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The physical parameter identification of the dynamic mechanical model, such as stiffness identification, provides some 
valuable information for detecting post-earthquake damage to building structures. During an earthquake, tracking changes 
in stiffness on the skeleton curve can be effective. It would also be helpful as an approximate evaluation if the method could 
be applied to structures with arbitrary poly-linear hysteresis characteristics. However, previous research has not identified 
any poly-linear hysteresis characteristics in a unified formulation. This paper proposes a new stiffness identification method 
in the time domain for building structures with any poly-linear hysteresis characteristics using sparse modeling. The validity 
of the proposed method was investigated through numerical simulations and a full-scale shaking table test. 
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INTRODUCTION 
 
Structural health monitoring (SHM) consists of several key roles, such as checking the consistency of seismic 
performance between the structural design phase and post-construction, assessing the functionality of buildings and 
business continuity after an earthquake and the necessity of seismic retrofitting, and checking the retrofit performance 
and aging deterioration. Mainly, SHM that focuses on detecting damage during earthquakes is classified into four 
stages according to the damage evaluation level1): an evaluation of the presence, source, degree of damage, and 
residual seismic performance. When a visual inspection is used to conduct these evaluations, the accuracy of the 
assessment depends highly on the constraints of the inspection place and the skills of the person conducting it, which 
can be a severe problem. As a result, the dynamic characteristics evaluation techniques based on vibration 
measurement (e.g., system identification) are widely used as fundamental techniques for supporting damage detection. 

System identification can be broadly categorized into two types: nonparametric and parametric. The former is a 
method in which the model characteristics are evaluated directly based on measurement data without first defining the 
model. For instance, the transfer function is numerically estimated from measurement data or the cross-spectrum 
method2), and no parameters are involved in the identification process. The latter is a method in which the 
mathematical or physical model is previously and explicitly specified, and the model parameters are identified. 
Parametric identification methods include identification methods based on the Auto-Regressive eXogenous (ARX) 
model3) and shear-type vibration models. It is important to clarify the physical meanings of the evaluation values in 
damage assessment. Thus, parametric identification that makes it easier to clarify them is often adopted. For example, 
in parametric identification based on physical models (e.g., shear-type vibration models), modal parameters (e.g., 
natural frequencies, mode shapes, and mode damping ratios), and physical parameters (e.g., stiffness and damping 
coefficient) are the primary identification targets. These are known as the modal parameter identification4-9) and 
physical parameter identification10-13), respectively. Modal parameter identification is suitable for evaluating the global 
vibration characteristics of building structures and determining the presence of damage. However, the physical 
identification would be more effective for evaluating the source or degree of damage because a minor degree of 
damage at the member (e.g., column and beam) only slightly influences the modal vibration characteristics14,15). On 
the other hand, considering that dynamic characteristics can change dramatically in a short time during an earthquake, 
coupled with the effects of nonlinearization, it is preferable to use a time-domain identification method to capture such 
transient changes in dynamic characteristics. If the variation in physical parameters of the building model can be 
evaluated during the earthquake, the investigation of the variation pattern can be useful for SHM. 

Previous research has broadly classified time-domain physical parameter identification considering the nonlinear 
characteristics of structures into two methods: an identification method based on a sequential linear approximation16-

20) and a direct identification method based on a nonlinear model21-31). The former method has the advantage of being 
relatively simple and easy to implement. However, the degree and type of nonlinearity, and the resolution of the time 
domain, significantly impact its accuracy and reliability. In contrast, the latter method deals with nonlinear 
characteristics directly. It provides model-specific identification results, but its applicability is limited to bi-linear 
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models and Bouc-Wen models21), and so on, and its generality is often an issue. That is because the direct formulation 
of inverse problems based on the kinematic equations involves a mathematical limit, multimodality of the objective 
function makes it difficult to search globally optimum parameters, and so on. Detecting stiffness change points 
(nonlinearization) on the skeleton curve in the time domain would significantly aid in detecting structure building 
damage. In this regard, it would be helpful as an approximate evaluation method if a method applicable to any poly-
linear hysteresis characteristics (e.g., bi-linear and tri-linear types) is developed. However, because of the 
abovementioned difficulties, it is currently difficult to identify parameters in a unified method for arbitrary poly-linear 
hysteresis characteristics. 

On the other hand, the identification methods for nonlinear dynamic systems focusing on sparse modeling32-35) have 
been developed recently. Sparse modeling is a methodology for finding sparse solutions to regression problems in 
which many components of the solution vector are sparse (zero). It represents data from a few key pieces of 
information. Sparse modeling is effective in analyzing factors from results and is used in various research fields, such 
as image and signal processing, because of its features. Sparse modeling is expected to have various advantages, 
including improving the robustness of solutions to noise and solving under-determined equations. However, a system 
of basis functions (e.g., trigonometric functions, wavelet functions, and impulse responses) composing the data to be 
regressed (e.g., burden force in structural element) must be determined in advance. Since the regression target is 
represented by a linear combination of these basis functions, the identification accuracy and applicability depend on 
the assumption of the basis function system. In the case of targeting energy dissipation devices (e.g., members in 
passive control and seismic isolation buildings) that are standardized and quality-controlled in the mechanism, the 
constitutive law of the model is relatively definite. Therefore, selecting the candidate basis functions can be easier 
based on the damper characteristics35). However, selecting a basis function system is not easy because the building 
exhibits complex nonlinearity (e.g., stiffness deterioration and strength deterioration) in the case of seismic building 
structures. In addition, the adjustment of the hyperparameters, such as the regularization coefficients, often requires 
much effort.  

This research focuses on the following points and develops a new stiffness identification method in the time domain 
(hereinafter, the “proposed method”) that employs sparse modeling. 

(1) Any poly-linear hysteresis characteristics can be identified in a unified process. 
(2) No need to select the basis function system that composes the regression-target data. 
(3) Robust to noise and few intervening hyperparameters 

The first and second numbered bullet points are the primary features and advantages of the proposed method over 
previous methods. Introducing sparse modeling to realize the first point is also a feature of this research. The validity 
of the proposed method is discussed through numerical simulations and the full-scale shaking table test. 
 
IDENTIFICATION THEORY OF PHYSICAL PARAMETERS IN TIME DOMAIN 

A dynamic mechanical model used for the identification is shown in Fig. 1. In Fig. 1, 𝑓(𝑡), 𝑘(𝑡) and 𝑐 are the dynamic 
force, stiffness, and viscous damping coefficient, respectively, and the stiffness element is assumed to exhibit any 
nonlinear hysteresis characteristics. The stiffness and damping elements are assumed to be connected in parallel. The 
assumption that c is constant can be an issue of the proposed method. This method requires modeling the damping 
force in the time domain. Including the problem of dependency degree on frequencies, what kind of damping model 
is appropriate for elastoplastic behavior is still discussed as a topic and a complicated issue to research. In this paper, 
the simplest damping model is used to investigate the fundamental behavior of the proposed method. 

 
Figure 1 Dynamic mechanical model assumed for the identification 
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As shown in Fig.1, the force equilibrium in the dynamical model at a specific time 𝑡଴ can be denoted by  

( ) ( )
0 0 0 sec 0 0( ) ( ) ( ) ( ) ( )k cf t f t f t k u t cu t      (1) 

where 𝑓(௞) and 𝑓(௖) are the restoring and damping forces, respectively. 𝑘௦௘௖  in Eq. (1) and Fig. 1 denotes the secant 
stiffness evaluated from the restoring force and deformation at a specific time  𝑡଴. As illustrated in Fig. 1, if the tangent 
stiffness at tn = t0 + nΔt (Δt: time increment) is expressed approximately by Eq. (2), the restoring force 𝑓(௞)(𝑡௡) can 
be described by Eq. (3). Eq. (2) implies that any hysteresis characteristics are evaluated as poly-linear characteristics. 

0 sec
1

( ) ( )Δ Δ
n

n
i

ik kt k t n kt


      (2) 

( ) ( )
0

sec 0 sec 1
1

1 sec sec

se

1 2 2

1 2
2

c
0 1

( ) ( Δ )

( Δ ) Δ Δ Δ Δ Δ

Δ Δ Δ Δ Δ Δ

Δ ( )

Δ

n

i n
i

n n n

i i i n
i

k
n

n

k

i i

f t f t n t

k u k

u

k k k u k u

u

u k k

k k u k k u



  

 

                  

 
        

       

   

 



  





 (3) 

where Δki denotes the amount of stiffness variation that occurs during each discrete time, ui = u(t0+iΔt), and Δui (= ui-
ui-1, Δu0≡u0) is the deformation increment between discrete times. The following linear regression problem is derived 
from the force equilibrium equations up to n-discrete time based on Eqs. (1)–(3). The variable (t) will be omitted in 
the following formulations unless otherwise noted. 
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The features and advantages of this formulation are summarized as follows. Previous research (as seen in an 
example in reference35)) requires the selection and assumption of a basis function system (corresponding to the column 
basis of matrix A in Eq. (4)) for a given nonlinear dynamical system. Furthermore, it has not processed in a unified 
method any poly-linear hysteresis characteristics (e.g., bi-linear and tri-linear, degrading tri-linear types). In contrast, 
the proposed method enables automatically determining the column basis of a matrix A from the response data by 
representing the restoring force as Eq. (3). It does not necessitate the selection and assumption of a basis function 
system. In addition, any poly-linear hysteresis characteristics can be addressed in a unified formula expression in Eqs. 
(2) and (3). These are the proposed method's most significant features and advantages, which differ from previous 
research. The column rank of a matrix A represents the degrees of freedom of the model and is closely related to the 
representational capability of the linear mapping in Eq. (4). The higher the column rank, the more complicated 
nonlinear characteristics that can be represented, but it also includes the problem of fitting to physically meaningless 
data (e.g., measurement noise). Furthermore, since Eq. (4) is an under-determined equation (unknowns are much 
relative to the number of independent equations), more than one candidate solution is possible. Then, the extraction 
of the critical components with a high contribution to the equation is processed, assuming the sparsity (many 
components of the solution vector are 0) in the solution of Eq. (7) and applying dimensional compression (sparse 
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modeling) as shown in Fig. 2. That means that the force equilibrium can be approximated using a simpler model (many 
of the stiffness changes Δki in Eq. (7) are zero). It also improves the robustness to noise by incorporating allowable 
tolerances (to be discussed later). This feature is expected by introducing sparse modeling into Eq. (7) and is 
independent of the previously described unified formulation of poly-linear type hysteresis characteristics. 

It is possible to calculate the time-history variation of stiffness from Eq. (2) by providing the dynamic force 𝑓௜, 
relative displacement 𝑢௜, and relative velocity 𝑢̇௜  and solving Eq. (4) under the assumption of solution sparsity. In this 
paper, the dynamic external force is the seismic story shear force, and the absolute acceleration responses of the 
building and the mass of each floor are known in the evaluation. The velocity will be integrated from the acceleration 
response through filtering using the Trifunac method36) because the influence of the low-frequency components is 
relatively minor. The displacement estimation by filtering is difficult if there is a drift component (e.g., residual 
deformation), and the displacement is rarely obtained as the measurement data. Thus, there is a significant issue in 
making the displacement known, but this will be discussed in the future. Several methods for linear regression 
algorithms have been developed under the assumption of solution sparsity, and this paper adopts the Orthogonal 
Matching Pursuit (OMP) method. This method is a kind of greedy method, which iterates the problem of minimizing 
the squared error by a 1-sparse vector (with one nonzero component) as a partial optimization problem, as shown in 
Fig. 3. In the OMP method, the residual vector is projected onto each column vector, and the column vector with the 
smallest error norm is selected sequentially as the basis vector. It is a more efficient algorithm than the matching 
pursuit method with respect not to duplicating the selection of the basis. Although it does not always give a globally 
optimal solution, it is known as an effective method for l0 optimization problems. The reasons for adopting this 
algorithm are as follows. 

 The algorithm minimizes the l0 norm (the number of nonzero components) with Eq. (4) as a restriction condition, 
as shown in Eq. (8). 

2 0
tm einim subj ctize o

np
p f = Ap


 (8) 

 No need to adjust hyperparameters, such as regularization coefficients as in l1 and l2 regularization. 
 It is an easy-to-implement algorithm. 
 If the matrix A is of full-row-rank, the upper limit number of iterative steps is automatically determined, and the 

convergence rate is first order. That is, the residue error decreases exponentially. 

Figure 2 Conceptual diagram for sparse modeling 

Figure 3 Conceptual diagram of iterative processing in the OMP method 
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It is known that the OMP method can find the unique solution of Eq. (8) in a finite number of steps if there exists a 
sufficiently sparse solution p in equation f–Ap=0 32). In addition, since the matrix A is of full-row-rank (= n+1 by 
Eq. (6)), the iterative computation is completed in Max. n+1 iteration steps and the convergence rate is first order; the 
residue error decreases exponentially. However, it should be noted that each step requires an inverse matrix 
computation, which can be a significant computation burden when the l0 norm (the number of nonzero components) 
is enormous; that is, the less error norm ratio (defined later) is. In practical applications, the computational cost can 
be lower because a tolerance error is introduced to avoid overfitting, as shown below. 

When applying the OMP in this paper, the following minimization problem will be solved by introducing an 
allowable tolerance > 0ε  to relax the equality constraint 𝐟 = 𝐀𝐩, considering the influence of the noise. Among the 
candidate solutions, the sparsest solution p (the solution with the most zero components) with less than or equal to the 
allowable error will be selected as shown in Eq. (9). 
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As shown in Eq. (10), the tolerance ε  is given by the l2-norm ratio r to the dynamic force 𝐟 (hereafter, the “error norm 
ratio”). It should be noted that the less the error norm ratio r, the better not only the compatibility with the equation 
but also the fitness to physically meaningless noise. The computation cost is also higher.  
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The error norm ratio r balancing the fitness and the number of nonzero parameters will be determined based on the 
basic approach by the procedure indicated below. 
 
Step 1 As shown in Fig. 4, plot the number of regression parameters and the RMS (Root Mean Square) of the residual 

error vs. threshold of error norm ratio r. When the error norm ratio r is larger, the number of parameters 
decreases, and the RMS error increases. If it is pattern A in Fig. 4, where a stable range exists, select the ratio 
in which the RMS of the residual error starts stabilizing for error norm ratio r. This is because the regression 
parameters as features are likely to be also stable for the range. 

Step 2 In pattern B (see Fig. 4), where a stable range does not exist, select the ratio to maximize the length of the 
perpendicular line to a straight line that draws between the lower and upper bound of r. 

 

Figure 4 Procedure to determine error norm ratio r 

VERIFICATION OF IDENTIFICATION ACCURACY BASED ON NUMERICAL ANALYSIS 
 
Analysis conditions 
The accuracy of the proposed method is investigated through numerical analysis. The response analysis model is a 
shear-type vibration model with a single degree of freedom (SDOF). Note that the application domain of the proposed 
method is not limited to SDOF systems. The hysteresis characteristics of the response analysis model are of two types: 
the normal bi-linear model (BL model) and the modified Takeda model37) (MT model), which introduce the stiffness 
reduction during unloading and reloading, as shown in Fig. 5. The physical properties of the response analysis model 
are shown in Table 1. For both models, damping characteristics are assumed to be proportional to the initial stiffness, 
with a damping ratio of 2% for the BL model and 3% for the MT model. For both models, the mass m, initial stiffness  
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(a) Normal bi-linear model (BL model)             (b) Modified Takeda model (MT model) 

Figure 5 Hysteresis characteristics and each parameter 

Table 1 Physical properties of the response analysis model 

 

k1, initial natural-period T1, and story shear coefficient at yielding Cy are 100 t, 43865 kN/m, 0.3 s, 0.3, respectively. 
The stiffness ratio of the BL model is α1 = 0.1, the stiffness ratios of the MT model are αy = 0.3 and α2 = 0.001, and 
the cracking and yielding displacements are determined accordingly. The unloading stiffness reduction index γ for the 
MT model is set to 0.4. The responses of the models are calculated with a time increment of 0.001 s using the 
Newmark-β method with γ=0.5 and β=0.25 (constant acceleration method), and El Centro 1940 NS is applied as the 
input earthquake ground motion. However, the resampling is performed at 0.01 s to lessen the computation costs for 
the identification. Response data generated under the analysis conditions above is regarded as measurement data and 
is used for identification. Furthermore, the band-limited white noise (0.1 Hz-25 Hz) is added to each response data to 
consider the influence of noise. The ratio of standard deviation to the responses before adding the noise is set to 0%, 
1%, and 5% (hereinafter, “noise level”), and the signal-to-noise ratio is the same in each response. 
 
Time series variation of story stiffness 
 
The identification results for each model in a noise-free case are shown in Table 2 and Fig. 6. The error norm ratio r 
was set to a sufficiently small value (r = 0.001) because of the 0% noise level. In Table 2, the identified damping 
coefficient c is summarized. The bracket value indicates the identification value ratio to the setting value. The 
identification value corresponds well to the setting value of each model. In Fig.6, the top panel of the figure shows the 
identification results for the time series variation of story stiffness. For comparison, the response analysis results 
(forward analysis results) are shown as red lines, and the setting values for each model are shown as blue dashed lines. 
The bottom panel of the figure indicates the elastoplastic strain energy estimated from Eq. (11) using Eqs. (3) and (9). 
For comparison, the results of the forward analysis (Simu. in the figure) are also shown.  

( )
&

0

t
k

es pW f udt     (11) 
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The stiffness of the proposed method corresponds well to that of the forward analysis and the method has high accuracy, 
as shown in Fig. 6. The elastoplastic strain energy Wes & p exhibits the same trend. In particular, the results show good 
agreement during the time range (the blue dashed circles in the figure) when significant stiffness reduction and high 
hysteresis damping occur. These results support the theoretical validity of the proposed method. 

The identification results for 1% and 5% noise levels are shown in Table 2, Figs. 7 and 8. In Table 2, the damping 
coefficient c, which was identified by applying the error norm ratio described later, corresponds well to the setting 
value of each model at the 1% noise level. However, the accuracy is much low at the 5% noise level and is influenced 
significantly by the noise. In Figs. 7 and 8, the top panel of each figure shows the number of model parameters and 
the RMS error vs. error norm ratio r. The threshold values for the error norm ratio were determined (indicated by ▼) 
based on "Step 2 (pattern B in Fig. 4)" in the procedure, as mentioned before. The middle and bottom panels of the 
figures represent the corresponding results. There is some time range in which the time variation of stiffness cannot 
be tracked, as shown in Figs. 7 and 8. However, there is good agreement with the results of the forward analysis in 
the time range (the blue dashed circle) when a significant stiffness reduction and high hysteresis damping occur. In 
other words, the stiffness change is generally well identified in the principal part where significant nonlinearization 
and hysteresis damping have occurred.  

These results indicate that the proposed method can be helpful in damage detection by investigating the time series 
variation of stiffness. The applicability of the proposed method will be discussed in the following chapter through the 
correspondence with actual damage conditions using data from a full-scale shaking table test. 

 

 

   

(a) BL model                                                                       (b) MT model 

Figure 6 Identification result without noise (r = 0.001). Top panel: Time series of identified story stiffness. Bottom 
panel: Elastic and plastic strain energy.  
  

Table 2 Accuracy of identified damping coefficient c (kNs/m)  

Good agreement Good agreement 
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(a) BL model                                                                       (b) MT model 

Figure 7 Identification result for 1 % noise level. Top panel: Adopted error norm ratio r. Middle panel: Time series 
of identified story stiffness. Bottom panel: Elastic and plastic strain energy. 

   

 

   
(a) BL model                                                                       (b) MT model 

Figure 8 Identification result for 5 % noise level. Top panel: Adopted error norm ratio r. Middle panel: Time series 
of identified story stiffness. Bottom panel: Elastic and plastic strain energy. 

r = 0.025 by pattern B 
in Fig. 4 

r = 0.02 by pattern B 
in Fig. 4 

r = 0.105 
by pattern B 

in Fig. 4 

r = 0.085 
by pattern B  
in Fig. 4 

Good agreement Good agreement 

Good agreement Good agreement 
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VERIFICATION OF IDENTIFICATION METHOD BASED ON FULL-SCALE SHAKING TABLE TEST 
 
Test specimens and experimental summary38-42) 
 
The validity of the proposed method will be verified using measurement data38) from a seismic shaking table test 
conducted on a 3-D Full-Scale Earthquake Testing Facility (nicknamed “E-Defense”) owned by the National Research 
Institute for Earth Science and Disaster Resilience (NIED). The tests applied for verification are a collapse test of a 
full-scale four-story steel structure building (hereinafter, S4) conducted in 200739,40) and a test of a full-scale three-
story steel structure building (hereinafter, S3) conducted in 201341). A panoramic view of each test specimen is shown 
in Fig. 9, and the excitation cases discussed in this paper are listed in Table 3. 

The test specimen S4 consists of 6 m × one span in the X-direction (the shorter direction) and 5 m × two spans in 
the Y-direction (the longer direction). The story heights are 3.875 m for the first floor and 3.50 m for the second to 
fourth floors. The building’s height is about 14 m. The building is a frame structure in both the X and Y directions. 
The input earthquake ground motions used in the shaking tests are the JR Takatori station record (hereinafter, Takatori) 
of the 1995 Hyogo-ken-Nanbu earthquake, with EW, NS, and UD components in the X, Y, and Z directions, 
respectively. The acceleration scaling factor adjusted the excitation level relative to the original wave. Tests were 
conducted by varying the scaling factor in the following order: 5%, 10%, 12.5% (first), 20%, 12.5% (second), 40%, 
60%, 100%, etc. The excitation levels discussed in this paper are 20%, 40%, and 60%, and the studied direction is in 
the X-direction. The reason for excluding 100% is that displacement data were unavailable for some periods, and the 
data required for identification was insufficient. In these excitation levels, input compensation control42) was applied 
to improve the reproducibility of the input ground motions, and it was noted that the influence (e.g., input energy loss) 
associated with shaking-table rocking is minor39).  

The test specimen S3 consists of 5 m × two spans in the X-direction (the shorter direction) and 6 m × two spans in 
the Y-direction (the longer direction). The story heights are 3.8 m for the first floor and 3.475 m for the other floors. 
The building’s height is about 11 m. The test specimen was designed to focus on a single frame of a three-story steel 
structural building, and the central vertical plane in Y-direction was a principal test target. Only this vertical plane is 
a frame structure, while the two outers are vertically supported by columns with pin joints at both ends and do not 
bear horizontal forces. The excitation was one-directional horizontal excitation in the Y-direction only. The X-
direction is orthogonal to the direction of excitation and is a braced structure to prevent torsional deformation. The 
input earthquake ground motions used in the tests are the assumed Nankai Trough earthquake ground motion and the 
Takatori (NS component). Since significant damage (e.g., beam end fracture) was observed for the first time at the 
Takatori input38,41), this paper focuses only on the Takatori input and covers all excitation levels (40%, 60%, 80%, and 
100%). The input ground motion was highly reproducible although no input compensation control was used for these 
excitations 38). 
 
 
 

                         
(a) Four-story steel structure building (S4)           (b) Three-story structure building (S3) 

Figure 9 Panoramic view of each test specimen 

 

 

Y 
X 

Y X 
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Table 3 Excitation cases used for identification in each test specimen 

 
 
Responses used for identification and their preprocessing 
 
As described in the previous chapter, the following data were required to identify each story stiffness by the proposed 
method: (1) the shear force in each story, (2) the inter-story drift, and (3) the inter-story velocity. First, the measured 
absolute acceleration response and the masses at each floor shown in Table 4 were used to determine (1). Next, the 
measured story drift data were used as (2). Finally, the acceleration responses were integrated using the Trifunac 
method36) to calculate (3). It should be noted that the filter parameters of the Trifunac method were adjusted based on 
the frequency transfer function of the observed response to the input ground motion. 
 

Table 4 Floor mass of each specimen 38) 

 
 

A high-cut filter was applied to the data obtained in the above process to lessen the influence of noise on the 
identification results. This paper removes the frequency components after the third-order dominant frequency of each 
specimen (consistently after 10 Hz). Furthermore, when the normalized cumulative power PC(t0, tn) defined in Eq. 
(12) is 1%–95%, the time range (t0-tn) was set as the section to be identified (time range in equation (4)). This is the 
purpose of removing microtremors before shaking and using data with a relatively high signal-to-noise ratio. The 
absolute acceleration response of the top floor was used for the signal g(t). 

0

2

0 Measurement end time
2

0

( )
( , )

( )

nt

t
C n

g t dt
P t t

g t dt





  (12) 

 
The sampling frequency was reduced from 1000 Hz (the measurement sampling frequency for each test) to 100 Hz, 
and the identification was performed after resampling to lessen computation costs.  
 
Identification result 
 
Figs. 10 a–c show the number of model parameters and the RMS error vs. error norm ratio r for the first to third stories 
under Takatori-20% excitation, respectively, as examples. The threshold values for the error norm ratio were 
determined (indicated by ▼) based on "Step 1 (pattern A in Fig. 4)" in the procedure, as mentioned before. The 
threshold values are the same through all excitation levels to make a comparison between excitation levels clear.  
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(a) 1st-story stiffness (r = 0.045) 

 
(b) 2nd-story stiffness (r = 0.045) 

 
(c) 3rd-story stiffness (r = 0.055) 

Figure 11 Time series of story stiffness identified for each excitation case in specimen S4 

Figs.11a–c show the results of identifying the story stiffness in specimen S4 for the first to third stories, respectively. 
In each figure, the results for each excitation level are summarized. The blue dashed line in Fig. 11 indicates the story 
stiffness of the entire specimen in reference39) for Takatori-20% excitation as a comparison value. According to the 
same reference, it is noted that the structure exhibited linear behavior under 20% excitation. The identification results 
under 20% excitation correspond well to the previous research’s identification results39) (blue dashed line), as shown 
in Fig. 11. Furthermore, the story stiffness has a nearly constant tendency, indicating that it is in the linear response 
range, as mentioned in reference39). The identification results for the Takatori-40% excitation show a tendency for the 
first story stiffness to recover gradually after stiffness reduction (red circle in the figure). The structural members 

Stable 

Adopted r (= 0.045) 
by pattern A in Fig. 4 

Stable 

Adopted r (= 0.045) 
by pattern A in Fig. 4 

 

Stable 

Adopted r (= 0.055) 
by pattern A in Fig. 4 

 

Figure 10 Adopted error norm ratio r (S4, Takatori-20) 

(a) 1st story (b) 2nd story 

(c) 3rd story 

Possibility of yielding 
Cyclic loading after yielding 
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likely experienced the yielding. It is mentioned in reference 40) that the top of some columns and the bottom of all 
columns in the first story experienced full plasticity under the Takatori 40% excitation. This would correspond to the 
tendency of the identification results in the first story. However, it has not fully recovered toward the stiffness 
identified at the early Takatori-40% excitation. Since the stiffness of pure steel components that yielded will recover 
after loading, such no full stiffness recovery is most probably due to the cracking of RC floor slabs, which contributes 
to the story stiffness as well43). Although there is no significant decrease in stiffness in the other stories, the stiffness 
tends to decrease slightly over time. In the Takatori 60% excitation identification results, the stiffness variation is 
prominent in the first story, which likely indicates the influence of cyclic behavior after yielding. According to 
reference40), the top and bottom of all columns in the first story and all beam-to-column joints on the second floor 
experienced full plasticity under the Takatori 60% excitation. The cracking of RC floor slabs on the second and third 
floors is also reported. That is likely why the identification results show a significant stiffness change, as shown in 
Fig.11a. Furthermore, in the same reference, it is mentioned that one beam-to-column joint on the third-floor 
experienced full plasticity. This influence is most probably reflected in the stiffness changes of the second and third 
stories (Figs. 11b and c). In Fig. 11c, although the stiffness of the third story is greater than its initial stiffness, it is 
likely not to indicate any physical meaning. Since the proposed method does not directly impose a constraint condition 
between the regression parameters (p in Eq. (7)), this influence appeared likely as an identification error. However, 
the influence of an identification error such as this case would be practically minor on damage detection because 
notable damage is detected most probably by the relationship between the initial and final identification values or the 
intense variation (decrease/increase) in stiffness with loading/unloading during an earthquake. Figs. 12 and 13 show 
examples of shear force vs. story drift estimated using the identified parameters. The figures show good 
correspondence with the experimental results, implying that the identification was conducted appropriately. The 
experimental hysteresis was derived by the measured accelerations, the measured inter-story drift and the masses at  
 

           
(a) 1st story                                                                (b) 2nd story 

Figure 12 Story shear force vs. story drift estimated based on the identified time-varying stiffness (S4, Takatori-40) 

           
(a) 1st story                                                                (b) 2nd story 

Figure 13 Story shear force vs. story drift estimated based on the identified time-varying stiffness (S4, Takatori-60) 
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each floor in Table 4, as mentioned in the section “Responses used for identification and their preprocessing”. The 
same process will be applied to the S3 specimen in the later. The identified damping coefficients are summarized in 
Table 5. Table 5 shows the values identified in previous research29,30) and their ratios. Each story's damping 
coefficients generally correspond to the identification results of previous research at Takatori 20 and 40, but it has a 
low agreement at Takatori 60. The reference 29) reports that the validity of the separation of viscous and hysteresis 
damping may not apparent, and it can be a future issue in this research as well. 

Figs. 14a, b show the number of model parameters and the RMS error vs. error norm ratio r for the first to third 
stories in the S3 specimen under Takatori-40% excitation, respectively, as examples. The error norm ratios were 
determined (indicated by ▼) in the same way as the S4 specimen. Figs. 15a, b show the results of identifying the story 
stiffness of the first and second stories in specimen S3. Also, the figures show the equivalent stiffness (gray dashed 
line) calculated by applying the least-squares method to the force-deformation curve for the Takatori-40% excitation. 
From Fig. 15, the least-squares method and the identification results correspond well and exhibit a generally constant 
trend, implying that the response is generally within the linear range at 40% excitation. This corresponds to 
experimental reports in reference 41). The identification results for the Takatori-60% excitation show a tendency for 
the first- and second-story stiffnesses to recover mostly after decreasing (red circle in the figure), implying that 
yielding has occurred. However, it has not fully recovered toward the stiffness identified at the early Takatori-60% 
excitation. Such no full stiffness recovery is most probably due to the cracking of RC floor slabs, which contributes 
to the story stiffness as well43). In reference41), it is mentioned that the bottom flange of the beam ends at the second 
and third floors plasticized under 60% excitation, and the cracking of RC floor slabs is also reported. These are likely 
reflected in the identification results. Takatori-80% excitation results show a more noticeable stiffness variation than 
60% excitation, implying that plasticization advances because of cyclic behavior. In Takatori-100% excitation, a 
significant decrease in stiffness occurs around 14 s after the shaking, along with a noticeable stiffness variation. The 
story stiffnesses have decreased by approximately 50% when compared with the early period of 100% excitation. 
According to reference41), the bottom flange of the beam end on the second floor ruptured, and local buckling occurred 
13 to 14 s after the shaking. The stiffnesses of the first and second stories (just upper and lower than the floor with the 
damaged beam) significantly decrease in identification results, corresponding well to the reported damage 
conditions41). Figs. 16 and 17 show examples of shear force vs. story drift estimated using the identified parameters. 
The figures indicate good agreement with the experimental results, implying that the identification was conducted 
appropriately. The proposed method is generally reliable for damage detection because the tendency of damage in the 
experiment generally corresponds to the identification results. Note that for the S3 specimen, the identified damping 
coefficients are not listed because no previous research’s results to compare the identification accuracy was not found. 

Table 5 Accuracy of identified damping coefficient c (kNs/m) in S4 specimen  

Adopted r (= 0.08) 
by pattern A in Fig. 4 

Stable 
Stable 

Adopted r (= 0.08) 
by pattern A in Fig. 4 

Figure 14 Adopted error norm ratio r (S3, Takatori-40) 

(a) 1st story (b) 2nd story 
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(a) 1st-story stiffness (r = 0.08)  

 
(b) 2nd-story stiffness (r = 0.08) 

Figure 15 Time series of story stiffness identified for each excitation case in specimen S3 

           
(a) 1st story                                                                (b) 2nd story 

Figure 16 Story shear force vs. story drift estimated based on the identified time-varying stiffness (S3, Takatori-80) 

           
(a) 1st story                                                                (b) 2nd story 

Figure 17 Story shear force vs. story drift estimated based on the identified time-varying stiffness (S3, Takatori-100) 

Possibility of yielding 

Fracture of beam bottom flange at 2FL 

Fracture of beam bottom flange at 2FL 
Possibility of yielding 
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CONCLUSIONS 

A stiffness identification method in the time domain applicable to structures with arbitrary poly-linear hysteresis 
characteristics is developed in this paper. The validity of the proposed method was demonstrated through numerical 
analysis and full-scale shaking table tests. The conclusions are summarized as follows. 
 
 The force equilibrium equation was expressed explicitly regarding the amount of stiffness change, and a new 

linear regression problem applicable to poly-linear hysteresis characteristics was developed. Furthermore, a 
stiffness identification method in the time domain based on a unified expression was developed by introducing 
sparse modeling and minimizing the l0 norm. This allows for detecting critical stiffness changes that significantly 
contribute to the force equilibrium. In addition, the proposed method eliminates the need to select the basis 
function system (the function system that composes the fitting target), which is found in previous research, because 
the coefficient matrix of the regression problem can be determined automatically from the response data. 

 The validity of the proposed method was simulated numerically for models that exhibit bi-linear and modified 
Takeda hysteresis characteristics. The theoretical validity of the proposed method was confirmed by the fact that 
the identified story stiffnesses agree well with the setting values in noise-free cases. Furthermore, although the 
identification accuracy slightly deteriorates in the case of noise, the yielding and stiffness-variation are identified 
well in the time range when significant stiffness reduction and large hysteresis damping occur. 

 The proposed method was demonstrated using full-scale shaking table test data on two steel structure specimens, 
S3 and S4. The decrease in story stiffness with increasing excitation level was apparent, and it was also confirmed 
that the damage condition in the experiment generally corresponded to the identified results. Furthermore, the 
post-yielding story stiffness tended to gradually recover toward the value identified at the early excitation period 
after stiffness reduction. This tendency was the same for both specimens. On the other hand, as indicated in the 
excitation experiment for S3, the stiffness recovery tendency did not appear when the beam-end fracture occurred. 
In addition, the stiffnesses significantly decreased in stories just above and below the floor with the beam-end 
fracture. These results indicate that the proposed method is qualitatively valid for damage detection. 

 
In evaluating modal property change during nonlinear response, the method by time series model (i.e., ARX model, 

multivariable subspace model) is not easy generally to set appropriate parameters (i.e., system orders, number of time 
segments, forgetting factor, number of block rows in block Hankel matrix ...) that balance between the time resolution 
and identification accuracy. The setting significantly impacts the results. Also, since the hysteresis curve involves the 
damping force, the stiffness changes hiding in hysteresis curves are not always easy to detect, even if the hysteresis 
curve is given. The proposed method detects characteristic stiffness changes by separating the story shear force into 
the damping force and restoring force through sparse modeling. These can be the additional benefit of using the 
proposed method for damage detection while the assumption of damping force remains an issue. 

On the other hand, the proposed method does not incorporate processing to separate the rotational and shear-type 
responses. Therefore, it is difficult to apply to structures that exhibit rotational response rather than just shear-type 
response, such as a tall building utilizing a wall system. In addition, since the proposed method detects characteristic 
stiffness change points, the accuracy decreases likely for a model that shows a slow change in stiffness between elastic 
and inelastic behavior, such as Ramberg Osgood hysteretic material. These potential issues will be pursued in future 
work. Furthermore, to relax the assumption that c is constant, it is possible that the proposed method is applied after 
dividing the data into multiple time segments, but how to determine the time segments will be a problem. This problem 
will also be investigated in future work. Finally, making the displacement known is a significant issue in this paper. 
A displacement estimation cannot be avoided currently when the proposed method is applied to real structures. In 
recent research, since the displacement estimation method that considers drift components has been developed (for 
example, reference 44)), the accuracy and practice of the proposed method will be demonstrated in combination with 
such a method.  
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