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Abstract 

Increasing unemployment and declining fertility rates are serious economic issues 

in many developed countries. This brief article constructs a simple overlapping 

generations model incorporating involuntary unemployment, fertility choice, and 

automation capital, with the assumption that automation capital is a perfect 

substitute for labor inputs. It is shown that robot tax imposed on automation capital 

improves employment and fertility as well as per capita income in the long run. 
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1. Introduction 

According to Fanti and Gori (2010) and Wang (2015), many developed countries face 

a combination of declining fertility and higher unemployment rates. However, few 

studies have made policy proposals to improve fertility and employment. As noted 

by Fanti and Gori (2010), unemployment and fertility choices have been discussed 

separately in previous studies. 

 The aim of this study is to provide solutions for the declining fertility, and 

increasing unemployment, rates. Fanti and Gori (2010) constructed a standard 

overlapping generations model, revealing that imposing a child tax enhances 

unemployment and fertility. Wang (2015) extended Fanti and Gori (2010) by 

incorporating social security measures, such as pension benefits and child 

allowances. Compared with Fanti and Gori (2010) and Wang (2015), this study 

incorporates two additional variables: automation capital and robot tax. First, 

automation capital is considered a perfect substitute for labor inputs, in line with 

Prettner (2019), Gasteiger and Prettner (2022), and Zhang, Palivos, and Liu (2022). 

Gasteiger and Prettner (2022) noted that automation and its potential impacts have 

attracted the attention of economists in recent years. Frey and Osborne (2017) 

estimated that 47% of all jobs in the USA will be replaced with automation in the 

coming two decades. Hence, automation is a factor that can potentially increase 

future unemployment. Second, we consider robot tax, which is levied on automation 

capital in line with Gasteiger and Prettner (2022) and Zhang, Palivos, and Liu (2022).  

The combination of low fertility and high unemployment rates is a serious economic 

issue in many developed countries. This study develops a standard overlapping 

generations model that incorporates unemployment, fertility choices, and 

automation. A higher robot tax improves unemployment, fertility, and per capita 

income in the long run. 

The remainder of this paper is organized as follows. Section 2 describes our 

proposed model, and Section 3 concludes the study. 

 

2. Model 

2.1 Households 

The framework used in this study is a standard overlapping generations model. The 

study considers identical households, which experience two periods: young and old. 

They derive utility from consumption and the number of children. Following Fanti 

and Gori (2010) and Wang (2015), the utility function is expressed as, 

log 𝑐𝑡 + 𝛽 log 𝑑𝑡+1 + 𝛾 log 𝑛𝑡 (1) 
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𝑐𝑡 and 𝑑𝑡+1 denote consumption in young and old periods, respectively, 𝑛𝑡 is the 

fertility rate, 𝛽 < 1 is the discount factor and, 𝛾 > 0 is the desire for children. 

Suppose 𝑁𝑡 is the population size in period 𝑡, and the evolution of the population is 

𝑁𝑡+1 = 𝑛𝑡𝑁𝑡. 

 Households are endowed with one unit of time, which they supply inelastically to 

the labor market when they are young. The labor market is imperfect because of the 

presence of a minimum wage. Employed households earn working income and split 

it into consumption, savings, and childcare in the young period. The budget 

constraints are expressed as, 

𝑐𝑡 + 𝑠𝑡 + 𝜀𝑛𝑡 = 𝑤𝑚,𝑡(1 − 𝑢𝑡), (2) 

𝑑𝑡+1 = 𝑅𝑡+1𝑠𝑡 , (3) 

where 𝑠𝑡  is the savings, 𝜀 > 0 is the child rearing cost, 𝑢𝑡  is the unemployment 

rate, 𝑤𝑚,𝑡  is the minimum wage, and 𝑅𝑡+1  is the gross interest rate. Following 

Fanti and Gori (2010) and Wang (2015), the unemployment rate is defined as the 

unemployed time. Optimal allocation is expressed as, 

𝑠𝑡
𝑛𝑡
=
𝛽𝜀

𝛾
, (4) 

𝑛𝑡 =
𝛾𝑤𝑚,𝑡(1 − 𝑢𝑡)

(1 + 𝛽 + 𝛾)𝜀
 (5) 

 

2.2 Firms 

Identical firms use capital and labor to produce final goods in a competitive market. 

Following Prettner (2019), Gasteiger and Prettner (2022), and Zhang, Palivos, and 

Liu (2022), we assume two types of capital: traditional and automation capital. 

Automation capital and labor are perfect substitutes. The production technology is 

expressed as, 

𝑌𝑡 = 𝐴𝐾𝑡
𝛼(𝐿𝑡 + 𝑃𝑡)

1−𝛼 , 𝐴 > 0, 0 < α < 1 (6) 

where 𝑌𝑡 is the total output, 𝐿𝑡 is the total labor input, 𝐾𝑡 is the total traditional 

physical capital, and 𝑃𝑡 is the total automation capital (e.g., robots and artificial 

intelligence). The total labor input is as follows, 

𝐿𝑡 = (1 − 𝑢𝑡)𝑁𝑡 (7) 

Assuming full depreciation, the total profit is expressed as, 

𝐴𝐾𝑡
𝛼(𝐿𝑡 + 𝑃𝑡)

1−𝛼 −𝑤𝑚,𝑡𝐿𝑡 − 𝑅𝑡
𝑘𝐾𝑡 − (1 + 𝜏)𝑅𝑡

𝑝𝑃𝑡 (8) 

where 𝑅𝑡
𝑘  and 𝑅𝑡

𝑝
 are the gross rental prices for traditional and automated capital, 

respectively, and 𝜏 is the robot tax, as indicated by Gasteiger and Prettner (2022) 

and Zhang, Palivos, and Liu (2022). The factor demands are expressed as, 
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𝑤𝑚,𝑡 = 𝐴(1 − 𝛼)(
𝑘𝑡

1 − 𝑢𝑡 + 𝑝𝑡
)
𝛼

, (9) 

𝑅𝑡
𝑘 = 𝐴𝛼 (

1 − 𝑢𝑡 + 𝑝𝑡
𝑘𝑡

)
1−𝛼

, (10) 

(1 + 𝜏)𝑅𝑡
𝑝 = 𝐴(1 − 𝛼)(

𝑘𝑡
1 − 𝑢𝑡 + 𝑝𝑡

)
𝛼

 (11) 

Here, 𝑘𝑡 ≡ 𝐾𝑡 𝑃𝑡⁄  and 𝑝𝑡 ≡ 𝑃𝑡 𝑁𝑡⁄  are the per capita traditional and automation 

capital, respectively. Suppose 𝑦𝑡 ≡ 𝑌𝑡 𝑁𝑡⁄ , as the per capita output, and 𝑦𝑡 𝑎𝑠 𝑦𝑡 =

𝐴𝑘𝑡
𝛼(1 − 𝑢𝑡 + 𝑝𝑡)

1−𝛼  from Equation (6). If 𝑝𝑡 = 0 , 𝑦𝑡  simplifies to 𝑦𝑡 = 𝐴𝑘𝑡
𝛼(1 −

𝑢𝑡)
1−𝛼, and this per capita production technology is consistent with that of Fanti and 

Gori (2010) and Wang (2015). As noted above, the economy has a minimum wage. 

We denote 𝑤𝑐,𝑡 as the competitive wage that satisfies 𝑢𝑡 = 0. Following Irmen and 

Wigger (2006) and Fanti and Gori (2011), we assume that minimum wage is 

proportional to competitive wage. Thus, the minimum wage is expressed as, 

𝑤𝑚,𝑡 = 𝜇𝑤𝑐,𝑡 (12) 

where 𝜇 > 1  is a constant markup. Substituting 𝑢𝑡 = 0  into Equation (9), the 

competitive wage is expressed as 

𝑤𝑐,𝑡 = 𝐴(1 − 𝛼) (
𝑘𝑡

1 + 𝑝𝑡
)
𝛼

 (13) 

From Equations (9) and (13), the relative wage between the minimum and 

competitive wage, under given 𝑘𝑡 and 𝑝𝑡, is expressed as 

𝑤𝑚,𝑡
𝑤𝑐,𝑡

= (
1 + 𝑝𝑡

1 − 𝑢𝑡 + 𝑝𝑡
)
𝛼

 (14) 

By combining Equations (12) and (14), we obtain the following unemployment rate: 

𝑢𝑡 = (1 + 𝑝𝑡) (1 − 𝜇
−1
𝛼 ) (15) 

In this equation, an increase in automation capital increases unemployment. 

Furthermore, unemployment increases with the markup. If we omit automation 

capital, that is, 𝑝𝑡 = 0, equilibrium unemployment rate is expressed by 𝑢𝑡 = 1−

𝜇−1 𝛼⁄  from Equation (15). This rate is consistent with that reported by Fanti and 

Gori (2011). Fanti and Gori (2010) and Wang (2015) assumed that a constant 

minimum wage leads to unemployment. In contrast, Zhang, Palivos, and Liu (2022) 

assume that matching frictions cause unemployment.  

According to Gasteiger and Prettner (2022) and Zhang, Palivos, and Liu (2022), the 

no-arbitrage condition between traditional and automation capital is expressed as 

follows: 
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𝑅𝑡
𝑘 = 𝑅𝑡

𝑝
 (16) 

From Equations (10), (11), and (16), we derive, 

𝑘𝑡 =
𝛼(1 + 𝜏)[1 − 𝑢𝑡 + 𝑝𝑡]

1 − 𝛼
 (17) 

Note that 𝑅𝑡
𝑘 = 𝑅𝑡

𝑝
= 𝑅𝑡 holds in equilibrium.  

 

2.3 Government 

The government levies taxes on automation capital to finance consumption with a 

balanced budget. Thus, we obtain: 

𝜏𝑅𝑡
𝑝
𝑃𝑡 = 𝐺𝑡 , (18) 

where 𝐺𝑡 is the government consumption. We assume that 𝐺𝑡 does not contribute 

to welfare or productivity. The present study does not incorporate social security, 

such as unemployment benefits. If all young households are unemployed, savings 

and capital accumulation would be impossible. Thus, the economy is unsustainable 

if 𝑢𝑡 = 1 holds. 

 

2.4 Equilibrium 

The dynamic in this economy is expressed as: 

𝑘𝑡+1 =
𝑠𝑡
𝑛𝑡
− 𝑝𝑡+1 (19) 

From Equations (4), (9), (10), (11), (15), (16), (17) and (19), we obtain the following 

long run per capita automation capital:  

𝑝 =

{
 
 

 
 (1 − 𝛼)

𝜀𝛽
𝛾 − 𝛼

(1 + 𝜏)𝜇
−1
𝛼

1 − 𝛼 + 𝛼(1 + 𝜏)𝜇
−1
𝛼

     𝑖𝑓   (1 − 𝛼)
𝜀𝛽

𝛾
> 𝛼(1 + 𝜏)𝜇

−1
𝛼 ,   

0                                                      𝑖𝑓   (1 − 𝛼)
𝜀𝛽

𝛾
≤ 𝛼(1 + 𝜏)𝜇

−1
𝛼

 (20) 

We assume (1 − 𝛼)
𝜀𝛽

𝛾
> 𝛼(1 + 𝜏)𝜇

−1

𝛼  to ensure the interior solutions of automation 

capital in the rest of paper. Differentiating Equation (20) with respect to 𝜏, we have: 

𝑑𝑝

𝑑𝜏
=
−𝛼(1 − 𝛼)𝜇

−1
𝛼 (1 +

𝜀𝛽
𝛾 )

[1 − 𝛼 + 𝛼(1 + 𝜏)𝜇
−1
𝛼 ]

2 < 0 (21) 

A higher robot tax reduces the long-run per capita automation capital. This is 

because robot taxation causes firms to switch from automation to traditional 

physical capital, as noted by Gasteiger and Prettner (2022). From Equations (15) and 
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(20), the equilibrium unemployment rate under the generic form of robot tax is 

expressed as, 

𝑢 = 𝑢{𝑝(𝜏)} (22) 

Differentiating this equation with respect to 𝜏, we obtain: 

𝑑𝑢

𝑑𝜏
=
𝑑𝑢

𝑑𝑝

⏞
+

𝑑𝑝

𝑑𝜏

⏞
−

⏟  
−

. (23) 

If automation capital exists in the long run, a higher robot tax reduces 

unemployment, which can be explained as follows: A higher robot tax reduces 

automation capital, which raises the relative wage between minimum and 

competitive wages, as shown in Equation (14). Recall that we assume a constant 

relative wage in Equation (12). Unemployment declines with a higher robot tax, in 

order to maintain a constant relative wage.  

 By substituting Equation (20) into Equation (15), we obtain the following 

unemployment rate: 

𝑢 =
(1 − 𝛼)(1 +

𝜀𝛽
𝛾
) (1 − 𝜇

−1
𝛼 )

1 − 𝛼 + 𝛼(1 + 𝜏)𝜇
−1
𝛼

> 0 (24) 

As previously noted, the economy is unsustainable if 𝑢 = 1. To ensure 𝑢 < 1, the 

following conditions are imposed3:  

(1 − 𝛼)(1 +
𝜀𝛽

𝛾
) (1 − 𝜇

−1
𝛼 ) < 1 − 𝛼 + 𝛼(1 + 𝜏)𝜇

−1
𝛼  (25) 

Differentiating Equation (24) with respect to 𝜏, we obtain:  

𝑑𝑢

𝑑𝜏
= −

𝛼(1 − 𝛼)(1 +
𝜀𝛽
𝛾
) (1 − 𝜇

−1
𝛼 ) 𝜇

−1
𝛼

[1 − 𝛼 + 𝛼(1 + 𝜏)𝜇
−1
𝛼 ]

2 < 0 (26) 

Next, we investigate how robot taxation affects minimum wage levels. From 

Equations (4), (15), (19), and (20), we obtain the long-run per-capita traditional 

capital as 

𝑘 =
𝛼 (1 +

𝜀𝛽
𝛾 )

(1 + 𝜏)𝜇
−1
𝛼

1 − 𝛼 + 𝛼(1 + 𝜏)𝜇
−1
𝛼

 (27) 

From Equation (27), we have: 

                                                        
3 Kunze and Schuppert (2010) introduced parameter restriction to ensure positive unemployment 

rate. 
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𝑑𝑘

𝑑𝜏
=
𝛼(1 − 𝛼)(1 +

𝜀𝛽
𝛾
) (1 + 𝜏)𝜇

−1
𝛼

[1 − 𝛼 + 𝛼(1 + 𝜏)𝜇
−1
𝛼 ]

2 > 0 (28) 

As previously explained, a higher robot tax leads to a shift from automation to 

traditional capital. Thus, an increase in robot tax promotes long-term per capita 

traditional capital. Substituting Equation (17) into Equation (9), we obtain the 

following long-run minimum wage4:  

𝑤𝑚 = 𝐴(1 − 𝛼) (
𝑘

1 − 𝑢 + 𝑝
)
𝛼

= 𝐴𝛼𝛼(1 − 𝛼)1−𝛼(1 + 𝜏)𝛼  (29) 

Differentiating this equation with respect to 𝜏, we obtain: 

𝑑𝑤𝑚
𝑑𝜏

= 𝐴𝛼1+𝛼(1 − 𝛼)1−𝛼(1 + 𝜏)𝛼−1 > 0 (30) 

An increase in robot taxes reduces automation capital and, hence, increases 

traditional physical capital, which increases wages. By contrast, an increase in the 

robot tax improves employment, as shown in Equation (26). This effect moderates 

the wage levels. The first effect dominates the second. Thus, a higher robot tax 

increases wages compared with a lower one. Note that Zhang, Palivos, and Liu (2022) 

demonstrated that robot taxation increases both, wages and employment.  

We now analyze the impact of a robot tax on long-term fertility. Based on Equations 

(5), (24), and (29), long-run fertility under the generic form of the robot tax is 

expressed as, 

𝑛 = 𝑛{𝑢(𝜏), 𝑤𝑚(𝜏)} (31) 

From Equations (5), (26), and (30), we derive: 

𝑑𝑛

𝑑𝜏
=
𝜕𝑛

𝜕𝑢

⏞
−

𝜕𝑢

𝜕𝜏

⏞
−

⏟  
+

+
𝜕𝑛

𝜕𝑤𝑚

⏞
+

𝜕𝑤𝑚
𝜕𝜏

⏞
+

⏟      
+

 (32) 

We demonstrate that an increase in robot taxation increases employment and wages. 

Therefore, a higher robot tax rate improves fertility. Substituting Equations (24) and 

(29) into Equation (5), long-run fertility is expressed as, 

𝑛 =
𝛾𝑤𝑚(1 − 𝑢)

(1 + 𝛽 + 𝛾)𝜀
, (33) 

                                                        
4 Note that the long-run competitive wage, that is 𝑤𝑐, is denoted by 𝑤𝑐 =

𝐴𝛼𝛼(1−𝛼)1−𝛼(1+𝜏)𝛼

𝜇
 from 

Equations (12) and (27). 
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=
𝛾𝐴𝛼𝛼(1 − 𝛼)1−𝛼(1 + 𝜏)𝛼

(1 + 𝛽 + 𝛾)𝜀
{1 −

(1 − 𝛼)(1 +
𝜀𝛽
𝛾
) (1 − 𝜇

−1
𝛼 )

1 − 𝛼 + 𝛼(1 + 𝜏)𝜇
−1
𝛼

}. 

Recall that we assume 𝑢 < 1 in Equation (25). Therefore, the sign in parentheses in 

Equation (33) is positive. By differentiating this equation with respect to 𝜏 , we 

obtain, 

𝑑𝑛

𝑑𝜏
=
𝛾𝐴𝛼1+𝛼(1 − 𝛼)1−𝛼(1 + 𝜏)𝛼−1

(1 + 𝛽 + 𝛾)𝜀
{1 −

(1 − 𝛼)(1 +
𝜀𝛽
𝛾
) (1 − 𝜇

−1
𝛼 )

1 − 𝛼 + 𝛼(1 + 𝜏)𝜇
−1
𝛼

} 

+
𝛾𝐴𝛼1+𝛼(1 − 𝛼)2−𝛼(1 + 𝜏)𝛼 (1 +

𝜀𝛽
𝛾
) (1 − 𝜇

−1
𝛼 )𝜇

−1
𝛼

(1 + 𝛽 + 𝛾)𝜀 [1 − 𝛼 + 𝛼(1 + 𝜏)𝜇
−1
𝛼 ]

2 > 0 

(34) 

Overall, we obtain the following proposition: 

 

Proposition 1 

A rise in robot tax improves not only employment, but also fertility. 

 

Finally, we investigate how robot taxes affect per capita output. From Equation (6), 

the long-run per capita output under the generic form of the robot tax is expressed 

as, 

𝑦 = 𝑦{𝑘(𝜏), 𝑢(𝜏), 𝑝(𝜏)} (35) 

Differentiating this equation with 𝜏, we derive: 

𝑑𝑦

𝑑𝜏
=
𝜕𝑦

𝜕𝑘

⏞
+

𝜕𝑘

𝜕𝜏

⏞
+

⏟  
+

+
𝜕𝑦

𝜕𝑢

⏞
−

𝜕𝑢

𝜕𝜏

⏞
−

⏟  
+

+
𝜕𝑦

𝜕𝑝

⏞
+

𝜕𝑝

𝜕𝜏

⏞
−

⏟  
−

 (36) 

An increase in the robot tax has opposite effects on the long-run per capita output. 

First, a higher robot tax promotes both, traditional capital accumulation and 

employment, contributing to an increase in per capita output. Second, a higher robot 

tax reduces automation capital, thereby reducing long-run per capita output. If the 

former effect dominates the latter, a higher robot tax increases long-run per capita 

output. Using Equations. (17) and (27), 𝑦 can be expressed as, 

𝑦 = 𝐴𝑘𝛼(1 − 𝑢 + 𝑝)1−𝛼, 

=
𝐴𝛼𝛼(1 − 𝛼)1−𝛼 (1 +

𝜀𝛽
𝛾
) (1 + 𝜏)𝛼𝜇

−1
𝛼

1 − 𝛼 + 𝛼(1 + 𝜏)𝜇
−1
𝛼

 
(37) 

Differentiating Equation (35) with respect to 𝜏, we obtain: 
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𝑑𝑦

𝑑𝜏
=
𝐴𝛼1+𝛼(1 − 𝛼)2−𝛼 (1 +

𝜀𝛽
𝛾
)𝜇

−1
𝛼 (1 + 𝜏)𝛼−1 [1 − (1 + 𝜏)𝜇

−1
𝛼 ]

[1 − 𝛼 + 𝛼(1 + 𝜏)𝜇
−1
𝛼 ]

2  (38) 

An increase in the robot tax increases per capita output if 1 > (1 + 𝜏)𝜇
−1

𝛼  holds. 

Therefore, we obtain the following proposition. 

 

Proposition 2 

If 1 > (1 + 𝜏)𝜇
−1

𝛼  holds, the long run per capita output increases with a higher robot 

tax. 

 

Figures 1-4 present numerical examples5. We investigate the impact of τ on per 

capita automation capital, unemployment, fertility and long run per capita outputs, 

respectively. The parameters are set as follows: 𝛼 = 0.33, 𝛽 = 0.35, 𝛾 = 0.1, 𝜀 =

0.2, 𝜇 = 1.03, and 𝐴 = 16. 

. 

[Figure 1 here] 

[Figure 2 here] 

[Figure 3 here] 

[Figure 4 here] 

 

These figures indicate that a higher robot tax promotes not only employment and 

fertility, but also per capita output in the long run, if the robot tax is sufficiently 

small. 

 

3. Conclusion 

A combination of a higher unemployment rate and a decline in the fertility rate has 

been reported in many developed countries. This study constructs a simple 

overlapping generations model that incorporates automation and robot taxes. Our 

results demonstrate that robot taxation is effective in improving unemployment, 

fertility, and per-capita income. 

  

                                                        

5 Note that the equilibrium gross interest rate is denoted by 𝑅 = 𝐴𝛼 [
1−𝛼

𝛼(1+𝜏)
]
1−𝛼

. We assume 𝐴 to be 

large enough to ensure that 𝑅 > 1. 
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