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Abstract 

 

This study presents a framework that breaks down kurtosis into positive and negative 

shocks, distinguishing between "good" and "bad" kurtosis. We analyze asymmetric 

kurtosis spillovers among sustainable and traditional investments. Our findings indicate 

that within the system encompassing sustainable and traditional investments, good 

kurtosis spillover generally surpasses bad kurtosis spillover in the majority of periods. 

However, during specific extreme events such as Brexit and COVID-19, bad kurtosis 

spillover takes on a dominant role. 

 

Key words: Higher moments; Conditional kurtosis; Spillover effect; 

JEL classification: G15; F3; C32 

Funding: This work was supported by Sawamura Masaka Foundation. 

 
  



2 

 

1. Introduction 

The presence of asymmetric volatility in financial markets, where good news and bad 

news have distinct impacts on the evolution of market prices and their volatilities, has 

long been acknowledged in the literature. Specifically, volatility stemming from market 

downturns is typically more pronounced than the volatility associated with market 

upturns of the same magnitude. This raises an essential question: "Does the volatility 

resulting from good news propagate across financial markets in the same manner as the 

volatility stemming from bad news?" In other words, does asymmetry manifest in 

volatility spillover? This question holds significant importance. For investors, it 

constitutes a central concern when managing optimal portfolio diversification and asset 

allocation strategies. For policymakers, it plays a pivotal role in crafting policies aimed 

at mitigating the transmission of detrimental shocks across markets and enhancing 

financial stability (BenSaïda, 2019). In recent years, an increasing number of studies have 

started to center their focus on the asymmetry in volatility spillover. 

Volatility is commonly regarded as a risk measure: low volatility implies low 

volatility risk, while high volatility implies high volatility risk. Consequently, volatility 

spillovers can be interpreted as spillovers of volatility risk (Baruník et al., 2016). Similarly, 

kurtosis, which is one of the higher moments, can serve as a proxy for extreme risk, as it 

signifies the probability of extreme outcomes, whether they are extremely positive or 

negative. Consequently, kurtosis spillovers can be perceived as spillovers of extreme risk. 

Here, we raise another question: Does asymmetry also manifest in kurtosis spillovers? 

To address this inquiry, we reference the methodology of BenSaïda (2019) and 
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employ the GJR with skewness and kurtosis (GJR-SK) model. This model, an extended 

version of the GJR model designed for higher moments, allows us to decompose kurtosis 

into components of good and bad kurtosis. The partitioning of volatility into bad and good 

volatility can be interpreted as a measure of downside and upside volatility risk (Baruník 

et al., 2016). Similarly, the partitioning of kurtosis into bad and good kurtosis can be 

regarded as an indicator of extreme downside and upside risk. Guided by this kurtosis 

decomposition, we investigate asymmetric kurtosis spillovers within sustainable and 

traditional investments. Our aim is to analyze whether the extreme upside risk introduced 

by positive news propagates across investments in the same manner as the extreme 

downside risk stemming from negative news. 

To the best of our knowledge, this study is the first to examine the asymmetry in 

higher moment (kurtosis) spillover. Our study introduces a novel approach to assess the 

asymmetry in the transmission of extreme risk. Our research framework allows 

researchers to differentiate between upward and downward extreme risk spillovers and to 

investigate them independently. 

One of the key findings of this study is that, in most periods, the spillover of extreme 

risk among investments predominantly involves the transmission of extreme upside risk 

due to good news. However, during specific extreme periods, such as the Brexit vote and 

the COVID-19 pandemic, the spillover is more focused on extreme downside risk 

resulting from bad news. This result starkly contrasts with the findings related to the 

general transmission of volatility risk, where, in most periods, the spillover effect of 

volatility risk is greater for bad volatility risk arising from bad news. This result can be 
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attributed to two factors: Firstly, the spillover effect of extreme risk in the market is not 

as responsive to bad news as the spillover effect of general risk. Only relatively severe 

bad news may trigger an increase in the transmission of downward extreme risk. Secondly, 

the spillover effect of risk in the market is intertwined with market sentiment. Market 

expectations for general risk and extreme risk may not necessarily align. While the market 

generally holds a pessimistic outlook on general risk, it is only in highly unstable market 

environments that it adopts a pessimistic view of extreme risk. 

The structure of the remaining sections of this paper is as follows: Section 2 presents 

a literature review of relevant studies. Section 3 outlines the methodology used. Section 

4 provides data, summary statistics, and empirical research results along with discussions. 

The concluding section presents the final remarks. 

2. Related literature 

2.1. Lower moment spillovers and higher moment spillovers  

The spillover effect is a vital research topic as it captures the transmission of shocks 

and movements across markets or sectors. Understanding these interconnections is crucial 

for comprehending systemic risk, formulating effective monetary and fiscal policies, and 

making informed investment decisions. It illuminates the interconnected nature of 

financial systems and the potential cascading effects of a crisis or event in one market 

onto others. In recent years, the Diebold Yilmaz connectedness (spillover) approach has 

gained increasing attention from researchers studying the spillover effect. The approach 

is both computationally straightforward and yields intuitive results. By utilizing a 
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generalized vector autoregression framework, it provides a clear depiction of volatility 

transmission across markets or sectors. The resulting spillover indices are easily 

interpretable, making it an appealing tool for researchers and policymakers seeking to 

understand market interconnectedness and systemic risk. Drawing from the Diebold 

Yilmaz connectedness approach, a significant body of literature has investigated returns 

and volatilities spillovers (e.g., Baele, 2005; Chan et al., 2018; X. He et al., 2020; Huo & 

Ahmed, 2017; Liu & Hamori, 2020; Tiwari et al., 2018). 

Indeed, while much of the existing research has focused on lower moment spillovers 

such as returns and volatility, delving into higher moment spillovers can yield distinct 

insights. Higher moments, such as skewness and kurtosis, can capture more nuanced 

characteristics of asset distributions and their extreme movements, providing a deeper 

grasp of market dynamics and systemic risks. Unlike volatility spillover, higher moment 

spillovers can encompass extreme tail comovements between markets. Additionally, 

higher moment spillovers can effectively identify significant events that return and 

volatility spillover might not adequately capture (Bouri et al., 2021). To capture time-

varying skewness or kurtosis, either realized measures utilizing high-frequency data or 

model-based estimates relying on specific econometric models to predict changes in these 

higher moments over time are necessary. In recent times, an increasing number of studies 

have unveiled the presence of higher moment spillovers (such as skewness and kurtosis) 

in financial markets (e.g., He & Hamori, 2023; X. He & Hamori, 2021; Nekhili & Bouri, 

2023; Nyakurukwa & Seetharam, 2023; H. Zhang et al., 2023). 
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2.2. Asymmetric spillovers  

In the analysis of market dynamics and crisis transmission, understanding how 

volatility reacts to shocks (or news) has become a significant concern. However, the 

asymmetry in volatility spillover has received limited attention, and the identification of 

transmission mechanisms heavily relies on model design (BenSaïda, 2019). For instance, 

Reboredo et al. (2016) measured downside and upside risk transmission through the 

conditional value-at-risk (CoVaR) computed from pair copulas. Yarovaya et al. (2017) 

employed an asymmetric causality test to investigate pairwise spillovers. By employing 

a recently-developed quantile-on-quantile (QQ) method, Duan et al. (2023) analyzed the 

potential asymmetry and non-linearity of the market connection between Bitcoin and 

green and traditional assets.  

Barndorff‐Nielsen et al. (2010) decomposed realized volatility into a positive 

semivariance estimator RS+ and a negative semivariance estimator RS− to capture 

changes arising from positive and negative shocks, respectively. Building on these 

realized semivariance measures and the Diebold-Yilmaz approach, some researchers have 

explored asymmetric volatility spillovers across markets (e.g., Baruník et al., 2016, 2017; 

Mensi et al., 2021, 2022).  

However, realized measures have their limitations. Firstly, they rely on intraday high-

frequency data, which can present certain challenges in data acquisition. Secondly, high-

frequency data are affected by microstructure noise, and stock returns include a jump 

component, impacting the accuracy of realized volatility estimators. To address these 

limitations, BenSaïda (2019) proposed a model-based semivariance estimate based on the 
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Glosten Jagannathan-Runkle (GJR) model and explored asymmetric spillovers across G7 

stock markets using this model-based estimate. 

2.3. Spillovers in sustainable and traditional investments 

Over the past decade, sustainable investing has emerged as a transformative paradigm 

in the financial sector, seeking to merge environmental, social, and governance (ESG) 

considerations with traditional investment strategies. Rooted in the belief that long-term 

success is intricately linked to a broader societal and environmental context, this approach 

transcends mere financial returns, emphasizing responsible stewardship of capital. As 

global challenges like climate change and social inequities become increasingly pressing, 

there's a growing recognition of the pivotal role that finance plays in shaping sustainable 

outcomes. Consequently, sustainable investing has not only experienced increased 

adoption by institutional and retail investors alike but has also begun to reshape the 

contours of the global investment landscape. 

Given its relatively nascent emergence, sustainable investments, while promising, still 

have limited market depth compared to traditional investments. This results in heightened 

risk associated with sustainable investments. Consequently, it underscores the imperative 

to explore effective diversification and risk mitigation strategies for these promising yet 

inherently riskier sustainable assets. 

As the size and number of participants in the carbon market expand, the linkage of 

prices between carbon assets and other financial products, such as energy assets, appears 

to be growing stronger (Ren et al., 2022a). The nexus between the volatility of energy 

markets and the carbon market seems indisputable. However, the connection between the 
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volatility of the crude oil market and the carbon market remains a subject of divergent 

opinions. Indeed, some studies have confirmed a strong bidirectional spillover effect 

between the carbon market and the crude oil market (i.e., Ji et al., 2018; Ren et al., 2022b; 

Y. Wang & Guo, 2018). However, there are still some studies that present contrary 

evidence. For example, Zhang & Sun (2016) argue that no significant volatility spillover 

is found between the European carbon trading market and crude oil markets. 

As an extension of the widely studied "Carbon-Energy" system, the "Carbon-Energy-

Finance" system has gained attention in recent years. This system posits that the carbon 

market is interconnected not only with traditional energy markets but also with some 

financial markets. For example, the research of Tan et al. (2020) on the EU ETS indicates 

that the volatility of the carbon market is closely related to the volatility of the stock 

market. 

Green stocks, renewable energy stocks, and ESG (Environmental, Social, and 

Governance) stocks are three crucial stock-based sustainable investments. Green stocks 

primarily focus on environmental factors, such as the S&P 500 Bond Investment Grade 

Carbon Efficient Index, which mainly involves companies with low carbon emissions 

relative to their sales. ESG stocks not only emphasize environmental factors but also 

highlight companies that excel in their environmental, social, and governance practices. 

The investment scope of renewable energy stocks is even more specific, as it only 

encompasses firms in the clean energy sector. Research on the nexus between ESG stocks 

and green stocks with the traditional energy market is relatively limited, with most studies 

focusing on the relationships between renewable energy stocks and the traditional energy 
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market. The volatility spillover effects between new energy stocks and traditional energy 

markets have been confirmed by many researchers (i.e., Attarzadeh & Balcilar, 2022; 

Caporale et al., 2023; Liu & Hamori, 2020; Song et al., 2019; Umar et al., 2022), and 

many studies have found that the spillover effects between the crude oil market and new 

energy stocks are the most significant (i.e., Liu & Hamori, 2020; Song et al., 2019; Umar 

et al., 2022). 

Green bonds are considered essential investment vehicles within sustainable investing. 

They represent new forms of asset classes that not only engage in market-centric business 

practices but also derive their legitimacy and innovation by strongly focusing on 

environmentally and sustainable capital transactions (Rao et al., 2022). 

Most of the research primarily focuses on the spillover effects between green bonds 

and the energy market (i.e., Nguyen et al., 2021; Pham, 2016; Reboredo, 2018; Reboredo 

et al., 2020). However, some studies have also identified a pronounced spillover effect 

between green bonds and precious metals such as gold and silver (i.e., Naeem et al., 2021). 

3. Methodology 

3.1. GJR-GARCH-SK model  

We propose to infer the volatility and kurtosis measure of each investment from the 

Glosten Jagannathan-Runkle (GJR) with skewness and kurtosis (GJR-SK) model. The 

formulation of the GJR-SK model is given as follows. 

𝑟𝑟𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑟𝑟𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 (1a) 

𝜂𝜂𝑡𝑡 = ℎ𝑡𝑡
−1/2𝜀𝜀𝑡𝑡 (1b) 
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𝜂𝜂𝑡𝑡|𝐼𝐼𝑡𝑡−1~Δ(0,1, 𝑠𝑠𝑡𝑡,𝑘𝑘𝑡𝑡) (1c) 

ℎ𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝜀𝜀𝑡𝑡−12 + 𝛽𝛽2ℎ𝑡𝑡−1 + 𝛽𝛽3𝜀𝜀𝑡𝑡−12 𝐼𝐼{𝜂𝜂𝑡𝑡−1<0} (1d) 

𝑠𝑠𝑡𝑡 = 𝛾𝛾0 + 𝛾𝛾1𝜂𝜂𝑡𝑡−13 + 𝛾𝛾2𝑠𝑠𝑡𝑡−1 + 𝛾𝛾3𝜂𝜂𝑡𝑡−13 𝐼𝐼{𝜂𝜂𝑡𝑡−1<0} (1e) 

𝑘𝑘𝑡𝑡 = 𝛿𝛿0 + 𝛿𝛿1𝜂𝜂𝑡𝑡−14 + 𝛿𝛿2𝑘𝑘𝑡𝑡−1 + 𝛿𝛿3𝜂𝜂𝑡𝑡−14 𝐼𝐼{𝜂𝜂𝑡𝑡−1<0} (1f) 

Here 𝛼𝛼0, 𝛼𝛼1 are parameters of the AR model and 𝛽𝛽𝑖𝑖−1, 𝛾𝛾𝑖𝑖−1, and 𝛿𝛿𝑖𝑖−1, 𝑖𝑖 = 1,2,3 are 

parameters of the GJR-SK model. 𝐼𝐼𝐴𝐴 is an indicator function that returns 1 if A is true 

and 0 otherwise. Δ is a probability density function with mean 0, variance 1, and time-

varying skewness 𝑠𝑠𝑡𝑡 , and kurtosis 𝑘𝑘𝑡𝑡 . The probability density function Δ(0,1, 𝑠𝑠𝑡𝑡,𝑘𝑘𝑡𝑡) 

can be given by Gram-Charlier expansion using Chebyshev-Hermite polynomials.  

 Next, following BenSaïda (2019) 's line of thought, we define the good volatility ℎ𝑖𝑖,𝑡𝑡+  

and bad volatility ℎ𝑖𝑖,𝑡𝑡−  to correspond to positive and negative shocks, respectively. 

�
ℎ𝑖𝑖,𝑡𝑡+ = ℎ𝑖𝑖,𝑡𝑡𝐼𝐼{𝜂𝜂𝑡𝑡−1≥0}
ℎ𝑖𝑖,𝑡𝑡− = ℎ𝑖𝑖,𝑡𝑡𝐼𝐼{𝜂𝜂𝑡𝑡−1<0}

(2) 

Similarly, we also define the good kurtosis 𝑘𝑘𝑖𝑖,𝑡𝑡+  and bad kurtosis 𝑘𝑘𝑖𝑖,𝑡𝑡−  as follows. 

�
𝑘𝑘𝑖𝑖,𝑡𝑡

+ = 𝑘𝑘𝑖𝑖,𝑡𝑡𝐼𝐼{𝜂𝜂𝑡𝑡−1≥0}
𝑘𝑘𝑖𝑖,𝑡𝑡
− = 𝑘𝑘𝑖𝑖,𝑡𝑡𝐼𝐼{𝜂𝜂𝑡𝑡−1<0}

(3)  

We note that the total volatility (kurtosis) of an asset 𝑖𝑖 at any time 𝑡𝑡 is simply the sum 

of the good and bad volatility (kurtosis) components. Hence, ℎ𝑖𝑖,𝑡𝑡 = ℎ𝑖𝑖,𝑡𝑡+ + ℎ𝑖𝑖,𝑡𝑡−  and 

𝑘𝑘𝑖𝑖,𝑡𝑡 = 𝑘𝑘𝑖𝑖,𝑡𝑡+ + 𝑘𝑘𝑖𝑖,𝑡𝑡− . 

3.2. TVR-VAR based Asymmetric spillover approach  

Antonakakis et al. (2020) introduced a simple measure of dynamic spillovers across 

markets by using a time-varying parameter vector autoregressive model (TVP-VAR). 

Consider an 𝑁𝑁-variable TVP-VAR(1) model as follows: 
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𝒚𝒚𝑡𝑡+ = 𝚽𝚽𝑡𝑡
+𝒚𝒚𝑡𝑡−1+ + 𝜺𝜺𝑡𝑡+, 𝜺𝜺𝑡𝑡+|𝛀𝛀𝑡𝑡−1

+ ~𝑵𝑵(𝟎𝟎,𝚺𝚺𝑡𝑡+),  (4a) 

vec(𝚽𝚽𝑡𝑡
+) = vec(𝚽𝚽𝑡𝑡−1

+ ) + 𝜼𝜼𝑡𝑡+, 𝜼𝜼𝑡𝑡+|𝛀𝛀𝑡𝑡−1
+ ~𝑵𝑵(𝟎𝟎,𝚵𝚵𝑡𝑡+), (4b) 

𝒚𝒚𝑡𝑡− = 𝚽𝚽𝑡𝑡
−𝒚𝒚𝑡𝑡−1− + 𝜺𝜺𝑡𝑡−, 𝜺𝜺𝑡𝑡−|𝛀𝛀𝑡𝑡−1

− ~𝑵𝑵(𝟎𝟎,𝚺𝚺𝑡𝑡−),  (4c) 

vec(𝚽𝚽𝑡𝑡
−) = vec(𝚽𝚽𝑡𝑡−1

− ) + 𝜼𝜼𝑡𝑡−, 𝜼𝜼𝑡𝑡−|𝛀𝛀𝑡𝑡−1
− ~𝑵𝑵(𝟎𝟎,𝚵𝚵𝑡𝑡−), (4d) 

where 𝒚𝒚𝑡𝑡+  can be an 𝑁𝑁 × 1  dimensional of good volatilities 𝒉𝒉𝑖𝑖,𝑡𝑡+ = (ℎ1,𝑡𝑡
+ ,⋯ , ℎ𝑛𝑛,𝑡𝑡

+ )′  or 

good kurtosis 𝒌𝒌𝑖𝑖,𝑡𝑡+ = (𝑘𝑘1,𝑡𝑡
+ ,⋯ ,𝑘𝑘𝑛𝑛,𝑡𝑡

+ )′, while 𝒚𝒚𝑡𝑡− can be an 𝑁𝑁 × 1 dimensional bad volatility 

ℎ𝑖𝑖,𝑡𝑡+  or bad kurtosis 𝑘𝑘𝑖𝑖,𝑡𝑡+ . 𝛀𝛀𝑡𝑡−1
+  and 𝛀𝛀𝑡𝑡−1

−  represent all available information up to 𝑡𝑡 − 1. 

𝚽𝚽𝑡𝑡
+  and 𝚽𝚽𝑡𝑡

−  are 𝑁𝑁 × 𝑁𝑁  matrices and their vectorization vec(𝚽𝚽𝑡𝑡
+) or vec(𝚽𝚽𝑡𝑡

−)  is an 

𝑁𝑁2 × 1 vector. The shocks 𝜺𝜺𝑡𝑡 and  𝜼𝜼𝑡𝑡 are 𝑁𝑁 × 1 and 𝑁𝑁2 × 1 dimensional vectors, 

respectively. Moreover, variance-covariance matrices 𝚺𝚺𝑡𝑡+,𝚺𝚺𝑡𝑡−  and 𝚵𝚵𝑡𝑡+,  𝚵𝚵𝑡𝑡−  are 𝑁𝑁 × 𝑁𝑁 

and 𝑁𝑁2 × 𝑁𝑁2 dimensional matrices, respectively. 

Using the Wold representation theorem, the TVP-VAR can be transformed into a 

TVP-VMA. To ease the notational burden, we replace 𝒚𝒚𝒕𝒕 with either the good volatility 

(kurtosis) 𝒚𝒚𝑡𝑡+ or bad volatility (kurtosis) 𝒚𝒚𝑡𝑡− as follows. 

𝒚𝒚𝒕𝒕 = �𝚲𝚲𝑗𝑗𝑗𝑗𝜺𝜺𝑡𝑡−𝑗𝑗 +
∞

𝑗𝑗=1

𝜺𝜺𝑡𝑡 . (5) 

We can then calculate the generalized forecast error variance decomposition (GFEVD), 

which was introduced by Koop et al. (1996), and Pesaran & Shin (1998), using TVP-

VMA coefficients to compute the dynamic connectedness measures (Diebold & Yilmaz, 

2009, 2012, 2014). 

The 𝐻𝐻-step-ahead GFEVD under the generalized VAR framework can be expressed 

as follows: 
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𝜃𝜃𝑗𝑗𝑗𝑗,𝑡𝑡
𝐻𝐻 =

Σ𝑘𝑘𝑘𝑘,𝑡𝑡
−1 ∑ �𝑒𝑒𝑗𝑗′𝚲𝚲ℎ,𝑡𝑡𝚺𝚺𝑡𝑡𝑒𝑒𝑘𝑘�

2𝐻𝐻−1
ℎ=0

∑ �𝑒𝑒𝑗𝑗′𝚲𝚲ℎ,𝑡𝑡𝚺𝚺𝑡𝑡𝚲𝚲ℎ,𝑡𝑡
′ 𝑒𝑒𝑗𝑗�𝐻𝐻−1

ℎ=0

, (6) 

After the normalization, the pairwise connectedness index from the 𝑘𝑘 −th variable to the 

𝑗𝑗 −th variable at horizon 𝐻𝐻 at time 𝑡𝑡 can be calculated by 

𝜃𝜃�𝑗𝑗𝑗𝑗,𝑡𝑡
𝐻𝐻 =

𝜃𝜃𝑗𝑗𝑗𝑗,𝑡𝑡
𝐻𝐻

∑ 𝜃𝜃𝑗𝑗𝑗𝑗,𝑡𝑡
𝐻𝐻𝑁𝑁

𝑘𝑘=1
, (7) 

Meanwhile, the total connectedness index can be represented as 

𝑆𝑆𝑡𝑡𝐻𝐻 =
1
𝑁𝑁

� 𝜃𝜃�𝑗𝑗𝑗𝑗,𝑡𝑡
𝐻𝐻

𝑁𝑁

𝑗𝑗,𝑘𝑘=1,𝑗𝑗≠𝑘𝑘

. (8) 

Moreover, the directional connectedness (From), which measures the total spillover to the 

𝑘𝑘 −th variable from all remaining variables in the system, can be calculated as 

𝑆𝑆𝑘𝑘←⋅,𝑡𝑡𝐻𝐻 =
1
𝑁𝑁

� 𝜃𝜃�𝑘𝑘𝑘𝑘,𝑡𝑡
𝐻𝐻

𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑘𝑘

. (9) 

Similarly, the directional connectedness (To), which measures the total directional 

spillover from the 𝑘𝑘 −th variable to all the remaining variables in the system, can be 

calculated as 

𝑆𝑆⋅←𝑘𝑘,𝑡𝑡
𝐻𝐻 =

1
𝑁𝑁

� 𝜃𝜃�𝑗𝑗𝑗𝑗,𝑡𝑡
𝐻𝐻

𝑁𝑁

𝑗𝑗=1,𝑗𝑗≠𝑘𝑘

. (10) 

3.3. Spillover asymmetry  

To detect the potential asymmetry in the risk transmission across markets, we denote 

the good total volatility (kurtosis) spillover index as 𝑆𝑆𝑡𝑡𝐻𝐻+, and the bad total volatility 
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(kurtosis) spillover index as 𝑆𝑆𝑡𝑡𝐻𝐻−. The total spillover asymmetry 𝐴𝐴𝑡𝑡𝐻𝐻, can be defined as 

the difference between the good and the bad spillover indices:  

𝐴𝐴𝑡𝑡𝐻𝐻 = 𝑆𝑆𝑡𝑡𝐻𝐻+ − 𝑆𝑆𝑡𝑡𝐻𝐻− (11) 

Similarly, the directional spillover measures for 𝑘𝑘 − th variable are (𝑆𝑆𝑘𝑘←⋅,𝑡𝑡𝐻𝐻+ , 𝑆𝑆𝑘𝑘←⋅,𝑡𝑡𝐻𝐻−  , 

𝑆𝑆⋅←𝑘𝑘,𝑡𝑡
𝐻𝐻+ , 𝑆𝑆⋅←𝑘𝑘,𝑡𝑡

𝐻𝐻− ) from equation (9) and (10). Then the directional spillover asymmetry can 

be calculated as 

𝐴𝐴𝑘𝑘←⋅,𝑡𝑡𝐻𝐻+ = 𝑆𝑆𝑘𝑘←⋅,𝑡𝑡𝐻𝐻+ − 𝑆𝑆𝑘𝑘←⋅,𝑡𝑡𝐻𝐻− (12a) 

𝐴𝐴⋅←𝑘𝑘,𝑡𝑡
𝐻𝐻+ = 𝑆𝑆⋅←𝑘𝑘,𝑡𝑡

𝐻𝐻+ − 𝑆𝑆⋅←𝑘𝑘,𝑡𝑡
𝐻𝐻− (12b) 

If the spillover asymmetry indices are null, the contributions from the good and bad 

volatilities are identical; hence, the risk transmission is symmetric. Alternatively, 

asymmetric connectedness in terms of magnitude and direction is the result of different 

good and bad spillover indices. A positive asymmetry index means that the good volatility 

spills over markets more intensely than the bad volatility. Similarly, a negative 

asymmetry index means that the bad volatility spills over markets more intensely than the 

good volatility. 

3.4. Bootstrapping the spillover asymmetry 

The bootstrapping technique in this paper is summarized as follows: 

(i) Re-sample, with replacement, the returns as a block, i.e., the re-sampling is 

performed with respect to time t. For a given day, we draw the returns of all 

markets to keep the connectedness structure between variables; 

(ii) Re-estimate the good and bad volatilities (kurtosis); 
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(iii) Compute the time-varying bootstrap asymmetry spillover indices to check for 

time-dependency; 

(iv) Repeat the previous steps (i) to (iii) B times. 

4. Empirical study 

4.1. Data and summary statistics  

In this paper, we have selected six principal indices under the sustainable investment 

theme of S&P Global to represent sustainable investments. These are: S&P Global 1200 

ESG Index (ESG), S&P Global 1200 Carbon Efficient Index (CEI), S&P 500 Bond 

Investment Grade Carbon Efficient Index (BIGCEI), S&P Green Bond Index (GBI), S&P 

Global Clean Energy Index (GCEI), and S&P Global Carbon Index (Carbon). 

Collectively, these indices encompass a range of sustainable investment categories, 

including green bonds, clean energy equities, ESG investments, and carbon-focused 

investments. 

More specifically, the S&P Global 1200 ESG Index (ESG) ranks and weights its 

Global 1200 member companies based on their Environmental, Social, and Governance 

(ESG) performance. Companies with higher ESG scores have greater weight in this index. 

The S&P Global 1200 Carbon Efficient Index (CEI) aligns carbon efficiency with the 

market capitalization of its Global 1200 companies. It gives preference to companies that 

have lower carbon emissions relative to their market value. The S&P 500 Bond 

Investment Grade Carbon Efficient Index (BIGCEI) focuses on investment-grade 

companies within the S&P 500, combining their market capitalization with carbon 
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efficiency. Similar to CEI, it favors companies with a lower ratio of carbon emissions to 

market value. The S&P Green Bond Index (GB) tracks global green bonds, which are 

bonds specifically issued to finance environmentally friendly projects. The S&P Global 

Clean Energy Index (GCEI) tracks the stock performance of global clean energy 

companies, promoting investment in the clean energy sector. Lastly, the S&P Global 

Carbon Index (Carbon) concentrates on the global carbon market, tracking the pricing 

and performance of carbon trading. 

Moreover, in our study, we also selected four representative traditional investments, 

encompassing stocks, gold, crude oil, and bonds. Specifically, these are: S&P GLOBAL 

1200 Index (Stock), S&P GSCI Gold Index (Gold), S&P GSCI Crude Oil Index (Oil), 

and S&P 500 Bond Index (Bond). 

All the indices are plotted in Figure 1. The data spans from September 1, 2015, to July 

1, 2023. The data used in this study is sourced from S&P Global. 

First, we compute the logarithmic returns of each asset's price series. Subsequently, 

we estimate conditional volatility and conditional kurtosis based on the GJR-SK model. 

Table 1 presents the descriptive statistics of the return series. From Table 1, we observe 

that the mean and variance of the returns across the series are fairly consistent, nearly 

converging to zero. As for skewness and excess kurtosis, it's evident that all series exhibit 

negative skewness and positive excess kurtosis. The p-values of the Jarque-Bera (JB) test 

are consistently below 0.01, rejecting the null hypothesis that all return series are normally 

distributed. The unit root test conducted by Elliott et al. (1996) shows that all return series 

exhibit no unit root. The results of the Fisher & Gallagher (2012) weighted portmanteau 
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test reveal the presence of ARCH/GARCH type effects in all return series. 

The estimated volatility and kurtosis are depicted in Figure 2 and Figure 3, 

respectively. It is evident that there exists a certain similarity in the movements of 

volatility and kurtosis across indices, which strongly suggests the presence of a spillover 

effect across markets. Furthermore, a discernible distinction between the variations in 

volatility and kurtosis can be observed. This indicates that the patterns of general 

volatility and extreme volatility changes are not identical, displaying significant 

disparities. Lastly, there are distinct periods of high (either volatility or extreme) risk, 

such as the Brexit vote in mid-2016, the outbreak of the COVID-19 pandemic, and the 

Russia-Ukraine conflict. 
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Fig.1: All price series 

Note: ESG, CEI, BIGCEI, GB, and GCEI represent the S&P Global 1200 ESG Index, S&P Global 1200 Carbon 

Efficient Index, S&P 500 Bond Investment Grade Carbon Efficient Index, S&P Green Bond Index, and S&P Global 

Clean Energy Index, respectively. Stock, Gold, Oil, and Bond refer to the S&P GLOBAL 1200 Index, S&P GSCI Gold 

Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, respectively. 
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Table 1: Summary statistics 
 Mean Var Skew Kurto JB ERS Q(20) Q2(20) 

ESG 0.00 0.00 −1.08 16.17 0.00 0.00 0.00 0.00 
CEI 0.00 0.00 −1.10 16.99 0.00 0.00 0.00 0.00 

BIGCEI 0.00 0.00 −0.55 9.04 0.00 0.00 0.00 0.00 
GB 0.00 0.00 −0.24 4.75 0.00 0.00 0.00 0.00 

GCEI 0.00 0.00 −0.41 7.89 0.00 0.00 0.00 0.00 
Carbon 0.00 0.00 −1.06 9.71 0.00 0.00 0.01 0.00 
Stock 0.00 0.00 −1.05 15.44 0.00 0.00 0.00 0.00 
Gold 0.00 0.00 −0.05 4.25 0.00 0.00 0.01 0.00 
Oil 0.00 0.00 −2.85 62.39 0.00 0.00 0.00 0.00 

Bond 0.00 0.00 −0.59 11.26 0.00 0.00 0.00 0.00 
Note: The table presents descriptive statistics including the mean, variance (Var), skewness (Skew), excess kurtosis 

(Kurto), and the p-value of the Jarque-Bera test (JB; 1987), the unit root test by Elliott et al. (1996), and the Fisher & 

Gallagher (2012) weighted portmanteau test with 20 lags. ESG, CEI, BIGCEI, GB, and GCEI represent the S&P Global 

1200 ESG Index, S&P Global 1200 Carbon Efficient Index, S&P 500 Bond Investment Grade Carbon Efficient Index, 

S&P Green Bond Index, and S&P Global Clean Energy Index, respectively. Stock, Gold, Oil, and Bond refer to the 

S&P GLOBAL 1200 Index, S&P GSCI Gold Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, 

respectively. 
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Fig.2: All conditional volatility series 

Note: ESG, CEI, BIGCEI, GB, and GCEI refer to the S&P Global 1200 ESG Index, S&P Global 1200 Carbon Efficient 

Index, S&P 500 Bond Investment Grade Carbon Efficient Index, S&P Green Bond Index, and S&P Global Clean 

Energy Index, respectively. Stock, Gold, Oil, and Bond correspond to the S&P GLOBAL 1200 Index, S&P GSCI Gold 

Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, respectively. 
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Fig.3: All conditional kurtosis series 

Note: ESG, CEI, BIGCEI, GB, and GCEI refer to the S&P Global 1200 ESG Index, S&P Global 1200 Carbon 

Efficient Index, S&P 500 Bond Investment Grade Carbon Efficient Index, S&P Green Bond Index, and S&P Global 

Clean Energy Index, respectively. Stock, Gold, Oil, and Bond correspond to the S&P GLOBAL 1200 Index, S&P 

GSCI Gold Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, respectively. 

 

 

4.2. Traditional volatility and kurtosis spillovers 

As a benchmark, we first report the detailed averaged dynamic (symmetric) volatility 

and kurtosis spillovers without separating the good from the bad component in Figure 4 

and 5, respectively. In fact, we can see that the total volatility spillover across the entire 

system stands at 65.424 percentage points, while the total kurtosis spillover stands at 

48.337 percentage points. This highlights that volatility risk tends to propagate more 

extensively across various investments compared with extreme risk. In terms of volatility 

spillover, Oil, CEI, and Stock are the top three investments transmitting spillovers 

outward, contributing 9.073%, 8.857%, and 8.376% of volatility spillover to other 
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investments, respectively. For kurtosis spillover, Stock, CEI, and ESG are the top three 

investments transmitting spillovers outward, contributing 8.001%, 7.894%, and 6.345% 

of kurtosis spillover to other investments, respectively. Interestingly, while Oil transmits 

higher volatility risk to other investments, it conveys minimal kurtosis risk, accounting 

for just 1.493% of kurtosis spillover. 

 

 

 
Fig.4: Averaged dynamic volatility spillover index 

Note: ESG, CEI, BIGCEI, GB, and GCEI refer to the S&P Global 1200 ESG Index, S&P Global 1200 Carbon 

Efficient Index, S&P 500 Bond Investment Grade Carbon Efficient Index, S&P Green Bond Index, and S&P Global 

Clean Energy Index, respectively. Stock, Gold, Oil, and Bond correspond to the S&P GLOBAL 1200 Index, S&P 

GSCI Gold Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, respectively. 
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Fig.5: Averaged dynamic kurtosis spillover index 

Note: ESG, CEI, BIGCEI, GB, and GCEI refer to the S&P Global 1200 ESG Index, S&P Global 1200 Carbon 

Efficient Index, S&P 500 Bond Investment Grade Carbon Efficient Index, S&P Green Bond Index, and S&P Global 

Clean Energy Index, respectively. Stock, Gold, Oil, and Bond correspond to the S&P GLOBAL 1200 Index, S&P 

GSCI Gold Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, respectively. 

 
 

4.3. Averaged dynamic asymmetric spillovers 

Next, we present the averaged dynamic good volatility spillover index and the 

averaged dynamic bad volatility spillover index in Figures 6 and 7, respectively. In 

addition, Figures 8 and 9 depict the averaged dynamic good kurtosis spillover index and 

the averaged dynamic bad kurtosis spillover index, respectively. 

We find that the contribution of spillovers from volatility shocks among variables to 

the total forecast error variance is 49.546% for good shocks, while it is 56.163% for bad 

shocks. This suggests that both good and bad shocks significantly contribute to the 

system's volatility, with negative shocks having a slightly greater impact. On the other 

hand, the contribution of spillovers from kurtosis shocks among variables to the total 

forecast error variance stands at 43.092% for good shocks, compared with an almost equal 

42.138% for bad shocks. 
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For carbon, we found a relatively strong volatility spillover and kurtosis spillover 

between it and both the stock and crude oil markets. This finding supports the "Carbon-

Energy-Finance" system, which posits that the Carbon market is interconnected not only 

with traditional energy markets but also with some financial markets. For instance, the 

research of Tan et al. (2020) on the EU ETS also indicates that the volatility of the carbon 

market closely relates to the volatility of the stock market. Moreover, we observed that 

the level of bad volatility spillover between them is greater than that of good volatility 

spillover. Although we also identified a relatively strong kurtosis spillover effect between 

carbon and stocks or crude oil, the kurtosis spillover effect between them appears to be 

symmetric, meaning that the levels of good kurtosis spillover and bad kurtosis spillover 

are nearly equal. 

Additionally, for the three stock-based sustainable investments, CEI, GCEI, and ESG, 

apart from substantial volatility spillovers with the stock market, they also exhibit 

significant volatility spillovers with the crude oil market. Specifically, we found that the 

bad volatility spillover between them and the crude oil market is stronger than the good 

volatility spillover. Among these three stock-based sustainable investments, the volatility 

spillover effect between GCEI and crude oil is the strongest, regardless of whether it is 

good or bad volatility and irrespective of the direction of the spillover. The volatility 

spillover effects between new energy stocks and traditional energy markets, especially 

the crude oil market, have been confirmed by many researchers (e.g., Attarzadeh & 

Balcilar, 2022; Caporale et al., 2023; Liu & Hamori, 2020; Song et al., 2019; Umar et al., 

2022). 
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In our research, we observe strong spillover effects in kurtosis between the three 

stock-based sustainable investments (CEI, GCEI, ESG) and crude oil. Similarly, for 

kurtosis spillover, the level of bad kurtosis spillover is higher than that of good kurtosis 

spillover. The only distinction is that CEI transmits the highest kurtosis spillover to crude 

oil, rather than GCEI. 

Finally, for bond-based sustainable investments like BIGCEI and GB, we identify a 

robust volatility spillover effect between them and gold, regardless of whether it is good 

or bad volatility. Additionally, the bad volatility spillover between them and gold is 

stronger than the good volatility spillover. The volatility spillover effect between green 

bonds and gold is also more pronounced, irrespective of whether it is good or bad 

volatility. 

The findings for kurtosis spillover are generally consistent with these results. The 

only distinction in kurtosis spillover is that the levels of bad and good kurtosis spillover 

between bond-based sustainable investments (BIGCEI, GB) and gold are almost identical, 

indicating symmetrical kurtosis spillover between them. 

The strong spillover relationship between green bonds and precious metals can be 

attributed to the increasing significance of the green bonds market and the stable value of 

precious metals. Precious metals, particularly gold, are considered stable assets, making 

them suitable for hedging against market risks. Concurrently, the growing emphasis on 

sustainable projects is driving the prominence of green bond markets, which are 

considered effective financial tools for promoting a low-carbon economy. Investors may 

switch between green bonds and stable precious metals to optimize returns and manage 



25 

 

risks, leading to the strong observed spillover effects between these markets (Naeem et 

al., 2021). 

 

 

 

 
Fig.6: Averaged dynamic good volatility spillover index 

Note: ESG, CEI, BIGCEI, GB, and GCEI refer to the S&P Global 1200 ESG Index, S&P Global 1200 Carbon 

Efficient Index, S&P 500 Bond Investment Grade Carbon Efficient Index, S&P Green Bond Index, and S&P Global 

Clean Energy Index, respectively. Stock, Gold, Oil, and Bond correspond to the S&P GLOBAL 1200 Index, S&P 

GSCI Gold Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, respectively. 
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Fig.7: Averaged dynamic bad volatility spillover index 

Note: ESG, CEI, BIGCEI, GB, and GCEI refer to the S&P Global 1200 ESG Index, S&P Global 1200 Carbon 

Efficient Index, S&P 500 Bond Investment Grade Carbon Efficient Index, S&P Green Bond Index, and S&P Global 

Clean Energy Index, respectively. Stock, Gold, Oil, and Bond correspond to the S&P GLOBAL 1200 Index, S&P 

GSCI Gold Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, respectively. 

 
 
 

 
Fig.8: Averaged dynamic good kurtosis spillover index 

Note: ESG, CEI, BIGCEI, GB, and GCEI refer to the S&P Global 1200 ESG Index, S&P Global 1200 Carbon 

Efficient Index, S&P 500 Bond Investment Grade Carbon Efficient Index, S&P Green Bond Index, and S&P Global 

Clean Energy Index, respectively. Stock, Gold, Oil, and Bond correspond to the S&P GLOBAL 1200 Index, S&P 

GSCI Gold Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, respectively. 
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Fig.9: Averaged dynamic bad kurtosis spillover index 

Note: ESG, CEI, BIGCEI, GB, and GCEI refer to the S&P Global 1200 ESG Index, S&P Global 1200 Carbon 

Efficient Index, S&P 500 Bond Investment Grade Carbon Efficient Index, S&P Green Bond Index, and S&P Global 

Clean Energy Index, respectively. Stock, Gold, Oil, and Bond correspond to the S&P GLOBAL 1200 Index, S&P 

GSCI Gold Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, respectively. 

 
 

4.4. Dynamic asymmetric spillovers 

Conclusions drawn solely based on Averaged dynamic asymmetric spillovers 

without further analysis of directional transmission or the evolution of spillover indices 

over time could potentially be misleading (BenSaïda, 2019). Therefore, this section shifts 

our focus to dynamic asymmetric spillovers. Figure 10 and Figure 11 depict the dynamic 

total volatility spillover index and dynamic total kurtosis spillover index, respectively. 

Each of these figures contains two lines: black represents positive (good) spillover, and 

red represents negative (bad) spillover. If both lines coincide, it indicates symmetric 

spillovers. 

Figure 10 reveals that bad volatility spillover exceeds good volatility spillover in 

most periods, indicating that the total volatility spillover in the entire system is 

asymmetric in most cases. Particularly, the outbreak of COVID-19 significantly 
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influenced bad volatility spillover. In other periods, the difference between good and bad 

volatility spillover was less pronounced, but the onset of COVID-19 in late 2019 

intensified bad volatility spillover, keeping it high for an extended period. Meanwhile, 

while good volatility spillover also increased during this period, it started to decline soon 

after, leading to a notable difference between the two during this timeframe. 

On the other hand, compared to Figure 10 where bad volatility spillover exceeded 

good volatility spillover in most periods, Figure 11 illustrates that periods with bad 

kurtosis spillover surpassing good kurtosis spillover are much less frequent. In fact, 

instances of bad kurtosis spillover surpassing good kurtosis spillover primarily occurred 

during the Brexit referendum in mid-2016 and the period of COVID-19. 

 

 
 

 
Fig.10: Dynamic total volatility spillover 

Note: The black line represents the positive (good) total volatility spillover, while the red line indicates the negative 

(bad) total volatility spillover. 
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Fig.11: Dynamic total kurtosis spillover 

Note: The black line represents the positive (good) total kurtosis spillover, while the red line indicates the negative 

(bad) total kurtosis spillover. 

 

These results are also confirmed by Figures 12 and 13. Respectively, Figures 12 and 

13 illustrate the total volatility spillover asymmetry and total kurtosis spillover 

asymmetry calculated using Equation 11. In these figures, the periods when bad volatility 

(kurtosis) spillover exceeds good volatility (kurtosis) spillover (indicating negative 

asymmetry) are shown by the green shaded areas, while the periods when good volatility 

(kurtosis) spillover exceeds bad volatility (kurtosis) spillover (indicating positive 

asymmetry) are represented by the blue shaded areas. The red lines denote the upper and 

lower bounds of the time-varying 95% confidence interval. 

Figure 12 demonstrates that the volatility spillover asymmetry is predominantly 

negative, with a substantial increase in negative spillover asymmetry during the COVID-

19 period. Meanwhile, Figure 13 indicates that negative kurtosis spillover asymmetry is 

most prominent during the Brexit period in 2016 and the onset of the COVID-19 

pandemic. 

In financial markets, the phenomenon of negative volatility asymmetry is more 

prevalent than positive asymmetry, as demonstrated by various studies (e.g., Baruník et 
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al., 2016, 2017; Mensi et al., 2021; X. Wang & Wu, 2018). Our research on volatility 

spillover asymmetry reaffirms this observation. However, our investigation into kurtosis 

spillover asymmetry has yielded contrasting results. The occurrence of negative kurtosis 

asymmetry appears to be more common, whereas positive kurtosis asymmetry is observed 

only in specific periods. 

BenSaïda (2019) and X. Wang & Wu (2018) argue that spillover asymmetry reflects 

two key aspects. Firstly, it indicates the sensitivity of market participants to both good 

and bad news. Secondly, it captures market sentiment, whether it leans toward optimism 

or pessimism, and participants' expectations. Viewing this from the first perspective, it's 

plausible to assert that market participants are generally more responsive to negative news, 

which often triggers herd behavior more readily. Consequently, unfavorable news tends 

to lead to more significant volatility, and this effect is more prone to transmission through 

spillover channels. This underscores that general volatility risk and volatility spillover are 

more influenced by negative news. However, extreme volatility, or extreme risk, is less 

affected by negative news compared to general volatility risk. Only exceptionally severe 

negative news might drive an increase in extreme volatility and corresponding extreme 

volatility spillover. 

Considering the second perspective, the prevalence of negative spillover asymmetry 

in most periods indicates that pessimistic sentiment has largely dominated. This has 

resulted in an overrepresentation of bad volatility spillover. However, this pessimistic 

sentiment primarily pertains to volatility risk rather than extreme risk. Investors' 

expectations for volatility risk, reflecting general volatility, and extreme risk, representing 
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extreme volatility, may diverge. In most periods, investors lean toward pessimism 

concerning volatility risk but exhibit relatively greater optimism toward extreme risk. Yet, 

during exceptionally extreme periods like the Brexit vote and COVID-19, investor 

sentiment becomes extremely pessimistic. Consequently, investors harbor pessimistic 

views not only about volatility risk but also about extreme risk. 

 

 
Fig.12: Total volatility spillover asymmetry index 

 
 

 
Fig.13: Total kurtosis spillover asymmetry index 

 

Figures 14 and 15 illustrate the volatility spillover asymmetry index and the kurtosis 

spillover asymmetry index to other investments, as given in equation 12a. Meanwhile, 

Figures 16 and 17 present the volatility spillover asymmetry index and the kurtosis 

spillover asymmetry index from other investments, following equation 12b. These figures 

yield intriguing insights not readily accessible through traditional symmetric spillover 
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analysis or averaged dynamic asymmetric spillover analysis. 

For instance, two notable findings emerge. Firstly, spillover asymmetry prevails 

across various investments, albeit with varying degrees of intensity. Secondly, in the 

context of volatility spillover, most investments during the vast majority of periods tend 

to transmit or receive unfavorable volatility spillovers from other investments. However, 

in the case of kurtosis spillover, there exists greater diversity among investments. For 

example, ESG predominantly transmits and receives more favorable kurtosis spillover in 

most periods, whereas GCEI and BIGCEI exhibit the opposite trend. 

 

     
(a) Carbon.                                 (b) CEI 

     
(c) GCEI                                 (d) ESG   
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(e) BIGCEI                                (f) GB 

     
(g) Oil                                    (h) Gold 

     
(i) Stock                                    (j) Bond 

Fig.14: Volatility spillover asymmetry index to other investments. 
Note: ESG, CEI, BIGCEI, GB, and GCEI refer to the S&P Global 1200 ESG Index, S&P Global 1200 Carbon 

Efficient Index, S&P 500 Bond Investment Grade Carbon Efficient Index, S&P Green Bond Index, and S&P Global 

Clean Energy Index, respectively. Stock, Gold, Oil, and Bond correspond to the S&P GLOBAL 1200 Index, S&P 

GSCI Gold Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, respectively. 

 
 

     
(a) Carbon.                                 (b) CEI 
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(e) BIGCEI                                (f) GB 

     
(g) Oil                                    (h) Gold 

     
(i) Stock                                    (j) Bond 

Fig.15: Kurtosis spillover asymmetry index to other investments. 
Note: ESG, CEI, BIGCEI, GB, and GCEI refer to the S&P Global 1200 ESG Index, S&P Global 1200 Carbon 

Efficient Index, S&P 500 Bond Investment Grade Carbon Efficient Index, S&P Green Bond Index, and S&P Global 

Clean Energy Index, respectively. Stock, Gold, Oil, and Bond correspond to the S&P GLOBAL 1200 Index, S&P 

GSCI Gold Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, respectively. 

 
 

     
(a) Carbon.                                 (b) CEI 
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(c) GCEI                                 (d) ESG   

     
(e) BIGCEI                                (f) GB 

     
(g) Oil                                    (h) Gold 

     
(i) Stock                                    (j) Bond 
Fig.16: Volatility spillover asymmetry index from other investments. 

Note: ESG, CEI, BIGCEI, GB, and GCEI refer to the S&P Global 1200 ESG Index, S&P Global 1200 Carbon 

Efficient Index, S&P 500 Bond Investment Grade Carbon Efficient Index, S&P Green Bond Index, and S&P Global 

Clean Energy Index, respectively. Stock, Gold, Oil, and Bond correspond to the S&P GLOBAL 1200 Index, S&P 

GSCI Gold Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, respectively. 
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(i) Stock                                    (j) Bond 
Fig.17: Kurtosis spillover asymmetry index from other investments. 

Note: ESG, CEI, BIGCEI, GB, and GCEI refer to the S&P Global 1200 ESG Index, S&P Global 1200 Carbon 

Efficient Index, S&P 500 Bond Investment Grade Carbon Efficient Index, S&P Green Bond Index, and S&P Global 

Clean Energy Index, respectively. Stock, Gold, Oil, and Bond correspond to the S&P GLOBAL 1200 Index, S&P 

GSCI Gold Index, S&P GSCI Crude Oil Index, and S&P 500 Bond Index, respectively. 

 

5. Conclusions and discussions 

Citing the research of Barndorff‐Nielsen et al. (2010) and BenSaïda (2019), we 

expanded the analysis of asymmetric spillover effects to higher moments (kurtosis) using 

the GJR-SK model. We explored asymmetric volatility spillover and asymmetric kurtosis 

spillover among sustainable and traditional investments. 

For carbon, we observed robust volatility and kurtosis spillovers with both stocks and 

crude oil. The negative volatility spillover exceeded the positive volatility spillover, 

whereas the kurtosis spillover exhibited symmetry. 

Among the three stock-based sustainable investments—CEI, GCEI, and ESG—we 

identified substantial volatility and kurtosis spillovers with crude oil. These spillovers 

showed asymmetry, with the negative volatility (kurtosis) spillover surpassing the 

positive volatility (kurtosis) spillover. 

Regarding the two bond-based sustainable investments, BIGCEI and GB, we noted 

significant volatility and kurtosis spillovers with gold. The adverse volatility spillover 

was more pronounced than the favorable volatility spillover, while the kurtosis spillover 

demonstrated symmetry. 

By investigating the dynamic changes in spillover effects, we have discovered that 

good kurtosis spillover generally surpasses bad kurtosis spillover in most periods. 
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However, during specific extreme events such as Brexit and COVID-19, bad kurtosis 

spillover becomes predominant. This finding contrasts significantly with the observation 

in volatility spillover, where bad volatility spillover exceeds good volatility spillover in 

most periods. The potential reason for this disparity in results lies in the sensitivity of 

kurtosis spillover, which represents extreme volatility spillover, to negative news. 

Moreover, market expectations regarding general volatility and extreme volatility may 

diverge. While the market commonly adopts a pessimistic stance towards general risk, it 

only tends to do so for extreme risk in highly turbulent market conditions. 

Hence, through vigilant monitoring of kurtosis spillover, policymakers can acquire 

insights into market sentiment and devise timely interventions to stabilize financial 

markets during periods of heightened pessimism. Investors can also capitalize on tracking 

kurtosis spillover, employing it as an indicator of market sentiment and making well-

informed decisions regarding portfolio diversification and risk management, especially 

during instances of pronounced market volatility. 
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