemuro-shi, Hokkaido, Japan;
▶ Otaru-shi, Hokkaido, Japan;
▶ Hakodate-shi, Hokkaido, Japan;
▶ Akita-shi, Akita, Japan;
▶ Osaka-shi, Osaka, Japan;
▶ Izumo-shi, Shimane, Japan;
▶ Hiroshima-shi, Hiroshima, Japan;
▶ Shimonoseki-shi, Yamaguchi, Japan;
▶ Sasebo-shi, Nagasaki, Japan.

Testing in multiple locations ensures that the results are not specific to
a single geographic area and better captures the real-world performance
of the APIs in different scenarios. The average of the tests at these loca-
tions was then used for analysis. Specifically, the following items were
compared and analyzed across services:

Client-side statistics:

Request Body Payload Size of the payload for each request (in bytes);
Response Body Payload Size of the payload for each response (in bytes);
Throughput Number of successful data transfers between server and

client over the test duration.
Average Latency Average of all the latency values (in milliseconds);
Latency Distribution Distribution of the latency values (inmilliseconds);
Status Distribution Distribution of the status for each response (in per-

cent).

Server-side statistics:

Image Size Size of each containerized service image (in megabytes);
CPU Usage Number of CPUs used by each service;
Memory Usage Memory used by each service (in megabytes).

The test results are summarized in Table 8.2.

Table 8.2: Summary of test result.

Task Single-Ship Static Data Multi-Ship Dynamic Data

Service grpc-go rest-go rest-js grpc-go rest-go rest-js

Concurrency 1 10 1 10 1 10 1 10 1 10 1 10

Request Body 5 – – 0 – – B
Response Body 99 203 203 8400 16619 16619 B

Throughput 2311 22979 1140 8264 1122 8164 1844 12109 750 4095 738 4108 #
Latency / Avg. 30.7 29.6 61.8 75.3 62.4 77.8 38.4 138.5 95.8 200.5 97.8 236.5 ms
Latency / 50% 27.3 26.9 57.8 59.3 58.9 59.7 34.8 109.3 89.3 156.8 88.8 155.4 ms
Latency / 75% 29.7 29.7 62.2 66.7 63.2 67.6 39.8 163.9 98.6 223.8 98.2 253.7 ms
Latency / 90% 34.9 35.6 68.9 83.2 70.0 84.4 48.1 239.1 112.3 332.7 117.4 475.2 ms
Latency / 95% 40.6 42.2 76.2 101.0 76.3 99.7 62.2 301.2 121.4 429.7 133.8 592.1 ms
Latency / 99% 71.4 72.9 118.0 335.8 128.0 378.1 95.8 528.1 167.0 784.5 189.1 1067.3 ms

Status OK 100 100 100 100 100 100 100 100 100 100 100 100 %

Image Size 35.2 35.77 125.4 35.2 35.77 125.4 MB
CPU Usage 0.010 0.055 0.004 0.025 0.013 0.051 0.029 0.085 0.020 0.027 0.040 0.052 #

Memory Usage 8.67 10.14 9.28 9.56 43.39 50.99 9.23 10.66 9.71 9.64 43.28 45.59 MB

92 8 Testing Microservices

8.3 Discussion

The results in Table 8.2 show that the payloads of gRPC are smaller than
those of REST due to the compact binary format of the protocol buffers,
compared to themore verbose text-based format of JSON commonly used
in REST. Additionally, gRPC’s built-in support for streaming and flow
control can reduce payload sizes in certain scenarios. For instance, when
a client requests static data for a ship of MMSI 235050802, the associated
services return the result, where the message body size of the REST API
is approximately 203 bytes, while the gRPC API with protocol buffers
transmits a message body of only 99 bytes.

In addition, gRPC’s use of HTTP/2 as its transport protocol enablesmulti-
plexing, which allows for multiple requests and responses to be transmit-
ted simultaneously over a single connection, reducing the overhead asso-
ciated with opening and closing multiple connections. This feature not
only increases server throughput and reduces data transfer latency, but
also proves to be particularly advantageouswhen using server-streaming
RPC for dynamic data transfers, as demonstrated in Table 8.2.

While gRPC offers benefits such as smaller payloads and multiplexing
over HTTP/2, it also requires binary encoding and decoding of messages,
which can make the service more computationally expensive compared
to its REST counterpart. In addition, the flow control and multiplexing
features of HTTP/2 may introduce additional overhead. As shown in the
table, the gRPC servicemay consumemore CPU resources than the REST
service.

To mitigate the increased CPU usage of gRPC, it is critical to choose the
appropriate hardware and optimize the service implementation. With
careful hardware selection, efficient algorithms, and effective caching
strategies, the benefits of gRPC can outweigh the costs, resulting in higher
performance and better scalability.

The choice of programming language can have a significant impact on
the performance of the API services. As shown in the table, Go has ad-
vantages over Node.js in terms of image size, CPU usage, and memory
usage, while still providing similar performance metrics like throughput
and latency. This is because Go has a more lightweight standard library,
produces statically linked binaries, and uses a more efficient memory
management system. In contrast, Node.js includes its entire runtime en-
vironment in the image and has a less efficient garbage collection mech-
anism, which can lead to higher CPU and memory usage.

However, it is important to note that there is no one-size-fits-all solu-
tion when it comes to choosing a programming language for developing
web APIs. The choice of language depends on various factors, including
project requirements, existing technology stack, and development team
expertise. Therefore, this dissertation does not make any definitive con-
clusions about which programming language is superior; it simply eval-
uates the performance differences between Go and Node.js in specific
scenarios.

Ultimately, when designing and developing a modern maritime informa-
tion support system, developers should carefully consider the project re-
quirements, evaluate different programming languages based on their

8.4 Summary 93

performance, and choose the language that best meets the needs of the
industry.

8.4 Summary

Chapter 8 evaluated the performance of the REST and gRPC APIs for
serving AIS data. Three services were created for testing and the results
showed that gRPC had smaller payloads and better server throughput
due to its use of the compact binary format protocol buffers and HTTP/2
as the transport protocol. However, gRPC had higher CPU usage due to
binary encoding and decoding. The comparison between Go and Node.js
showed that microservices developed in Go have a smaller image size,
lower CPU usage, and more efficient memory management. In practice,
however, the choice of programming language depends on various fac-
tors. Overall, this chapter highlighted the importance of carefully eval-
uating the performance of different APIs and programming languages
when designing, developing, and deploying modern maritime informa-
tion support systems. In particular, the gRPC framework and the Go
programming language are preferred when the right conditions are met,
as they provide excellent performance benefits and efficiency.

Conclusions and Outlook 9
9.1 Conclusions 95
9.2 Outlook 97

This chapter provides insights into the key findings and outcomes of the
research conducted, as well as an outlook on future research directions
and potential areas for improvement in the field.

9.1 Conclusions

In this dissertation, a comprehensive approach was proposed for design-
ing, developing, and deploying modern maritime information support
systems. The approach emphasizes the use of flexible software archi-
tectures, efficient communication mechanisms, and versatile application
forms to address the complexities of modern maritime information sup-
port systems.

Through thorough analysis and discussion, it was concluded that mi-
croservices architecture is a suitable solution for systems with numer-
ous functions and unevenly distributed loads. The proposed approach
granularizes the monolithic system into microservices to reduce the cou-
pling between services, leading to improved scalability, availability, and
maintainability of the system.

It should be noted that while microservices architecture may not be the
best solution for every system, the proposed approach provides a flexible
and adaptable framework for addressing the challenges faced by mod-
ern maritime information support systems. The approach offers a poten-
tial solution for organizations looking to modernize their systems, while
also providing a foundation for further research and development in the
field.

In systems with a microservices architecture, communication between
services is a critical aspect to consider. Different communication meth-
ods, such as synchronous or asynchronous, can be used, each with its
own advantages and disadvantages. Synchronous communication, such
as using RESTful APIs, provides reliable message transmission, but may
have a negative impact on efficiency. On the other hand, asynchronous
communication, such as message broadcasting, can improve efficiency
by eliminating acknowledgement steps, but may sacrifice reliability. To
ensure effective communication in microservice systems, it is important
to carefully evaluate the specific requirements of the system and choose
the appropriate communication mechanism accordingly.

The role of the backend system in this approach is to handle data and
primary and heavy business logic, while the frontend is responsible for
presenting views and interacting with users. The two systems commu-
nicate through APIs, with RESTful API being the most widely adopted
solution. However, gRPC, a newer approach released in 2015, offers ben-
efits such as improved performance, consistency, and stability, making it

96 9 Conclusions and Outlook

a more suitable option for communication between microservices. Nev-
ertheless, gRPC’s lack of browser-side compatibility makes it inappro-
priate for web applications, which is why this dissertation adopted both
RESTful and gRPC APIs as the primary means of inter-service communi-
cation.

For the frontend, compatibility is a critical factor to ensure smooth usage
of the relevant services on a variety of devices, regardless of platform ar-
chitecture or operating system. Three options were considered to ensure
compatibility: web applications, hybrid applications, and cross-platform
applications. Of these options, web applications offer the most compat-
ibility as they can run on almost all modern browsers using the latest
frontend frameworks or libraries. However, the limitations of browsers
at the operating system level and the performance of the browsers them-
selves can often result in a less-than-optimal user experience and limited
access to device hardware and software resources. To balance compati-
bility, resource accessibility, and user experience at a lower cost, this dis-
sertation chose to use cross-platform applications in certain application
scenarios.

Containerization technology was introduced to address the problem of
developing, testing, and deploying applications across heterogeneous en-
vironments, including processors with different architectures. Services
were containerized using Docker, making them independent, portable,
and reusable. For simple deployment tasks, such as deploying a system
on a ship LAN, microservices could be deployed using Docker to achieve
process isolation. However, once the scope of services, scale of data, and
complexity of the system reached a certain level, container orchestration
technologies were considered necessary for deploying microservices at
scale. In the industry, Kubernetes had become the de facto standard for
container orchestration.

The BlueNavi frontend application was designed and developed to ad-
dress practical issues in the maritime industry. Using a portable Class-
B AIS device as the data source, the backend microservices can be de-
ployed in a portable single-board computer and connected to the fron-
tend through the ship’s LAN. This solution effectively tackles the prob-
lem of AIS non-carrying vessels being unable to receive real-time navi-
gational information from their surroundings. Additionally, the system
demonstrates its flexibility by allowing the backend deployment to be
omitted if the user has internet access and can instead utilize cloud-based
backend services.

In the field of MET, RedNavi was designed and developed to make 1D
or 2D navigational information three-dimensional. By constructing a
computer-generated 3D representation of the navigational information,
RedNavi serves as a useful tool for education, training, or even for as-
sisting OOWs with their lookouts. Furthermore, RedNavi and BlueNavi
can leverage the same backend services and data (i.e., the same API), en-
abling users who need both systems to avoid redundant deployments.
This demonstrates the versatility and efficiency of the system.

Finally, the cross-platform application, PinkNavi, was designed and de-
veloped to bring the full potential of hardware resources and perfor-
mance of user devices, especially smartphones with built-in GPS. As a
result, small fishing boats and yachts without navigational equipment

9.2 Outlook 97

such as AIS and GPS are now able to exchange maritime information, es-
pecially navigational information. Furthermore, various communication
patterns have been created to cater to different application scenarios and
requirements, enabling further exploration into the integration of mar-
itime information exchange based on IP communication.

9.2 Outlook

The purpose of this dissertation is to thoroughly investigate the design,
development, and deployment of modern maritime information support
systems. However, given the constraints of time, resources, and individ-
ual abilities, not all aspects of the topic could be explored in depth. This
section will highlight some of the issues that were not fully addressed or
under-explored in the previous chapters of the dissertation, with the aim
of providing insights for future research.

Distributed Data and Database

In Chapter 7, this dissertation investigated the implementation of Kuber-
netes container orchestration technology to ensure the reliability and
scalability of the system’s services. However, the data are stored in a PV,
which may not be sufficient for large-scale systems. There are several
challenges to consider when dealing with data storage and management
in these systems, including:

Scalability As the system grows and the number of users increases, the
amount of data and Input/Output (I/O) load can become enormous,
potentially exceeding the processing capacity of a single server
host. In these cases, it is necessary to consider distributing the
data or load.

Availability Inevitable failures of a single data server can affect the func-
tionality of the entire system. Tomitigate this, redundancy or back-
ups from other data centers are necessary.

Latency The geographic proximity of data and services to users can have
a significant impact on system latency and user experience. In
particular, time-sensitive data such as AIS dynamic information
should be stored on the nearest data server to minimize access la-
tency.

Data Consistency Keeping data consistent and up-to-date across all data
servers can be a challenge in a distributed database system.

Security Protecting the sensitive and critical data stored in the system
is paramount. Therefore, it is necessary to consider security mea-
sures such as encryption, access control, and regular backups.

To address these challenges, a variety of technologies and techniques
can be used, including sharding, clustering, partitioning, and data repli-
cation. In addition, it is necessary to evaluate and select appropriate
database management systems that can support the needs of the sys-
tem, including distributed datamanagement, high-performance data pro-
cessing, and real-time data analysis. However, implementing these tech-
niques requires careful planning and design considerations.

98 9 Conclusions and Outlook

Security

Security is an important aspect of any system, but it is underrepresented
in the research conducted in this dissertation. The backend APIs, devel-
oped in Chapters 3 and 6, were built using REST and gRPC, respectively,
and were exposed to the frontend applications and third parties in Chap-
ter 7. This, however, poses a security risk as exposing more portals to
the public increases the system’s vulnerability to attack.

In a production environment, security must be a top priority, and it must
be considered from two perspectives: communication channel security
and authentication and access control. Although in Section 7.2.1, the use
of HTTPS and TLS certificates for encrypting communications over the
internet was briefly mentioned, the dissertation does not delve into the
topic of user authentication, which is crucial for identifying visitors and
their service requests.

Moreover, measures must be taken to prevent unauthorized access and
to protect sensitive data from malicious attacks, such as Man-in-The-
MiddleAttacks (MITMs), SQL injection, andCross-Site Scripting (XSS).

In summary, security should be treated as a critical factor in the develop-
ment and deployment of modern maritime information support systems,
and there is a need for further research to address these security concerns
in depth.

Network Reliability

Despite the reliable communication mechanism provided by TCP and IP
at the transport layer, data transmission still faces physical limitations.
For instance, early satellite communications for internet access had sig-
nificant latency issues, which only improved with advances in satellite
communication technology.

Similarly, data exchange solutions that rely on 4G / 5G technology also
face coverage and signal strength limitations, particularly at sea. To en-
sure optimal service coverage and utilization, it is necessary to make
improvements to the existing communication infrastructure from a tech-
nology standpoint.

User Experience

The design and development of maritime information support systems
should take into account the critical aspect of user experience. The fron-
tend web applications or cross-platform applications designed in Chap-
ters 4 and 6 are only prototypes studied at the system architecture level.
When these applications become products, it is essential that user experi-
ence be considered in their design and development, from the interaction
logic of the entire system to the design of each component of the user
interface. This includes ease of use, user-centered design, intuitive navi-
gation, and visually appealing graphics.

Human-Computer Interaction (HCI) is a theoretical domain that covers
user experience design. However, practical considerations are just as im-
portant in ensuring the success and adoption of these applications in the

9.2 Outlook 99

marketplace. The user experience can be improved through continuous
user testing and feedback, as well as by staying abreast of the latest HCI
design trends and best practices. This helps to meet the evolving needs
and preferences of users and provide a seamless and enjoyable experi-
ence. Therefore, further research is needed to explore and optimize the
user experience in these systems, from design to testing and feedback.

Non-Technical Factors

In addition to technical advancements, the success of modern maritime
information support systems is also significantly influenced by various
non-technical factors. These include culture, policy, laws and regula-
tions, as well as the revision of international conventions that govern
maritime activities worldwide.

The establishment of industry standards and their widespread implemen-
tation is a critical challenge facing the industry. This requires the com-
bined efforts and collaboration of various stakeholders, including tech-
nical and non-technical experts, industry players, government agencies,
and international organizations. A multidisciplinary approach is neces-
sary to address this complex issue and ensure the harmonization of in-
dustry standards and practices.

In conclusion, non-technical factors are just as important as technical
ones in shaping the development and success of modern maritime in-
formation support systems. Further research is needed to identify the
non-technical challenges facing the industry, and to find ways to address
them effectively to ensure its growth and success.

Bibliography

Here are the references in citation order.

[1] PETER BELLWOOD. MAN’S CONQUEST OF THE PACIFIC - THE PREHISTORY OF SOUTHEAST ASIA
AND OCEANIA. New York: Oxford University Press, Dec. 31, 1978 (cited on page 1).

[2] Stan Lusby, Robert Hannah, and Peter Knight. “Navigation and Discovery in the Polynesian Oceanic
Empire.” In: Hydrographic Journal 131.132 (2009), pp. 17–25 (cited on page 1).

[3] United Nations Conference on Trade and Development. Review of Maritime Transport 2022. United
Nations, Geneva, Nov. 2022, p. 195 (cited on page 1).

[4] Goran Dominioni and Dominik Englert. Carbon Revenues From International Shipping: Enabling an
Effective and Equitable Energy Transition - Technical Paper. Technical Paper. Washington, DC: World
Bank, Apr. 1, 2022. (Visited on 02/11/2023) (cited on page 1).

[5] H. Gatty. The Raft Book: Lore of the Sea and Sky. G. Grady Press, 1943 (cited on page 1).

[6] Great Britain Navy Department. Admiralty Manual of Navigation: BR 45(1). BR Series 1. Stationery
Office, 1997 (cited on page 1).

[7] R. Jones. The Lighthouse Encyclopedia: The Definitive Reference. Second edition. G - Reference, Informa-
tion and Interdisciplinary Subjects Series. Globe Pequot Press, 2004 (cited on page 1).

[8] United States Hydrographic Office. The International Code of Signals: For the Use of All Nations. Amer.,
1890 (cited on page 1).

[9] Carlota Perez. “Technological revolutions and techno-economic paradigms.” In: Cambridge Journal of
Economics 34.1 (Sept. 2009). _eprint: https://academic.oup.com/cje/article-pdf/34/1/185/4756731/bep051.pdf,
pp. 185–202. doi: 10.1093/cje/bep051 (cited on page 2).

[10] Marija Jović et al. “Digitalization in Maritime Transport and Seaports: Bibliometric, Content and The-
matic Analysis.” In: Journal of Marine Science and Engineering 10.4 (Apr. 2022). Number: 4 Publisher:
MultidisciplinaryDigital Publishing Institute, p. 486. doi: 10.3390/jmse10040486. (Visited on 02/12/2023)
(cited on page 2).

[11] Digitalization in the maritime industry. DNV. Mar. 8, 2021. url: https://www.dnv.com/Default (visited
on 02/12/2023) (cited on page 2).

[12] John Maguire. The History of Maritime Communication and More! CruiseDirect.com. Mar. 15, 2019. url:
https://www.cruisedirect.com/the_history_of_maritime_communication (visited on 12/04/2022)
(cited on page 2).

[13] MIC. Maritime Communications. MIC The Radio Use Website | License | Maritime Communications.
July 17, 2015. url: https://www.tele.soumu.go.jp/e/adm/system/satellit/marine/ (visited on
12/04/2022) (cited on page 2).

[14] Statista Research Department. Market share of mobile telecommunication technologies worldwide from
2016 to 2025, by generation. Aug. 11, 2022 (cited on page 3).

[15] ST Engineering iDirect. “IP Trunking.” Dec. 4, 2020. (Visited on 12/04/2022) (cited on page 3).

[16] IALA. G1117: VHF Data Exchange System (VDES) overview (Edition 2.0). Dec. 15, 2017 (cited on pages 3,
5).

[17] Alena Kabelov¿ and Libor Dost¿lek. Understanding TCP/IP: A clear and comprehensive guide to TCP/IP
protocols. Illustrated edition. Birmingham: Packt Publishing, May 11, 2006. 480 pp. (cited on page 4).

[18] IMO. Resolution A.1106(29) – Revised Guidelines for The Onboard Operational Use of Shipborne Automatic
Identification Systems (AIS). Dec. 2, 2015. url: https://wwwcdn.imo.org/localresources/en/OurWork/
Safety/Documents/AIS/Resolution%20A.1106(29).pdf (cited on pages 4, 35, 43).

https://doi.org/10.1093/cje/bep051
https://doi.org/10.3390/jmse10040486
https://www.dnv.com/Default
https://www.cruisedirect.com/the_history_of_maritime_communication
https://www.tele.soumu.go.jp/e/adm/system/satellit/marine/
https://wwwcdn.imo.org/localresources/en/OurWork/Safety/Documents/AIS/Resolution%20A.1106(29).pdf
https://wwwcdn.imo.org/localresources/en/OurWork/Safety/Documents/AIS/Resolution%20A.1106(29).pdf

[19] IHO. Navigation Warnings on the Web. Navigation Warnings on the Web | IHO. Dec. 21, 2021. url:
https://iho.int/navigation-warnings-on-the-web (visited on 11/30/2022) (cited on page 4).

[20] Pero Vidan, Josip Kasum, and Marijan Zujić. “Meteorological Navigation and ECDIS.” In: PROMET -
Traffic&Transportation 22 (Sept. 2010). doi: 10.7307/ptt.v22i5.202 (cited on page 4).

[21] IMO. International Convention for the Safety of Life at Sea (SOLAS), 1974. Nov. 1, 1974. url: https:
//www.imo.org/en/About/Conventions/Pages/International-Convention-for-the-Safety-of-
Life-at-Sea-(SOLAS),-1974.aspx (visited on 11/06/2022) (cited on pages 4, 35).

[22] IMO. Resolution A.851(20) – General Principles for Ship Reporting Systems and Ship Reporting Require-
ments. Nov. 27, 1997. url: https://wwwcdn.imo.org/localresources/en/OurWork/Safety/Documents/
AIS/Resolution%20A.1106(29).pdf (cited on page 4).

[23] IMO. “Shipping Emergencies - Search and Rescue and the GMDSS.” In: (Mar. 1999) (cited on page 4).

[24] Colin R. Pratt and Geoff Taylor. “AIS – A Pilot’s Perspective.” In: Journal of Navigation 57.2 (2004). Pub-
lisher: Cambridge University Press, pp. 181–188. doi: 10.1017/S0373463304002772 (cited on page 5).

[25] Marko Perkovic et al. “The use of integrated maritime simulation for education in real time.” In: Re-
searchGate/Pub 228912986 (2013), pp. 461–478 (cited on page 5).

[26] Dong Yang et al. “How big data enriches maritime research – a critical review of Automatic Identi-
fication System (AIS) data applications.” In: Transport Reviews 39.6 (2019), pp. 755–773. doi: https:
//doi.org/10.1080/01441647.2019.1649315 (cited on page 5).

[27] Joakim Trygg Mansson, Margareta Lutzhoft, and Ben Brooks. “Joint Activity in the Maritime Traffic
System: Perceptions of Ship Masters, Maritime Pilots, Tug Masters, and Vessel Traffic Service Oper-
ators.” In: Journal of Navigation 70.3 (2017). Publisher: Cambridge University Press, pp. 547–560. doi:
10.1017/S0373463316000758 (cited on page 5).

[28] Bernhard Berking. “Potential and benefits of AIS to Ships and Maritime Administrations.” In: WMU
Journal ofMaritimeAffairs 2.1 (Apr. 1, 2003), pp. 61–78. doi: 10.1007/BF03195034. (Visited on 12/04/2022)
(cited on page 5).

[29] Centre of Excellence for Operations in Confined and Shallow Waters et al. “From Fragmented Sea
Surveillance to Coordinated Maritime Situational Awareness.” In: Maritime Situational Awareness (Apr.
2015) (cited on page 5).

[30] EberhardWolff.Microservices: Flexible Software Architecture. Google-Books-ID: zucwDQAAQBAJ. Addison-
Wesley Professional, Oct. 3, 2016. 861 pp. (cited on pages 13, 14).

[31] Thomas Erl. Service-Oriented Architecture: Analysis and Design for Services and Microservices. 2nd. USA:
Prentice Hall Press, 2016. 416 pp. (cited on page 13).

[32] Arne Koschel, Irina Astrova, and Jeremias Dötterl. “Making the move to microservice architecture.”
In: 2017 International Conference on Information Society (i-Society). 2017 International Conference on
Information Society (i-Society). July 2017, pp. 74–79. doi: 10.23919/i-Society.2017.8354675 (cited
on page 13).

[33] DaviMonteiro et al. “Building orchestratedmicroservice systems using declarative business processes.”
In: Service Oriented Computing and Applications 14.4 (Dec. 1, 2020), pp. 243–268. doi: 10.1007/s11761-
020-00300-2. (Visited on 10/28/2022) (cited on page 14).

[34] Sam Newman. Building Microservices: Designing Fine-Grained Systems. 2nd Edition. Beijing Boston
Farnham Sebastopol Tokyo: O’Reilly Media, Aug. 10, 2021. 400 pp. (cited on page 14).

[35] Kasun Indrasiri and Prabath Siriwardena. Microservices for the Enterprise: Designing, Developing, and
Deploying. 1st Edition. New York, NY: Apress, Nov. 15, 2018. 444 pp. (cited on pages 17, 18).

[36] Jim Webber, Savas Parastatidis, and Ian Robinson. REST in Practice: Hypermedia and Systems Architec-
ture. 1st edition. Beijing Köln: O’Reilly Media, Oct. 5, 2010. 448 pp. (cited on page 18).

[37] ITU.M.1371 : Technical characteristics for an automatic identification system using time division multiple
access in the VHF maritime mobile frequency band. 2014. url: https://www.itu.int/rec/R- REC-
M.1371-5-201402-I/en (visited on 10/24/2022) (cited on page 23).

https://iho.int/navigation-warnings-on-the-web
https://doi.org/10.7307/ptt.v22i5.202
https://www.imo.org/en/About/Conventions/Pages/International-Convention-for-the-Safety-of-Life-at-Sea-(SOLAS),-1974.aspx
https://www.imo.org/en/About/Conventions/Pages/International-Convention-for-the-Safety-of-Life-at-Sea-(SOLAS),-1974.aspx
https://www.imo.org/en/About/Conventions/Pages/International-Convention-for-the-Safety-of-Life-at-Sea-(SOLAS),-1974.aspx
https://wwwcdn.imo.org/localresources/en/OurWork/Safety/Documents/AIS/Resolution%20A.1106(29).pdf
https://wwwcdn.imo.org/localresources/en/OurWork/Safety/Documents/AIS/Resolution%20A.1106(29).pdf
https://doi.org/10.1017/S0373463304002772
https://doi.org/https://doi.org/10.1080/01441647.2019.1649315
https://doi.org/https://doi.org/10.1080/01441647.2019.1649315
https://doi.org/10.1017/S0373463316000758
https://doi.org/10.1007/BF03195034
https://doi.org/10.23919/i-Society.2017.8354675
https://doi.org/10.1007/s11761-020-00300-2
https://doi.org/10.1007/s11761-020-00300-2
https://www.itu.int/rec/R-REC-M.1371-5-201402-I/en
https://www.itu.int/rec/R-REC-M.1371-5-201402-I/en

[38] Urs Ramer. “An iterative procedure for the polygonal approximation of plane curves.” In: Computer
Graphics and Image Processing 1.3 (Nov. 1, 1972), pp. 244–256. doi: 10.1016/S0146-664X(72)80017-0.
(Visited on 02/15/2023) (cited on page 30).

[39] David H Douglas and Thomas K Peucker. “Algorithms for the reduction of the number of points re-
quired to represent a digitized line or its caricature.” In: Cartographica: The International Journal for
Geographic Information and Geovisualization 10.2 (Dec. 1973). Publisher: University of Toronto Press,
pp. 112–122. doi: 10.3138/FM57-6770-U75U-7727. (Visited on 02/15/2023) (cited on page 30).

[40] Christopher Ireland et al. “A classification of object-relational impedance mismatch.” In: First Interna-
tional Conference on Advances in Databases, Knowledge, and Data Applications (DBKDA). Cancun,
Mexico, Mar. 2009. (Visited on 12/04/2022) (cited on page 31).

[41] Andy Norris. “AIS Implementation – Success or Failure?” In: The Journal of Navigation 60.1 (Jan.
2007). Publisher: Cambridge University Press, pp. 1–10. doi: 10.1017/S0373463307004031. (Visited
on 11/06/2022) (cited on page 35).

[42] awwwards.com.What are Frameworks? 22 Best Responsive CSS Frameworks forWebDesign. Feb. 20, 2013.
url: https://www.awwwards.com/what-are-frameworks-22-best-responsive-css-frameworks-for-
web-design.html (visited on 11/07/2022) (cited on page 37).

[43] Google. Angular - Introduction to the Angular Docs. 2022. url: https://angular.io/docs (visited on
11/07/2022) (cited on page 38).

[44] Hongze Liu and Nobukazu Wakabayashi. “RedNavi: Building a 3D Scene of the Current Sea from AIS
Data.” In: Sustainability 14.19 (2022). doi: 10.3390/su141912572 (cited on page 40).

[45] Tao Liu, Depeng Zhao, and Mingyang Pan. “An approach to 3D model fusion in GIS systems and its
application in a future ECDIS.” In: Computers & Geosciences 89 (Apr. 1, 2016), pp. 12–20. doi: 10.1016/
j.cageo.2016.01.008. (Visited on 04/05/2022) (cited on page 40).

[46] Yuzuru Isoda et al. “Reconstruction of Kyoto of the Edo era based on arts and historical documents: 3D
urban model based on historical GIS data.” In: International Journal of Humanities and Arts Computing
3.1 (Oct. 1, 2009). Publisher: Edinburgh University Press, pp. 21–38. doi: 10.3366/ijhac.2009.0007.
(Visited on 04/22/2022) (cited on page 40).

[47] Sarah Batson, Robert Score, and Alex J. Sutton. “Three-dimensional evidence network plot system:
covariate imbalances and effects in network meta-analysis explored using a new software tool.” In:
Journal of Clinical Epidemiology 86 (June 2017), pp. 182–195. doi: 10.1016/j.jclinepi.2017.03.008
(cited on page 40).

[48] R. Cwilewicz and L. Tomczak. “Improvement of ship operational safety as a result of the application
of virtual reality engine room simulators.” In: Risk Analysis Vi: Simulation and Hazard Mitigation. Ed.
by C. A. Brebbia. WOS:000256668100052. Southampton: Wit Press/Computational Mechanics Publica-
tions, 2008, pp. 535–544. doi: 10.2495/RISK080521. (Visited on 04/25/2022) (cited on page 40).

[49] Evangelos Markopoulos et al. “Maritime Safety Fducation with VR Technology (MarSEVR).” In: 2019
10th Ieee International Conference on Cognitive Infocommunications (coginfocom 2019). ISSN: 2375-1312
WOS:000582418600048. New York: Ieee, 2019, pp. 283–288. (Visited on 04/25/2022) (cited on page 40).

[50] Steven C. Mallam, Salman Nazir, and Sathiya Kumar Renganayagalu. “Rethinking Maritime Education,
Training, and Operations in the Digital Era: Applications for Emerging Immersive Technologies.” In:
Journal ofMarine Science and Engineering 7.12 (Dec. 2019). Number: 12 Publisher:MultidisciplinaryDig-
ital Publishing Institute, p. 428. doi: 10.3390/jmse7120428. (Visited on 04/25/2022) (cited on page 40).

[51] Roy Thomas Fielding. “Architectural Styles and the Design of Network-based Software Architectures.”
PhD thesis. UNIVERSITY OF CALIFORNIA, IRVINE, 2000 (cited on pages 51, 52).

[52] Kasun Indrasiri and Danesh Kuruppu.GRPC - Up and Running: Building Cloud Native ApplicationsWith
Go and Java for Docker and Kubernetes. Boston: Oreilly & Associates Inc, Feb. 11, 2020. 188 pp. (cited
on pages 51, 54).

[53] GRPC Core: g_stands_for. Oct. 14, 2022. url: https://grpc.github.io/grpc/core/md_doc_g_stands_
for.html (visited on 11/13/2022) (cited on page 52).

https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1017/S0373463307004031
https://www.awwwards.com/what-are-frameworks-22-best-responsive-css-frameworks-for-web-design.html
https://www.awwwards.com/what-are-frameworks-22-best-responsive-css-frameworks-for-web-design.html
https://angular.io/docs
https://doi.org/10.3390/su141912572
https://doi.org/10.1016/j.cageo.2016.01.008
https://doi.org/10.1016/j.cageo.2016.01.008
https://doi.org/10.3366/ijhac.2009.0007
https://doi.org/10.1016/j.jclinepi.2017.03.008
https://doi.org/10.2495/RISK080521
https://doi.org/10.3390/jmse7120428
https://grpc.github.io/grpc/core/md_doc_g_stands_for.html
https://grpc.github.io/grpc/core/md_doc_g_stands_for.html

[54] casey.crane. The Advantages of HTTP2 –Why You ShouldMove on to HTTP2. Cheap SSL Security. July 26,
2019. url: https://cheapsslsecurity.com/p/the-advantages-of-http2/ (visited on 12/04/2022)
(cited on page 53).

[55] Ilya Grigorik.HTTP/2: A New Excerpt from High Performance Browser Networking. O’Reilly, May 1, 2015
(cited on page 53).

[56] Roberto Peon and Herve Ruellan. HPACK: Header Compression for HTTP/2. Request for Comments RFC
7541. Num Pages: 55. Internet Engineering Task Force, May 2015. doi: 10.17487/RFC7541. (Visited on
11/11/2022) (cited on page 54).

[57] Sufyan bin Uzayr. GoLang: The Ultimate Guide. CRC Press, Dec. 20, 2022 (cited on page 64).

[58] Laserlicht. Deutsch: Raspberry Pi 4 Model B von der Seite. July 3, 2019. (Visited on 02/18/2023) (cited on
page 80).

https://cheapsslsecurity.com/p/the-advantages-of-http2/
https://doi.org/10.17487/RFC7541

Special Terms

Numbers
1D One-Dimensional. 40, 96
2.5G Second and a Half Generation of Wireless Mobile Telecommunications Technology. 2
2D Two-Dimensional. 29, 36, 40, 41, 47, 96
2G Second Generation of Wireless Mobile Telecommunications Technology. 2
3D Three-Dimensional. 7, 40, 41, 47, 96
3G Third Generation of Wireless Mobile Telecommunications Technology. 2, 3
4G Fourth Generation of Cellular Communications Standards. 2, 3, 98
5G Fifth Generation of Cellular Mobile Communications. 2, 3, 98

A
AIS Automatic Identification System. 4, 7, 8, 15–18, 23–26, 28, 29, 31–33, 35, 36, 38, 40, 41, 43, 46, 47, 56, 60,

61, 68, 69, 81, 89, 93, 96, 97
API Application Programming Interface. 7–9, 14, 16, 18, 21, 35, 38, 40, 43, 44, 46, 51–53, 56, 64, 67, 69, 71,

89–93, 95, 96, 98
ARM Advanced RISC Machines. 80
ASCII American Standard Code for Information Interchange. 26
ASM Application Specific Message. 3

C
CISC Complex Instruction Set Computers. 80
CLI Command-Line Interface. 81
COG Course Over Ground. 23, 59
CORBA Common Object Request Broker Architecture. 51
CPU Central Processing Unit. 14, 90–93
CSS Cascading Style Sheets. 36, 37

D
DCPA Distance to Closest Point of Approach. 72
DGNSS Differential Global Navigation Satellite System. 24
DIY Do-It-Yourself. 35
DNS Domain Name System. 86
DOM Document Object Model. 38, 44, 45
DSC Digital Selective Calling. 4

E
ECDIS Electronic Chart Display and Information System. 35, 36
EDGE Enhanced Data Rates for GSM Evolution. 2
EOS End of Stream. 55
EPIRB Emergency Position-Indicating Radio Beacon. 4
ETA Estimated Time of Arrival. 23

G
GCP Google Cloud Platform. 90
GKE Google Kubernetes Engine. 90
GLONASS Global Navigation Satellite System. 69
GMDSS Global Maritime Distress and Safety System. 4
GPRS General Packet Radio Service. 2
GPS Global Positioning System. 68, 69, 96, 97
GT Gross Tonnage. 35

H
HCI Human-Computer Interaction. 98, 99
HF High Frequency. 2, 4
HOL Head-of-Line. 53, 54
HTML Hyper Text Markup Language. 36, 37, 44, 52
HTS High Throughput Satellite. 3
HTTP Hypertext Transfer Protocol. 18, 46, 51–54, 90
HTTP/2 Version 2 of the Hypertext Transfer Protocol. 9, 51–54, 61, 68, 92, 93
HTTPS Hypertext Transfer Protocol Secure. 86, 98

I
I/O Input/Output. 97
IALA International Association of Marine Aids to Navigation and Lighthouse Authorities. 3, 4
ID Identifier. 23–26, 32, 57–59
IEEE Institute of Electrical and Electronics Engineers. 3, 58, 59
IF Intermediate Frequency. 2
IMO International Maritime Organization. 4, 7, 43, 58, 68
IP Internet Protocol. 4, 5, 7, 35, 36, 38, 80, 85, 97, 98

J
JCG Japan Coast Guard. 38
JIT Just-in-Time. 70
JS JavaScript. 36, 37, 40, 41, 44, 63, 64, 70
JSON JavaScript Object Notation. 52, 53, 92
JST Japan Standard Time. 44

L
LAN Local Area Networks. 16, 38, 96
LPDDR Low-Power Double Data Rate. 90
LRIT Long-Range Identification and Tracking. 4
LTE Long Term Evolution. 3

M
MET Maritime Education and Training. 7, 40, 96
MF Medium Frequency. 2
MITM Man-in-The-Middle Attack. 98
MKD Minimum Keyboard Display. 36
MMSI Maritime Mobile Service Identity. 24, 41, 52, 57–59, 92
MVC Model-View-Controller. 38, 70

N
NAVTEX Navigational Telex. 3, 4
NMEA National Marine Electronics Association. 25

O
OOW Officer of the Watch. 43, 68, 96
OSI Open Systems Interconnection. 4

P
PV Persistent Volume. 85, 97
PVC Persistent Volume Claim. 82, 85

Q
QPS Requests per Second. 90
QZSS Quasi-Zenith Satellite System. 69

R
REST Representational State Transfer. 8, 9, 17, 18, 21, 51–53, 55, 56, 63, 89, 90, 92, 93, 95, 96, 98
RISC Reduced Instruction Set Computer. 80
RMI Remote Method Invocation. 51
ROT Rate of Turn. 59
RPC Remote Procedure Call. 51–61, 63, 89, 92

S
SAR Search and Rescue. 24, 43
SART Search and Rescue Transponde. 4
SDK Software Development Kit. 69
SOG Speed Over Ground. 23, 59
SOLAS International Convention for the Safety of Life at Sea. 4, 35
SQL Structured Query Language. 32, 98
SSD Solid-State Drive. 90
SSL Secure Sockets Layer. 86

T
TCP Transmission Control Protocol. 4, 53, 54, 98
TCPA Time to Closest Point of Approach. 72
TLS Transport Layer Security. 86, 98
TTL Time To Live. 16, 32

U
UDP User Datagram Protocol. 81
UI User Interface. 16, 37, 39, 41–45, 47, 70–72
URI Uniform Resource Identifier. 18
URL Uniform Resource Locator. 18, 44
UTC Coordinated Universal Time. 24

V
VDE VHF Data Exchange. 3
VDES VHF Data Exchange System. 3, 4
VDL VHF Data Link. 4, 5
VHF Very-High Frequency. 2–4, 16

W
WebGL Web Graphics Library. 40, 41

X
XML Extensible Markup Language. 52, 53
XSS Cross-Site Scripting. 98

Y
YAML YAML Ain’t Markup Language. 52, 81, 84–86

Acknowledgements

Thank you to my supervisor, Professor Wakabayashi Nobukazu, for your dedicated guidance and support
throughout my dissertation journey. Your expertise in the field and your willingness to make time for me
were invaluable. I am grateful for your trust in me and for allowing me to explore my topic of interest. Your
generosity in supporting me in this endeavor and providing me with the resources and tools necessary to
complete my dissertation was greatly appreciated. It has been a valuable learning experience.

Thank you to my co-authors, Professor Irena Jurdana and Assistant Professor Nikola Lopac, for your great
contributions to the research presented in BlueNavi: A Microservices Architecture-Styled Platform Providing
Maritime Information. Your expertise, insights, and hard work have been essential to the success of this work.
I am grateful for the opportunity to have collaborated with you.

Thank you to my committee members, Professor Kohsaka Yoshihito and Professor Liu Qiusheng, for your
insightful comments and suggestions. I am grateful for the time you have devoted to reviewing my disser-
tation. Your expertise and feedback have been valuable assets to my research and significantly improved its
quality.

Thank you to Ms. Nakao Kanako for your unwavering support, care, and encouragement throughout my
three years of study. I am grateful for your kindness and generosity to me and other international students.
Your dedication to our success and well-being is truly remarkable. And I would also like to thank the rest of
the teachers and staff at Kobe University for your support and assistance during my time as a student.

Thank you to my Japanese teachers, Associate Professor Saito Miho, Ms. Goya Akemi, Ms. Asada Keiko,
Associate Professor Park Sooyun, and Ms. Ohsaki Keiko from Kobe University; and Ms. Ochi Toshiko, Ms.
Higashino Masako, Mr. Konishi Koji, Ms. Nakase Etsuko, Ms. Kuno Miyuki, Ms. Abe Hiromi, Ms. Ueda
Taeko, Ms. Maruo Kuniko, and Mr. Ohtani Hirohide from Ashiya Municipal Shio-Ashiya Exchange Center;
for providing me not only with the best guidance in my Japanese language studies but also in life. Your words
of wisdom and actions have been a source of guidance for me and have helped me to navigate the challenges
and opportunities of life. I am forever grateful for your unwavering mentorship.

Thank you to my dad, Liu Dexin, and my mom, Huo Yaping, for your indispensable love and dedication over
the past thirty years. Despite the challenges posed by COVID-19, which prevented me from returning home
even once, you have been a constant source of motivation and inspiration, even from afar. Your devoted care
and concern has meant the world to me.

Thank you to all of my friends in Japan, in China, in Korea, in Indonesia, in America, in Spain, in Myanmar,
in Australia, in Canada, and all around the world for your steadfast friendship, encouragement, and compan-
ionship throughout my academic journey. I regret not being able to list all of your names here individually
due to space limitations and not wanting to inadvertently leave any of you out. I am incredibly grateful for
the opportunity to have had you as such wonderful friends and for the memories we have shared together.

I would also like to express my sincere gratitude to the Ministry of Education, Culture, Sports, Science and
Technology (MEXT) for their generous support throughout my research. I am deeply grateful for the funding
provided by the Japanese government scholarship, which has greatly aidedmy academic pursuits and allowed
me to fully focus on my research.

Last, but certainly not least, thank you to all the kind strangers I have met along the way. Though I may not
know your names, though our interactions may have been brief, and though our paths may never cross again,
your thoughtfulness and compassion have touched my heart and left a lasting impression. I am grateful for
the fleeting but beautiful moments we have shared.

Thank you, everyone.

For everything.

	Modern Maritime Information Support Systems With Microservices Architecture
	Contents
	Introduction
	Background and Motivation

	Background and Motivation
	The Main Ideas

	The Main Ideas
	Outline

	Outline
	Modern Software Architecture and Web Applications
	Designing Microservices
	A Glimpse of Microservices

	A Glimpse of Microservices
	Services in Pieces

	Services in Pieces
	Inter-Service Communication

	Inter-Service Communication
	Summary

	Summary
	Developing Microservices
	Handling Incoming AIS Data

	Handling Incoming AIS Data
	Different Types of AIS Messages
	Parsing AIS Messages
	Preparing Trajectory Data

	Preparing Trajectory Data
	Extracting Trajectories from AIS Data
	Compressing Trajectory Data
	Integrating with Databases

	Integrating with Databases
	NoSQL and MongoDB
	Database Structure
	Summary

	Summary
	Leveraging Microservices
	BlueNavi: Providing 2D Visualization

	BlueNavi: Providing 2D Visualization
	Background and Scenarios
	Tooling and Framework
	Design and Implementation
	RedNavi: Building 3D Scenes

	RedNavi: Building 3D Scenes
	Background and Scenarios
	Tooling and Frameworks
	Design and Implementation
	GreenNavi: Tracing Historical Data

	GreenNavi: Tracing Historical Data
	Background and Scenarios
	Tooling and Framework
	Design and Implementation
	Summary

	Summary

	Modern Communication Framework and Cross-Platform Applications
	Defining gRPC Services
	A Glimpse of gRPC

	A Glimpse of gRPC
	From RPC to gRPC
	gRPC over HTTP/2
	gRPC Communication Patterns
	gRPC Services Design

	gRPC Services Design
	Providing Maritime Information
	Collecting Maritime Information
	Exchanging Maritime Information
	Summary

	Summary
	Implementing gRPC Services
	Implementing gRPC Server

	Implementing gRPC Server
	Tooling and Framework
	Implementation
	Implementing gRPC Client

	Implementing gRPC Client
	Background and Scenarios
	Tooling and Framework
	Implementation
	Summary

	Summary

	Modern Deployment Approach and Microservices Containerization
	Deploying Microservices
	Deploying Microservices on Docker

	Deploying Microservices on Docker
	Packing Services to Containers
	Going Live with Services
	Deploying Microservices on Kubernetes

	Deploying Microservices on Kubernetes
	Orchestrating Containers with Kubernetes
	Going Live with Services
	Summary

	Summary
	Testing Microservices
	General Idea and Test Environment

	General Idea and Test Environment
	Test Methods and Test Results

	Test Methods and Test Results
	Discussion

	Discussion
	Summary

	Summary
	Conclusions and Outlook
	Conclusions

	Conclusions
	Outlook

	Outlook

	Bibliography
	List of Terms
	Acknowledgements

