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Abstract: Background: Screening for elbow osteochondritis dissecans (OCD) using ultrasound (US)
is essential for early detection and successful conservative treatment. The aim of the study is to
determine the diagnostic accuracy of YOLOv8, a deep-learning-based artificial intelligence model,
for US images of OCD or normal elbow-joint images. Methods: A total of 2430 images were used.
Using the YOLOv8 model, image classification and object detection were performed to recognize
OCD lesions or standard views of normal elbow joints. Results: In the binary classification of normal
and OCD lesions, the values from the confusion matrix were the following: Accuracy = 0.998, Recall
= 0.9975, Precision = 1.000, and F-measure = 0.9987. The mean average precision (mAP) comparing
the bounding box detected by the trained model with the true-label bounding box was 0.994 in the
YOLOv8n model and 0.995 in the YOLOv8m model. Conclusions: The YOLOv8 model was trained
for image classification and object detection of standard views of elbow joints and OCD lesions. Both
tasks were able to be achieved with high accuracy and may be useful for mass screening at medical
check-ups for baseball elbow.

Keywords: OCD; ultrasound; YOLO

1. Introduction

Osteochondritis dissecans (OCD) of the distal humerus is a significant cause of throw-
ing elbow disorders in youth baseball players [1,2]. The incidence of OCD ranges from 0.3%
to 3.4%, with the most common age of onset being 10 to 12 years. Baseball pitching can
produce excessive stress on the anterior part of the capitellum, where most OCD lesions
in throwing athletes are found. Mechanical conditions may play a role in elbow OCD,
and bone bruises may be a precursor to an OCD lesion [3]. In the early stages of OCD,
symptoms are infrequent, and conservative treatment is usually effective. However, as
the disease progresses, patients may experience elbow pain and twitching, necessitating
prolonged sports cessation. In some cases, surgical intervention, such as the removal of free
bone fragments or osteochondral grafting, may be required to prevent future osteoarthritis.
According to the systematic review from Sayani et al. in 2021, nonoperative treatment
was similar in outcomes to surgical treatment for low-grade lesions, whereas surgical
treatment was superior for higher-grade lesions. There was no significant difference in the
magnitude of improvement or overall scores according to the type of surgery for stable
or unstable lesions [4]. Therefore, early detection of OCD is critical for successful conser-
vative treatment. Imaging techniques such as radiography, computed tomography (CT),
magnetic resonance imaging (MRI), and ultrasound (US) are used to detect OCD. The age
of diagnosis for capitellar OCD varies, and the appearance of the lesion depends on its
stage. Careful evaluation using radiography, CT, MRI, and US is important for choosing the
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appropriate treatment. In recent years, improvements in US spatial resolution have enabled
more detailed cross-sectional imaging of OCD in the elbow joint, even in asymptomatic
patients [5]. US imaging is a rapid, inexpensive, and non-invasive tool that can evaluate
both dominant and non-dominant elbows. In 2018, Yoshizuka et al. reported the high
accuracy of US imaging for OCD diagnosis [6]. The study compared the diagnostic accura-
cies of US and magnetic MRI with intraoperative OCD fragment-stability findings. They
found that US was a useful tool for evaluating fragment instability in OCD and achieved
superior accuracy compared with MRI criteria (96% vs. 73%). US screening for OCD is
essential for early detection and successful conservative treatment. Group examinations
such as the “Medical Checkup for Baseball Elbow” have been conducted nationwide for
the early detection of OCD. In 2016, Iwame et al. reported that about 30% of youth baseball
players had episodes of elbow pain and 4% of young baseball players had an abnormal
finding at an initial ultrasonography screening [7]. In 2022, Ikeda et al. reported a study
of car-mounted mobile MRI for the on-field screening of OCD in young baseball players.
Mobile MRI had a higher sensitivity than the US and could detect OCD from early stages
to healing [8]. However, not all baseball teams have access to mobile MRI, and screening
by US is currently more practical. Group examination of several teams at sports fields can
lead to the detection of OCD in its early stages, when symptoms have not yet appeared,
and can help to educate players, instructors, and parents. However, there are limitations to
the diagnosis of OCD by US images, including operator dependency, the need for training,
and interobserver variability in obtaining standardized measurements [5].

In recent years, artificial intelligence (AI), particularly deep learning (DL), has shown
promise in addressing the limitations of US imaging. Convolutional neural networks
(CNNs) have been widely studied for image analysis tasks, including medical image analy-
sis [9]. DL has also been applied to US imaging studies, where it has shown promise in US
imaging for musculoskeletal diseases. In particular, DL has been reported to accurately pre-
dict carpal tunnel syndrome by detecting image features in US images without measuring
the median nerve cross-sectional area. The diagnostic accuracy was calculated from the
confusion matrix obtained and showed high accuracy [10]. DL was also used on ultrasound
images of Palmer 1B triangular fibrocartilage complex (TFCC) injuries. Classification of US
images of injured TFCCs showed high accuracy comparable to MRI [11]. In these reports,
AI models were trained using high-quality images called “standard views”, which are
suitable for US diagnosis. However, in clinical practice, it is often difficult for inexperienced
clinicians to obtain a standard view. By applying DL to US imaging, inexperienced US
examiners can receive instant feedback on scanned tissue identification, obtaining a good
“standard view” and enabling faster and more standardized measurements. In this study,
we focused on the YOLO model, a commonly utilized object-detection AI model. YOLO
stands for “You Only Look Once” and came from a report on object detection by Joseph
Redmon [12]. YOLO processes the entire image in one shot, simultaneously estimating
object class and location for fast and accurate real-time object detection. Redmon has since
released improved versions such as YOLOv2 and YOLOv3 to achieve even higher accuracy,
and speed-improved versions have been released [13]. More recently, other researchers
have released a series of improved versions, including YOLOX and YOLOv5. Several
studies have utilized YOLO for medical image analysis. In 2021, Aly et al. developed a
computer-aided diagnostic system for breast cancer detection and classification [14]. The
system detected masses on full-field digital mammograms with an average accuracy of
94.2% and accurately classified masses as benign or malignant with an accuracy of 84.6%.
A transformer-based YOLO segmentation model for breast cancer mass detection and
segmentation was reported in digital mammograms. The model achieved a 95.7% true
positive rate and a 65.0% mean average accuracy in mass detection [15]. In 2022, Li et al.
developed a YOLO deep-learning model for the detection and classification of primary
bone tumors in full-field radiographs [16]. The model accurately detected bone lesions
and classified radiographs into normal, benign, intermediate, and malignant types with an
accuracy of 86.36% and 85.37% on internal and external validation sets, respectively. These
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studies demonstrate the potential of YOLO as an effective tool for medical image analysis
to provide an accurate and efficient diagnosis with limited human intervention. In this
study, we used the YOLOv8 model announced by Ultralytics (Los Angels, CA, USA) in
2023. The YOLOv8 model is the latest model of YOLO that combines high speed and high
accuracy. For the object detection task, we compared the YOLOv8 model with the previous
model, YOLOv5, which is published by the same company.

We hypothesized that AI technology could support technically inexperienced US
examiners and be useful for “Medical Checkup for Baseball Elbow”. In this study, we
focused on the YOLO8 model, which is extremely fast and highly accurate. This model
can perform image classification, object detection, and image segmentation tasks. We
constructed an AI model based on images collected during a baseball-elbow checkup. The
first aim of the study is to determine the diagnostic accuracy of YOLOv8 for US image
classification of OCD or normal elbow-joint images—what we call “standard view”. The
second aim is to assess the diagnostic accuracy of object detection in OCD examples and in
standard views of the elbow joints.

2. Materials and Methods
2.1. Data Collection

A total of 44 cases included those who were found to have OCD at medical checkups
and those who were treated for OCD at the authors’ institution. Normal data were obtained
from US images of the contralateral elbow joint or from cases in which no abnormalities
were found at the medical checkup. Movies were obtained from four directions: anterior
short (AS) axis and anterior long (AL) axis in elbow extension, and posterior short (PS)
axis and posterior long (PL) axis in elbow maximum flexion (Figure 1). The movie was
recorded at 30 frames per second while the 15 or 18 MHz liner US probe (Arietta prologue,
FUJIFILM, Tokyo, Japan) was placed in the anterior or posterior center of the elbow-
joint surface to delineate the standard view. To increase image variation, the probe was
slowly tilted and slid against the surface of the elbow joint while capturing the movies. A
total of 2430 images were generated from the movies by cropping the region of interest
and capturing the images from the movies. A breakdown of the dataset is shown in
Table 1. Using this dataset, we trained the YOLOv8 model to perform two tasks: image
classification and object detection. The images were resized into 640 × 640 and augmented
using Albumentations (version 1.0.3), which is a Python library for image augmentation.
The parameters for image augmentation were the following: Blur (probability of applying
the transform; p = 0.01), MedianBlur (p = 0.01), ToGray (p = 0.01), Contrast Limited Adaptive
Histogram Equalization (p = 0.01), RandomBrightnessContrast (p = 0.01), RandomGamma
(p = 0.01), and ImageCompression (p = 0.01).

The first task was to classify images with OCD lesions. Two classification tasks were
used in the classification task. The first classification task was a two-class classification into
“with OCD” and “without OCD”. The second classification task was to classify images
with a normal elbow joint (standard view). This was a multi-class classification of four
standard views: AS axis, AL axis, PS axis, and PL axis from the obtained image dataset.
The definition of each class is as follows: AS—region showing the humeral trochlea and
capitellum; AL—region showing the round shape of the humeral capitellum and radial
head; PS view—area showing the outline of the ulnar olecranon and humeral capitellum;
PL view—area showing the round shape of humeral capitellum and radial head; OCD—the
irregular surface of the cartilage and the interruption or double line of the subchondral
bone line which has high echogenicity (Figures 2 and 3).
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The second task was an object detection task. The annotation tool LabelImg (ver.
1.8.1) was used for labeling the US image. Annotation was performed manually by one
orthopedic surgeon skilled in US examinations. Bounding boxes were set up for a total of
five classes of regions to detect standard views of the elbow joint and OCD lesions.

2.2. Model Training
2.2.1. Image Classification Task

Two tasks were performed: a binary classification to classify normal and OCD images
and a task to classify normal elbow-joint images into 4 classes. Of several pre-trained
YOLOv8 models, the lightest model, YOLOv8n-cls (parameter size 2.7 M), was used. Trans-
fer learning was performed on OCD data using YOLOv8n-cls pre-trained weight data.
The software and computer used for training were as follows: Ultralytics YOLOv8.0.58,
Python-3.9.13, PyTorch-1.13.1 GPU, and NVIDIA GeForce RTX 3050 laptop GPU. The
training parameters were as follows: optimizer = SGD; initial learning ratio = 0.01; mo-
mentum = 0.937; epochs = 50. Of the total US image data, 60% was randomly assigned as
training data, 20% as validation data, and the remaining 20% as test data. The performance
of the trained model was evaluated using the test dataset, and accuracy, precision, recall,
and F-measure were calculated from the confusion matrix. The area under the receiver-
operating characteristic (ROC) curve (AUC) was also calculated to evaluate the accuracy of
the model.

2.2.2. Object Detection Task

The YOLOv8n model, which has the fewest parameters (parameter size 3.0 M) among
the pre-trained models in YOLOv8, and the YOLOv8m model, which has a moderate
number of parameters (parameter size 25.8 M), were selected as object detection models.
These models were compared with YOLOv5, a previous-generation model presented by
the same group. For YOLOv5 models, the YOLOv5n model (parameter size 1.8 M) and
the YOLOv5m model (parameter size 20.8 M) were used. US images and bounding-box
label information were used as input data, and transfer learning was performed using
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the pre-trained weights of YOLOv8. Five classes (AL, AS, PL, PS, and OCD) of object
detection tasks were performed. To evaluate the detection accuracy of the trained models,
we checked the mean average precision (mAP), the Precision–Recall curve, and the F-
measure Confidence curve, which are widely used evaluation metrics in object detection
tasks. The term mAP (0.5) is the mAP calculated at an intersection over the Union (IoU)
threshold of 0.5, while mAP (0.5–0.95) is the average of the mAP calculated at multiple IoU
thresholds ranging from 0.5 to 0.95 with a step size of 0.05. The Precision–Recall curve is a
curve with Recall as the X-axis and Precision as the Y-axis; Precision indicates the ratio of
correct bounding boxes detected, while Recall indicates the ratio of bounding boxes that
should be detected.

We also checked the computational speed of the model on the computer in terms of
inference time per image and the number of floating-point operations per second (FLOPs)
that the computer can perform. In addition, a graphical user-interface (GUI) application
was created on a local personal computer using the YOLOv8 and YOLOv5 environments,
and its performance was evaluated by connecting the computer to a US imaging system.

3. Results
3.1. Image Classification

The confusion matrix for the binary classification of normal and OCD lesions is
shown in Table 2. The calculated values from the confusion matrix were the following:
Accuracy = 0.998, Recall = 0.9975, Precision = 1.000, and F-measure = 0.9987. The AUC
calculated from the ROC curve was 1.000.

Table 2. Confusion matrix of binary classification.

Predicted Label

Normal OCD

True Label
Normal 477 0

OCD 1 393

Table 3 shows the confusion matrix of the multiclass classification that classifies the
standard view of the elbow joint in the anterior long axis (AL), anterior short axis (AS),
posterior long axis (PL), and posterior short axis (PS) of the elbow joint. The calculated
values from the confusion matrix were the following: Accuracy = 0.988, mean Recall = 0.990,
mean Precision = 0.991, and mean F-measure = 0.990. The AUC calculated from the ROC
curve was 1.000 for all classes.

Table 3. Confusion matrix of multiclass classification to classify the standard view of the elbow joint.

Predicted Label

AL AS PL PS

True Label

AL 137 0 6 0

AS 0 109 0 0

PL 0 0 158 0

PS 0 0 0 80
AL: anterior long, AS: anterior short, PL: posterior long, PS: posterior short.

3.2. Object Detection

The mAPs, speeds, and FLOPs of the models trained in this study are shown in
Table 4. The detection accuracy comparing the bounding box detected by the trained
model with the true-label bounding box annotated by the physician was 0.994 for mAP
(50) and 0.787 for mAP (50–95) for the YOLOv8n model and 0.995 for mAP (50) and 0.782
for mAP (50–95) for the YOLOv8m model. The inference speed and FLOPs per image
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were 2.9 ms and 8.2 GFLOPs for the YOLOv8n model and 13.7 ms and 79.1 GFLOPs for
the YOLOv8m model. The mAP (50), mAP (50–95), speed, and FLOPS were 0.998, 0.666,
8.2, and 4.1 for the YOLOv5n model and 0.993, 0.714, 12.4.47.9 for the YOLOv5m model,
respectively. The YOLOv8 model outperformed the YOLOv5 model in both detection
accuracies. The Precision–Recall curves and F-measure Confidence curves are shown in
Figure 3. The F-measure Confidence curve can visualize the Confidence that optimizes
Precision and Recall. Normally, a higher Confidence is considered better. In this study, the
optimal value of F-measure Confidence was 0.701 for the YOLOv8n model and 0.781 for the
YOLOv8m model. The larger the AUC of the Precision–Recall curve, the better-performing
the machine-learning model is. In this study, the AUC of the Precision–Recall curve for the
YOLOv8n model was 0.994 and 0.995 for the YOLOv8m model (Figure 4).

Table 4. Size of parameters and Performance scores of two object detection models.

Model Parameters
(M) mAP(50) mAP(50–95) Speed

(ms/pic)
FLOPs

(G)

YOLOv8n 3.0 0.994 0.787 2.9 8.2

YOLOv8m 25.8 0.995 0.782 13.7 79.1

YOLOv5n 1.8 0.988 0.666 8.2 4.1

YOLOv5m 20.8 0.993 0.714 12.4 47.9
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An example of detection performed on a video of an actual OCD case and the appear-
ance of the GUI application are shown. By using the object detection model, it was possible
to detect standard views and OCD areas with high accuracy (Figure 5).
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4. Discussion

In the examination of baseball elbow, the detection rate of abnormalities has been
reported in several studies. The definition of abnormal findings is described in a previous
report [17]. An irregularity, a break in the continuity of the high echogenic line of subchon-
dral bone, or a double line of the subchondral bone of the capitellum were determined to
be abnormal findings. A positive finding was declared when the aforementioned abnor-
malities were observed on the throwing side. In 2018, Maruyama et al. reported a 1–3%
detection rate in elementary through to high-school students [18]. Another report showed
that 4% of children in medical checkups for baseball elbow showed abnormalities on an US
and, among them, 50% showed abnormal findings upon X-ray examination [19]. In 2017,
Otoshi et al. reported the frequency of elbow OCD by baseball position. Among a total
of 4249 participants, the overall prevalence of capitellar OCD diagnosed by US imaging
was 2.2% (93 participants). As for playing positions, catchers had the highest prevalence of
OCD (3.4%), followed by pitchers (2.5%). The prevalence for infielders and outfielders was
2.2% and 1.8%, respectively. There was no significant difference in the incidence of OCD by
position [20]. These are the reports from a facility that performs frequent baseball-elbow
examinations and has an expert in US examination. On the other hand, inexperienced
US examiners may have difficulty detecting the standard view of elbow joints. Therefore,
we hypothesized that AI technology could assist technically inexperienced examiners by
helping with the detection of standard views, which could be useful for mass examination.

Two tasks were performed in this study: image classification and object detection.
First, we employed an image classification task using a standard view that accurately
depicts the elbow joint. OCD lesions exhibit characteristic US images with features such
as subchondral bone irregularities or double lines, which can be easily recognized. The
AI model used in this study was also able to classify the image with OCD lesions with
high accuracy. Moreover, the model was able to classify the standard view of the elbow
joint with high accuracy. The result indicates that the trained AI model can detect standard
views of normal elbow joints and OCD lesions. Second, we used an object detection task.
Several YOLO models were trained to detect the standard view of the elbow joint and OCD
lesions in the object detection task. The YOLOv8n model showed an mAP (50) of 0.991 and
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an mAP (50–95) of 0.784, while the YOLOv8m model showed an mAP (50) of 0.991 and an
mAP (50–95) of 0.784. In the YOLOv5 model, the mAP (50) and mAP (50–95) were 0.998
and 0.666 for the YOLOv5n model, respectively, and 0.993 and 0.714 for the YOLOv5m
model, respectively. The mAP values for the YOLOv8 models were higher than those for
the YOLOv5 models. In general, a machine-learning model with good performance does
not over-detect, even if the IOU threshold is reduced, and Precision remains high. The
area under the Precision–Recall curve is sufficiently large for the model used in this study,
indicating that the trained model showed good performance.

The F-measure Confidence curve allows visualization of the thresholds that optimize
Precision and Recall. In this study, the optimal value of F-measure Confidence was 0.701
for the YOLOv8n model and 0.781 for the YOLOv8m model, with higher confidence for
the YOLOv8m model. Therefore, the YOLOv8m model is considered more suitable if the
computer’s computational speed is fast enough. On the other hand, the inference speed and
FLOPs per image were 2.9 ms and 8.2 GFLOPs for the YOLOv8n model and 13.7 ms and
79.1 GFLOPs for the YOLOv8m model. These results suggest that both models are capable
of real-time detection, but YOLOv8n is more suitable when the computer’s computational
speed is not sufficient.

These results suggest that AI technology can assist inexperienced examiners and
contribute to the accurate detection of abnormalities in the examination of baseball elbow.

In a prior investigation, we performed a binary classification task using images with
OCD or images without OCD [21]. Images were captured from only two views, the anterior
long and posterior long axes. Three DL models were compared, with accuracies of 0.818
in ResNet50, 0.841 in MobileNet_v2, and 0.872 in EfficientNet. In the present study, the
accuracy of binary classification was 0.998 in the YOLOv8n-cls model, which is higher
compared with the previous report. An object detection task was also performed in the
prior report using the YOLOv2 model for OCD lesions. The YOLOv2 model successfully
detected OCD with an average precision of 0.83 in the object detection task. However,
when the YOLOv2 model was used to detect OCD lesions in the sports field, it showed a
high false-positive rate due to its response to subcutaneous and muscle tissue when the
standard view was not depicted. Therefore, it was considered necessary for inexperienced
examiners to first visualize the standard view of the elbow joint. By detecting the anterior
long axis, anterior short axis, posterior long axis, posterior short axis, and OCD region of
the elbow joint by the AI model, inexperienced examiners could easily detect standard
views and lesion areas. In the present study using the YOLOv8 model, the mAP (50) was
0.994 for the YOLOv8n model and 0.995 for the YOLOv8m model in the four standard
views of the elbow joint and in the detection of OCD lesions. The mAP (50) was 0.998 for
the YOLOv5n model and 0.993 for the YOLOv5m model. Although the dataset used in
this study was slightly larger than those in previous studies, the model performance was
better than in the previous report. Our results showed that the model could accurately
detect both standard views of elbow joints and OCD lesions. Furthermore, visualization
of the standard view prevents the false detection of OCD in extra-articular tissues such as
subcutaneous tissue.

Medical AI requires that the basis for the model’s decisions be understandable to
humans, called eXplainable AI (XAI). XAI has become an increasingly important field of
research in recent years, and it promotes the formulation of explainability methods and
provides a rationale that allows users to comprehend the results generated by AI systems.
In the field of XAI for image data, overlaying image features such as GradientCAM and
occlusion sensitivity as a heatmap is a common method. Our previous reports have
shown that OCD lesion classification models capture features such as subchondral bone
discontinuity and judge the lesions in a manner similar to human judgment [21]. Although
occlusion sensitivity is an effective visualization tool due to its high spatial resolution and
heat map accuracy, the computational complexity can cause issues with real-time display.
To address this, we used a “two-shot” detection model that detects the standard view of
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elbow joints and OCD lesions. This method prevents false positives and can be easily
reproduced by inexperienced examiners.

Finally, we developed a GUI application running in a Python environment and con-
nected it to a commercial laptop computer (Asus, ROG Zephyrus G14, CPU AMD ryzen7,
GPU NVIDIA RTX3050) that was integrated with the US imaging system. The system
operated at approximately 15 frames per second, making it suitable for real-time detection
in medical examinations.

There are several limitations to this study. The number of US data images is about
2000 from 40 cases, but we believe that more is needed in terms of the number of cases.
In particular, since the dataset presented here is data from a single institution, it will be
necessary to integrate data from other institutions in the future. Secondly, the videos
were captured by multiple experts, but the labeling was conducted by a single orthopedic
surgeon who is skilled in AI research. This may have caused overfitting of the AI model.
Therefore, labeling of the various types of images by multiple experts may be necessary
to improve the generalization performance of the AI model. In addition, the accuracy of
the actual medical checkups has not been verified, and future examinations are needed to
verify the accuracy of the data.

5. Conclusions

The YOLOv8 model was trained for image classification and object detection of stan-
dard views of the elbow joints and OCD lesions. Both tasks were able to be achieved with
high accuracy and may be useful for the future mass-screening at medical check-ups for
baseball elbow.
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