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Simple Summary: Various protein sequences are registered in biological databases, and hundreds
of the sequences have recently been sequenced by way of next-generation sequencing, and then the
number of sequences with unknown functions is explosively increasing. To efficiently determine the
annotations, new feature extraction of protein sequences that is different from existing knowledge
is required. Deep learning can extract various features based on training data. Many studies have
reported deep learning models with high accuracy for predicting protein annotations; however, in
the reports, which amino acid sites in protein are important for the prediction of the annotations
have not been discussed among multiple deep learning models. Here, 3 deep learning models for the
prediction of the proteins included in a protein family were analyzed using an explainable artificial
intelligence method to explore important protein features. The models regarded different sites as
important for each model, and all models also recognize different amino acids from the secondary
structure, conserved regions and active sites as important features. These results suggest that the
models can interpret protein sequences through different perspectives from existing knowledge.

Abstract: The number of unannotated protein sequences is explosively increasing due to genome
sequence technology. A more comprehensive understanding of protein functions for protein anno-
tation requires the discovery of new features that cannot be captured from conventional methods.
Deep learning can extract important features from input data and predict protein functions based on
the features. Here, protein feature vectors generated by 3 deep learning models are analyzed using
Integrated Gradients to explore important features of amino acid sites. As a case study, prediction
and feature extraction models for UbiD enzymes were built using these models. The important
amino acid residues extracted from the models were different from secondary structures, conserved
regions and active sites of known UbiD information. Interestingly, the different amino acid residues
within UbiD sequences were regarded as important factors depending on the type of models and
sequences. The Transformer models focused on more specific regions than the other models. These
results suggest that each deep learning model understands protein features with different aspects
from existing knowledge and has the potential to discover new laws of protein functions. This study
will help to extract new protein features for the other protein annotations.
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1. Introduction

Protein sequence information is registered in various biological databases [1,2]. Vari-
ous protein sequences are being sequenced by next-generation sequencing technology [3].
The number of unannotated sequences registered in the databases is explosively increasing,
such as putative proteins, hypothetical proteins, and uncharacterized proteins. Therefore,
in addition to efficiently assigning the annotations for a large number of proteins, extracting
new protein features that differ from existing knowledge is required.

Deep learning automatically can learn and extract various features of input data, and
the higher the model performances are, the more valid the training data are. Therefore,
the utilization of deep learning is expected to discover important features and classify data
based on the features [4]. Several studies have reported deep learning models for predicting
protein functions [5,6], protein structures [7–12], multi-domain protein structures [13,14],
protein subcellular localization [15,16], enzyme commission numbers [6,17–19], and products
in organic synthesis [20,21]. Each model has been evaluated and compared using multiple
performance evaluation parameters in machine learning tasks. Although the evaluation of
model prediction accuracy is important, these studies have not sufficiently discussed which
features of input data influence prediction accuracy and have not evaluated the detailed
difference of the results among multiple models.

Most of the deep learning models cannot interpret prediction results without the other
methods. However, deep learning has the potential to recognize extensive and new protein
features that are different from existing knowledge, such as secondary structures, conserved
residues, ligand binding sites, and active sites, because the models achieve more adequate
prediction accuracy than previous machine learning. Model interpretability helps to know
how the model reaches the results and to quantify prediction reliability [22,23]. Several
studies have recently reported integrated gradients (IG) and Shapley additive explana-
tions (SHAP), included in explainable artificial intelligence methods [24,25], to interpret
prediction models and to explore important features for prediction [6,26,27]. However, the
previous reports using integrated gradients have not discussed the exploration of important
features and the difference of the features among multiple deep learning models.

Here, several deep learning models derived from enzyme sequences were developed
to extract protein features for each amino acid residue and then to explore the validity of the
features in comparison to previously reported information. As a case study, UbiD enzymes,
one of the decarboxylases which biosynthesize various aromatic compounds [28–35], were
used. To extract new UbiD features, prediction and feature extraction models for UbiD were
built using convolutional neural network (CNN), CNN-based autoencoder (CNN-AE), and
Transformer [36–38]. The important protein features between these models were explored
by analyzing prediction scores and feature vectors derived from the models using clustering
and IG (Figure 1). As a result, UbiD features could also be extracted from the different
residues from the existing knowledge by these models, and the features were varied for
each model and sequence, and only the Transformer model characterized a few amino acid
residues as important UbiD features. The results indicate that each deep learning model
extracts different protein features from each amino acid and recognizes each sequence as
different. In short, the analysis of protein features using multiple explainable deep learning
is required to more deeply understand proteins.
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Figure 1. Workflow of methodology. (A) Model construction and model information, (B) Selection
of representative sequences using deep learning and clustering, (C) Extraction of important protein
features based on deep learning using Integrated gradients.

2. Materials and Methods
2.1. Dataset Construction
2.1.1. Positive Data

25,294 UbiD sequences were collected as positive data from National Center for
Biotechnology Information (NCBI) Protein database [1] on 31 July 2019 by searching UbiD
as a keyword. The enzyme sequences that were duplicated or included non-canonical
amino acids were removed. The length of amino acid residues was limited from 400 to
700 because the length of 25,135 UbiD sequences was in the range. The sequences were
clustered at 95 % identity using CD-HIT [39] to remove sequence redundancy and then were
split into training, validation, and test data based on the number of sequences included in
each cluster.

The 3 sequences were randomly extracted from all sequences included in a cluster
and were split into each data when the number of sequences was 3 or more. When the
number was 2, one sequence was added to training data, and the other was added to either
validation or test data. In the rest of the cases, the sequences collected from all clusters, in
which the number of sequences was 1, were randomly split into training, validation, and
test data, at an approximate ratio of 8:1:1.

2.1.2. Negative Data

All protein sequences registered in Swiss-Prot [2] were collected as negative data
on 26 April 2019. The negative data was the protein sequences except for UbiD. Some
sequences were also removed in the same way as positive data construction. The highly
similar negative sequences to positive sequences were omitted at 1.0 × 10−10 E-value using
BLAST+ 2.7.1 [40]. The rest of the sequences were clustered at 90% identity using CD-HIT,
and then only a single enzyme sequence from each cluster was included.
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Artificial negative data were built to prevent deep learning models from judging as
positive using only a few amino acids in a specific position. In total, 400 sequences whose
same dipeptide amino acids continue were generated (AA . . . AA, AC . . . AC, . . . ). The
length of the upper negative data and the artificial sequence was randomly determined
from 400 to 700, such as the construction of positive data. All negative data were randomly
split into training, validation, and test data, at an approximate ratio of 8:1:1. Total amounts
of positive and negative data are shown in Table 1.

Table 1. UbiD datasets for CNN, CNN-AE, and Transformer models.

Dataset Category Training Validation Test

Positive data 1593 646 645
Negative data 62,476 8168 8167

2.2. Model Construction and Evaluation

CNN model, which predicts whether or not input protein sequences are target en-
zymes, was built. CNN-AE model to output feature vectors derived from enzyme sequences
was built. The autoencoder model transformed input protein sequences to low dimensional
feature vectors and outputted similar sequences to input data. Finally, Transformer model
was built for prediction of target enzymes, such as CNN model, and for output of feature
vectors, such as CNN-AE model (Figure 1A). The prediction scores and feature vectors
outputted from the models were evaluated using clustering and IG (Figure 1B,C).

The architecture of CNN prediction and CNN-AE feature extraction models are shown
in Supplementary Figures S1 and S2. The 3 hidden layers were used in CNN model, and
self-attention was inserted next to the second hidden layer. The 5 hidden layers were used
in encoder and decoder of CNN-AE, respectively, and 200 dimensional feature vectors were
outputted. Self-attention was inserted next to the first hidden layer of the encoder and the
fourth layer of the decoder. One-hot matrices transformed from amino acid sequences were
inputted to both models. The sequences whose number of amino acids was less than 700
were transformed to matrices using zero-padding. CNN-AE model was built using only
positive data.

Transformer model, which predicted target enzymes and extracted features derived
from sequence information, was built using the encoder of Transformer [38], as shown in
Supplementary Figure S3. Enzyme sequences were transformed to the tokens using 3-gram
model. The special tokens (<CLS>, <EOS>) were used at the beginning and end of each
token. <pad> tokens were added up to 700 tokens for the sequences whose number of
amino acids was less than 700. In total, 64 dimensional vectors in Extract layer (Figure S3)
were used to analyze feature vectors. A binary cross-entropy loss function was used to
train all models.

CNN and Transformer models were trained using several batches, including only posi-
tive or only negative sequences to prevent overfitting due to imbalanced data. The positive
and negative batches were separately built using random sampling without replacement,
and then the models were learned for each batch in turn. If the number of the sequences
that could be extracted was less than that of batch size in batch construction, the following
batches were rebuilt using the first data. CNN model was trained until 4000 steps, while
Transformer model was trained until 1000 steps.

CNN and Transformer models were evaluated using test data. Accuracy (ACC), AUC,
F1 score, and Matthews correlation coefficient (MCC) were used to evaluate the prediction
models. CNN-AE model was evaluated using Match rate between input sequences and
output sequences, given by the following:

Match rate =
Matched number o f amino acids in sequence

Sequence length
, (1)
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The CNN-AE model using the epochs, where the number of sequences with Match
rates 0.9 and more, and the average of Match rates were highest, were used in the follow-
ing analysis. The CNN and Transformer models using the epochs, where all evaluation
parameters were highest, were used. All models were built by Tensorflow version 2.1.0 [41].

2.3. Case Study

UbiD enzymes were used to explore important enzyme feature vectors between the
deep learning models. The enzymes catalyze the decarboxylation reactions included in
the ubiquinone biosynthesis pathway, which were identified in Escherichia coli for the first
time [28,29,42]. Usual UbiD enzymes act on para-hydroxybenzoic acid-type substrates,
while the other UbiD family enzymes catalyze the reversible reactions to synthesize various
aromatic compounds such as protocatechuic acid and vanillic acid [30–35]. Therefore, the
analysis of UbiD family enzyme features is expected to expand the diversity of aromatic
compounds, which can be biosynthesized using engineered microbes. The E. coli UbiD
secondary structures, conserved residues, ligand binding, and active sites [29,42] are shown
in Supplementary Sheet S1. N175 and E241 residues of E. coli UbiD are Mn2+ binding sites,
I178 to R180 residues, R192 to L194, R197 residues, and G198 residue are prenylated flavin
mononucleotide binding sites, and D290 residue is an active site.

2.4. Clustering and Integrated Gradients Analyses

The feature vectors of positive data were extracted from CNN-AE and Transformer
models and were clustered by k-means algorithm. A single sequence from each cluster,
whose feature vector was closest to the cluster centroid, was selected as representative
sequence. Then, the representative sequences in all clusters were analyzed using IG.
Moreover, these sequences were compared to the UbiD enzyme of E. coli (E. coli UbiD)
registered in Swiss-Prot (sp|P0AAB4|UBID_ECOLI) to compare the clustering method
based on deep learning models to sequence similarity method. In the evaluation, the
distances of feature vectors and bitscore of BLASTp were calculated for E. coli UbiD and
each representative sequence.

Integrated gradients algorithm [24] is used to evaluate the important variables that
machine learning models contribute to determining the prediction results. Therefore, in this
study, the algorithm was applied to explore where region of the amino acid sequence each
deep learning model grasped as important UbiD features in prediction, which are similar
to the secondary structure and the important functional sites in the known annotations.
The features based on CNN and Transformer models were extracted by IG analysis because
these models were binary classification models that can find UbiD sequences from input
proteins. On the other hand, the CNN-AE-based UbiD features were obtained from hidden
layers in which UbiD features were included. Absolute values of IG were calculated for
each amino acid residue in E. coli UbiD and the representative sequences using Tensorflow
(Figure 1C), and the amino acid residues with high IG values were regarded as important
features for the predictions. The IG values of output scores for input sequences were
calculated in CNN model, while the IG values of feature vectors for input sequences were
calculated in CNN-AE model. In Transformer model, both IG values were calculated.
The IG values, multiple sequence alignments between E. coli UbiD and the representa-
tive sequences, and secondary structures of E. coli UbiD were visualized using Jalview
2.11.1.4 [43]. Multiple alignment sequences were built using MAFFT version 7 [44]. In this
study, Xeon E5-2609 v4 1.7 GHz, memory 32 GB (Intel, Santa Clara, CA, USA), NVIDIA
Quadro GP100 16 GB × 2 (Nvidia Corporation, Santa Clara, CA, USA) running CentOS
version 7.4 was used.

3. Results
3.1. Model Training and Evaluation

The loss function curves for training and validation in CNN and CNN-AE models
are shown in Supplementary Figures S4 and S5, respectively. The loss values for training
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were almost the same as the loss values for validation for both models. The matching
loss values suggest that the models do not tend to overfit. Test results of the CNN model
were calculated for each epoch (Supplementary Table S1). The optimized CNN model was
built using 4000 epochs, where 4 evaluation parameters were the highest. On the other
hand, the CNN-AE model was evaluated using the Match rate. The CNN-AE model in the
2000 epochs, whose number of sequences with Match rates 0.9 and over and the average of
Match rates were highest, was selected as the optimized model (Supplementary Figure S6).

The loss function curve for validation in the Transformer model decreased with
matching the curve for training (Supplementary Figure S7), indicating that overfitting does
not occur. Test results of the Transformer model are shown in Supplementary Table S1. The
Transformer model was predicted with high accuracy in all epochs, and the test results
were best in epoch 1000 according to all evaluation parameters. The model in the epochs
was used in the following analysis.

3.2. Model Interpretation

UbiD feature vectors derived from CNN-AE and Transformer models were separated
into 7 clusters using the k-means algorithm. From each cluster, a single UbiD sequence
whose feature vector was closest to its cluster centroid was selected as the representative
sequence (Supplementary Table S2). Supplementary Table S3 shows the results of feature
vector distance and BLASTp bitscore between E. coli UbiD and each representative sequence.
The higher the bitscore was, the more similar the sequence was to E. coli UbiD. However,
feature vector distance did not seem to relate to bitscore (Supplementary Table S3).

To explore what features of UbiD sequences the deep learning models learned, these
models were analyzed using IG. The IG values of E. coli UbiD sequence for CNN, CNN-
AE, and Transformer models were calculated for all amino acid residues, as shown in
Figure 2 [45,46], and the IG values of all representative UbiD sequences were calculated
(Supplementary Figures S8–S12). The IG values of all representative UbiD sequences
were compared to secondary structural information, conserved residues, ligand binding
and active sites of E. coli UbiD [29,42], and the IG values of E. coli UbiD. Supplementary
Figure S12 shows the predicted structures by ESMFold [12] and the residues with higher
IG values of E. coli UbiD and 3 representative sequences.

The IG values of the conserved V29 residue, the conserved P357 and P423 residues in
α-helix and conserved P216 residue in β-strand were higher for conserved the V29 residue,
the conserved P357 and P423 residues in α-helix, and conserved P216 residue in β-strand
in E. coli UbiD using CNN model. On the other hand, the P48, P61, and P152 residues,
which are not known as the regions of secondary structures and the conserved residues,
exhibited important features for the prediction. The IG values of the same residues were
not necessarily high for E. coli UbiD and each representative sequence, although the results
of more than half of the representative sequences were similar for the P48, P61, and P357
residues. Proline residues tended to be high IG values for most of the E. coli UbiD and
representative sequences in only the CNN model.

CNN-AE model regarded more amino acid residues of E. coli UbiD as important
factors than other models. The IG values of conserved P234 residue, the similar (semi-
conserved) Q132 and R380 residues in the α-helix, and the similar I134 and L183 residues
in β-strand were high in the sequence. Moreover, the M382 residue included in the α-helix
and L429 and L63 residues included in the β-strand were regarded as important amino
acids. CNN-AE model also identified P61, M4, and K5 residues, which were not included
in secondary structures and were not conserved. More kinds of amino acids with high IG
values appeared for E. coli UbiD and each representative sequence. The IG values of the
active sites with the substrates and binding sites with prenylated flavin mononucleotide
and Mn2+ by E. coli UbiD were not high in all representative sequences using CNN and
CNN-AE models.
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sequences (Table S2) and IG results of E. coli UbiD derived from each deep learning model. The 
secondary structures of E. coli UbiD registered as 2IDB [45] in the Protein Data bank [46] are shown 
below the alignment, helix, and sheet structures are displayed as red tubes and green arrows, re-
spectively. Bar charts show the IG values that are normalized between 0 and 1. Transformers 1 and 
2 represent IG values derived from feature vectors and prediction scores, respectively. 

Figure 2. Multiple sequence alignment for E. coli UbiD (UBID_ECOLI) and representative UbiD
sequences (Table S2) and IG results of E. coli UbiD derived from each deep learning model. The
secondary structures of E. coli UbiD registered as 2IDB [45] in the Protein Data bank [46] are shown
below the alignment, helix, and sheet structures are displayed as red tubes and green arrows,
respectively. Bar charts show the IG values that are normalized between 0 and 1. Transformers 1 and
2 represent IG values derived from feature vectors and prediction scores, respectively.
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The number of residues with high IG values for E. coli UbiD using the Transformer
model was so smaller than those in CNN-type models. The IG results derived from
prediction scores were almost the same as the results derived from feature vectors. The
conserved E285 residue included in β-strand, the conserved G286 and P287 residues, and
E278, Q279, and G280 residues included in β-strand exhibited high IG values. The amino
acid region between 278 and 280 residues was the highest value. The high IG residues of
E. coli UbiD were so different from those of the representative sequences in comparison to
CNN-type models. Moreover, the Transformer model regarded the different consecutive
amino acid residues for each representative sequence as important amino acids.

In the Transformer model, the IG values of the E285 to P287 conserved residues of E. coli
UbiD were high, and the E285 was a putative active site in Pseudomonas aeruginosa [29,42].
EJZ42036.1 and WP_058074034.1 results showed the same tendency. Moreover, in AKC32612.1,
the IG values of Y242 adjacent to the Mn2+ binding site, the 241E, were almost 1. The transformer
model tended to extract UbiD features from the other residues except for annotated functional
residue in the other representative sequences. In all models, the correlation coefficients between
the IG values of each residue of all UbiD sequences and sequence conservation [42] were almost
0 (Supplementary Table S5).

4. Discussion

Functional annotations for protein sequences are required to understand cell functions
and to search novel enzymes for target compound productions. However, annotating
sequence functions is insufficient due to the increase in the number of unannotated pro-
teins. Therefore, in this study, comprehensive features for accurately annotating enzyme
sequences were explored by analyzing enzyme feature vectors derived from various deep-
learning methods and IG values of each amino acid residue.

CNN, CNN-AE, and Transformer models for UbiD enzyme prediction and feature
extraction were built and evaluated using multiple evaluation parameters. The validation
results indicate that all current models do not occur overfitting because the loss values
decreased as the training proceeds. CNN model was improved by increasing the number of
training steps according to all parameter values, then the CNN model in the last 4000 steps
was used. Then, the Transformer model predicted the enzymes with high accuracy, and
test results showed constant prediction accuracy in all epochs. The Transformer model
in 1000 steps where all parameter values were highest was selected, although the model
in lower steps exhibited sufficient accuracy and seemed to be optimized. Moreover, the
CNN-AE model in 2000 epochs generated output sequences with 0.9 and more Match rates,
which were the almost same as input UbiD sequences, and therefore the model can learn
sufficient UbiD sequence features.

To analyze the enzyme features derived from each model, the feature vectors built
from the hidden layer of CNN-AE and Transformer model were clustered using the k-
means algorithm, and 7 representative UbiD sequences were selected by each model. The
distances between E. coli UbiD and the representative sequence feature vectors did not
seem to relate to BLAST bitscores based on sequence identity. The results indicate that
CNN-AE and Transformer models grasp different features from the conventional method.
Moreover, the Transformer model enables us to deeply understand slight differences in each
sequence because the distances derived from the Transformer model varied depending
on the combinations of 2 sequences among UbiD sequences than the CNN-AE model
(Supplementary Tables S3 and S4).

Next, what features and amino acid residues of UbiD sequences were regarded as
important for each model were explored using IG. The UbiD amino acid residues regarded
as important features were different for each model. The important residues consisted of
not only the secondary structures, the conserved regions, the ligand binding and the active
sites but also the other regions. CNN-based models did not extract the features from active
and cofactor binding sites. The results suggest that the models learn the new important
enzyme feature information, which is not included in the protein database [1,2,47] and
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previously annotated information. Moreover, the CNN model identified the same kind of
amino acid as important according to the results of the most of UbiD sequences, while the
CNN-AE model showed the high IG values of the extensive residues for UbiD sequences.
This is because the autoencoder model learns to ensure that the outputs match the input
enzyme sequences.

The results using the Transformer model were surprisingly quite different from those of
CNN-type models. The residues, which UbiD features were extracted from, were different
depending on the sequences, and the residues were not necessarily important functional
sites. The number of the important residues for each UbiD sequence was much smaller,
although the most of residues were included in secondary structure and conserved amino
acids. Therefore, the Transformer model focuses on more specific residues than CNN-type
models and can extract more different enzyme features from the existing annotations for
each sequence. Moreover, the Transformer model results that the different amino acid
regions for each sequence showed high IG values are consistent with the results that the
variance of distances between the 2 UbiD sequences was larger in comparison to CNN-
type models. According to the results of the correlations between IG values and UbiD
conservation, all deep learning models also extract the features that are different from the
important conserved residues. In the future, the optimizations of the training datasets,
especially for negative data and model structures of each model are also required for
building more accurate models and extracting more higher quality features from protein
sequences, such as ablation study [48,49]. Moreover, to apply the analysis to determine
annotations for protein sequences, more extensive tests using the other protein families are
needed because the amino acids with important features are determined depending on the
models and sequences.

5. Conclusions

In this study, deep learning models were built using specific enzyme sequences in-
cluded in one of the protein families, and the feature vectors derived from the models
were analyzed using IG. As a result, the models regarded not only the amino acid residues
included in not only the secondary structures, the conserved regions, the ligand binding
and the active sites but also the other regions as important features. Therefore, the analysis
can grasp multiple enzyme features that are different from previously reported information.
Moreover, these models extracted different features from the sequences for each model and
recognized each sequence with different features, even for similar sequences. These results
show that building and evaluating models using multiple deep learning methods are more
important to extract various protein features, which will be the basis of new knowledge
because the recognitions of protein features are more different among each method. This
method will help to interpret protein sequences through different perspectives from existing
knowledge and to discover new features and motifs for unannotated protein sequences.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12060795/s1, Figure S1: CNN model architecture for
predicting target enzymes; Figure S2: CNN-AE model architecture for extracting target enzyme
sequence features; Figure S3: Architecture of transformer model for predicting target enzymes and
extracting target enzyme sequence features; Figure S4: Training for positive samples (blue line),
training for negative samples and validation loss curves of CNN model for 4000 steps; Figure S5:
Training and validation loss curves of CNN-AE model for 2000 epochs; Figure S6: Histogram of match
rates between output sequences and input sequences using CNN-AE model in 2000 epochs; Figure S7:
Training for positive samples, training for negative samples and validation loss curves of Transformer
model for 1000 steps; Figure S8: Multiple sequence alignment and IG results of representative
UbiD sequences derived from classification scores using CNN model; Figure S9: Multiple sequence
alignment and IG results of representative UbiD sequences derived from feature vectors using CNN-
AE model; Figure S10: Multiple sequence alignment and IG results of representative UbiD sequences
derived from feature vectors using Transformer model; Figure S11: Multiple sequence alignment and
IG results of representative UbiD sequences derived from classification scores using Transformer
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model; Figure S12: UbiD structures using ESMFold structure prediction and IG results; Table S1: Test
evaluations for CNN and Transformer models; Table S2: Representative sequences selected from each
cluster derived from clustering by feature vectors of CNN-AE and Transformer models; Table S3:
Euclidean distances of feature vectors and bitscores using BLASTp; Table S4: All Euclidean distances
of feature vectors between 2 sequences for representative sequences derived from CNN-AE and
Transformer models; Table S5: The results of the correlations between IG scores for each model and
sequence conservation of E. coli UbiD; Sheet S1: E. coli UbiD secondary structures, conserved residues,
ligand binding, active sites, and IG results for all UbiD sequences using each model.
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