神戸大学附属図書館デジタルアーカイブ
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/0100482551
このアイテムのアクセス数:
62
件
(
2025-07-22
15:49 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
0100482551 (fulltext)
pdf
1.84 MB
82
メタデータ
ファイル出力
メタデータID
0100482551
アクセス権
open access
出版タイプ
Version of Record
タイトル
Different Recognition of Protein Features Depending on Deep Learning Models: A Case Study of Aromatic Decarboxylase UbiD
著者
Watanabe, Naoki ; Kuriya, Yuki ; Murata, Masahiro ; Yamamoto, Masaki ; Shimizu, Masayuki ; Araki, Michihiro
著者名
Watanabe, Naoki
著者名
Kuriya, Yuki
著者ID
A1871
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail?systemId=380a764efd58d164520e17560c007669
著者名
Murata, Masahiro
村田, 昌浩
ムラタ, マサヒロ
所属機関名
科学技術イノベーション研究科
著者名
Yamamoto, Masaki
著者名
Shimizu, Masayuki
著者ID
A0291
研究者ID
1000040396867
著者名
Araki, Michihiro
荒木, 通啓
アラキ, ミチヒロ
所属機関名
科学技術イノベーション研究科
言語
English (英語)
収録物名
Biology
巻(号)
12(6)
ページ
795
出版者
MDPI
刊行日
2023-06
公開日
2023-07-12
抄録
The number of unannotated protein sequences is explosively increasing due to genome sequence technology. A more comprehensive understanding of protein functions for protein annotation requires the discovery of new features that cannot be captured from conventional methods. Deep learning can extract important features from input data and predict protein functions based on the features. Here, protein feature vectors generated by 3 deep learning models are analyzed using Integrated Gradients to explore important features of amino acid sites. As a case study, prediction and feature extraction models for UbiD enzymes were built using these models. The important amino acid residues extracted from the models were different from secondary structures, conserved regions and active sites of known UbiD information. Interestingly, the different amino acid residues within UbiD sequences were regarded as important factors depending on the type of models and sequences. The Transformer models focused on more specific regions than the other models. These results suggest that each deep learning model understands protein features with different aspects from existing knowledge and has the potential to discover new laws of protein functions. This study will help to extract new protein features for the other protein annotations.
キーワード
deep learning
protein feature
feature extraction
explainable artificial intelligence
integrated gradients
protein annotation
カテゴリ
科学技術イノベーション研究科
学術雑誌論文
権利
© 2023 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
関連情報
DOI
https://doi.org/10.3390/biology12060795
詳細を表示
資源タイプ
journal article
eISSN
2079-7737
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る