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ABSTRACT 

This paper is concerned with the observer design problem for a nonlinear hyperbolic system with 
a modified van der Pol boundary condition in which an integral term is included. The observer 
plays a role of a chaotic synchronizing system when applying it to secure communication. In our 
previous work (Sano et al. Secure communication systems using distributed parameter chaotic 
synchronization. SICE Trans. 2021 ;57(2):78-85), a nonlinear hyperbolic system without the inte­
gral term was treated and a simple synchronizing system was constructed, where the constant 
coefficients of system played a role of encryption keys. But the keys were vulnerable from a safety 
standpoint. On the other hand, in the case where the integral term is included in the bound­
ary condition, we need to construct observers. The weighted function contained in the integral 
term gives a new encryption key of distributed type. An application to image encryption is also 
discussed and numerical simulation results are given. 
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1. Introduction 

We shall consider the nonlinear hyperbolic system with 
a modified van der Pol boundary condition 

Ut(t, x) = Ux(t, x), t > 0, x E (0, 1), 
V1(t,x) = -Vx(t,x), t > 0, x E (0, 1), 

u(t, 1) = ¢(v(t, 1)) + 11 
y(x)u(t,x) dx, t > 0, 

V(t, 0) = KU(t, 0), t > 0, 
u(0,x) = uo(x), v(0,x) = vo(x), x E [0, l], 

(1) 
where y(x) is a real-valued function such that y E 

C1 [0, l] and y (0) = 0, and K is a real constant. For a 
given z E R, ¢ (z) expresses a solution y to the equation 

f3(y - z)3 + (1 - a)(y- z) + 2z = 0. (2) 

That is, ¢(z) = y . For each z ER, Equation (2) has a 
unique solution y E R, if the conditions 0 < a :::: 1 and 
f3 > 0 are satisfied (e.g. [l ]). Hereafter, it is assumed 
that a and f3 are chosen such that 0 < a :::: 1 and f3 > 0. 
If y (x) = 0, then we obtain the nonlinear hyperbolic 
system ( 1) from a wave equation with a van der Pol 
boundary condition, and u, v are the Riemann invari­
ants of the wave equation; see, e.g. [l ]. 

Using the method of characteristic lines, we can 
characterize the solution of system (1). First, we express 
the boundary condition of ( 1) as 

u(t, 1) = ¢(v(t, 1)) + f(u(t , •)) , v(t, 0) = ij,(u(t, 0)) , 

where 

f(<p) := 11 
y(x)<p(x) dx, <p E 1 2 (0, 1), 

ij,(x) := KX, X E R, 

with y(x) and K being the same function and con­
stant as in (1). Considering the reflection of wave at 
x = 0, 1, the solution (u, v) of (1) is determined as fol­
lows (see Appendix 1): For x E [0, l] and t = 2k + r 
(k = 0, l , 2, . . . , 0 ::: r < 2), 

u(t,x ) 

v(t,x) 

Uk(X + r ), for r ::: 1 - X, 
¢ (vk(2 - x - r)) 

+f(u(2k-l+x+r, • )), forl-x < r 
:'.::: 2 - X, 

(¢ o ij,) (uk(x + r - 2)) 
+f(u(2k- l +x+r, - )), for2-x 

Vk(X - r ), 
ij, (uk(r - x) ), 

(if, o </J )(vk(x - r + 2)) 
+ (if, of) 
(u(2k - 1 + r - x, • )), 

< r::: 2, 

for r ::: x, 
for X < r :'.::: 1 + X, 

for 1 + X < r :'.::: 2, 

where uk(x) and vk(x ) are defined as 

Uk(X) := (¢ 0 ij, )(uk- 1 (x) ) + f(u(2k - 1 + X, . )), 
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Vk(X) := (if; 0 cp)(vk- l (x)) 

+ (if; oj)(u(2k - 1 - x, • )), 

with ¢ being implicitly defined by (2). In the above, 
we assume that the initial condition u0, v0 E H1 (0, 1) 
satisfies the compatible conditions uo(l) = cp(vo(l)) + 
j(uo( • )), vo(0) = if;(uo(0)). Although it is difficult to 
show the well-posedness of (1) within the framework 
of functional analysis, we can directly determine the 
solution. 

For the wave equation with a van der Pol boundary 
condition not including an integral term, the observer 
design has been studied in [2]. In this paper, we first 
construct observers for (1) with y(x) ¢. 0, and then 
apply them to image encryption as an example of 
secure communication. For lumped parameter systems, 
secure communication systems using chaotic synchro­
nization have been investigated by many researchers 
since the mid- l 990s. The common idea is the following: 
After communication information is embedded into a 
chaotic signal in the modulation component, it is sent 
to the receiving side, and, in the demodulation com­
ponent, the communication information is restored by 
chaotic synchronization [3- 7]. Here, chaotic synchro­
nization is a phenomenon such that two systems whose 
states chaotically behave with the same dynamic char­
acteristics are synchronized by adding a control input 
to one system. For example, it is accomplished by con­
structing observers. On the other hand, there are a few 
works concerning the design of secure communication 
systems using the chaos of PDEs (8- 10]. In (9], it has 
been shown that two identical time-delayed Chua's cir­
cuits can be synchronized using a boundary control 
and that the synchronization can be applied to multi­
channel spread-spectrum communications. In [8], for 
two identical systems (1) with y(x) = 0, it has been 
shown that they can be synchronized by a simple con­
trol law, based on the method of characteristic line and 
that the synchronization is applicable to image encryp­
tion, where the constants a, /3, K of (1) and (2) play a 
role of encryption keys. In [10], an image encryption 
scheme has been proposed based on a hyperbolic sys­
tem with nonlinear boundary conditions, which brings 
a chaotic phenomenon. In that paper, the solution of the 
hyperbolic system is used to shuffle the position of each 
pixel. However, the method of synchronize two iden­
tical hyperbolic systems is not considered. That is, in 
[ 10], the encryption and decryption are assumed to be 
done non-simultaneously. 

In the case where an integral term is included in the 
boundary condition such as system (1), we need to con­
struct observers for synchronization. Especially, we use 
backstepping design for first-order hyperbolic systems 
(see, e.g. (11 - 19]). The merit ofusing the integral term 
lies in the fact that the weighted function y (x) gives an 
additional 'distributed' encryption key. 

2. Observer design for synchronization 

To estimate the states u(t, •) and v(t, •) of (1) from the 
output v(t, 1), we consider the 2 x 2 nonlinear hyper­
bolic system 

ut(t,x) = ux(t,x) + g(x)(v(t, 1) - v(t, 1)), 

t > 0, X E (0, 1), 

vt(t,x) = -vx(t,x) + h(x)(v(t, 1) - v(t, 1)), 

t > 0, X E (0, 1), 

u(t, 1) = cp(v(t, 1)) + fo 1 
y(x)u(t,x) dx, t > 0, 

v(t, o) = Ku(t, o), t > o, 

u(0,x) = uo(x), v(0,x) = vo(x), x E [0, l], 
(3) 

where it is assumed that u0 , v0 E H1(0, 1), u0 (1) = 
cp(vo(l)) + j(uo( • )), vo(0) = if;(uo(0)). System (3) is 
called a Luenberger-type observer. Introducing the 
error variables u := u - u and v := v - v, the following 
system is obtained: 

ut(t, x) = ux(t, x) - g(x)v(t, 1), 

t > 0, X E (0, 1), 

vt(t, x) = -vx(t, x) - h(x)v(t, 1), 

t > 0, X E (0, 1), 

u(t,1)= 11
y(x)u(t,x)dx, t>0, 

v(t, o) = Ku(t, o), t > o, 

u(0,x) = uo(x), v(0,x) = vo(x), x E (0, l]. 
(4) 

The main difference from [ 17, 18] is that system (1) has 
the nonlinear function cp in the boundary condition at 
x = 1. However, a suitable choice of observers leads to 
a linear error system. Hence, one can apply the back­
stepping method to the error system (4) as in (17, 18]. 
In particular, we use the Volterra-Fredholm integral 
transformation 

w(t,x) = u(t,x) - fox p(x,y)u(t,y) dy 

- fo 1 
q(x,y)v(t,y) dy. (5) 

The problem is to determine the kernels p and q in (5) 
and the gains g and h in ( 4) so as to achieve u(t, •) ➔ 0 
and v(t, •) ➔ 0 as t goes to oo. 

Differentiating (5) and performing integration by 
parts, Wt(t, x) - wx(t, x) is calculated as 

Wt(t, x) - Wx(t, x) 

= { q(x, 1) - g(x) + fox p(x,y)g(y) dy 

+ fo 1 
q(x,y)h(y) dy} v(t, 1) 
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+ {p(X, 0) - Kq(X, 0) }u(t, 0) 

+ fox{Px(x,y) + Py(x,y)}u(t,y) dy 

+ 11 
{ qx(X, y) - qy(x, y) }v(t, y) dy. ( 6) 

We here note the following facts: 

(i) If all the terms enclosed in { •} of the right-hand 
side of (6) are zero, w1(t,x) - Wx(t,x) = 0 holds 
for all u and w. 

(ii) By (5), if p(l, y) = y (y) and q(l, y) = 0 are satis­
fied, w(t, 1) = 0 holds for all u. 

(iii) Putting x = 0 in (5), one has 

w(t, 0) = u(t, 0) - fo 1 
q(0,y)v(t,y) dy. 

Under the condition y(O) = 0, we sequentially 
determine the kernels p and q and the gains g and h as 
follows: 

Step 1 - Design of p. 'Attention to ( 6) and (i), (ii)'. Let 
Dp := { (x, y); 0 .:S y .:S x, 0 .:S x .:S 1 }. Find the solution 
p(x,y) to the hyperbolic equation 

{ Px(x,y) + Py(x,y) = 0, 
p(l,y) = y(y) 

(7) 

on Dp. From (7), the solution is given by p(x,y) = 
y(l-x+y). 

Step 2 - Design of q. 'Usingp, find q '. 'Attention to (6) 
and (i), (ii)'. Let Dq := { (x, y); 0 .:S x .:S 1, 0 .:S y .:S 1} . 
Find the solution q(x,y) to the hyperbolic equation 

{ 
qx(x,y) :_ [y(x,y) = 0, 

q(x, 0) - -p(x, 0), 
K 

q(l,y) = 0 

on Dq. From (8), the solution is given by 

( ) I ..!:..y(l - X - y), for X + y ,'.S 1, 
q X,y = K 

0, for X + y > 1. 

(8) 

Note that q E H 1 (Dq) under the condition y (0) = 0. 
Step 3 - Design of h. 'Using q, find h '. 'Attention 

to ( 4) and (iii)'. Determine the gain h(x), x E [0, l] such 
that the solution v(t, •) of the hyperbolic Equation (9) 
vanishes for all t :::= l. 

{ 

~i(t, x) = -\U, x) - _h(x)v(t, 1), 

v(t, 0) = K 1 q(0,y)v(t,y) dy, 

v(0,x) = vo(x). 

(9) 

Concretely, one can construct the gain h by solving 
Equations (10) and (11). 

{ rx(x,y) + ry(x,y) = 0, x .:Sy .:S 1, 0 .:S x .:S 1, 
r(0,y) = Kq(0,y), 

(10) 

h(x) = r(x, 1) + 11 
r(x,y)h(y) dy. (11) 

The derivation is shown in Appendix 2. Since it follows 
from (10) that r(x,y) = Kq(0,y - x), the gain his given 
by solving the integral Equation ( 11). 

Step 4 - Design of g. 'Usingp, q, h, findg '. 'Attention 
to (6) and (i)'. Find the solution g(x), x E [0, l] to the 
integral equation 

g(x) = q(x, 1) + 11 
q(x, y)h(y) dy 

+ fox p(x,y)g(y) dy. (12) 

As a result, for the error system ( 4), the following 
system can be considered as a target system: 

wi(t, x) = Wx(t, x), 
w(t, 1) = 0, 
w(0,x) = wo(x), 

vi(t, x) = -vx(t, x) - h(x)v(t, 1), (13) 

v(t, o) = Kw(t, o) + K fo 1 
q(0,y)v(t,y) dy, 

v(O, x) = vo(x). 

For the upper part of system (13), we see that w(t, •) 
becomes zero at t = 1, since 

( ) { wo(x + t), 
w t,x = 0, 

for X + t ,'.S 1, 
for X + t > 1. 

Therefore, at t = 1, the lower part of system ( 13) equals 
the hyperbolic Equation (9). From the way of construc­
tion of the gain h in the Step 3, v(t, •) becomes zero at 
t = 2. On the other hand, it follows from (5) that 

0 = u(t,x) - fox p(x,y)u(t,y) dy fort:::= 2. 

From the invertibility [20] of the transformation T : 
H1(o, 1) ➔ H 1(0, 1) defined by 

Tu(t,x) = u(t,x) - fox p(x,y)u(t,y) dy, 

we see that u(t, •) and v(t, •) vanish fort:::= 2. Now, we 
introduce a Hilbert space X := L2(0, 1) x L2(0, 1) and 
its subspace 

W := { (µ, v) E H1(o, 1) x H1(o, l); 

µ(l) = fo 1 
y(y)µ(y) dy, v(O) = Kµ(O)}. 

Then, we have the following theorem: 

Theorem 2.1: Let y E C1 [0, l] satisfy y (0) = 0. Let g 
and h be designed according to Steps 1-4. Then, for any 
initial condition (u0 , v0 ) E W, the error system ( 4) has a 
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unique solution (u, v) E C([0, oo); W) n C1([0, oo);X) 
which vanishes for t :::: 2. 

Proof: The theorem can be proved by using a way 
similar to [ 17, Theorem 3]. So, we here omit it. ■ 

Remark 2.1: The gains g and h constructed in this 
section satisfy (g, h) E W, where Wis the subspace of 
X defined before Theorem 2.1. See Appendix 3 for the 
derivation. 

3. Application to image encryption 

In this section, we study the modulation/ demodulation 
of image data with (M + 1) x (L + 1) pixel. We first 
need to discretize system ( 1) and synchronization 
system (3) to spatial direction and time direction. 
Divide the interval [0, l] into L equal subintervals 
and define Xi := i!:!.x (i = 0, 1, 2, ... , L), where !:!.x := 

1/ L. Let !:!.t be a time mesh width and define tk := 

k!:!.t (k = 0, 1, 2, ... ). For the states u(t,x), v(t,x) of 
system (1), let ui[k], vi[k] be numerical solutions that 
approximate u(tk, Xi) and v(tk, Xi), and define the (L + 
1 )-dimensional vectors 

For synchronization system (3), in the same fashion, 
using numerical solutions ui [k], i\ [k] that approximate 
u(tk,Xi), v(tk,Xi), we define the (L + 1)-dimensional 
vectors 

To discretize these systems to spatial direction, we use 
the upwind difference scheme, that is, 

~ u(tk,Xi+1) - u(tk,Xi) 
Ux(tk, Xi) = --------, 

!:!.x 

~ v(tk,Xi) - v(tk,Xi-1) 
-vx(tk,Xi) = ---------, 

!:!.x 

A ~ uUk,Xi+1) - u(tk,xi) 
Ux(tk,Xi) = --------, 

!:!.x 

A ~ v(tk,xi) - v(tk,Xi-d 
-vx(tk,Xi) = ---------. 

!:!.x 

Further, for its time integration of u, v, u, and v, we 
use the Euler method with time mesh width !:!.t = !:!.x. 
Hereafter, we denote Equation (1) discretized system by 
:E c1), and Equation (3) discretized system by :E(3)· 

Remark 3.1: The above discretization is the upwind 
difference scheme based on the characteristic line. Since 

!:!.t = !:!.x, the waves u and u travel along the character­
istic line t + x = const , and the waves v and v travel 
along the characteristic line t - x = const. 

In what follows, we state the concrete construction 
of system in the case where one transmits an image data 
from subsystem S1 to subsystem S2. 

Modulation 

l w[k + 1] = G(U[k], V[k], w[k], '1 [k + 1 ]), 

M : k :::: 0, w[0] = 0, 

c12[k] = w[k], 
(14) 

where w[k] is the modulated state. G is a nonlinear 
mapping from RL+l x RL+l x RL+l x RL+l to RL+l. 

It is assumed that, for arbitrarily fixed a, b, c E RL+1, 
G(a, b, c, •) has the inverse c - 1(a, b, c, •) and satisfies 
the following condition: 

Condition 3.1: For any real numbers > 0, there exists 
a real number 8 > 0 such that 

l~l - ~21RL+I < 0 (~1,~2 E RL+ l) ===} 

sup 1c-1(a,b,c,~1)- c-1(a,b,c,~2)IRL+l < E, 

a,b,cERL+l 

where I • IRL+I denotes the usual Euclidean norm. 

Especially, we choose G such that w[k] of (14) 
behaves randomly and differently from u[k] and v[k] 
so that the original image cannot be found at all in the 
modulated image {c12 [k]}. 

Demodulation 

D: t2[k+ l] 

= c- 1 (u[k - l], v[k - l], c12 [k - l], cn[k]), 

k :::: 1. (15) 

Then, noting that !:!. t = !:!.x, we see that, after k = 2L 
steps, u[k], v[k] are completely equal to u[k], v[k], 
respectively. As a result, after the same steps, t2 [k + l] is 
completely equal to s1 [k] under Condition 3.1. Figure 1 
is the diagram when the synchronization system (3) is 
used. In the case where an image data of (M + 1) x 
(L + 1) pixel is transmitted from S1 to S2 , after a lapse 
of runup time, we have to set the original image data 
to s1 [k] E RL+l row by row and perform the sending 
operation (M + 1) times. On the other hand, on the 
receiving side, the image data of (M + 1) x (L + 1) 
pixel is restored by stocking up with t2 [ k] E RL+ 1 in 
sequence. 

4. Numerical simulation 

In this numerical simulation, a monochrome image of 
145 x 305 pixel (i.e. M = 144, L = 304) is used. In the 
system (1), we set a= 0.5, f3 = 1, y(x) = 2sin(7nx), 
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Subsystem S 1 Subsystem S2 
r--------, r--------, 

I I 

L(3) 
I I 

L(I) c:: 

I VL I 

I I 

I\ I\ I I 

u V I I u V 

• 1• 
I I ,. ,. 
I I 

I I 

-I I , M 
1C12 1 

D 

-- +---! 
I 

I 

L - - - - - - -
I' 

Figure 1. Secure communication system. :E(if Equation (1) 
discretized system. :E(3i: Equation (3) discretized system. M: 
modulation (14). D: demodulation (15). {si[kl}: original image. 
{cdkl}: modulated image. {t2[kl}: restored image. 

and K = ; ~~, where 17 = 0.525. According to Steps 1-4, 
we can design the observer gains g and h. First of all, 
by Steps 1 and 2, we get the kernels p and q. As for the 
function h(x), x E [0, l], which should be solved in Step 
3, we already know r(x,y) = Kq(0,y - x). By a method 
of successive approximation, the integral equation w.r. t. 
h(x) can be solved by the scheme 

hm(x) = r(x, 1) + 11 
r(x,y)hm-1 (y) dy, ho(x) = C. 

Furthermore, in Step 4, the integral equation w.r.t. g(x), 
x E [0, 1) can be solved by the scheme 

g;:1(x) = q(x, 1) + 1' q(x,y)hm(y) dy 

+ lax p(x,y)g;:1_1 (y) dy, g[;1(x) = C. 

In this numerical simulation, we set the initial constant 
as C = 1 and the spatial mesh width as box= boy= 
1/304. Also, we set each iteration of successive approx­
imation as 9 times, that is, (m, n) = (9, 9). In Figure 2, 
the graphs of gains h9(x), g§(X) were plotted. Through­
out this computation, we could verify the following 
facts: 

(i) g§(l) = 0.3618, f0
1 y(x)g§(x) dx = 0.3618, that is, 

g§(l) = f0
1 y(x)g§(x) dx. 

(ii) h9(0) = 1.7914, Kg§(0) = 1.7914, that is, h9(0) = 
Kg§(0). 

This shows that g(x) = g§(X) and h(x) = h9(x) sat­
isfy (g, h) E W numerically (see Remark 2.1). 

To perform numerical simulations, we set the mod­
ulation and demodulation components. Indeed, since 
the mapping G of ( 14) is nonlinear, it is difficult to con­
struct G in a systematic way. In this paper, we extend 
the modulation and demodulation components of [SJ 
so that each argument of G can take a vector value ( see 
Remark 4.1). In (14), let us set 

G(a, b, c, ~) 

= H(c)(0.03lal v + o.03lblv) 

+ (0.SH(c) + 0.1I)(0.08lalv + 0.08lblv + 0, 

where a, b, c, ~ E RL+ 1 and I is the (L + 1) x (l + 1) 

identity matrix. For vector z = (zo, z1, ... , zr? , we 
introduce the notation 

H(z) := diag(lzo(l - zo)I, ... , lzr(l - zr)I), 

lzlv := (l zol, lz, I, ... , lzrl?. 

Then, c-1 of (15) is calculated as 

c-1 (a, b, c, ~) 

= (0.SH(c) + o.u)-1 [~ - H(c)(0.03lalv 

+ o.03lblv)l - o.08lalv - o.08lblv. 

For any c E RL+ 1, the norm (i.e. the maximal singu­
lar value) of matrix (0.SH(c) + o.u) - 1 is estimated 
as 11(0.SH(c) + o.u)-1 11 _:::: 10. Hence, c-1 satisfies 
Condition 3.1. Figure 3 shows the numerical simula­
tion result in the case of runup time k = 6080 steps 
(t = 20). Here, we set u0 (x) = ¢(vo(l))ef,,(l - cos 7nx) 

and vo(x) = (vo(l) - Kq>(vo(l)))x + Kq>(vo(l)) with 
vo(l) = 0.1, and uo(x) = uo(x) + g§(X), vo(x) = vo(x) 
+ h9(x), where these satisfy the compatible conditions 
with respect to the initial conditions of (1) and (3), 
since (g§, h9) E W. Let the value of black be 0 and that 
of white be 0.01. The maximum of error between the 
original image {si[k]} and the restored one {t2[k]} was 
1.0408 X 10- 16 . 

Next, we consider the case where the weighted func­
tion contained in the nonlocal boundary condition 
of system (1) fluctuates from y(x) = 2 sin(77l'x) to 
y(x) = 1.95 sin(6.757l'x) (see Figure 4). The function 
y (x) contained in system ( 3) remains the same. Then, 
using the same observer gains g and h as in Figure 2, we 
had a numerical simulation result shown in Figure 5, 
where the same initial condition and the same runup 
time as in Figure 3 were used. We cannot find the origi­
nal image at all from the restored image. In this case, the 
maximum of error between the original image {s1 [kl} 
and the restored one {t2 [kl} was 0.5689. From the right 
column of Figure 5, we see that the error system with 
states u and ii is destabilizing due to a small discrepancy 
in the function y (x). 

Remark 4.1: In [S], two chaotic systems using the 2-
dimensional Henon mapping are considered. In that 
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Figure 3. Image encryption. {s, [kl}: original image. {c12[kl}: modulated image. lt2[kl}: restored image. 

paper, the signals s1 and t2 of Figure 1 are scalar. In 
particular, G of (14) is set as 

a,c,t ER, 

R, the inverse of G is given by 

0.9 

0 0 

0 0 

X 

X 

where H(z) := lz(l - z)I, z ER, and r1, r2, r3, r4 are 
some positive constants. Also, for arbitrarily fixed a, c E 

In this paper, we have extended the G such that each 
argument of G can take a vector value. 
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5. Conclusion 

In this paper, we proposed the observer design method 
for a nonlinear hyperbolic system with a modified van 
der Pol boundary condition including an integral term, 
and then, as an application example, we treated image 

encryption which was regarded as a kind of secure com -
munication. The proposed method of image encryption 
includes three constant keys a, f3, K and one distributed 
key function y(x), x E [O, l]. Indeed, since the y(x) 

is approximated as y (x;), i = 0, I, ... , L, the proposed 
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method will include very large number of constant 
keys compared to that of [8]. In this sense, the method 
proposed here can be said to be safer. 
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Appendices 

Appendix 1. Characterization of the solution 
of(1) 

First, we consider the case of t = r (0 ::=: r < 2). The ini­
tial data u(0, x) of u, i.e. u0 (x) travels along the character­
istic line x + r = const while r _::=: 1 - x. That is, u( r, x) = 
u0 (x + r) holds for r ::=: 1 - x . In due course, the wave u 
reaches x = 0. At that moment, the wave u reflects and 
becomes the wave v, where, by the boundary condition at 
x = 0, the wave v takes the value operated by 1/f. After the 
reflection, the wave v travels along the characteristic line 
r - x = const while x < r _::=: 1 + x. Accordingly, v( r, x) = 
i/f (u0 (r - x)) holds for x < r ::=: 1 + x. Further, the wave 
v reaches x = l. At that moment, the wave v reflects and 
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becomes the wave u, where, by the boundary condition at 
x = 1, the wave u takes the form of the sum of the value 
operated by ¢ and the integral term f ( u). After the reflec­
tion, the wave u travels along the characteristic line x + r = 
const while 2 - x < r < 2. Then, u(r,x) = (¢ o ijf )(u0 (x + 
r -2)) +f(u(r + x- 1,·)) holds for 2 -x < r < 2. The 
same goes for the initial data v(0, x) of v, i.e. vo(x) . Thus, for 
x E [0, 1) and t = r (0 ::: r < 2), we have 

uo(x+r), forr::::1-x, 
¢(vo(2 - x - r )) 

+f(u(- l+r+x, •)), forl-x < r 
u(r,x) = ::: 2-x, 

(¢ o ijf )(uo(x + r - 2)) 
+f(u(-l+r+x,•)), for2-x 

< r < 2, 
(Al) 

vo(x-r), 
ijf(uo(r - x)), 

for r :::: x, 
for x < r 

::: 1 +x, 
v(r,x) = (ijf o ¢) 

(vo(x - r + 2)) 
+(i/f of)(u(-1 + r - x, • )), for 1 + X 

< r < 2. 
(A2) 

Next, let us set 

u1 (x) := u(2,x) = (¢ o ijf)(uo(x)) + f(u(l + x, · )), 

v1(x) := v(2,x) = (ijf o ¢)(vo(x)) + (ijf of)(u(l - x, • )). 

Here, we consider u1 (x) and v1 (x) as initial data and repeat 
the same discussion as in the above. Then, for x E [0, 1) and 
t = 2 + r (0 ::: r < 2), we have 

u1(x+r), forr::::1-x, 
¢(v1(2 - x - r)) 

+f(u(l + r + x, • )), for 1 - x < r 
u(2 + r, x) = ::: 2 - x, 

(¢ o ijf)(ui(x + r - 2)) 
+f(u(l + r + x, • )), for 2 - x 

< r < 2, 

vi (x - r), 
i/f(u1(r -x)), 

v(2+r,x)= (ijf o ¢)(v1(x-r+2)) 
+(i/f of) 
(u(l + r - x, • )), 

for r ::: x, 
for x < r 

::S 1 + x, 

for 1 + X 

< r < 2. 

(A3) 

(A4) 

Further, setting 

u2(x) := u(4,x) = (¢ o i/f )(u1 (x)) + f(u(3 + x, · )), 

v2(x) := v(4,x) = (1/f o ¢)(v1(x)) + (1/f of)(u(3 - x, • )), 

and repeating the above discussion, we obtain the character­
ization of the solution of ( 1) as stated in the Introduction. 

Appendix 2. Derivation of (1 O) and (11) 

For system (9), we set the target system as (AS) and the 
integral transformation as (A6) . 

I Mt,x) = -sx(t,x), 
sCt, o)= o, 
s(0, x) = so(x) , 

sU,x) = ii(t,x) -11 
r(x,y)ii(t,y) dy. 

(AS) 

(A6) 

Clearly, the solution s (t, •) of (AS) vanishes for all t 2'. 1. 
Differentiating (A6) and performing integration by parts, 
st(t, x) + sx(t , x) is calculated as 

Mt,x) + sx(t,x) 

= { r(x, 1) - h(x) + 11 
r(x,y)h(y) dy} ii(t, 1) 

-1 1 
{ry(x,y) + rx(x,y) )ii(t,y) dy. (A7) 

If the two terms enclosed in {•}of the right-hand side of (A7) 
are zero, s1( t, x) + sxU, x) = 0 holds for all ii. Also, putting 
x = 0 in (A6) and using the boundary condition of (9) yields 

s(t, 0) = lo 1 
(Kq(0, y) - r(0,y))ii(t,y) dy. 

If Kq(0,y) = r(0,y), sU, 0) = 0 holds for all ii. Thus, we 
obtain (10) and (11). 

Appendix 3. Derivation of (g, h) e W 

First, putting x = 0 in (11) and (12), we have 

h(0) = r(0, 1) + fo 1 
r(0,y)h(y) dy, 

g(0) = q(0, 1) + lo 1 
q(0, y)h(y) dy. 

Here, noting that r(0,y) = Kq(0,y) by (10), we have 

(AS) 

(A9) 

h(0) = Kq(0, 1) + K 1 I q(0,y)h(y) dy = Kg(0). (Al0) 

Next, puttingx = 1 in (12), and noting that q(l,y) = 0 by (8) 
and that p(l, y) = y(y) by (7) , we have 

g(l) = 11 
p( l, y)g(y) dy = 11 

y(y)g(y) dy. (All) 

Based on the discussion of Section 2, we know that 
g E H 1(0, 1), h E H 1(0, 1). Hence, it follows from (Al0) 
and (Al 1) that (g, h) E W. 


