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Abstract 

This study aims to investigate whether conditional higher moments offer additional and 

distinct information compared to lower moments in spillover effect analysis, and to 

examine their relevance for portfolio construction and hedging strategies. We employ 

the autoregressive conditional density (ACD) model to estimate the conditional 

skewness and kurtosis of nine major cryptocurrency markets. Furthermore, we explore 

the higher moment spillovers among these markets using the Diebold Yilmaz spillover 

approach. The results confirm that the magnitude and direction of spillover effects vary 

across different moments in the cryptocurrency market, each providing unique insights. 

Additionally, we find that although the spillover effects exhibit variations over different 

time periods and market conditions, the skewness spillover and kurtosis spillover, 

which track the transmission of downside (upside) risk and tail risk respectively, 

demonstrate similarities in their patterns. These variations differ noticeably from the 

changes observed in volatility spillover, which tracks the transmission of volatility risk. 

Finally, comparing the minimum connectedness portfolio (MCoP) based on different 

moment spillovers, we discover that the MCoP derived from higher moment spillovers 

exhibits superior hedge effectiveness and Sharpe ratios. 
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1. Introduction 

The spectacular collapse of the US housing market and the bursting of the US 

mortgage bubble in the summer of 2007 directly triggered a severe financial crisis in 

2008. This crisis begins in the US stock market and spreads rapidly to other financial 

sectors. The crisis spreads to other countries, transforming a local crisis into a global 

one. This event serves as a reminder to closely monitor spillover effects between 

markets to prevent shocks from one market from spreading to others. 

Numerous techniques can be utilized to measure spillover effects. Some of the 

commonly employed techniques include vector autoregression (VAR) models, 

multivariate generalized autoregressive conditional heteroskedasticity (M-GARCH) 

models such as dynamic conditional correlation (DCC) GARCH, and Copula Models. 

In recent years, the Diebold Yilmaz connectedness (spillover) approach has garnered 

increasing attention from researchers. It measures the spillover effect in the generalized 

VAR framework and was first proposed by Diebold & Yilmaz (2009). It quantifies both 

the strength and direction of spillover effects within a fixed investment horizon. 

Based on the Diebold Yilmaz connectedness approach, an extensive amount of 

literature has investigated the spillovers of returns and volatilities (e.g., Diebold & 

Yilmaz, 2009; He et al., 2020; Liu & Hamori, 2020; Sun et al., 2022; Tiwari et al., 

2018). Since returns and volatilities track changes in investor expectations and market 

volatility risks, return spillover and volatility spillover are considered to track inter-

market expectational links and volatility risk links (Diebold & Yilmaz, 2015). Recently, 
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researchers have started extending spillover analysis to higher moments, such as 

skewness and kurtosis. Skewness and kurtosis of returns are considered to measure 

downside (upside) risk or tail risk in challenging times and under adverse scenarios in 

financial markets (He & Hamori, 2023). Compared with volatility spillover, skewness 

spillover and kurtosis spillover can capture extreme tail co-movements between 

markets. Higher moment spillovers can effectively detect some important events that 

may not be effectively captured by return and volatility spillover (Bouri et al., 2021). 

Similar to volatility, both skewness and kurtosis are latent and need to be estimated. 

Several higher moment spillover analyses based on realized measures or model-based 

estimates have garnered attention (e.g., Finta and Aboura 2020; Gkillas et al. 2022; He 

and Hamori 2021; Nekhili and Bouri 2023; Zhang et al. 2022). One major advantage 

of realized measures is their ease of calculation, and therefore, most of the literature on 

higher moment spillover has utilized realized measures. However, model-based 

estimates allow for more sophisticated and flexible modeling techniques, such as the 

autoregressive conditional density (ACD) model and GARCHSK models. These 

models capture the conditional dependencies and dynamics in the data, providing more 

accurate and robust volatility estimates. Additionally, model-based estimates of 

skewness or kurtosis do not require high-frequency data, unlike realized measures, 

which rely on high-frequency data. He and Hamori (2021) conducted pioneering work 

in spillover analysis of conditional higher moments. They focused on major global 

stock markets as the subject of their study and employed the ACD model to estimate 
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their conditional higher moments, obtaining robust results in the stock market and 

confirming the importance of measuring higher order spillover effects. 

In recent years, cryptocurrencies like Bitcoin and Ethereum have gained increasing 

prominence, reshaping the financial landscape and disrupting conventional 

understandings of currency. They have opened up new opportunities for investment and 

financial transactions. Cryptocurrencies have emerged as a noteworthy financial asset 

class, displaying distinct features, market structure, price determinants, risk factors, and 

regulatory considerations in contrast to traditional financial products. Given the 

significance and distinctive nature of the cryptocurrency market, we incorporate high 

moment spillover analysis into our study. This approach allows us to examine the 

similarities and differences in high moment spillover effects between cryptocurrencies 

and other markets. 

The Diebold Yilmaz connectedness approach has long been considered to provide 

important information for practical investment decisions, but its specific application 

remains a widely discussed issue. However, in recent times, it has found practical 

application in portfolio construction. Broadstock et al. (2020) introduced a portfolio 

technique called the Minimum Connectedness Portfolio (MCoP). This approach aims 

to construct a portfolio by minimizing interconnectedness and spillover effects among 

investment assets. Several studies related to the MCoP have confirmed the significant 

role played by return connectedness or volatility connectedness in portfolio 

construction (e.g., Abdullah, Chowdhury, and Sulong 2023; Adekoya et al. 2022; Cui 
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and Maghyereh 2023; Tiwari et al. 2021). Additionally, the MCoP has exhibited 

favorable financial performance for certain financial assets. However, there is limited 

literature on MCoP based on higher moment connectedness. The applicability of higher 

moment connectedness to this strategy, as well as its role in hedging strategies and 

portfolio construction, still need to be verified. 

For these reasons, we follow the approach of He & Hamori (2021) and estimate the 

conditional skewness and kurtosis using the ACD model. Subsequently, we extend the 

Diebold-Yilmaz connectedness approach to incorporate higher moments. We 

investigate the spillover of skewness and kurtosis among 9 major cryptocurrencies, 

analyzing their implications for the transmission of downside (upside) risk and tail risk. 

Furthermore, we examine the role of skewness spillover and kurtosis spillover in 

portfolio construction, assessing whether the MCoP based on higher moment 

connectedness exhibits superior hedge effectiveness compared to that based on 

volatility connectedness. To the best of our knowledge, this paper represents the first 

research endeavor to explore the spillover effects of conditional higher moments across 

cryptocurrency markets. Moreover, it contributes to the existing literature by 

investigating the role of higher moment spillovers in hedging strategies and portfolio 

construction. 

Here are some major findings of this paper: 

First, we find that the total spillovers across cryptocurrency markets decrease as 

the order of the moment increases. The total skewness spillover and total kurtosis 
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spillover are smaller than the total volatility spillover among all markets. Additionally, 

the changes in skewness and kurtosis spillovers display high similarity, implying a 

consistent pattern in the transmission of downside (upside) risk and tail risk across 

markets over time. However, the changes and fluctuations in downside (upside) risk 

and tail risk are notably different from the transmission patterns of volatility risk. 

Second, for each cryptocurrency, the spillover from and to other cryptocurrencies 

varies across different moments. Binance Coin (BNB) and Bitcoin (BTC) dominate in 

transmitting volatility and kurtosis, respectively, while Cardano (ADA) exhibits the 

highest skewness spillover transmitted to others. 

At last, to examine whether higher-moment spillovers can be used in portfolio 

construction and hedging strategies, we introduce the higher moment connectedness 

into the MCoP and explore the historical investment performance of them through 

back-testing. 

We find that compared to the MCoP based on volatility, the MCoP based on higher 

moments shows better hedge effectiveness and higher Sharpe ratios for volatility, Value 

at Risk (VaR), and expected shortfall (ES). Particularly, in terms of hedge effectiveness 

and Sharpe ratios, the Minimum Connectedness Portfolio (MCoP) based on kurtosis 

connectedness and skewness connectedness demonstrates the best performance, 

respectively. 

The remainder of this paper is organized as follows. Section 2 presents the empirical 

methods, including the ACD model, the Diebold Yilmaz TVP-VAR-based 
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connectedness approach, and a novel portfolio technique named MCoP. Section 3 

describes the data, reports the summary statistics, and presents the results of the tests. 

The results are discussed in Section 4, and Section 5 provides a summary and 

conclusions.  

2. Methodology 

2.1. The Autoregressive Conditional Denity Model 

To capture the dynamic behavior of higher moments, such as skewness and kurtosis, 

Hansen (1994) introduced the Autoregressive Conditional Density (ACD) model, 

which generalizes GARCH type dynamics to time varying conditional higher moments 

and such subsumes them. 

 A first order constant-GARCH(1,1) model with general ACD dynamics can be 
written as: 

𝑟𝑟𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜖𝜖𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡, (1a) 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼1𝜖𝜖𝑡𝑡−1
2 + 𝛽𝛽1𝜎𝜎𝑡𝑡−1

2 . (1b) 

where 𝜖𝜖𝑡𝑡 is the innovation, and 𝑧𝑧𝑡𝑡 is white noise and assumed to follow some 

appropriately distribution 𝔇𝔇(0,1,𝜌𝜌𝑡𝑡, 𝜁𝜁𝑡𝑡)1 . 𝜌𝜌𝑡𝑡  and 𝜁𝜁𝑡𝑡  are skew parameter and shape 

parameter, which control the asymmetry and tail thickness, respectively. The higher 

order moments such as skewness and kurtosis could be calculated by the two parameters.  

                             
1 This paper uses the normal inverse Gaussian (NIG) distribution which follows He and 
Hamori (2021). 
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In the ACD model, the dynamics for the two parameters can be modeled by the 

first-order quadratic-type dynamics: 

𝜌𝜌𝑡𝑡 = Φ�𝜌𝜌�t� = 𝐿𝐿𝜌𝜌�t
+

(𝑈𝑈𝜌𝜌�t−𝐿𝐿𝜌𝜌�t)

1+𝑒𝑒−𝜌𝜌�t
, , (2a) 

𝜁𝜁𝑡𝑡 = Φ�𝜁𝜁�t� = 𝐿𝐿𝜁𝜁�t
+ 𝑈𝑈𝜁𝜁�t

𝑒𝑒−𝜐𝜐𝜁𝜁�t , (2b) 

�̅�𝜌t = 𝑎𝑎0 + 𝑎𝑎1𝑧𝑧𝑡𝑡−1 + 𝑎𝑎2𝑧𝑧𝑡𝑡−12 + 𝑐𝑐1�̅�𝜌t−1, (2c) 

𝜁𝜁t̅ = 𝑏𝑏0 + 𝑏𝑏1𝑧𝑧𝑡𝑡−1 + 𝑏𝑏2𝑧𝑧𝑡𝑡−12 + 𝑑𝑑1𝜁𝜁t̅−1. (2d) 

Where �̅�𝜌t and 𝜁𝜁t̅ are the unconstrained motion dynamics of the skew parameter 𝜌𝜌𝑡𝑡 

and 𝜁𝜁𝑡𝑡 respectively. Φ(⋅) represents an appropriate transformation function. 𝐿𝐿 and 

𝑈𝑈 are the lower and upper bounds of the distributional parameters. 

2.2. The Diebold–Yilmaz TVP-VAR-based Approach 

In this research, a TVP-VAR with one lag will be employed based on the Schwartz 

information criterion (SC). Consider an 𝑁𝑁-variable TVP-VAR(1) model as follows: 

𝒚𝒚𝑡𝑡 = 𝚽𝚽1𝑡𝑡𝒚𝒚𝑡𝑡−1 + 𝜺𝜺𝑡𝑡 , 𝜺𝜺𝒕𝒕|𝛀𝛀𝑡𝑡−1~𝑵𝑵(𝟎𝟎,𝚺𝚺𝑡𝑡),  (3a) 

vec(𝚽𝚽𝑡𝑡) = vec(𝚽𝚽𝑡𝑡−1) + 𝜼𝜼𝑡𝑡 , 𝜼𝜼𝑡𝑡|𝛀𝛀𝑡𝑡−1~𝑵𝑵(𝟎𝟎,𝚵𝚵𝑡𝑡), (3b) 

where 𝛀𝛀𝑡𝑡−1  represents all available information up to 𝑡𝑡 − 1 , the endogenous 

variables 𝒚𝒚𝑡𝑡  is an 𝑁𝑁 × 1  dimensional vector. 𝚽𝚽𝑡𝑡  is an 𝑁𝑁 × 𝑁𝑁  matrix and its 

vectorization vec(𝚽𝚽𝑡𝑡) is an 𝑁𝑁2 × 1 vector. The shocks 𝜺𝜺𝑡𝑡 and  𝜼𝜼𝑡𝑡 are 𝑁𝑁 × 1 and 

𝑁𝑁2 × 1 dimensional vectors, respectively. Moreover, variance-covariance matrices 𝚺𝚺𝑡𝑡 

and 𝚵𝚵𝑡𝑡 are 𝑁𝑁 × 𝑁𝑁 and 𝑁𝑁2 × 𝑁𝑁2 dimensional matrices, respectively. 
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According to the Wold representation theorem, we can transform the TVP-VAR 

into a TVP-VMA as follows: 

𝒚𝒚𝒕𝒕 = �𝚲𝚲𝑗𝑗𝑡𝑡𝜺𝜺𝑡𝑡−𝑗𝑗 +
∞

𝑗𝑗=1

𝜺𝜺𝑡𝑡 . (4) 

We can then calculate the generalized forecast error variance decomposition (GFEVD), 

which was introduced by Koop et al. (1996), and Pesaran & Shin (1998), using TVP-

VMA coefficients to compute the dynamic connectedness measures (Diebold & Yilmaz, 

2009, 2012, 2014). 

The 𝐻𝐻 -step-ahead GFEVD under the generalized VAR framework can be 

expressed as follows: 

𝜃𝜃𝑗𝑗𝑗𝑗,𝑡𝑡
𝐻𝐻 =

Σ𝑗𝑗𝑗𝑗,𝑡𝑡
−1 ∑ �𝑒𝑒𝑗𝑗′𝚲𝚲ℎ,𝑡𝑡𝚺𝚺𝑡𝑡𝑒𝑒𝑗𝑗�

2𝐻𝐻−1
ℎ=0

∑ �𝑒𝑒𝑗𝑗′𝚲𝚲ℎ,𝑡𝑡𝚺𝚺𝑡𝑡𝚲𝚲ℎ,𝑡𝑡
′ 𝑒𝑒𝑗𝑗�𝐻𝐻−1

ℎ=0

, (5) 

where 𝐻𝐻 is the forecast horizon that is set to 10 in this paper. 𝑒𝑒𝑖𝑖 is a selection vector 

with one on the 𝑖𝑖 − th position and zeros elsewhere. 𝚲𝚲ℎ,𝑡𝑡  represents the coefficient 

matrix multiplying the ℎ-lagged shock vector in the TVP-VMA at time 𝑡𝑡, and Σ𝑗𝑗𝑗𝑗,𝑡𝑡 

is the 𝑘𝑘-th diagonal element of the covariance matrix 𝚺𝚺𝑡𝑡. 

 After the normalization, the pairwise connectedness index from the 𝑘𝑘 −th variable 

to the 𝑗𝑗 −th variable at horizon 𝐻𝐻 at time 𝑡𝑡 can be calculated by 

𝜃𝜃�𝑗𝑗𝑗𝑗,𝑡𝑡
𝐻𝐻 =

𝜃𝜃𝑗𝑗𝑗𝑗,𝑡𝑡
𝐻𝐻

∑ 𝜃𝜃𝑗𝑗𝑗𝑗,𝑡𝑡
𝐻𝐻𝑁𝑁

𝑗𝑗=1
, (6) 

Meanwhile, the total connectedness index can be represented as 
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𝑆𝑆𝑡𝑡𝐻𝐻 =
1
𝑁𝑁

� 𝜃𝜃�𝑗𝑗𝑗𝑗,𝑡𝑡
𝐻𝐻

𝑁𝑁

𝑗𝑗,𝑗𝑗=1,𝑗𝑗≠𝑗𝑗

. (7) 

Moreover, the directional connectedness (From), which measures the averaged 

spillover to the 𝑘𝑘 − th variable from all remaining variables in the system, can be 

calculated as 

𝑆𝑆𝑗𝑗←⋅,𝑡𝑡𝐻𝐻 =
1
𝑁𝑁

� 𝜃𝜃�𝑗𝑗𝑗𝑗,𝑡𝑡
𝐻𝐻

𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑗𝑗

. (8) 

Similarly, the directional connectedness (To), which measures the total averaged 

spillover from the 𝑘𝑘 −th variable to all the remaining variables in the system, can be 

calculated as 

𝑆𝑆⋅←𝑗𝑗,𝑡𝑡
𝐻𝐻 =

1
𝑁𝑁

� 𝜃𝜃�𝑗𝑗𝑗𝑗,𝑡𝑡
𝐻𝐻

𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑗𝑗

. (9) 

The above-defined measures of connectedness at time 𝑡𝑡 are summarized in Table 

1. 

Table 1: Averaged Diebold–Yilmaz connectedness index table 
 𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦N From 

𝑦𝑦1 𝜃𝜃�11𝐻𝐻  𝜃𝜃�12𝐻𝐻  ⋯ 𝜃𝜃�1𝑁𝑁𝐻𝐻  𝑆𝑆1←⋅𝐻𝐻  

𝑦𝑦2 𝜃𝜃�21𝐻𝐻  𝜃𝜃�22𝐻𝐻  ⋯ 𝜃𝜃�2𝑁𝑁𝐻𝐻  𝑆𝑆2←⋅𝐻𝐻  

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

𝑦𝑦N 𝜃𝜃�𝑁𝑁1𝐻𝐻  𝜃𝜃�𝑁𝑁2𝐻𝐻  ⋯ 𝜃𝜃�𝑁𝑁𝑁𝑁𝐻𝐻  𝑆𝑆𝑁𝑁←⋅𝐻𝐻  

To 𝑆𝑆⋅←1𝐻𝐻  𝑆𝑆⋅←2𝐻𝐻  ⋯ 𝑆𝑆⋅←𝑁𝑁𝐻𝐻  𝑆𝑆𝐻𝐻 

Note: Adapted from (Diebold & Yilmaz, 2015). 
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2.3. Portfolio back-testing models 

2.3.1 Minimum Connectedness Portfolio 

In the spirit of the minimum variance portfolio and minimum correlation portfolio,  

(Broadstock et al., 2020) proposed the MCoP by using all Diebold-Yilmaz pairwise 

spillover indices instead of the variance or correlation matrix in the minimum variance 

portfolio or minimum correlation portfolio. By minimizing the interconnectedness and 

spillover effects among variables, a more resilient investment portfolio can be achieved, 

which is less susceptible to the adverse impacts of network shocks. Consequently, 

variables (investment instruments) that neither affect nor are influenced by others will 

receive higher weights within the portfolio. This can be expressed as follows: 

𝝎𝝎𝑅𝑅𝑡𝑡 =
𝑷𝑷𝑷𝑷𝑷𝑷𝑡𝑡−1𝑷𝑷
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑡𝑡−1𝑷𝑷

. (10) 

Where 𝑷𝑷𝑷𝑷𝑷𝑷𝑡𝑡 is the pairwise connectedness index matrix, and 𝑷𝑷 is the identity matrix. 

2.3.2 Portfolio evaluation 

To evaluate the effectiveness of the hedging and portfolio strategy, on the one hand, 

we calculate the hedge effectiveness as proposed by (EDERINGTON, 1979) which can 

be calculated as: 

𝐻𝐻𝐻𝐻 = 1 −
𝑉𝑉𝑎𝑎𝑟𝑟(𝑦𝑦𝑝𝑝)

𝑉𝑉𝑎𝑎𝑟𝑟(𝑦𝑦𝑢𝑢𝑢𝑢ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
. (11) 

𝑉𝑉𝑎𝑎𝑟𝑟(𝑦𝑦𝑢𝑢𝑢𝑢ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) is the variance of the portfolio returns, and 𝑉𝑉𝑎𝑎𝑟𝑟(𝑦𝑦𝑝𝑝) represents the 

variance of the un-hedged asset. 
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 The hedge effectiveness reflects the percent reduction in the variance of the un-

hedged position. The higher the hedge effectiveness the larger is the volatility risk 

reduction and vice versa. Following this line of thought, to measure the ability of the 

hedging portfolio to reduce extreme risks, we adapted Ederington's hedge efficiency for 

volatility risk, and calculated the hedge efficiency for VaR and for ES accordingly. The 

calculations are conducted as follows: 

𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉𝑅𝑅 = 1 −
𝑉𝑉𝑎𝑎𝑉𝑉�𝑦𝑦𝑝𝑝�

𝑉𝑉𝑎𝑎𝑉𝑉�𝑦𝑦𝑢𝑢𝑢𝑢ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�
, (12𝑎𝑎) 

𝐻𝐻𝐻𝐻𝐸𝐸𝐸𝐸 = 1 −
𝐶𝐶𝑉𝑉𝑎𝑎𝑟𝑟(𝑦𝑦𝑝𝑝)

𝐶𝐶𝑉𝑉𝑎𝑎𝑟𝑟(𝑦𝑦𝑢𝑢𝑢𝑢ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
. (12b) 

Where 𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉𝑅𝑅 and 𝐻𝐻𝐻𝐻𝐸𝐸𝐸𝐸 are hedge efficiency for VaR and for ES, respectively. 

 On the other hand, we calculate the Sharpe ratio of return over volatility (SR), 

which proposed by Sharpe (1994), is calculated as follows. 

𝑆𝑆𝑉𝑉 =
�̅�𝑟𝑝𝑝

�𝑣𝑣𝑎𝑎𝑟𝑟(𝑟𝑟𝑝𝑝)
. (13) 

Where 𝑟𝑟𝑝𝑝 is the portfolio returns assuming that the risk-free rate is equal to zero. In 

addition, similar to the hedge effectiveness, we also calculate the Sharpe ratios of return 

over VaR (𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅) and ES (𝑆𝑆𝑉𝑉𝐸𝐸𝐸𝐸)2 as follows. 

𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅 =
�̅�𝑟𝑝𝑝

𝑉𝑉𝑎𝑎𝑉𝑉�𝑟𝑟𝑝𝑝�
, (13𝑎𝑎) 

                             
2 The confidence levels for both VaR and ES are 95%, the same as that in hedge 
effectiveness. 
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𝑆𝑆𝑉𝑉𝐸𝐸𝐸𝐸 =
�̅�𝑟𝑝𝑝

𝐶𝐶𝑉𝑉𝑎𝑎𝑉𝑉�𝑟𝑟𝑝𝑝�
. (13b) 

The 𝑆𝑆𝑉𝑉 , 𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅 , and 𝑆𝑆𝑉𝑉𝐸𝐸𝐸𝐸  indicate which portfolio has the highest return given the 

same volatility, VaR, and ES, respectively.  

3. Data and Descriptive Statistics 

At Binance, more than 350 cryptocurrencies are being traded. For this study, we 

have selected the top 9 cryptocurrencies with the highest market capitalization as of 

January 2023, excluding stablecoins such as Tether (USDT), USD Coin (USDC), and 

Binance USD (BUSD), which are highly pegged to the US dollar. The selected 

cryptocurrencies are Bitcoin (BTC), Binance Coin (BNB), Ethereum (ETH), XRP, 

Cardano (ADA), Dogecoin (DOGE), Polygon (MATIC), Polkadot (DOT), and Solana 

(SOL). As of January 2023, these 9 cryptocurrencies collectively account for over 65% 

of the total market. Our data covers the period from August 18, 2020, to January 1, 

2023. We selected this time period for two reasons: firstly, the data for DOT and SOL 

became available only from August 2020 onwards, and secondly, prior to 2020, most 

cryptocurrencies experienced only minor fluctuations within a narrow price range. All 

the cryptocurrencies analyzed in this paper are spot trading pairs, and the data is sourced 

from Binance, with units denominated in USDT. 

After obtaining the raw data for the cryptocurrencies, we calculate the returns for 

each trading pair using a logarithmic difference transformation. Then, we utilize the 

ACD-NIG model to estimate the conditional volatility, conditional skewness, and 



14 

 

conditional kurtosis series. Table 2 presents a range of summary statistics for all series. 

Regarding the return series, except for BTC, ETH, and SOL, the returns of all other 

cryptocurrencies exhibit a right-skewed distribution, indicating the potential for 

exceptionally high returns, albeit with a low probability. Additionally, all return series 

exhibit leptokurtosis, except for BTC and ADA, which display platykurtic and 

mesokurtic distributions, respectively. A leptokurtic distribution suggests that returns 

are prone to extreme values, both negative and positive, indicating a higher tail risk. 

The p-values of the Jarque and Bera (Jarque & Bera, 1980) normality test confirm that 

none of the return series follow a normal distribution. The unit root test conducted by 

Elliott et al. (1996) shows that all return series exhibit no unit root. The results of the 

Fisher & Gallagher (2012) weighted portmanteau test reveal the presence of 

ARCH/GARCH type effects in all return series. In terms of conditional volatility, 

conditional skewness, and conditional kurtosis, the results of the Jarque and Bera 

(Jarque & Bera, 1980) normality test indicate that they are also non-normally 

distributed. Furthermore, the results of the unit root test developed by Elliott et al. (1996) 

indicate the absence of unit roots in the data. 
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Table 2: Summary statistics  
Returns 

 BTC BNB ETH XRP ADA DOGE MATIC DOT SOL 

Mean 0.000 0.003 0.001 0.000 0.001 0.003 0.004 0.000 0.001 

Variance 0.001 0.003 0.003 0.004 0.003 0.009 0.006 0.004 0.006 

Skewness −0.236 0.622 −0.413 0.15 0.255 5.977 0.969 0.233 −0.368 

Ex.Kurtosis 2.713 14.491 3.791 12.538 3.000 92.500 6.057 7.532 6.019 

JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ERS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝑸𝑸𝟐𝟐(𝟓𝟓) 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 

Conditional Volatilities 

Mean 0.036 0.05 0.049 0.058 0.055 0.068 0.074 0.063 0.073 

Variance 0.000 0.001 0.000 0.001 0.000 0.005 0.001 0.001 0.001 

Skewness 0.754 3.494 2.217 2.467 1.576 7.603 2.226 2.023 3.008 

Ex.Kurtosis 0.439 16.956 7.434 7.385 3.113 86.492 6.664 4.750 12.869 

JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ERS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Conditional Skewness 

Mean −0.054 −0.227 −0.219 −0.042 0.063 0.541 0.44 0.115 0.132 

Variance 0.285 0.37 0.196 0.659 0.149 1.498 1.031 0.475 0.378 

Skewness −2.966 0.414 −1.272 −0.745 −2.684 3.008 2.019 0.104 −2.524 

Ex.Kurtosis 16.473 1.862 8.708 8.15 10.611 14.729 8.531 1.003 10.256 

JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ERS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Conditional Kurtosis 

Mean 4.646 4.379 2.492 6.278 3.059 11.756 5.733 3.825 2.944 

Variance 8.249 0.902 2.426 24.117 0.432 161.686 72.043 1.572 3.518 

Skewness 7.692 4.346 15.789 11.018 8.186 6.437 5.806 4.548 14.539 

Ex.Kurtosis 85.111 27.302 355.963 195.264 75.619 49.152 37.385 34.845 286.902 

JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ERS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note: The table presents the descriptive statistics includes the mean, variance, skewness, excess kurtosis, 

and the p-value of the test of Jarque and Bera (JB; 1987), the Elliott et al., (1996) unit root test. and the 

Fisher & Gallagher (2012) weighted portmanteau test with 5 lags. 
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4. Empirical Results and Discussion 

4.1. Averaged dynamic spillovers 

Let's begin by focusing on the averaged spillover measures. Tables 3, 4, and 5 

present the averaged volatility spillovers, averaged skewness spillovers, and averaged 

kurtosis spillovers among the cryptocurrency markets, respectively. The values on the 

main diagonal of each table are not our main concern as they correspond to shocks 

within the same variable. Our interest lies in the off-diagonal values, which represent 

the interactions and spillovers between different markets. The last row and the last 

column in each table represent directional spillover (to) and directional spillover (from), 

respectively. They indicate the average spillover level from a specific market to all other 

markets and the average spillover level from all other markets to a specific market. 

Lastly, the value at the bottom right corner of each table represents the total spillover, 

indicating the overall spillover level of all markets. By comparing and analyzing the 

results of Tables 3, 4, and 5, we can draw the following key findings. 

First, we observe that in the cryptocurrency markets, as the order of the moment 

increases, the total spillover decreases. The total volatility spillover among markets is 

the highest (64.11%), followed by the skewness spillover (59.27%), and the kurtosis 

spillover is the smallest (29.82%). This finding is consistent with the results of He & 

Hamori (2021). 

Secondly, the spillovers from and to other cryptocurrencies vary across different 

moments for each cryptocurrency. For instance, in terms of volatility, BNB exhibits the 



17 

 

highest volatility spillover to other currencies, while ETH receives the highest volatility 

spillover. However, when it comes to skewness, ADA shows the highest skewness 

spillover to other currencies while also receiving the highest skewness spillover. In the 

case of kurtosis, BTC transmits the highest kurtosis spillover to other currencies, 

whereas ETH receives the highest kurtosis spillover. These findings imply that BNB, 

ADA, and BTC are likely to transfer the most volatility risk, downside (upside) risk, 

and tail risk to other markets, respectively. At the same time, ETH is likely to receive 

the most volatility risk and tail risk, while ADA is likely to receive the most downside 

(upside) risk. The transmission of volatility risk, downside (upside) risk, and tail risk 

among different cryptocurrency markets varies in magnitude and direction. This 

suggests that we can obtain unique information regarding the transmission of various 

types of risk from volatility spillover, skewness spillover, and kurtosis spillover. This 

information can enable more tailored risk management approaches, potentially 

enhancing the efficiency and effectiveness of investment strategies. 
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Table 3: Averaged dynamic volatility spillover index table 
 BTC BNB ETH XRP ADA DOGE MATIC DOT SOL From 

BTC 33.46 10.87 12.52 5.97 6.75 9.10 7.53 7.31 6.49 7.39 
BNB 10.15 33.13 8.94 8.32 6.46 9.23 8.13 7.98 7.66 7.43 
ETH 11.06 11.41 27.00 6.11 7.43 11.84 6.79 8.86 9.51 8.11 
XRP 7.05 8.56 7.42 40.80 6.16 10.33 6.52 6.85 6.30 6.58 
ADA 6.41 8.96 12.81 8.58 28.39 11.82 7.07 8.01 7.96 7.96 

DOGE 6.54 6.21 5.87 5.98 4.37 58.29 3.69 4.96 4.10 4.64 
MATIC 9.37 12.20 11.43 6.72 6.88 9.27 29.64 6.74 7.73 7.82 

DOT 6.97 9.33 8.13 6.60 7.29 6.02 5.89 41.82 7.95 6.46 
SOL 5.35 12.12 10.61 8.99 8.04 8.53 7.30 8.60 30.47 7.73 
To 6.99 8.85 8.64 6.36 5.93 8.46 5.88 6.59 6.41 64.11 

 

Table 4: Averaged dynamic skewness spillover index table 
 BTC BNB ETH XRP ADA DOGE MATIC DOT SOL From 

BTC 49.65 6.50 10.08 4.64 11.17 1.79 2.39 6.33 7.44 5.59 
BNB 4.39 34.29 9.08 8.87 12.23 4.62 8.53 13.31 4.69 7.30 
ETH 6.80 9.31 33.63 8.35 13.29 3.81 5.45 12.14 7.23 7.38 
XRP 3.53 9.71 9.03 39.69 11.49 4.41 6.63 10.94 4.57 6.70 
ADA 6.84 11.09 11.41 9.66 30.17 4.01 6.26 11.24 9.31 7.76 

DOGE 2.03 7.24 7.60 6.76 6.20 54.90 5.19 7.56 2.52 5.01 
MATIC 2.33 11.18 7.63 7.84 9.36 5.33 40.79 11.07 4.47 6.58 

DOT 3.51 12.47 10.77 9.60 10.86 3.60 7.07 36.59 5.53 7.05 
SOL 7.74 6.46 8.01 5.31 13.07 1.87 3.09 7.60 46.86 5.91 
To 4.13 8.22 8.18 6.78 9.74 3.27 4.96 8.91 5.08 59.27 

 

Table 5: Averaged dynamic kurtosis spillover index table 
 BTC BNB ETH XRP ADA DOGE MATIC DOT SOL From 

BTC 72.53 0.54 9.45 5.68 0.49 1.69 4.64 2.92 2.06 3.05 
BNB 1.65 66.81 0.60 0.51 13.81 2.94 3.75 6.04 3.90 3.69 
ETH 10.65 0.61 62.00 4.32 0.12 9.44 4.54 5.64 2.69 4.22 
XRP 6.08 0.72 5.38 73.95 0.14 3.13 6.49 2.57 1.54 2.89 
ADA 0.37 13.72 0.11 0.10 70.21 3.23 0.38 6.29 5.59 3.31 

DOGE 1.22 2.46 2.47 2.33 2.07 84.71 1.32 2.42 1.01 1.70 
MATIC 7.80 3.34 10.26 5.68 0.34 3.34 64.09 3.15 2.00 3.99 

DOT 3.29 5.25 4.87 2.38 5.46 1.48 2.91 68.84 5.53 3.46 
SOL 8.08 4.14 2.69 1.38 6.15 0.88 1.87 6.32 68.51 3.50 
To 4.35 3.42 3.98 2.49 3.18 2.90 2.88 3.93 2.70 29.82 
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4.2. Dynamic total spillovers 

To investigate how the spillover effects evolve over time and how extreme events 

affect them, we will focus on the results of dynamic total spillovers. In addition, to 

better illustrate the results, we present in the topmost panel of Figure 1 a price chart 

over time for the S&P cryptocurrency top 10 equal weight index, which reflects the 

overall price movements of the top 10 ranked cryptocurrencies. The second to fourth 

panels from the top downward show the dynamic changes in total volatility spillover, 

total skewness spillover, and total kurtosis spillover, respectively.  

To investigate the evolution of spillover effects over time and their response to 

extreme events, we focus on the dynamic total spillovers. To enhance the understanding 

of the results, Figure 1 presents a price chart for the S&P cryptocurrency top 10 equal 

weight index in the topmost panel. This index reflects the overall price movements of 

the top 10 ranked cryptocurrencies. The second to fourth panels, from top to bottom, 

display the dynamic changes in total volatility spillover, total skewness spillover, and 

total kurtosis spillover, respectively. 

Analyzing Figure 1, let's first examine the overall trend of the cryptocurrency 

market from August 2020 to January 2023. As depicted in the figure, the cryptocurrency 

market has undergone an extended period of bullish behavior until May 2021, with 

prices steadily and significantly rising. However, from May to July 2021, the market 

experienced a sharp decline, with prices plummeting by over 50%. Subsequently, prices 

gradually recovered until approximately November 2021. However, starting from 

November 2021, the cryptocurrency market gradually entered another phase of decline, 
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characterized as a bear market. Overall, during this period, the cryptocurrency market 

has exhibited highly volatile and unpredictable behavior. 

More specifically, prior to May 2021, the cryptocurrency market is characterized 

by a steady upward trend, during which the volatility spillover, skewness spillover, and 

kurtosis spillover exhibit a decreasing trend or remain at relatively low levels. On May 

19th, 2021, the cryptocurrency market experiences a significant downturn, with major 

cryptocurrencies like Bitcoin and Ethereum plunging by over 30% within hours. This 

sudden crash is triggered by a combination of factors, including regulatory crackdowns 

on cryptocurrency exchanges and Tesla's announcement that it no longer accepts 

Bitcoin as payment. Subsequently, the volatility spillover experiences a sharp increase, 

while skewness spillover and kurtosis spillover steadily rise. From July to November 

2021, the cryptocurrency market witnesses a price rebound. During this period, 

volatility spillover remains consistently high with minimal variation. In contrast, 

skewness spillover and kurtosis spillover exhibit a continuous and gradual increase. In 

October, this upward trend briefly pauses. However, following the resumption of the 

decline in cryptocurrency market prices after November, the skewness spillover and 

kurtosis spillover resume their steady rise. This rise persists until March 2023, spanning 

the entirety of the bear market. 



21 

 

 
Fig.1: Cryptocurrency index and dynamic total spillovers  

 
 

4.3. Portfolio and hedging strategies analysis 

In this section, we present investment portfolios constructed using the MCoP 

(Minimum Connectedness Portfolio) based on the Diebold-Yilmaz connectedness 

index at different moments. 

To provide a more concrete understanding of the composition of the individual 

portfolios, we illustrate the dynamic portfolio weights of the MCoP calculated based on 

the connectedness measures of different moments in Figures 2, 3, and 4, respectively. 

By definition, the weights of the MCoP reflect the level of volatility connectedness 

(spillover) and aim to minimize the transmission of volatility risk across markets. 

Similarly, the weights of the MCoP for minimum kurtosis connectedness portfolios are 

determined by the level of kurtosis connectedness (spillover), with the objective of 

minimizing the transmission of tail risk across markets. Lastly, the weights of the MCoP 

for minimum skewness connectedness portfolios are determined by the size of 
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skewness connectedness (spillover) and serve the purpose of minimizing the 

transmission of downside (upside) risk across markets. 

Based on Figures 2, 3, and 4, it is evident that the weight changes of portfolios 

based on skewness connectedness and those based on kurtosis connectedness exhibit 

similarities for certain cryptocurrencies. Specifically, prior to 2021, the portfolios' 

weights based on volatility connectedness undergo significant fluctuations. In contrast, 

the weight changes in portfolios based on skewness connectedness and kurtosis 

connectedness are relatively stable. Nevertheless, there are still notable differences in 

the weight changes across the three moments. These disparities arise due to variations 

in the dynamic spillovers of cryptocurrencies under different moments, despite some 

similarities in the dynamic changes of skewness spillover and kurtosis spillover. As the 

portfolio weights are determined by minimizing interconnectedness and spillover 

effects among the variables, assets that neither impact nor are influenced by others 

receive higher weights within the portfolio. Consequently, the weights assigned to each 

cryptocurrency adjust according to its dynamic spillover patterns. 
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Fig.2: Dynamic multivariate portfolio weights: minimum volatility connectedness portfolio 
 

 

Fig.3: Dynamic multivariate portfolio weights: minimum skewness connectedness portfolio 
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Fig.4: Dynamic multivariate portfolio weights: minimum kurtosis connectedness portfolio  

 

In relation to the hedge effectiveness ratios presented in Table 6, the findings for 

the minimum volatility connectedness portfolio indicate that allocating an average of 

12% to BTC, 6% to BNB, 3% to ETH, 13% to XRP, 12% to ADA, 22% to DOGE, 13% 

to MATIC, 10% to DOT, and 10% to SOL would lead to reductions in asset volatility 

of −102%, 15%, −9%, 37%, 19%, 70%, 56%, 37%, and 54%, respectively. Additionally, 

the Value at Risk (VaR) for each asset in this portfolio would decrease by −34%, −12%, 

−3%, 8%, 7%, 14%, 19%, 16%, and 23%, while the Expected Shortfall (ES) would 

decrease by −40%, 1%, −6%, 14%, 0%, 22%, 18%, 11%, and 28%. Comparing the three 

portfolios, it is evident that the MCoP based on skewness connectedness or kurtosis 

connectedness demonstrates enhanced hedge effectiveness in terms of volatility, VaR, 

and ES, compared to the MCoP based on volatility connectedness. Furthermore, the 
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minimum kurtosis connectedness portfolio exhibits superior performance, showcasing 

the highest hedge effectiveness in reducing volatility, VaR, and ES. 

The findings for the minimum kurtosis connectedness portfolio suggest that by 

allocating an average of 11% to BTC, 11% to BNB, 8% to ETH, 13% to XRP, 12% to 

ADA, 14% to DOGE, 11% to MATIC, 9% to DOT, and 12% to SOL, the volatility of 

each asset in this portfolio would decrease by −83%, 23%, 1%, 43%, 27%, 73%, 60%, 

43%, and 58% respectively. Similarly, the Value at Risk (VaR) of each asset in this 

portfolio would decrease by −28%, −7%, 2%, 13%, 11%, 18%, 23%, 20%, and 27%, 

while the Expected Shortfall (ES) would decrease by −36%, 2%, −3%, 17%, 3%, 24%, 

21%, 14%, and 30%. 

Our findings regarding the enhanced hedge effectiveness of the MCoP based on 

skewness connectedness or kurtosis connectedness are consistent with the research 

conducted by Cui and Maghyereh (2023) on realized skewness and realized kurtosis. 

In their study, the MCoP based on realized skewness or realized kurtosis also improved 

the hedge effectiveness of volatility. Furthermore, our study extends these findings by 

confirming that the hedge effectiveness of VaR and ES is also improved. 

Additionally, it is worth noting that the volatility of dynamic portfolio weights in 

the MCoP based on skewness connectedness or kurtosis connectedness is lower 

compared to that in the MCoP based on volatility. 

Finally, the Sharpe ratios for the three portfolios are presented in Table 7. Similar 

to hedge effectiveness, we found that compared to the MCoP based on volatility 
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connectedness, the MCoP based on skewness connectedness or kurtosis connectedness 

also exhibits enhanced Sharpe ratios for return over standard deviation, VaR, and ES. 

However, this time, it is the minimum skewness portfolio that demonstrates the best 

performance, rather than the minimum kurtosis portfolio. 
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  Table 6: Averaged portfolio weights and hedge effectiveness 
Minimum volatility connectedness portfolio 

 Mean Std.Dev. 5% 95% HE 𝐇𝐇𝐇𝐇𝐕𝐕𝐕𝐕𝐕𝐕 𝐇𝐇𝐇𝐇𝐇𝐇𝐄𝐄 
BTC 0.12 0.08 0.00 0.28 −1.02 −0.34 −0.40 
BNB 0.06 0.08 0.00 0.19 0.15 −0.12 −0.01 
ETH 0.03 0.06 0.00 0.13 −0.09 −0.03 −0.06 
XRP 0.13 0.06 0.02 0.24 0.37 0.08 0.14 
ADA 0.12 0.05 0.00 0.18 0.19 0.07 0.00 

DOGE 0.22 0.08 0.12 0.36 0.70 0.14 0.22 
MATIC 0.13 0.07 0.00 0.20 0.56 0.19 0.18 

DOT 0.10 0.06 0.00 0.20 0.37 0.16 0.11 
SOL 0.10 0.06 0.00 0.18 0.54 0.23 0.28 

Minimum skewness connectedness portfolio 
BTC 0.21 0.05 0.15 0.30 −0.89 −0.32 −0.38 
BNB 0.05 0.04 0.00 0.11 0.20 −0.10 0.00 
ETH 0.04 0.04 0.00 0.12 −0.02 −0.01 −0.04 
XRP 0.11 0.03 0.05 0.16 0.41 0.10 0.15 
ADA 0.00 0.01 0.00 0.03 0.24 0.09 0.01 

DOGE 0.20 0.04 0.15 0.26 0.72 0.15 0.23 
MATIC 0.17 0.05 0.09 0.24 0.59 0.21 0.20 

DOT 0.04 0.03 0.00 0.09 0.41 0.17 0.13 
SOL 0.17 0.04 0.11 0.24 0.57 0.25 0.29 

Minimum kurtosis connectedness portfolio 
BTC 0.11 0.02 0.08 0.15 −0.83 −0.28 −0.36 
BNB 0.11 0.01 0.09 0.13 0.23 −0.07 0.02 
ETH 0.08 0.04 0.01 0.12 0.01 0.02 −0.03 
XRP 0.13 0.01 0.11 0.15 0.43 0.13 0.17 
ADA 0.12 0.03 0.06 0.16 0.27 0.11 0.03 

DOGE 0.14 0.04 0.10 0.22 0.73 0.18 0.24 
MATIC 0.11 0.02 0.08 0.15 0.60 0.23 0.21 

DOT 0.09 0.05 0.00 0.14 0.43 0.20 0.14 
SOL 0.12 0.02 0.08 0.15 0.58 0.27 0.30 

Note: The table presents the means (Mean), standard deviations (Std.Dev.), 5th percentiles (5%), 95th 

percentiles (95%) of dynamic portfolio weights, and hedge effectiveness in terms of volatility (HE), 

Value at Risk (HEVaR), and expected shortfall (HEES).  
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Table 7: Sharpe Ratio 
 𝑺𝑺𝑺𝑺 𝑺𝑺𝑺𝑺𝑽𝑽𝑽𝑽𝑺𝑺 𝑺𝑺𝑺𝑺𝑬𝑬𝑺𝑺 

𝑴𝑴𝑷𝑷𝑴𝑴𝑷𝑷𝒗𝒗𝑴𝑴𝒗𝒗 0.028 0.017 0.008 
𝑴𝑴𝑷𝑷𝑴𝑴𝑷𝑷𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 0.032 0.019 0.009 
𝑴𝑴𝑷𝑷𝑴𝑴𝑷𝑷𝒔𝒔𝒌𝒌𝒌𝒌𝒕𝒕𝑴𝑴 0.031 0.018 0.009 

Note: The table presents the Sharpe ratios of return over standard deviation (SR), Value at Risk (SRVaR), 

and expected shortfall (SRES ). 𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣 , 𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑠𝑠𝑗𝑗𝑒𝑒𝑠𝑠  , and 𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑗𝑗𝑢𝑢𝑘𝑘𝑡𝑡𝑣𝑣  refer to the MCoP based on 

volatility, skewness, and kurtosis, respectively. 

 

5. Conclusions and Discussions 

In this study, we conduct a comprehensive analysis of nine major cryptocurrencies 

traded on Binance, focusing on the spillover effects of conditional volatility and 

conditional higher moments, including skewness and kurtosis. Our data span the period 

from August 18, 2020, to January 1, 2023. Here are some key findings and conclusions. 

First, we find that volatility, skewness, and kurtosis spillovers exhibit distinct 

patterns across different moments, with the total spillover decreasing as the order of the 

moment increases. Each cryptocurrency manifests a unique pattern of risk transmission 

across these moments. For instance, BNB and BTC dominate in transmitting volatility 

and kurtosis, respectively, while ADA shows the highest skewness spillover transmitted 

to others. These findings imply that BNB, ADA, and BTC are likely to transfer the most 

volatility risk, downside (upside) risk, and tail risk to other markets, respectively. These 

findings may be particularly useful for investors in formulating accurate strategies to 

guard against specific types of risks. The differential risk transference characteristics of 

these cryptocurrencies can enable more tailored risk management approaches, 

potentially improving the efficiency and effectiveness of investment strategies. 
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Second, we also observe dynamic changes in spillover effects, which are 

influenced by the overall market conditions and extreme events. The changes in 

skewness and kurtosis spillovers display high similarity, implying a consistent pattern 

in the transmission of downside (upside) risk and tail risk across markets over time. The 

changes and fluctuations in downside (upside) risk and tail risk are notably different 

from the transmission patterns of volatility risk. These findings carry significant 

implications for investors and risk managers. By understanding the unique transmission 

patterns of different types of risks across the cryptocurrency markets, they can better 

design their investment strategies and risk management practices. For instance, if an 

investor is more concerned about tail risk (which involves the risk of extreme market 

movements), they might pay more attention to the changes in kurtosis spillover over 

time, given that it behaves differently from volatility spillover. This would enable them 

to better anticipate and hedge against tail risk. Moreover, the high degree of similarity 

in the changes of skewness and kurtosis spillovers indicates that downside (upside) risk 

and tail risk often change hand-in-hand. This can help investors improve their risk 

diversification strategies by simultaneously considering these two types of risks. 

The study further examines and compares the performances of the MCoP based on 

volatility, skewness, and kurtosis spillovers. We find that compared to the MCoP based 

on volatility, the MCoP based on higher moments shows enhanced hedge effectiveness 

and higher Sharpe ratios for volatility, VaR, and ES. Specifically, our results reveal that 

the MCoP based on kurtosis connectedness offers the highest hedge effectiveness, while 
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the MCoP based on skewness connectedness offers the highest Sharpe ratios. 

In conclusion, this study provides valuable insights into the dynamic spillover 

effects among cryptocurrencies and their implications for risk management and 

portfolio construction. The findings highlight the importance of considering higher 

moments like skewness and kurtosis, in addition to volatility, for effective risk 

management in the cryptocurrency market. Understanding the higher moment spillover 

effects across cryptocurrency markets can help investors determine the transmission 

mechanism of risk more comprehensively and understand how markets are linked by 

the level of asymmetry and tailedness of their returns, which relates to upside (downside) 

risks and tail risks. These insights not only offer fresh and helpful perspectives on 

hedging strategies but also enrich the knowledge required for effective portfolio 

diversification and the management of extreme risks. Future research could expand on 

these findings by exploring other portfolio techniques or hedging strategies based on 

higher moment connectedness or by incorporating data from other markets. 
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