神戸大学附属図書館デジタルアーカイブ
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/0100482542
このアイテムのアクセス数:
79
件
(
2025-08-02
21:10 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
0100482542 (fulltext)
pdf
12.2 MB
221
メタデータ
ファイル出力
メタデータID
0100482542
アクセス権
open access
出版タイプ
Version of Record
タイトル
End-to-end protein–ligand complex structure generation with diffusion-based generative models
著者
Nakata, Shuya ; Mori, Yoshiharu ; Tanaka, Shigenori
著者名
Nakata, Shuya
著者ID
A2636
研究者ID
1000090646928
ORCID
0000-0002-2795-2808
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail?systemId=cc0fd73a426e1176520e17560c007669
著者名
Mori, Yoshiharu
森, 義治
モリ, ヨシハル
所属機関名
システム情報学研究科
著者ID
A0271
研究者ID
1000010379480
ORCID
0000-0002-6659-2788
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail?systemId=c07e328da483e766520e17560c007669
著者名
Tanaka, Shigenori
田中, 成典
タナカ, シゲノリ
所属機関名
システム情報学研究科
言語
English (英語)
収録物名
BMC Bioinformatics
巻(号)
24(1)
ページ
233
出版者
BMC
刊行日
2023-06-05
公開日
2023-07-11
抄録
Background: Three-dimensional structures of protein–ligand complexes provide valuable insights into their interactions and are crucial for molecular biological studies and drug design. However, their high-dimensional and multimodal nature hinders end-to-end modeling, and earlier approaches depend inherently on existing protein structures. To overcome these limitations and expand the range of complexes that can be accurately modeled, it is necessary to develop efficient end-to-end methods. Results: We introduce an equivariant diffusion-based generative model that learns the joint distribution of ligand and protein conformations conditioned on the molecular graph of a ligand and the sequence representation of a protein extracted from a pre-trained protein language model. Benchmark results show that this protein structure-free model is capable of generating diverse structures of protein–ligand complexes, including those with correct binding poses. Further analyses indicate that the proposed end-to-end approach is particularly effective when the ligand-bound protein structure is not available. Conclusion: The present results demonstrate the effectiveness and generative capability of our end-to-end complex structure modeling framework with diffusion-based generative models. We suppose that this framework will lead to better modeling of protein–ligand complexes, and we expect further improvements and wide applications.
キーワード
Protein–ligand complex
Deep generative model
Molecular interaction
Protein structure prediction
カテゴリ
システム情報学研究科
学術雑誌論文
権利
© The Author(s) 2023.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
関連情報
DOI
https://doi.org/10.1186/s12859-023-05354-5
詳細を表示
資源タイプ
journal article
eISSN
1471-2105
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る